

Entrance Examination Syllabus 2021

Maths (AO)

CONTENT OUTLINE

	Topics/Sub-topics	Content			
SECT	SECTION A: PURE MATHEMATICS				
1	Functions and Graphs				
1.1	Exponential and logarithmic functions and Graphing techniques	 Include: concept of function as a rule or relationship where for every input there is only one output use of notations such as f(x) = x² + 5 functions e^x and ln x and their graphs exponential growth and decay logarithmic growth equivalence of y = e^x and x = ln y laws of logarithms use of a graphing calculator to graph a given function characteristics of graphs such as symmetry, intersections with the axes, turning points and asymptotes (horizontal and vertical) Exclude: use of the terms domain and range use of notation f: x → x² + 5 change of base of logarithms 			

	Topics/Sub-topics	Content
1.2	Equations and inequalities	 Include: conditions for a quadratic equation to have
2	Calculus	
2.1	Differentiation	 Include: derivative of f(x) as the gradient of the tangent to the graph of y = f(x) at a point use of standard notations f'(x) and dy/dx derivatives of xⁿ for any rational n, e^x, ln x, together with constant multiples, sums and differences use of chain rule graphical interpretation of f'(x) > 0, f'(x) = 0 and f'(x) < 0 use of the first derivative test to determine the nature of the stationary points (local maximum and minimum points and points of inflexion) in simple cases locating maximum and minimum points using a graphing calculator finding the approximate value of a derivative at a given point using a graphing calculator finding equations of tangents to curves local maxima and minima problems connected rates of change problems Exclude: differentiation from first principles derivatives of products and quotients of functions use of dy/dx = 1/dx/dy differentiation of functions defined implicitly or parametrically finding non-stationary points of inflexion relating the graph of y = f'(x) to the graph of y = f(x)

	Topics/Sub-topics	Content
2.2	Integration TON B: PROBABILITY AND STATISTICS	 Include: integration as the reverse of differentiation integration of xⁿ for any rational n, and e^x, together with constant multiples, sums and differences integration of (ax + b)ⁿ for any rational n, and e^(ax + b) definite integral as the area under a curve evaluation of definite integrals finding the area of a region bounded by a curve and lines parallel to the coordinate axes, between a curve and a line, or between two curves finding the approximate value of a definite integral using a graphing calculator Exclude: definite integral as a limit of sum approximation of area under a curve using the trapezium rule area below the x-axis
3	Probability and Statistics	
3.1	Probability	 Include: addition and multiplication principles for counting concepts of permutation (ⁿP_r) and combination (ⁿC_r) arrangements of distinct objects in a line including cases involving restriction addition and multiplication of probabilities mutually exclusive events and independent events use of tables of outcomes, Venn diagrams, tree diagrams, and permutations and combinations techniques to calculate probabilities calculation of conditional probabilities in simple cases use of:

	Topics/Sub-topics	Content
3.2	Binomial distribution	 Include: knowledge of the binomial expansion of (a + b)ⁿ for positive integer n binomial random variable as an example of a discrete random variable concept of binomial distribution B(n, p) and use of B(n, p) as a probability model, including conditions under which the binomial distribution is a suitable model use of mean and variance of a binomial distribution (without proof)
3.3	Normal distribution	 Include: concept of a normal distribution as an example of a continuous probability model and its mean and variance; use of N(μ, σ²) as a probability model standard normal distribution finding the value of P(X < x₁) or a related probability given the values of x₁, μ, σ symmetry of the normal curve and its properties finding a relationship between x₁, μ, σ given the value of P(X < x₁) or a related probability solving problems involving the use of E (aX + b) and Var (aX + b) solving problems involving the use of E (aX + bY) and Var (aX + bY), where X and Y are independent Exclude normal approximation to binomial distribution.
3.4	Sampling	 Include: concepts of population and simple random sample. concept of the sample mean X̄ as a random variable with E(X̄) = μ and Var (X̄) = σ²/n distribution of sample means from a normal population use of the Central Limit Theorem to treat sample mean as having normal distribution when the sample size is sufficiently large (e.g. n ≥ 30) calculation of unbiased estimates of the population mean and variance from a sample, including cases where the data are given in summarised form Σx and Σx², or Σ(x - a) and Σ(x - a)²

	Topics/Sub-topics	Content
3.5	Hypothesis testing	Include: concepts of null hypothesis (H ₀) and alternative hypotheses (H ₁), test statistic, critical region, critical value, level of significance and <i>p</i> -value formulation of hypotheses and testing for a population mean based on: a sample from a normal population of known variance a large sample from any population 1-tail and 2-tail tests interpretation of the results of a hypothesis test in the context of the problem Exclude the use of the term 'Type I' error, concept of Type II error and testing the difference between two population means.
3.6	Correlation and Linear regression	 Include: use of scatter diagram to determine if there is a plausible linear relationship between the two variables correlation coefficient as a measure of the fit of a linear model to the scatter diagram finding and interpreting the product moment correlation coefficient (in particular, values close to -1, 0 and 1) concepts of linear regression and method of least squares to find the equation of the regression line concepts of interpolation and extrapolation use of the appropriate regression line to make prediction or estimate a value in practical situations, including explaining how well the situation is modelled by the linear regression model Exclude: derivation of formulae relationship r² = b₁b₂, where b₁ and b₂ are regression coefficients hypothesis tests

MATHEMATICAL NOTATION

1. Set Notation

 \subset

⊈

Œ

 \cup

 \cap

[*a*, *b*]

[*a*, *b*)

(*a*, *b*]

(*a*, *b*)

The list which follows summarises the notation used in Cambridge's Mathematics examinations. Although primarily directed towards A-Level, the list also applies, where relevant, to examinations at all other levels.

is an element of \in is not an element of ∉ the set with elements $x_1, x_2, ...$ $\{x_1, x_2, \ldots\}$ $\{x: ...\}$ the set of all x such that n(A)the number of elements in set A the empty set Ø universal set A'the complement of the set A \mathbb{Z} the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ the set of positive integers, {1, 2, 3, ...} \mathbb{Z}^+ the set of rational numbers \mathbb{O} the set of positive rational numbers, $\{x \in \mathbb{Q}: x > 0\}$ \mathbb{Q}^+ \mathbb{Q}_0^+ the set of positive rational numbers and zero, $\{x \in \mathbb{Q}: x \ge 0\}$ the set of real numbers \mathbb{R} \mathbb{R}^+ the set of positive real numbers, $\{x \in \mathbb{R}: x > 0\}$ \mathbb{R}_0^+ the set of positive real numbers and zero, $\{x \in \mathbb{R}: x \ge 0\}$ \mathbb{R}^n the real *n*-tuples the set of complex numbers \mathbb{C} is a subset of \subseteq

the closed interval $\{x \in \mathbb{R} : a \leq x \leq b\}$

the interval $\{x \in \mathbb{R} : a \leq x \leq b\}$

the interval $\{x \in \mathbb{R} : a < x \le b\}$

the open interval $\{x \in \mathbb{R} : a < x < b\}$

is a proper subset of

is not a proper subset of

is not a subset of

union

intersection

MATHS (AO) SYLLABUS FOR EXAM YEAR 2021

2. Miscellaneous Symbols

= is equal to

 \neq is not equal to

≡ is identical to or is congruent to

 \approx is approximately equal to

 ∞ is proportional to

< is less than

≼; ≯ is less than or equal to; is not greater than

> is greater than

>; < is greater than or equal to; is not less than

 ∞ infinity

3. Operations

a+b a plus b

a-b a minus b

 $a \times b$, ab, a.b a multiplied by b

 $a \div b, \frac{a}{b}, a/b$ a divided by b

a:b the ratio of a to b

 $\sum_{i=1}^{n} a_i \qquad \qquad a_1 + a_2 + \dots + a_n$

 \sqrt{a} the positive square root of the real number a

|a| the modulus of the real number a

n! n factorial for $n \in \mathbb{Z}^+ \cup \{0\}$, (0! = 1)

 $\frac{n(n-1)...(n-r+1)}{r!} \text{ , for } n \in \mathbb{Q}, r \in \mathbb{Z}^+ \cup \{0\}$

MATHS (AO) SYLLABUS FOR EXAM YEAR 2021

4. Functions

f the function f

f(x) the value of the function f at x

f: $A \rightarrow B$ f is a function under which each element of set A has an image in set B

f: $x \mapsto y$ the function f maps the element x to the element y

 f^{-1} the inverse of the function f

g o f, gf the composite function of f and g which is defined by

 $(g \circ f)(x) \text{ or } gf(x) = g(f(x))$

 $\lim_{x \to a} f(x)$ the limit of f(x) as x tends to a

 Δx ; δx an increment of x

 $\frac{\mathrm{d}y}{}$ the derivative of y with respect to x

dx

 $\frac{d^n y}{dx^n}$ the *n*th derivative of y with respect to x

 $f'(x), f''(x), ..., f^{(n)}(x)$ the first, second, ... nth derivatives of f(x) with respect to x

 $\int y \, dx$ indefinite integral of y with respect to x

 $\int_{a}^{b} y \, dx$ the definite integral of y with respect to x for values of x between a and b

 \dot{x} , \ddot{x} , ... the first, second, ...derivatives of x with respect to time

5. Exponential and Logarithmic Functions

e base of natural logarithms

 e^x , exp x exponential function of x

 $\log_a x$ logarithm to the base a of x

 $\ln x$ natural logarithm of x

 $\lg x$ logarithm of x to base 10

6. Circular Functions and Relations

 $\begin{cases} \sin, \cos, \tan, \\ \csc, \sec, \cot \end{cases}$ the circular functions

 $\left.\begin{array}{l} sin^{-1},\,cos^{-1},\,tan^{-1}\\ cosec^{-1},\,sec^{-1},\,cot^{-1} \end{array}\right\}$ the inverse circular functions

MATHS (AO) SYLLABUS FOR EXAM YEAR 2021

7. Complex Numbers

i the square root of -1

z a complex number, z = x + iy

 $= r(\cos\theta + i\sin\theta), r \in \mathbb{R}_0^+$

 $= r e^{i\theta}, r \in \mathbb{R}_0^+$

Re z the real part of z, Re (x + iy) = x

Im z the imaginary part of z, Im (x + iy) = y

|z| the modulus of z, $|x+iy| = \sqrt{x^2 + y^2}$, $|r(\cos\theta + i\sin\theta)| = r$

arg z the argument of z, $arg(r(\cos\theta + i\sin\theta)) = \theta$, $-\pi < \theta \le \pi$

 z^* the complex conjugate of z, $(x + iy)^* = x - iy$

8. Matrices

M a matrix M

 \mathbf{M}^{-1} the inverse of the square matrix \mathbf{M}

 \mathbf{M}^{T} the transpose of the matrix \mathbf{M}

det M the determinant of the square matrix M

9. Vectors

a the vector a

 \overrightarrow{AB} the vector represented in magnitude and direction by the directed line segment \overrightarrow{AB}

â a unit vector in the direction of the vector a

i, j, k unit vectors in the directions of the cartesian coordinate axes

a the magnitude of a

 $|\overrightarrow{AB}|$ the magnitude of \overrightarrow{AB}

a.b the scalar product of a and b

 $\mathbf{a} \times \mathbf{b}$ the vector product of \mathbf{a} and \mathbf{b}

10. Probability and Statistics

A, B, C, etc. events

 $A \cup B$ union of events A and B

 $A \cap B$ intersection of the events A and B

P(A) probability of the event A

A' complement of the event A, the event 'not A'

 $P(A \mid B)$ probability of the event A given the event B

X, Y, R, etc. random variables

x, y, r, etc. value of the random variables X, Y, R, etc.

 x_1, x_2, \dots observations

 $f_1, f_2,...$ frequencies with which the observations, $x_1, x_2, ...$

p(x) the value of the probability function P(X = x) of the discrete random variable X

 p_1, p_2, \dots probabilities of the values x_1, x_2, \dots of the discrete random variable X

f(x), g(x)... the value of the probability density function of the continuous random variable X F(x), G(x)... the value of the (cumulative) distribution function P($X \le x$) of the random variable X

E(X) expectation of the random variable X

E[g(X)] expectation of g(X)

Var(X) variance of the random variable X

B(n, p) binomial distribution, parameters n and p

Po(μ) Poisson distribution, mean μ

 $N(\mu, \sigma^2)$ normal distribution, mean μ and variance σ^2

μ population mean

 σ^2 population variance

 σ population standard deviation

 \bar{x} sample mean

unbiased estimate of population variance from a sample, s^2

 $s^2 = \frac{1}{n-1} \sum (x - \overline{x})^2$

 φ probability density function of the standardised normal variable with distribution N (0,1)

Φ corresponding cumulative distribution function

 ρ linear product-moment correlation coefficient for a population

r linear product-moment correlation coefficient for a sample