Monte Carlo investigation of the
intrinsic mechanism of subpicosecond pulse generation by nonuniform illumination
Xing Zhou
School of Electrical and Electronic Engineering, Nanyang Technological
University, Singapore 2263, Republic of Singapore
Sotiris Alexandrou and Thomas Y. Hsiang
Department of Electrical Engineering and Laboratory for Laser Energetics,
University of Rochester, Rochester, New York 14627
Journal of Applied Physics, Vol.
77, No. 2, pp. 706-711, January 1995.
(Received 10 March 1994; accepted for publication 28 September 1994)
Copyright | Abstract
| References | Citation | Figures
| Reprint
| Back
Copyright Notice
© 1995 American Institute of Physics. Personal use of this material
is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists,or to
reuse any copyrighted component of this work in other works must be obtained
from the American Institute of Physics.
Abstract
The intrinsic mechanism of the generation of subpicosecond electrical
pulses by nonuniform illumination of GaAs transmission-line gaps is investigated
using a self-consistent Monte Carlo approach. It is attributed to the photocarrier-induced
field redistribution, which results in a displacement current pulse that
is independent of the carrier lifetime. Partial-gap illumination and high
dark resistivity are the prerequisites for this pulse generation technique.
The pulse dependence on light intensity, excitation wavelength, bias voltage,
and the asymmetric response to bias polarity are discussed and clarified.
It is predicted that this mechanism should also be observable in other
semiconductors such as silicon.
References
-
D. Kriikel, D. Grischkowsky, and M.
B. Ketchen, Appl. Phys. Lett. 54, 1046 (1989).
-
U. D. Keil and D. R. Dykaar, Appl. Phys.
Lett. 61, 1504 (1992).
-
S. Alexandrou, C.-C. Wang, R. Sobolewski,
and T. Y. Hsiang, Conference on Ultrafast Electronics and Optoelectronics,
San Francisco, CA, 1993, paper MEIO; S. Alexandrou, C.-C. Wang, R. Sobolewski,
and T. Y. Hsiang, IEEE J. Quantum Electron. 30, 1332 (1994); also to appear
in OSA Proceedings on Ultrafast Electronics and Optoelectronics, edited
by J. Shah and U. Mishra (Springer, Berlin, 1993), Vol. 14.
-
C.-C. Wang, M. Currie, and T. Y. Hsiang
(unpublished).
-
E. Sane and T. Shibata, Appl. Phys.
Lett. 55, 2748 (1989).
-
X. Zhou, S. Alexandrou, and T. Y. Hsiang,
1994 Conference on Laser and Electra-Optics (CLEO’ 94), Anaheim, CA, 1994,
paper CThI20.
-
C. Moglestue, J. Rosenzweig, J. Kuhl,
M. Klingenstein, M. Lambsdorff, A. Axmann, Jo. Schneider, and A. Hiilsmann,
J. Appl. Phys. 70, 2435 (1991).
-
S. N. Chamoun, R. Joshi, E. N. Arnold,
R. 0. Grondin, K. E. Meyer, M. Pessot, and G. A. Mourou, J. Appl. Phys.
66, 236 (1989).
-
M. B. Ketchen, D. Grischkowsky, T. C.
Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash,
and G. P. Li, Appl. Phys. Lett. 48, 751 (1986).
-
F. W. Smith, H. Q. Lee, V. Diadiuk,
M. A. Ho&s, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A.
Mourou, and T. Y. Hsiang, Appl. Phys. L&t. 54, 890 (1989).
-
S Alexandrou, C.-C. Wang, T. Y. Hsiang,
M. Y. Liu, and S. Y. Chou, Appl. Phys. Lett. 62, 2507 (1993).
-
S. E. Ralph and D. Grischkowsky, Appl.
Phys. Lett. 59, 1972 (1991).
-
M. A. Lampert, Phys. Rev. 103, 1648
(1965).
-
X. Zhou, T. Y. Hsiang, and R. J. D.
Miller, J. Appl. Phys. 66,3066 (1989).
-
D H. Auston, IEEE J. Quantum Electron.
19, 639 (1983), Eqs. (l)-(4).
-
C. K. Birdsall and D. Fuss, J. Comput.
Phys. 3, 494 (1969).
Citation
-
[8] X.
Zhou, "On the physics of femto-second electrical pulse generation by
nonuniform gap illumination," OPTOELECTRONICS--Devices and Technologies,
Vol. 10, No. 4, pp. 491-504, Dec. 1995.
-
[6] U.
D. Keil and D. R. Dykaar, "Ultrafast pulse generation in photoconductive
switches," IEEE J. Quantum Electron., Vol. 32, No. 9, pp. 1664-1671, Sept.
1996.
-
[3] X.
Zhou, "Numerical physics of subpicosecond electrical pulse generation
by nonuniform gap illumination," IEEE J. Quantum Electron., Vol. 32, No.
9, pp. 1672-1679, Sept. 1996.
-
[12] R.
H. Jacobsen, P. Uhd Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst,
"Photoconductive sampling of subpicosecond pulses using mutual inductive
coupling in coplanar transmission lines," J. Appl. Phys., Vol. 80, No.
7, pp. 4214-4216, Oct. 1996.
-
[9] X.
Zhou, T. Tang, L. S. Seah, C. J. Yap, and S. C. Choo, "Numerical investigation
of subpicosecond electrical pulse generation by edge illumination of silicon
transmission-line gaps," IEEE J. Quantum Electron., Vol. 34, No. 1, pp.
171-178, Jan. 1998.
-
[13] Shi-Hsiang
Lu, Jun-Liang Li, Jian-Shen Yu, and Sheng-Fu Horng, "Observation
of terahertz electric pulses generated by nearly filled-gap nonuniform
illumination excitation," Appl. Phys. Lett., Vol. 77, No. 24, pp. 3896-3898,
Dec. 2000.
-
[] B. Guo, J. H. Wen, H. C. Zhang, R. Liao, T. S. Lai, and W. Z. Lin,
"Femtosecond photo-conductive characteristics of Lt-GaAs," J. Infrared
Millim. Waves, Vol. 20, No. 3, pp. 179-183, June 2001.
-
[14] M.
D. Cummings, J. F. Holzman, and A. Y. Elezzabi, "Ultrafast high-field
carrier transport in a GaAs photoconductive switch," J. Vac. Sci. Technol.
A, Vol. 20, No. 3, pp. 1057-1060, May-June 2002.
-
[11] V.
L. Malevich, "Monte Carlo simulation of THz-pulse generation from
semiconductor surface," Semicond. Sci. Tech., Vol. 17, No. 6, pp. 551-556,
June 2002.
-
[20] D.
F. Liu and J. Y. Qin, "Monte Carlo simulation of THz-pulse generation
from bulk GaAs surface," International Journal of Infrared and Millimeter
Waves, 24 (12): 2127-2137, December 2003.
-
[14] J.
J. Zhang, S. Alexandrou, T. Y. Hsiang, "Attenuation characteristics
of coplanar waveguides at subterahertz frequencies" IEEE Trans. MTT, vol.
53, no. 11,: pp. 3281-3287, Nov. 2005.
-
[] W.-L. Jie, W.-L. Ji, andS. Wei, "Two-dimensional Monte Carlo
simulation of screening of the bias field in terahertz generation from
semi-insulated GaAs photoconductors," Acta Phys. Sinica, Vol. 56, No. 4,
pp. 2042-2046, Apr. 2007.
-
[] S. Wei, W.-L. Jie, W.-L. Ji, and L. Kai, "Monte Carlo simulation
of operating modes of semi-insulting GaAs photoconductive switches," Acta
Phys. Sinica, Vol. 56, No. 11, pp. 6334-6339, Nov. 2007.
ISI
citation
AIP
citation