Regional Monte Carlo Modeling of Electron Transport
and Transit-Time Estimation in Graded-Base HBT's
Xing Zhou, Member, IEEE
IEEE Transactions on Electron Devices,
Vol. 41, No. 4, pp. 484-490, April 1994.
(Manuscript received August 7, 1993; revised November 19, 1993)
Copyright | Abstract
| References | Citation | Figures
| Reprint
| Back
Copyright Notice
© 1994 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.
Abstract
Steady-state electron transport in graded-base heterojunction bipolar
transistors is investigated using a regional ensemble Monte Carlo approach.
Besides the graded band and scattering parameters already incorporated
in the particle model, emitter-base and collector-base junctions are also
considered in the boundary conditions for carrier injection/absorption.
It is shown that optimum base transit times are directly related to the
maximum average velocities, which occur at different base width-composition
combinations. It also illustrates a general approach to studying electron
transport in graded-band devices.
References
-
[1] H. Kroemer, "Heterostructure bipolar
transistors: What should we build?" J. Vac. Sci. Technol., vol. B1, pp.
126-130, 1983.
-
[2] D. L. Miller, R. M. Asbeck, R. J.
Anderson, and F. H. Eisen, "GaAlAs/GaAs heterojunction bipolar transistors
with graded composition in the base," Electron. Lett., vol. 19, pp. 367-386,
1983.
-
[3] J. R. Hayes, F. Capasso, A. C. Gossard,
R. J. Malik, and W. Wiegmann, "Bipolar trnasistor with graded band-gap
base," Electron. Lett., vol. 19, pp. 410-411, 1983.
-
[4] R. J. Malik, F. Capasso, R. A. Stall,
R. A. Kiehl, R. W. Ryan, R. Wunder, and C. G. Bethea, "High-gain, high-frequency
AlGaAs/GaAs graded band-gap base bipolar transistors with a Be diffusion
setback layer in the base," Appl. Phys. Lett., vol. 46, pp. 600-602, 1985.
-
[5] M. Kurata and J. Yoshida, "Modeling
and characterization for high-speed GaAlAs-GaAs n-p-n heterojunction bipolar
transistors," IEEE Trans. Electron Devices, vol. ED-31, pp. 467-473, July
1984.
-
[6] K. Tomizawa, Y. Awano, and H. Hashizume,
"Monte Carlo simulation of AlGaAs/GaAs heterojunction bipolar transistors,"
IEEE Electron Device Lett., vol. EDL-5, pp. 362-364, 1984.
-
[7] C. M. Maziar, M. E. Klausmeier-Brown,
S. Bandyopadhyay, M. S. Lundstrom, and S. Datta, "Monte Carlo evaluation
of electron trnasport in heterojunction bipolar transistor base structures,"
IEEE Trans. Electron Devices, vol. 33, pp. 881-888, July 1986.
-
[8] M. A. "Osman, "Minority electron
transport across p+ doped submicron layer of GaAs," J. Appl. Phys., vol.
71, pp. 308-313, 1992.
-
[9] R. Katoh and M. Kurata, "Self-consistent
particle simulation for (AlGa)As/GaAs HBT's under high bias conditions,"
IEEE Trans. Electron Devices, vol. 36, pp. 2122-2128, 1989.
-
[10] J. Hu, K. Tomizawa, and D. Pavlidis,
"Transient Monte Carlo analysis and application to heterojunction bipolar
transistor switching," IEEE Trans. Electron Devices, vol. 36, ppl. 2138-2145,
1989.
-
[11] J. Hu, D. Pavlidis, and K. Tomizawa,
"Monte Carlo studies of the effect of emitter junction grading on the electron
transport in "InAlAs/InGaAs heterojunction bipolar transistors," IEEE Trans.
Electron Devices, vol. 39, pp. 1273-1281, 1992.
-
[12] H.-F. Chau, J. Hu, D. Pavlidis,
and K. Tomizawa, "Breakdown-speed considerations in AlGaAs/GaAs heterojunction
bipolar transistors with special collector designs," IEEE Trans. Electron
Devices, vol. 39, pp. 2711-2719, 1992.
-
[13] R. Katoh and M. Kurata, "A model-based
comparison of AlInAs/GaInAs and InP/GaInAs HBT's: A Monte Carlo study,"
IEEE Trans. Electron Devices, vol. 37, pp. 1245-1252, 1990.
-
[14] X. Zhou, "Electron transport in
grade-band devices: Interplay of field, composition, and length dependencies,"
to be published in Solid-State Electron..
-
[15] A. K. Saxena, "The conduction band
structure and deep levels in Ga1-xAlxAs alloys from
a high-pressure experiment," J. Phys. C, vol. 13, pp. 4323-4334, 1980.
-
[16] S. Adachi, GaAs, AlAs, and Ga1-xAlxAs:
Material parameters for use in research and device applications," J. Appl.
Phys., vol. 40, pp. R1-R29, 1985.
-
[17] M. A. Littlejohn, J. R. Hauser,
and T. H. Glisson, "Velocity-field characteristics of GaAs with G6c-L6c-X6c
conduction-band ordering," J. Appl. Phys., vol. 48, pp. 4587-4590, 1977.
-
[18] M. E. Klausmeier-Brown, "Monte
Carlo studies of electron transport in III-V semiconductor heterostructures,"
M.S. Thesis, Purdue Univ., 1986.
-
[19] H. C. Casey, Jr. and M. B. Panish,
Heterostructure Lasers, New York: Academic, 1978, chap. 4.
-
[20] X. Zhou, T. Y. Hsiang, and R. J.
D. Miller, "Monte Carlo study of photogenerated carrier transport in GaAs
surface space-charge fields," J. Appl. Phys., vol. 66, pp. 3066-3073, 1989.
-
[21] X. Zhou, "Ensemble Monte Carlo
modeling of high-field transport and ultrafast phemonena in compound semiconductors,"
Ph.D. thesis, Univ. Rochester, 1990.
-
[22] W. Fawcett, D. A. Boardman, and
S. Swain, "Monte Carlo determination of electron transport properties in
gallium arsenide," J. Phys. Chem. Solids, vol. 31, pp. 1963-1990, 1970.
-
[23] J. G. Ruch and W. Fawcett, "Temperature
dependence of the transport properties of gallium arsenide determined by
a Monte Carlo method," J. Appl. Phys., vol. 41, pp,. 3843-3829, 1970.
-
[24] X. Zhou and T. Y. Hsiang, "Monte
Carlo determination of femtosecond dynamics of hot-carrier relaxation and
scattering processes in bulk GaAs," J. Appl. Phys., vol. 67, pp. 7399-7403,
1990.
-
[25] M. A. Littlejohn, J. R. Hauser,
T. H. Glisson, D. K. Ferry, and J. W. Harrison, "Alloy scattering and high
field transport in ternary and quaternary III-V semiconductors," Solid-State
Electron., vol. 21, pp. 107-114, 1978.
-
[26] A. G. Milnes, "Heterojunctions"
Some knowns and unknowns," Solid-State Electron., vol. 30, pp. 1099-1105,
1987.
-
[27] H. Unlu and A. Nussbaum, "A review
of models for heterojunction band offset," Solid-State Electron., vol.
30, pp. 1095-1098, 1987.
-
[28] K. Taira, C. Takano, H. Kawai,
and M. "Arai, "Band offset effect on transport in AlxGa1-xAs/GaAs
heterojunction bipolar transistors grown by metalorganic chemical vapor
deposition," IEEE Trans. Electron Devices, vol. 34, pp. 2040-2042, 1987.
-
[29] C. M. Maziar and M. S. Lundstrom,
"On the estimation of base transit time in AlGaAs/GaAs bipolar transistors,"
IEEE Electron Device Lett., vol. 8, pp. 90-92, 1987.
-
[30] X. Zhou, "Monte Carlo calculation
of base transit times in ballistic-base versus graded-base HBT's," Proc.
5th Int. Symp. IC Technology Sys. & Appl. (ISIC-93), Singapore, 1993,
pp. 717-721.
-
[31] J. Weng, "Transit time of fast
bipolar transistors at high collector-current densities," Solid-State Electron.,
vol. 35, pp. 599-610, 1992.
-
[32] K. Suzuki, "Analytical base transit
time model of uniformly-doped-base bipolar transistors for high-injection
regions," Solid-State Electron., vol. 36, pp. 109-110, 1993.
-
[33] W. Liu, D. Costa, and J. S. Harris,
Jr., "Derivation of the emitter-collector transit time of heterojunction
bipolar transistors," Solid-State Electron., vol. 35, pp. 541-545, 1992.
-
[34] W. Liu, D. Costa, and J. S. Harris,
Jr., "Current gain of graded AlGaAs/GaAs heterojunction bipolar transistors
with and without a base quasi-electric field," IEEE Trans. Electron Devices,
vol. 39, pp. 2422-2429, 1992.
-
[35] A. A. "Grinberg and S. Luryi, "On
the therminonic-diffusion theory of minority transport in heterostructure
bipolar transistors," IEEE Trans. Electron Devices, vol. 40, pp. 8590866,
1993.
-
[36] Z. Yu and R. W. Dutton, "SEDAN
III--A generalized electronic material device analysis program," Tech.
Rep., Stanford Electronics Lab., Stanford, CA, 1985.
-
[37] Q. M. Zhang, G. L. Tan, J. M. Xu,
and D. J. Day, "Current gain and transit-time effects in HBT's with graded
emitter and base regions," IEEE Elecron Device Lett., vol 11, pp. 508-510,
1990.
-
[38] Q. M. Zhang, G. L. Tan, W. T. Moore,
and J. M. Xu, "Effects of displaced p-n junction of heterojunction bipolar
transistors," IEEE Trans. Electron Devices, vol. 39, pp. 2430-2437, 1992.
-
[39] S. E. Laux and W. Lee, "Collector
signal delay in the presence of velocity overshoot," IEEE Electron Device
Lett., vol. 11, pp. 174-176, 1990.
-
[40] F. Berz, "Diffusion near an absorbing
boundary," Solid-State Electron., vol. 17, pp. 1245-1255, 1974.
-
[41] F. Berz, "The Bethe condition for
thermionic emission near an absorbing boundary," Solid-State Electron.,
vol. 28, pp. 1007-1013, 1985.
Citation
-
[10] X.
Zhou, "Electron transport in graded-band devices: Interplay of field,
composition and length dependencies," Solid-State Electron., Vol. 37, No.
11, pp. 1888-1890, Nov. 1994.
-
[1] X.
Zhou and H. S. Tan, "Monte Carlo formulation of field-dependent mobility
for AlxGa1-xAs," Solid-State Electron., Vol. 38,
No. 6, pp. 1264-1266, June 1995.
-
[9] T.
Kumar, M. Cahay, S. Shi, and K. Roenker, and W. E. Stanchina, "Limit
of validity of the thermionic-field-emission treatment of electron injection
across emitter-base junctions in abrupt heterojunction bipolar transistors,"
J. Appl. Phys., vol. 77, no. 11, pp. 5786-5792, June 1995.
-
[3] T.
Kumar, M. Cahay, S. Shi, and K. Roenker, "Influence of quantum-mechan!cal
reflection at the emitter-base spike on the base transit time through abrupt
heterojunction bipolar transistors," J. Appl. Phys., vol. 78, no. 11, pp.
6814-6817, Dec. 1995.
-
[9] T.
Kumar, M. Cahay, and K. Roenker, "Trends in the emitter-base bias
dependence of the average base transit time through abrupt heterojunction
bipolar transistors," J. Appl. Phys., vol. 80, no. 9, pp. 5478-5482 Nov.
1996.
-
[15] O.
Qasaimeh and Y. Zebda, "Effect of bandgap discontinuity on the
cut-off frequency, base transit time and junction capacitance of npn AlGaAs/GaAs
heterojunction bipolar transistors," Int. J. Electron., vol. 84, no. 1,
pp. 25-35, Jan. 1998.
-
[12] A.
Agrawal, A. Goswami, S. Sen, and R. S. Gupta, "Current-voltage
characteristics and field distribution of pseudomorphic (AlGaAs/InGaAs)
modulation-doped field-effect transistor for microwave circuit applications,"
Microwave Opt. Technol. Lett., vol. 24, no. 6, pp. 407-412, Mar. 2000.
-
K. Y. Xu, X. F. Lu, G. Wang, and A. M. Song, "Strong spatial dependence
of electron velocity, density, and intervalley scattering in an asymmetric
nanodevice in the nonlinear transport regime," IEEE Trans. Nanotech., vol.
7, no. 4, pp. 451-457, Jul. 2008.
IEEE Citation
IEL Citation