Monte Carlo investigation of the intrinsic mechanism of subpicosecond pulse generation by nonuniform illumination  
Xing Zhou
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 2263, Republic of Singapore

Sotiris Alexandrou and Thomas Y. Hsiang
Department of Electrical Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627



Journal of Applied Physics, Vol. 77, No. 2, pp. 706-711, January 1995.

(Received 10 March 1994; accepted for publication 28 September 1994)


Copyright | Abstract | References | Citation | Figures | Reprint | Back



Abstract

The intrinsic mechanism of the generation of subpicosecond electrical pulses by nonuniform illumination of GaAs transmission-line gaps is investigated using a self-consistent Monte Carlo approach. It is attributed to the photocarrier-induced field redistribution, which results in a displacement current pulse that is independent of the carrier lifetime. Partial-gap illumination and high dark resistivity are the prerequisites for this pulse generation technique. The pulse dependence on light intensity, excitation wavelength, bias voltage, and the asymmetric response to bias polarity are discussed and clarified. It is predicted that this mechanism should also be observable in other semiconductors such as silicon.


References

  1. D. Kriikel, D. Grischkowsky, and M. B. Ketchen, Appl. Phys. Lett. 54, 1046 (1989).
  2. U. D. Keil and D. R. Dykaar, Appl. Phys. Lett. 61, 1504 (1992).
  3. S. Alexandrou, C.-C. Wang, R. Sobolewski, and T. Y. Hsiang, Conference on Ultrafast Electronics and Optoelectronics, San Francisco, CA, 1993, paper MEIO; S. Alexandrou, C.-C. Wang, R. Sobolewski, and T. Y. Hsiang, IEEE J. Quantum Electron. 30, 1332 (1994); also to appear in OSA Proceedings on Ultrafast Electronics and Optoelectronics, edited by J. Shah and U. Mishra (Springer, Berlin, 1993), Vol. 14.
  4. C.-C. Wang, M. Currie, and T. Y. Hsiang (unpublished).
  5. E. Sane and T. Shibata, Appl. Phys. Lett. 55, 2748 (1989).
  6. X. Zhou, S. Alexandrou, and T. Y. Hsiang, 1994 Conference on Laser and Electra-Optics (CLEO’ 94), Anaheim, CA, 1994, paper CThI20.
  7. C. Moglestue, J. Rosenzweig, J. Kuhl, M. Klingenstein, M. Lambsdorff, A. Axmann, Jo. Schneider, and A. Hiilsmann, J. Appl. Phys. 70, 2435 (1991).
  8. S. N. Chamoun, R. Joshi, E. N. Arnold, R. 0. Grondin, K. E. Meyer, M. Pessot, and G. A. Mourou, J. Appl. Phys. 66, 236 (1989).
  9. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, Appl. Phys. Lett. 48, 751 (1986).
  10. F. W. Smith, H. Q. Lee, V. Diadiuk, M. A. Ho&s, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, Appl. Phys. L&t. 54, 890 (1989).
  11. S Alexandrou, C.-C. Wang, T. Y. Hsiang, M. Y. Liu, and S. Y. Chou, Appl. Phys. Lett. 62, 2507 (1993).
  12. S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
  13. M. A. Lampert, Phys. Rev. 103, 1648 (1965).
  14. X. Zhou, T. Y. Hsiang, and R. J. D. Miller, J. Appl. Phys. 66,3066 (1989).
  15. D H. Auston, IEEE J. Quantum Electron. 19, 639 (1983), Eqs. (l)-(4).
  16. C. K. Birdsall and D. Fuss, J. Comput. Phys. 3, 494 (1969).



Citation

  1. [8] X. Zhou, "On the physics of femto-second electrical pulse generation by nonuniform gap illumination," OPTOELECTRONICS--Devices and Technologies, Vol. 10, No. 4, pp. 491-504, Dec. 1995.
  2. [6] U. D. Keil and D. R. Dykaar, "Ultrafast pulse generation in photoconductive switches," IEEE J. Quantum Electron., Vol. 32, No. 9, pp. 1664-1671, Sept. 1996. 
  3. [3] X. Zhou, "Numerical physics of subpicosecond electrical pulse generation by nonuniform gap illumination," IEEE J. Quantum Electron., Vol. 32, No. 9, pp. 1672-1679, Sept. 1996.
  4. [12] R. H. Jacobsen, P. Uhd Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst, "Photoconductive sampling of subpicosecond pulses using mutual inductive coupling in coplanar transmission lines," J. Appl. Phys., Vol. 80, No. 7, pp. 4214-4216, Oct. 1996. 
  5. [9] X. Zhou, T. Tang, L. S. Seah, C. J. Yap, and S. C. Choo, "Numerical investigation of subpicosecond electrical pulse generation by edge illumination of silicon transmission-line gaps," IEEE J. Quantum Electron., Vol. 34, No. 1, pp. 171-178, Jan. 1998.
  6. [13] Shi-Hsiang Lu, Jun-Liang Li, Jian-Shen Yu, and Sheng-Fu Horng, "Observation of terahertz electric pulses generated by nearly filled-gap nonuniform illumination excitation," Appl. Phys. Lett., Vol. 77, No. 24, pp. 3896-3898, Dec. 2000. 
  7. [] B. Guo, J. H. Wen, H. C. Zhang, R. Liao, T. S. Lai, and W. Z. Lin, "Femtosecond photo-conductive characteristics of Lt-GaAs," J. Infrared Millim. Waves, Vol. 20, No. 3, pp. 179-183, June 2001.
  8. [14] M. D. Cummings, J. F. Holzman, and A. Y. Elezzabi, "Ultrafast high-field carrier transport in a GaAs photoconductive switch," J. Vac. Sci. Technol. A, Vol. 20, No. 3, pp. 1057-1060, May-June 2002. 
  9. [11] V. L. Malevich, "Monte Carlo simulation of THz-pulse generation from semiconductor surface," Semicond. Sci. Tech., Vol. 17, No. 6, pp. 551-556, June 2002. 
  10. [20] D. F. Liu and J. Y. Qin, "Monte Carlo simulation of THz-pulse generation from bulk GaAs surface," International Journal of Infrared and Millimeter Waves, 24 (12): 2127-2137, December 2003. 
  11. [14] J. J. Zhang, S. Alexandrou, T. Y. Hsiang, "Attenuation characteristics of coplanar waveguides at subterahertz frequencies" IEEE Trans. MTT, vol. 53, no. 11,: pp. 3281-3287, Nov. 2005. 
  12. [] W.-L. Jie, W.-L. Ji, andS. Wei, "Two-dimensional Monte Carlo simulation of screening of the bias field in terahertz generation from semi-insulated GaAs photoconductors," Acta Phys. Sinica, Vol. 56, No. 4, pp. 2042-2046, Apr. 2007.
  13. [] S. Wei, W.-L. Jie, W.-L. Ji, and L. Kai, "Monte Carlo simulation of operating modes of semi-insulting GaAs photoconductive switches," Acta Phys. Sinica, Vol. 56, No. 11, pp. 6334-6339, Nov. 2007.
ISI citation
AIP citation
Order