Exploring the Novel Characteristics of Hetero-Material
Gate Field-Effect Transistors (HMGFET's) with Gate-Material Engineering
Xing Zhou, Senior Member, IEEE
IEEE Transactions on Electron Devices,
Vol. 47, No. 1, pp. 113-120, January 2000.
(Manuscript received September 8, 1998; revised May 4, 1999.)
Copyright | Abstract
| References | Citation | Figures
| Reprint
| Back
Copyright Notice
© 2000 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.
Abstract
The novel characteristics of a new type of MOSFET, the hetero-material
gate field-effect transistor (HMGFET), are explored theoretically and compared
with those of the compatible MOSFET. Two conceptual processes for
realizing the HMG structure are proposed for integration into the existing
silicon technology. The 2-D numerical simulations reveal that the
HMGFET demonstrates extended threshold voltage roll-off to much smaller
length and shows simultaneous transconductance enhancement and suppression
of short-channel effects (drain-induced barrier-lowering and channel-length
modulation) and, more importantly, these unique features could be controlled
by engineering the material and length of the gate. This work demonstrates
a new way of engineering ultra-small transistors and provides the incentive
and guide for experimental exploration.
References
-
[1] A. Hiroki, S. Odanaka, and A. Hori, “A high performance 0.1 µm
MOSFET with asymmetric channel profile,” in IEDM Tech. Dig., 1995, pp.
439–442.
-
[2] T. N. Buti, S. Ogura, N. Rovedo, K. Tobimatsu, and C. F. Codella, “Asymmetrical
halo source GOLD drain (HS-GOLD) deep sub-half micron n-MOSFET design for
reliability and performance,” in IEDM Tech. Dig., 1989, pp. 617–620.
-
[3] T. Horiuchi, T. Homma, Y. Murao, and K. Okumura, “An asymmetric sidewall
process for high performance LDD MOSFET’s,” IEEE Trans. Electron Devices,
vol. 41, pp. 186–190, Feb., 1994.
-
[4] J. F. Chen, J. Tao, P. Fang, and C. Hu “0.35-µm asymmetric and
symmetric LDD device comparison using a reliability/speed/power methodology,”
IEEE Electron Device Lett., vol. 19, pp. 216–218, July, 1998.
-
[5] W. Long and K. K. Chin, “Dual material gate field effect transistor
(DMGFET),” in IEDM Tech. Dig., 1997, pp. 549–552.
-
[6] X. Zhou and W. Long, “A novel hetero-material gate (HMG) MOSFET for
deep-submicron ULSI technology,” IEEE Trans. Electron Devices, vol. 45,
pp. 2546–2548, Dec., 1998.
-
[7] P. Dollfus and P. Hesto, “Monte Carlo study of a 50 nm-dual-gate HEMT
providing against short-channel effects,” Solid-State Electron., vol. 36,
no. 5, pp. 711–715, 1993.
-
[8] M. Shur, “Split-gate field-effect transistor,” Appl. Phys. Lett., vol.
54, no. 2, pp. 162–164, 1989.
-
[9] K. Ismail, K. Y. Lee, D. P. Kern, and J. M. Hong, “Novel properties
of a 0.1-µm-long split-gate MODFET,” IEEE Electron Device Lett.,
vol. 11, pp. 469–471, Oct., 1990.
-
[10] H. Sayama, T. Kuroi, S. Shimizu, M. Shirahata, Y. Okumura, M. Inuishi,
and H. Miyoshi, “Low voltage operation of sub-quarter micron W-polycide
dual gate CMOS with non-uniformly doped channel,” in IEDM Tech. Dig., 1996,
pp. 583–586.
-
[11] J. C. Hu, H. Yang, R. Kraft, A. L. P. Rotondaro, S. Hattangady, W.
W. Lee, R. A. Chapman, C.-P. Chao, A. Chaterjee, M. Hanratty, M. Rodder,
and I.-C. Chen, “Feasibility of using W/TiN as metal gate for conventional
0.13µm CMOS technology and beyond,” in IEDM Tech. Dig., 1997, pp.
825–828.
-
[12] Y. V. Ponomarev, C. Salm, J. Schmitz, P. H. Woerlee, P. A. Stolk,
and D. J. Gravesteijn, “Gate-workfunction engineering using poly-(Si,Ge)
for high-performance 0.18µm CMOS technology,” in IEDM Tech. Dig.,
1997, pp. 829–832.
-
[13] X. Zhou, K. Y. Lim, and D. Lim, “A simple and unambiguous definition
of threshold voltage and its implications in deep-submicron MOS device
modeling,” IEEE Trans. Electron Devices, vol. 46, pp. 807–809, Apr., 1999.
-
[14] MEDICI (Ver. 4.0), Technol. Model. Assoc., Inc., Palo Alto, CA, 1997.
-
[15] H. I. Hanafi, W. P. Noble, R. S. Bass, K. Varahramyan, Y. Lii, and
A. J. Dally, “A model for anomalous short-channel behavior in submicron
MOSFET’s,” IEEE Electron Device Lett., vol. 14, pp. 575–577, Dec., 1993.
-
[16] J. Hergenrother, D. Monroe, F. Klemens, A. Kornblit, G. Weber, W.
Mansfield, M. Baker, F. Baumann, K. Bolan, J. Bower, N. Ciampa, R. Cirelli,
J. Colonell, D. Eaglesham, J. Fracoviak, H. Gossman, M. Green, S. Hillenius,
C. King, R. Kleiman, W. Y. C. Lai, J. T-C Lee, R-C Liu, H. Maynard, M.
Moris, C-S Pai, C. Rafferty, J. Rosamilia, T. Sorsch, H-H Vuong, "The vertical
replacement-gate (VRG) MOSFET: a 50-nm vertical MOSFET with lighography-independent
gate length," to appear in IEDM Tech. Dig., 1999.
-
[17] H. Kurata and T. Sugii, “Self-aligned control of threshold voltages
in sub-0.2-µm MOSFET’s,” IEEE Trans. Electron Devices, vol. 45, pp.
2161–2166, Oct., 1998.
-
[18] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H.
Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and
H.-S. Wong, “CMOS scaling into the nanometer regime,” Proc. IEEE, vol.
85, pp. 486–504, 1997.
Citation
-
[7] S. Yang, J. He, R. Huang, and X. Zhang, "Asymmetric Gate (AG)
FET: A Novel Sub-micron MOS Device Structure With Excellent Performance,"
Proc.
of the 6th International Conference on Solid-State and Integrated-Circuit
Technology (ICSICT-2001), Shanghai, October 22-25, 2001, Vol. 2, pp.
543-546.
-
[8] J.
Guo, Z. Ren, and M. Lundstrom, "A Computational Exploration of
Lateral Channel Engineering to Enhance MOSFET Performance," J. Comput.
Electron., Vol. 1, No. 1-2, pp. 185-189, July 2002.
-
[7] S.
Yang, J. He, R. Huang, and X. Zhang, "Asymmetric, gate (AG) MOS
device: A novel field effect transister (FET) structure," Chinese J. Electron.,
vol. 12, no. 1, pp. 79-81, Jan. 2003.
-
[80] A.
Chaudhry and M. J. Kumar, "Controlling short-channel effects in
deep-submicron SOI MOSFETs for improved reliability: a review," IEEE Trans.
Device Mater. Rel., Vol. 4, No. 1, pp. 99-109, March 2004.
-
[6] M.
J. Kumar and A. Chaudhry, "Two-dimensional analytical modeling
of fully depleted DMG SOI MOSFET and evidence for diminished SCEs," IEEE
Trans. Electron Devices, Vol. 51, No. 4, pp. 569-574, April 2004.
-
[13] M.
J. Kumar and A. Chaudhry, "Investigation of the Novel Attributes
of a Fully Depleted Dual-Material Gate SOI MOSFET," IEEE Trans. Electron
Devices, Vol. 51, No. 9, pp. 1463-1467, September 2004.
-
[8] M.
J. Kumar and G. V. Reddy, "Evidence for suppressed short-channel
effects in deep submicron dual-material gate (DMG) partially depleted SOI
MOSFETs - A two-dimensional analytical approach," Microel. Eng., Vol. 75,
No. 4, pp. 367-374, Nov. 2004.
-
[28] G.
V. Reddy and M. J. Kumar, "A new dual-material double-gate (DMDG)
nanoscale SOI MOSFET - Two-dimensional analytical modeling and simulation,"
IEEE Trans. Nanotechnology, Vol. 4, No. 2, pp. 260-268, Mar. 2005.
-
[14] K.
Goel, M. Saxena, M. Gupta, and R.S. Gupta, "Two-dimensional analytical
threshold voltage model for DMG Epi-MOSFET," IEEE Trans. Electron Devices,
Vol. 52, No. 1, pp. 23-29, Jan. 2005.
-
[7] P.
Hashemi, A. Behnam, E. Fathi, A. Afzali-Kusha, and M. El Nokali,
"2-D modeling of potential distribution and threshold voltage of short
channel fully depleted dual material gate SOI MESFET," Solid-State Electron.,
Vol. 49, No. 8, pp. 1341-1346, Aug. 2005.
-
[] K. Y. Na and Y. S. Kim, "Silicon complementary metal-oxide-semiconductor
field-effect transistors with dual work function gate," Jpn. J. Appl. Phys.,
Vol. 45, No. 12, pp. 9033-9036, Dec. 2006.
-
[] K. Goel, M. Saxena, M. Gupta, and R. S. Gupta, "A new two-dimensional
analytical model for short-channel symmetrical dual-material double-gate
metal-oxide-semiconductor field effect transistors," Semicond. Sci. Tech.,
Vol. 22, No. 4, pp. 435-446, Apr. 2007.
-
[] T. K. Chiang an M. L. Chen, "A new two-dimensional analytical
model for short-channel symmetrical dual-material double-gate metal-oxide-semiconductor
field effect transistors," Jpn. J. Appl. Phys., Vol. 46, No. 6A, pp. 3283-3290,
Jun. 2007.
-
[22] P. Kasturi, M. Saxena, M. Gupta, and R. S. Gupta, "Dual material
double-layer gate stack SON MOSFET: A novel architecture for enhanced analog
performance - Part I: Impact of gate metal workfunction engineering," IEEE
Trans. Electron Devices, Vol. 55, No. 1, pp. 372-381, Jan. 2008.
-
[20] G. H. See, X. Zhou, K. Chandrasekaran,
S. B. Chiah, Z. M. Zhu, C. Q. Wei, S. H. Lin, G. J. Zhu, and G. H. Lim,
"A Compact Model Satisfying Gummel Symmetry in Higher Order Derivatives
and Applicable to Asymmetric MOSFETs," IEEE Trans. Electron Devices, Vol.
55, No. 2, pp. 624-631, Feb. 2008.
-
[] R. Chaujar, R. Kaur, M. Saxena, M. Gupta, and R. S. Gupta, "Laterally
amalgamated DUal Material GAte Concave (L-DUMGAC) MOSFET for ULSI," Microl.
Eng., Vol. 85, No. 3, pp. 566-576, Mar. 2008.
-
R. Chaujar, R. Kaur, M. Saxena, M. Gupta, and R. S. Gupta, "On-state
and RF performance investigation of sub-50 nm L-DUMGAC MOSFET design for
high-speed logic and switching applications," Semicond. Sci. Technol.,
vol. 23, no. 9, 095009, Sep. 2008.
-
[17] H. Tsuchiya and S. Takagi, "Influence of elastic and inelastic
phonon scattering on the drive current of quasi-ballistic MOSFETs," IEEE
Trans. Electron Devices, vol. 55, no. 9, pp. 2397-2402, Sep. 2008.
-
[] R. Chaujar, R. Kaur, M. Saxena, M. Gupta, R. S. Gupta, "TCAD
Assessment of Gate Electrode Workfunction Engineered Recessed Channel (GEWE-RC)
MOSFET and Its Multilayered Gate Architecture Part I: Hot-Carrier-Reliability
Evaluation," IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2602-2613,
Oct. 2008.