Unified Regional Charge-based
Versus Surface-potential-based Compact Modeling Approaches
Xing Zhou*, Siau Ben Chiah*, Karthik Chandrasekaran*, Guan Huei
See*, Wangzuo Shangguan*,
Shesh Mani Pandey**, Michael Cheng**, Sanford Chu**, and Liang-Choo
Hsia**
* School of Electrical & Electronic Engineering, Nanyang Technological
University, Nanyang Avenue, Singapore 639798
Phone: (65) 6790-4532. Fax: (65) 6791-2687. Email:
exzhou@ntu.edu.sg
** Chartered Semiconductor Manufacturing Ltd, 60 Woodlands Industrial
Park D, St. 2, Singapore 738406
Proc. of the NSTI Nanotech 2005 (WCM-MSM2005)
Anaheim, CA, May 8-12, 2005, WCM, pp.
25-30.
Copyright | Abstract
| References | Citation | Reprint
| Slides
| Back
Copyright Notice
© 2005 Nano Science and Technology Institute. Personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from
Nano Science and Technology Institute.
Abstract
This paper outlines the key features and advantages of the unified regional
charge-based approach to MOSFET compact charge modeling in comparison with
surface-potential-based approaches. Physical piecewise solutions
are regionally derived from Pao-Sah equation, in which bulk charge is modeled
by direct addition of accumulation and depletion charges based on the unified
regional (source-end) surface potential. Drain-bias-dependent bulk
and inversion charges are modeled with the unified regional charges in
strong inversion using the non-pinned surface potential. Results
have been compared with the iterative solutions and validated with numerical
data. It has been extended to poly-accumulation/depletion/inversion
effects with explicitly coupled quantum-mechanical effect as well as to
strained-Si MOSFETs within the same unified model.
References
-
[1] H. Pao and C.-T. Sah, Solid-State Electron. 9, 927 (1966).
-
[2] C.-T. Sah and H. Pao, IEEE Trans. Electron Devices ED-13, 393 (1966).
-
[3] C. C. McAndrew and J. J. Victory, IEEE Trans. Electron Devices 49,
72 (2002).
-
[4] C.-T. Sah, private communications; also, B. B. Jie and C.-T. Sah, WCM-Nanotech2005,
Anaheim, 2005.
-
[5] M. Miura-Mattausch et al., IEEE Trans. CAD 15, 1 (1996).
-
[6] R. Rios et al., Proc. IEDM, San Francisco, 2004, p. 755.
-
[7] R. van Langevelde et al., Proc. WCM-MSM2004, Boston, 2004, vol. 2,
p. 60.
-
[8] T.-L. Chen and G. Gildenblat, Solid-State Electron. 45, 335 (2001).
-
[9] G. Gildenblat et al., IEEE J. Solid-State Circuits 39, 1394 (2004).
-
[10] J. He et al., Proc. WCM-Nanotech2003, San Francisco, 2003, vol. 2,
p. 302.
-
[11] R. van Langevelde and F. M. Klaassen, Solid-State Electron. 44, 409
(2000).
-
[12] G. H. See, S. B. Chiah et al., Proc. WCM-Nanotech2005, Anaheim, 2005.
-
[13] K. Y. Lim and X. Zhou, Microelectronic Reliab. 42, 1857 (2002).
-
[14] P. K. Ko, in VLSI Electronics: Microstructure Science, Academic, vol.
18, 1987.
-
[15] M. Miura-Mattausch and H. Jaocobs, Jpn. J. Phys. 29, L2279 (1990).
-
[16] X. Zhou et al., Proc. WCM-MSM2004, Boston, 2004, vol. 2, p. 74.
-
[17] L. Ge and J. G. Fossum, IEEE Trans. Electron Devices 48, 2074 (2001).
-
[18] J. Watts et al., “Advanced compact models for MOSFETs,” Proc. WCM-Nanotech2005,
Anaheim, 2005.
-
[19] K. Joardar et al., IEEE Trans. Electron Devices 45, 134 (1998).
-
[20] R. Rios, private communications; also [18].
-
[21] D. E. Ward and R. W. Dutton, IEEE J. Solid-State Circuits SSC-13,
703 (1978).
-
[22] J. R. Brews, Solid-State Electron. 21, 345 (1978).
-
[23] N. Arora, MOSFET Models for VLSI Circuit Simulation? Theory and Practice,
Springer-Verlag, 1993.
-
[24] X. Zhou et al., Proc. IWCM2005, Shanghai, 2005, p. 13.
-
[25] S. B. Chiah et al., submitted for publication.
-
[26] M. J. van Dort et al., Solid-State Electron. 37, 411 (1994).
-
[27] K. Chandrasekaran et al., submitted for publication.
Citation
-