A Compact Model for Undoped
Silicon-Nanowire MOSFETs with Schottky-Barrier Source/Drain
Guojun Zhu, Student Member, IEEE, Xing Zhou, Senior Member,
IEEE, Teck Seng Lee, Lay Kee Ang, Member, IEEE, Guan Huei See, Student
Member, IEEE, Shihuan Lin, Yoke-King Chin, and Kin Leong Pey, Senior Member,
IEEE
IEEE Trans. Electron Devices,
Vol.
56, No. 5, pp.
1100-1109, May 2009.
(Manuscript submitted August 6, 2008; revised
January 26, 2009.)
Copyright | Abstract
| References | Citation | Back
Copyright Notice
© 2009 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.
Abstract
A comprehensive physics-based compact model for three-terminal undoped
Schottky-barrier (SB) gate-all-around silicon nanowire MOSFETs is formulated
based on a quasi-2-D surface-potential solution and the Miller–Good tunneling
model. The energy-band model has accounted for the screening of the
gate field by the electrons or holes, which has been largely missed in
the literature. Although SB-MOSFETs are essentially ambipolar devices,
we show that the separate modeling of electron and hole currents is simple
yet accurately predicts the final ambipolar current. Thinner oxide
thickness is confirmed to be beneficial to SB-MOSFETs for both ON- and
OFF-state currents. However, smaller nanowire radius (or thinner
body thickness) is found to be only beneficial to SB-MOSFETs with high
SB heights (SBHs) despite the OFF-state current being reduced significantly.
For SB-MOSFETs with low SBHs, the tunneling-current-density enhancement
due to a smaller radius is not able to compensate the reduction in the
contact size, which leads to a degradation of the “ON” current. The
drift current in the channel is shown to be negligible in SB-MOSFETs and
the tunneling/thermionic current through the SB represents the main current-limiting
mechanism.
References
-
[1] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky
barrier MOSFET technology,” IEEE Trans. Electron Devices, vol. 53, no.
5, pp. 1048–1058, May 2006.
-
[2] M. P. Lepselter and S. M. Sze, “SB-IGFET: An insulated-gate field-effect
transistor using Schottky barrier contacts for source and drain,” Proc.
IEEE, vol. 56, no. 8, pp. 1400–1402, Aug. 1968.
-
[3] Y. Taur, “An analytical solution to a double-gate MOSFET with undoped
body,” IEEE Electron Device Lett., vol. 21, no. 5, pp. 245–247, May 2000.
-
[4] D. Jimenez, B. Iniguez, J. Sune, L. F. Marsal, J. Parrares, J. Roig,
and D. Flores, “Continuous analytical I–V model for surrounding-gate MOSFETs,”
IEEE Electron Device Lett., vol. 25, no. 8, pp. 571–573, Aug. 2004.
-
[5] J. Guo and M. S. Lundstrom, “A computational study of thin-body, double-gate,
Schottky barrier MOSFETs,” IEEE Trans. Electron Devices, vol. 49, no. 11,
pp. 1897–1902, Nov. 2002.
-
[6] J. Guo, J. Wang, E. Polizzi, S. Datta, and M. Lundstrom, “Electrostatics
of nanowire transistors,” IEEE Trans. Nanotechnology, vol. 2, no. 4, pp.
329–334, Dec. 2003.
-
[7] M. Shin, “Computational study on the performance of multiple-gate nanowire
Schottky-barrier MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 3,
pp. 737–742, Mar. 2008.
-
[8] Z. H. Liu, C. Hu?J. H. Huang, T. Y. Chan, M. C. Jeng, P. K. Ko, and
Y. C. Cheng, “Threshold voltage model for deep-submicrometer MOSFETs,”
IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 86–95, Jan. 1993.
-
[9] R. A. Vega, “On the modeling and design of Schottky field-effect transistors,”
IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 866–874, Apr. 2006.
-
[10] B. J. Xu, Z. L. Xia, X. Y. Liu, and R. Q. Han, “An analytical potential
model of double-gate MOSFETs with Schottky source/drain,” in Proc. ICSICT,
Beijing, China, Oct. 2006, pp. 1296–1298.
-
[11] J. Kedzierski, P. Xuan, E. H. Anderson, J. Bokor, T.-J. King, and
C. Hu, “Complementary silicide source/drain thin-body MOSFETs for the 20nm
gate length regime,” in IEDM Tech. Dig., Dec. 2000, pp. 57–60.
-
[12] S. C. Miller, Jr. and R. H. Good, Jr., “A WKB-type approximation to
the Schrödinger equation,” Phys. Rev., vol. 91, no. 1, pp. 174–179,
Jul. 1953.
-
[13] G. J. Zhu, X. Zhou, T. S. Lee, L. K. Ang, G. H. See, and S. H. Lin,
“A compact model for undoped symmetric double-gate MOSFETs with Schottky-barrier
source/drain,” in Proc. ESSDERC, Edinburgh, U.K., Sep. 2008, pp. 182–185.
-
[14] G. J. Zhu, G. H. See, S. H. Lin, and X. Zhou, “‘Ground-referenced’
model for three-terminal symmetric double-gate MOSFETs with source/drain
symmetry,” IEEE Trans. Electron Devices, vol. 55, no. 9, pp. 2526–2530,
Sep. 2008.
-
[15] S. B. Chiah, X. Zhou, K. Chandrasekaran, W. Z. Shangguan, G. H. See,
and S. M. Pandey, “Single-piece polycrystalline silicon accumulation/depletion/inversion
model with implicit/explicit surface-potential solutions,” Appl. Phys.
Lett., vol. 86, no. 20, p. 202111, May 2005.
-
[16] R. H. Kingston and S. F. Neustadter, “Calculation of the space charge,
electric field, and free carrier concentration at the surface of a semiconductor,”
J. Appl. Phys., vol. 26, no. 6, pp. 718–720, Jun. 1955.
-
[17] R. A. Vega, “Comparison study of tunneling models for Schottky field
effect transistors and the effect of Schottky barrier lowering,” IEEE Trans.
Electron Devices, vol. 53, no. 7, pp. 1593–1600, Jul. 2006.
-
[18] L. E. Calvet, H. Luebben, M. A. Reed, C. Wang, J. P. Snyder, and J.
R. Tucker, “Subthreshold and scaling of PtSi Schottky barrier MOSFETs,”
Supperlattices Microstruct., vol. 28, no. 5/6, pp. 501–506, Nov. 2000.
-
[19] S. Xiong, T.-J. King, and J. Bokor, “A comparison study of symmetric
ultrathin-body double-gate devices with metal source/drain and doped source/drain,”
IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1859–1867, Aug. 2005.
-
[20] K. L. Jensen and M. Cahay, “General thermal-field emission equation,”
Appl. Phys. Lett., vol. 88, no. 15, p. 154105, Apr. 2006.
-
[21] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge:
Cambridge Univ. Press, 1997, pp. 124–131.
-
[22] R. F. Pierret, Semiconductor Device Fundamentals, Reading, MA: Addison-Wesley,
1996, p. 492.
-
[23] D. Jiménez, X. Cartoixà, E. Miranda, J. Suñé,
F. A. Chaves, and S. Roche, “A simple drain current model for Schottky-barrier
carbon nanotube field effect transistors,” Nanotechnology, vol. 17, no.
3, p. 025201, Jan. 2007.
-
[24] M. Zhang, J. Knoch, S. L. Zhang, S. Feste, M. Schroter, and S. Mantl,
“Threshold voltage variation in SOI Schottky-barrier MOSFETs,” IEEE Trans.
Electron Devices, vol. 55, no. 3, pp. 858–865, Mar. 2008.
-
[25] L. Sub, D. Y. Li, S. D. Zhang, X. Y. Liu, Y. Wang, and R. Q. Han,
“A planar asymmetric Schottky barrier source/drain structure for nano-scale
MOSFETs,” Semicond. Sci. Technol., vol. 21, no. 5, pp. 608–611, May 2006.
-
[26] J. Knoch and J. Appenzeller, “Impact of the channel thickness on the
performance of Schottky barrier metal–oxide–semiconductor field-effect
transistors,” Appl. Phys. Lett., vol. 81, no. 16, pp. 3082–3084, Oct. 2002.
-
[27] J. Knoch, M. Zhang, S. Mantl, and J. Apenzeller, “On the performance
of single-gated ultra-thin-body SOI Schottky-barrier MOSFETs,” IEEE Trans.
Electron Device, vol. 53, no. 7, pp. 1669–1674, Jul. 2006.
-
[28] F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa,
“Double-gate silicon-on-insulator transistor with volume inversion: A new
device with greatly enhanced performance,” IEEE Electron Device Lett.,
vol. EDL-8, no. 9, pp. 410–412, Sep. 1987.
-
[29] Y. K. Chin, K. L. Pey, N. Singh, G. Q. Lo, L. Chan, L. H. Tan, and
E. J. Tan, “Effect of nickel silicide intrusion on Schottky barrier nanowire
MOSFET fabricated using top-down technology,” in Proc. SSDM, Ibaraki, Japan,
Sep. 2008, pp. 436–437.
-
[30] R. A. Vega and T.-J. K. Liu, “A comparative study of dopant-segregated
Schottky and raised source/drain double-gate MOSFETs,” IEEE Trans. Electron
Devices, vol. 55, no. 10, pp. 2665–2677, Oct. 2008.
Citation
-