* School of Electrical & Electronic Engineering, Nanyang Technological
University, Nanyang Avenue, Singapore 639798
Phone: (65) 6790-4532. Fax: (65) 6793-3318. Email:
exzhou@ntu.edu.sg
** Chartered Semiconductor Manufacturing Ltd, 60 Woodlands Industrial
Park D, St. 2, Singapore 738406
***Institute of Microelectronics, 11, Science Park Road, Singapore
Science Park II, Singapore 117685
Proc. of the NSTI Nanotech 2006 (WCM-MSM2006)
Boston, MA, May 7-11, 2006, vol. 3, pp. 652-657.
Copyright | Abstract | References | Citation | Reprint | Slides | Back
© 2006 Nano Science and Technology Institute. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Nano Science and Technology Institute.
In this paper, we extend our unified regional approach to bulk-MOS charge modeling with non-pinned surface potential for various device structures, such as partially-depleted (PD) or fully-depleted (FD) ultra-thin body (UTB) silicon-on-insulator (SOI) as well as symmetric/asymmetric double-gate (s-DG/a-DG) MOSFETs. The regional solutions make it easy to handle different device structures with explicit asymptotically physical solutions, and the unified solution combines the best features in different modeling approaches, such as surface-potential/inversion-charge/threshold-voltage based models, without the need to solve exactly at flat-band voltage. We show that it is viable to obtain a unified solution scalable with layer thickness and doping in all regions (accumulation, depletion, weak/volume/strong inversions). In particular, the effect of doping (even unintentional) in DG MOSFETs is studied with the regional approach. The ultimate goal is to have one generic and scalable model with selectable accuracy and seamless transition across device types and operations.