Monte Carlo study of photogenerated carrier transport in GaAs surface space-charge fields  
Xing Zhou and Thomas Y. Hsiang
Department of Electrical Engineering and Laboratory for Laser Energetics. University of Rochester, Rochester, New York 14627

R. J. Dwayne Miller
Department of Chemistry and Institute of Optics, University of Rochester, Rochester, New York 14627



Journal of Applied Physics, Vol. 66, No. 7, pp. 3066-3073, October 1989.

(Received 24 March 1989; accepted for publication 21 June 1989)


Copyright | Abstract | References | Citation | Figures | Reprint | Back



Abstract

A self-consistent ensemble Monte Carlo particle model to simulate the dynamics of photogenerated carrier transport in GaAs surface space-charge fields is presented. Dependence of transport parameters, such as relaxation processes, carrier screening, and velocity overshoot, on pulse vidth, injection level, and excitation energy is investigated and related to the experimentally observable potential drop across the surface space-charge region. In the present study, the high-field conditions are produced by charged surface states, and are to be modified by the redistribution of injected carriers. The photocarrier-induced change in the electric field, which can be measured using electro-optic sampling techniques, is found to be due to the spatial separation of the electron-hole pairs. The simulation results show that at a high injection level a maximum potential drop would result due to complete carrier screening of the surface charge field. The rate of change of this potential drop also would increase with increasing level of injection. These results are in good qualitative agreement with experimental observations. The simulation predicts an enhanced degree of velocity overshoot at decreasing injection energies and, at below L-minima excitation, a second increase in the potential resulting from the redistribution of carriers in the bulk. In this way, it is indicated that the study of the onset of photoconductivity can be used to probe such transport properties in GaAs.


References

  1. L. Min and R. J. Dwayne Miller (unpublished); L. Min and R. J. Dwayne Miller (unpublished).
  2. R. J. Dwayne Miller, J. Kasinski, L. A. Gomcz-Jahn, and L. Min, Ultrafast Phenomena VI, edited by T. Yajaima, K. Yoshihara, C. B. Harris, and S. Shionoya (Springer, Berlin, 1988), p. 424.
  3. J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, IEEE J. Quantum Electron. QE-19, 664 (1983).
  4. K. Hess, IEEE Trans. Electron Devices ED-28, 937 (1981).
  5. J. Y. Tang and K. Hess, IEEE Trans. Electron Devices ED-29, 1906 (1982).
  6. M. A. Osman, U. Ravaioli, and D. K. Ferry, in High-Speed Electronics, edited by B. Kallback and H. Beneking (Springer, Berlin, 1986), p. 211.
  7. M. A. Osman and D. K. Ferry, J. Appl. Phys. 61, 5330 (1987).
  8. S. M. Goodnick and P. Lugli, Appl. Phys. Lett. 51, 584 (1987).
  9. D. W. Bailey, M. A. Artaki, C. J. Stanton, and K. Hess, J. Appl. Phys. 62, 4683 (1987).
  10. X. Zhou, R. J. Bowman, and T. Y. Hsiang, "Monte Carlo Simulation of Time-Dependent Phenomena in GaAs," Technical Report No. TR-001-04-88, University of Rochester (1988) (unpublished); X. Zhou, R. J. Bowman, and T. Y. Hsiang, "Monte Carlo Simulation of Space-Dependent Phenomena in GaAs," Technical Report No. TR-002-05-88, University of Rochester (1988) (unpublished).
  11. W. Fawcett, A. D. Boardman, and S. Swan, J. Phys. Chem. Solids 31, 1963 (1970).
  12. J. G. Ruch and W. Fawcett, J. Appl. Phys. 41, 3843 (1970).
  13. M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, J. Appl. Phys. 48, 4587 (1977).
  14. H. C. Casey, Jr. and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part A.
  15. C. Moglestue, IEEE Trans. Computer-Aided Design CAD-5, 326 (1986).
  16. T. H. Glisson, C. K. Williams, J. R. Hauser, and M. A. Littlejohn, VLSI Electronics: Microstructure Science, edited by N. G. Einspruch (Academic, New York, 1982), Vol. 4, Chap. 3.
  17. K. E. Meyer, Ph.D. thesis, University of Rochester, 1988.

Citation

  1. [13] X. Zhou  and T. Y. Hsiang, "Monte Carlo determination of femtosecond dynamics of hot-carrier relaxation and scattering processes in bulk GaAs," J. Appl. Phys., Vol. 67, No. 12, pp. 7399-7403, June 1990.
  2. [20] X. Zhou, "Regional Monte Carlo modeling of electron transport and transit-time estimation in graded-base HBT's," IEEE Trans. Electron Devices, Vol. 41, No. 4, pp. 484-490, Apr. 1994.
  3. [15] X. Zhou and H. S. Tan, "Monte Carlo formulation of velocity-field characteristics and expressions for AlxGa1-xAs," Int. J. Electron., Vol. 76, No. 6, pp. 1049-1062, June 1994.
  4. [11] X. Zhou, "Electron transport in graded-band devices: Interplay of field, composition and length dependencies," Solid-State Electron., Vol. 37, No. 11, pp. 1888-1890, Nov. 1994.
  5. [14] X. Zhou, S. Alexandrou, and T. Y. Hsiang, "Monte Carlo investigation of the intrinsic mechanism of subpicosecond pulse generation by nonuniform gap illumination," J. Appl. Phys., Vol. 77, No. 2, pp. 706-711, Jan. 1995.
  6. [12] L. Min and R. J. D. Miller, "SUBPICOSECOND REFLECTIVE ELECTROOPTIC SAMPLING OF ELECTRON-HOLE VERTICAL TRANSPORT IN SURFACE-SPACE-CHARGE FIELDS," Appl. Phys. Lett., Vol. 56, No. 6,  pp. 524-526, Feb. 1990.
  7. [14] T. L. Gilton, J. P. Cowin, G. D. Kubiak, and A. V. Hamza, "INTENSE SURFACE PHOTOEMISSION - SPACE-CHARGE EFFECTS AND SELF-ACCELERATION," J. Appl. Phys., Vol. 68, No. 9, pp. 4802-4810, Nov. 1990.
  8. [15] L. A. Gomezjahn, L. Min, and R. J. D. Miller, "INSITU PICOSECOND STUDIES OF SURFACE-REACTION DYNAMICS AT GAAS(100) INTERFACES," Molecular Cry. Liquid Cry., Vol. 194, pp. 181-190, 1991.
  9. [43] C. Moglestue, J. Rosenzweig, J. Kuhl, M. Klingenstein, M. Lambsdorff, A. Axmann, J. Schneider, and A. Hulsmann, "PICOSECOND PULSE RESPONSE CHARACTERISTICS OF GAAS METAL-SEMICONDUCTOR-METAL PHOTODETECTORS," J. Appl. Phys., Vol. 70, No. 4, pp. 2435-2448, Aug. 1991.
  10. [29] E. Sano, "2-DIMENSIONAL ENSEMBLE MONTE-CARLO CALCULATION OF PULSE RESPONSES OF SUBMICROMETER GAAS METAL-SEMICONDUCTOR METAL PHOTODETECTORS," IEEE Trans. Electron Devicves, Vol. 38, No. 9, pp. 2075-2081, Sep. 1991.
  11. [32] R. Scholz and A. Stahl, "GENERATION OF LO-PHONONS IN A TIME-DEPENDENT ELECTRIC-FIELD AT THE SURFACE OF III-V MATERIALS," Phys. Stat. Solidi B, Vol. 168, No. 1, pp. 123-138, Nov. 1991.
  12. [38] W. Kutt, "COHERENT PHONONS IN III-V-COMPOUNDS," Adv. Solid St. Phys., Vol. 32, pp. 113-129, 1992.
  13. [198] L. J. Richter and R. R. Cavanagh, "MECHANISTIC STUDIES OF PHOTOINDUCED REACTIONS AT SEMICONDUCTOR SURFACES," Prog. Surf. Sci., Vol. 39, No. 2, pp. 155-226, Feb. 1992.
  14. [59] L. A. Gomezjahn and R. J. D. Miller, "PICOSECOND SURFACE RESTRICTED TRANSIENT GRATING STUDIES OF CARRIER REACTION DYNAMICS AT N-GAAS(100) INTERFACES," J. Phys. Chem., Vol. 96, No. 5, pp. 3981-3994, Mar. 1992.
  15. [24] P. C. Searson, D. D. MacDonald, and L. M. Peter, "FREQUENCY-DOMAIN ANALYSIS OF PHOTOPROCESSES AT ILLUMINATED SEMICONDUCTOR ELECTRODES BY TRANSIENT TRANSFORMATION," J. Electrochem. Soc., Vol. 139, No. 9, pp. 2538-2543, Sep. 1992.
  16. [29] T. Dekorsy, T. Pfeifer, W. Kutt, and H. Kurz, "SUBPICOSECOND CARRIER TRANSPORT IN GAAS SURFACE-SPACE-CHARGE FIELDS," Phys. Rev. B, Vol. 47, No. 7, pp. 3842-3849, Feb. 1993.
  17. [36] Y. Rosenzwaks, B. R. Thacker, A. J. Nozik, R. J. Ellingson, K. C. Burr, and C. L. Tang, "ULTRAFAST PHOTOINDUCED ELECTRON-TRANSFER ACROSS SEMICONDUCTOR LIQUID INTERFACES IN THE PRESENCE OF ELECTRIC-FIELDS," J. Phys. Chem., Vol. 98, No. 11,  pp. 2739-2741, Mar. 1994.
  18. [12] Y. Rosenzwaks, A. J. Nozik, and I. Yavneh, "THE EFFECT OF ELECTRIC-FIELDS ON TIME-RESOLVED PHOTOLUMINESCENCE SPECTRA IN SEMICONDUCTORS," J. Appl. Phys., Vol. 75, No. 8,  pp. 4255-4257, Apr. 1994.
  19. [31] Y. Rosenzwaks, B. R. Thacker, R. K. Ahrenkiel, A. J. Nozik, and I. Yavneh, "PHOTOGENERATED CARRIER DYNAMICS UNDER THE INFLUENCE OF ELECTRIC-FIELDS IN III-V SEMICONDUCTORS," Phys. Rev. B, Vol. 50, No. 3,  pp. 1746-1754, Jul. 1994.
  20. [10] E. Greger, K. Reingruber, P. Riel, G. H. Dohler, J. Rosenzweig, M. Ludwig, "BANDWIDTH ENHANCED METAL-SEMICONDUCTOR-METAL PHOTODETECTORS BASED ON BACKGATED IP STRUCTURES," Appl. Phys. Lett., Vol. 65, No. 17,  pp. 2223-2225, Oct. 1994.
  21. [110] J. M. Lanzafame, S. Palese, D. Wang, R. J. D. Miller, and A. A. Muenter, "ULTRAFAST NONLINEAR-OPTICAL STUDIES OF SURFACE-REACTION DYNAMICS - MAPPING THE ELECTRON TRAJECTORY," J. Phys. Chem., Vol. 98, No. 43, pp. 11020-11033, Oct. 1994.
  22. [95] X. Y. Zhu, "SURFACE PHOTOCHEMISTRY," Annual Rev. Phys. Chem., Vol. 45, pp. 113-144, 1994.
  23. [40] D. Wang, J. Buontempo, Z. W. Li, R. J. D. Miller, "PICOSECOND SURFACE RESTRICTED GRATING STUDIES ON N-GAAS(100) LIQUID JUNCTIONS - EVIDENCE FOR INTERFACIAL CHARGE-TRANSFER APPROACHING ADIABATIC LIMITS," Chem. Phys. Lett., Vol. 232, No. 1-2, pp. 7-15, Jan. 1995.
  24. [45] C. A. Schmuttenmaer, C. C. Miller, J. W. Herman, J. Cao, D. A. Mantell, Y. Gao, and R. J. D. Miller, "Femtosecond time-resolved photoemission study of hot electron relaxation at the GaAs(100) surface," Chem. Phys., Vol. 205, No. 1-2, pp. 91-108, Apr. 1996.
  25. [84] S. J. Diol and R. J. D. Miller, "Ultrafast studies of imaging processes," J. Imaging Sci. Tech., Vol. 41, No. 2, pp. 99-111, Mar./Apr. 1997.
  26. [17] Gary L. Eesley, "Electro-optic sampling of surface fields," J. Appl. Phys., Vol. 82, No. 12, pp. 6078-6082, Dec. 1997. 
  27. [46] S. J. Diol, E. Poles, Y. Rosenwaks, R. J. D. Miller, "Electron-transfer dynamics at GaAs surface quantum wells," J. Phys. Chem. B, Vol. 102, No. 32, pp. 6193-6201, Aug. 1998.
  28. [6] P. Y. Han, X. G. Huang, and X.-C. Zhang, "Direct characterization of terahertz radiation from the dynamics of the semiconductor surface field," Appl. Phys. Lett., Vol. 77, No. 18,  pp. 2864-2866, Oct. 2000. 


AIP citation
Order