Implicit Analytical Surface/Interface
Potential Solutions for Modeling Strained-Si MOSFETs
Karthik Chandrasekaran, Xing Zhou, Senior Member, IEEE,
Siau Ben Chiah, Guan Huei See, and Subhash C. Rustagi, Senior Member
IEEE Transactions on Electron Devices,
Vol.
53, No. 12, pp.
3110-3117, Dec. 2006
(Manuscript received June 1, 2006; revised
September 1, 2006.)
Copyright | Abstract
| References | Citation | Reprint
| Back
Copyright Notice
© 2006 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.
Abstract
A new technique for calculating surface and interface potentials in
heterostructure MOSFETs such as strained-Si/SiGe using an internal iteration
approach is presented. It is based on the unified regional approach
with coupled iterative potential solutions at the surface and heterostructure
interface, and it has been applied to modeling strained-Si/SiGe MOSFETs
charge and capacitance in all bias regions, scalable for Ge mole fraction,
strained-Si and SiGe layer thicknesses and doping. The formulations
are shown for a buried-channel nMOSFET, and the approach to the solutions
is generic to all heterostructures which exhibit confinement of carriers
at the different interfaces.
References
-
[1] K. Rim, S. Narasimha, M. Longstreet, A. Mocuta, and J. Cai, “Low field
mobility characteristics of sub-100 nm unstrained and strained Si MOSFETs,”
in IEDM Tech. Dig., 2002, pp. 43–46.
-
[2] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E.
A. Fitzgerald, and D. A. Antoniadis, “Strained silicon MOSFET technology,”
in IEDM Tech. Dig., 2002, pp. 23–26.
-
[3] C.-H. Wang, Y.-P. Wang, S.-J. Chen, C.-H. Ge, S. M. Ting, J.-Y. Kung,
R.-L. Hwang, H.-K. Chiu, L. C. Sheu, P.-Y. Tsai, L.-G. Yao, S.-C. Chen,
H.-J. Tao, Y.-C. Yeo, W.-C. Lee, and C. Hu, “Substrate strained silicon
technology: Process integration,” in IEDM Tech. Dig., 2003, pp. 61–64.
-
[4] C. K. Maiti, L. K. Bera, and S. Chattopadhyay, “Strained-Si heterostructure
field effect transistors,” Semicond. Sci. Technol., vol. 13, no. 11, pp.
1225–1246, Nov. 1998.
-
[5] S. P. Voinigescu, K. Iniewski, R. Lisak, C. A. T. Salama, J.-P. Noel,
and D. C. Houghton, “New technique for the characterization of Si/SiGe
layers using heterostructure MOS capacitors,” Solid-State Electron., vol.
37, no. 8, pp. 1491–1501, Aug. 1994.
-
[6] S. Chattopadhyay, K. S. K. Kwa, S. H. Olsen, L. S Driscoll, and A.
G. O’Neil, “C–V characterization of strained Si/SiGe multiple heterojunction
capacitors as a tool for heterojunction MOSFET channel design,” Semicond.
Sci. Technol., vol. 18, no. 8, pp. 738–744, Aug. 2003.
-
[7] K. Rim, J. L. Hoyt, and J. F. Gibbons, “Transconductance enhancement
in deep submicron strained Si n-MOSFETs,” in IEDM Tech. Dig., 1998, pp.
707–710.
-
[8] J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement
in strained-Si n-type metal-oxide-semiconductor field-effect,” IEEE Electron
Device Lett., vol. 15, no. 3, pp. 100–102, Mar. 1994.
-
[9] H. C. Pao and C. T. Sah, “Effects of diffusion current on characteristics
of metal-oxide (insulator)-semiconductor transistors,” Solid-State Electron.,
vol. 9, no. 10, pp. 927–937, Oct. 1966.
-
[10] N. Arora, MOSFET Models for VLSI Circuit Simulation Theory and Practice,
New York: Springer-Verlag, 1993.
-
[11] X. Zhou, S. B. Chiah, K. Chandrasekaran, G. H. See, W. Z. Shangguan,
S. M. Pandey, M. Cheng, S. Chu, and L.-C. Hsia, “Unified regional charge-based
versus surface-potential-based compact modeling approaches,” in Proc. NSTI
Nanotech, Anaheim, CA, May 2005, vol. WCM, pp. 25–30.
-
[12] K. Chandrasekaran, X. Zhou, S. B. Chiah, W. Z. Shangguan, and G. H.
See, “Physics-based single-piece charge model for strained-Si MOSFETs,”
IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1555–1562, Jul. 2005.
-
[13] K. Chandrasekaran, X. Zhou, S. B. Chiah, W. Z. Shangguan, and G. H.
See, L. K. Bera, N. Balasubramanian, and S. C. Rustagi, “Effect of substrate
doping on the capacitance–voltage characteristics of strained-silicon pMOSFETs,”
IEEE Electron Device Lett., vol. 27, no. 1, pp. 62–64, Jan. 2006.
-
[14] S. B. Chiah, X. Zhou, K. Chandrasekaran, W. Z. Shangguan, G. H. See,
and S. M. Pandey, “Single-piece polycrystalline silicon accumulation/depletion/inversion
model with implicit/explicit surface-potential solutions,” Appl. Phys.
Lett., vol. 86, no. 20, p. 202111, May 2005.
-
[15] K. Chandrasekaran, X. Zhou, S. B. Chiah, W. Z. Shangguan, G. H. See,
L. K. Bera, N. Balasubramanian, and S. C. Rustagi, “Extraction of physical
parameters of strained-silicon MOSFETs from C V measurement,” in Proc.
ESSDERC, Grenoble, France, Sep. 2005, pp. 521–524.
-
[16] R. V. Langevelde and F. M. Klaassen, “An explicit surface-potential-based
MOSFET model for circuit simulation,” Solid-State Electron., vol. 44, no.
3, pp. 409–418, Mar. 2000.
-
[17] J. He, X. Xi, M. Chan, K. Cao, A. Niknejad, and C. Hu, “A physics
based analytical surface potential and capacitance model of MOSFET’s operation
from accumulation to depletion region,” in Proc. NSTI Nanotech, San Francisco,
CA, Feb. 2003, vol. 2, pp. 302–305.
-
[18] K. Chandrasekaran, X. Zhou, and S. B. Chiah, “Physics-based scalable
threshold-voltage model for strained-silicon MOSFETs,” in Proc. NSTI Nanotech,
Boston, MA, Mar. 2004, vol. 2, pp. 179–182.
-
[19] K. Iniewski, S. Voinigescu, J. Atcha, and C. A. T. Salama, “Analytical
modeling of threshold voltages in p-channel Si/SiGe/Si MOS structures,”
Solid-State Electron., vol. 36, no. 5, pp. 775–783, May 1993.
Citation
-