IEICE TRANS. INF. & SYST., VOL.Exx-??, NO.xx XXXX 200x

IPAPER Special Issue on Information and Systems for the IEICE Transactions

Goal-oriented Methodology for Agent System

Development

Zhiqi SHEN'®, Chunyan MIAO'!, Members, Robert GAY', and Dongtao LI'f, Nonmembers

SUMMARY The Goal-Orientation is one of the key features
in agent systems. This paper proposes a new methodology for
multi-agent system development based on Goal Net model. The
methodology covers the whole life cycle of the agent system devel-
opment, from requirement analysis, architecture design, detailed
design to implementation. A Multi-Agent Development Envi-
ronment (MADE) that facilitates the design and implementation
of agent systems is presented. A case study on an agent-based
e-learning system developed using the proposed methodology is
illustrated in this paper.

key words: Goal-oriented Modeling, Agent-oriented Software
Engineering, Goal Net

1. Introduction

Agent system represents a new paradigm in software
engineering. The autonomous, cooperative, intelligent
and goal-oriented characteristics of agent make agent
system a promising solution for next generation of soft-
ware in various application domains [1].

Agent system is increasingly attracting industrial
interests. Meanwhile, agent-oriented software engineer-
ing has become an active research area since late 1990s.
Some development methodologies such as Gaia [3], [6],
Tropos [7], etc., and agent development tools like JADE
[8] etc., have emerged. However, there is still a lack of
widespread of development and deployment of agent
systems. The major reason is that the research on nar-
rowing the gap between agent mental model and agent
implementation is rare [3]. The transition from agent
design to agent implementation is an important step in
defining a complete agent software process [12].

To fill up the gap between agent model, design and
implementation, we propose a comprehensive method-
ology for agent system development. This methodology
is based on Goal Net [2], [13], a goal-oriented model for
modeling agent’s goals and managing the mental states
of an agent. A Multi-Agent Development Environment
(MADE) that facilitates the design and implementation
of agent systems has been developed. It has been in-
tegrated with JADE, which is a FIPA compliant agent

Manuscript received January 1, 2003.
Manuscript revised January 1, 2003.
Final manuscript received January 1, 2003.
tThe author is with the School of EEE, Nanyang Tech-
nological University, Singapore
' The author is with the School of Computer Engineer-
ing, Nanyang Technological University, Singapore
a) E-mail: zgshen@ntu.edu.sg

construction tool, to provide a complete agent develop-
ment environment.

Goal is a desired state that an agent intends to
reach. Goal Net is a composite goal hierarchy which
is composed of goals and transitions. The goals, repre-
sented by circles, are used to represent the goals that an
agent needs to go through in order to achieve its final
goal. The transitions, represented by arcs and vertical
bars or rectangles, connect one goal to anther specifying
the relationship between goals it joins. Each transition
must have at least one input goal and one output goal.
Each transition is associated with a task list which de-
fines the possible tasks that agent may need to perform
in order to transit from the input goal to the output
goal. Figure 2 shows a simple goal net.

There are two types of goals in a Goal Net model,
atomic goal and composite goal. An atomic goal, rep-
resented by a blank circle, accommodates a single goal
which could not be split anymore; a composite goal, rep-
resented by a shadowed circle, may be split into goals
(either composite or atomic) connected via transitions.

In Goal Net models, there are four types of basic
temporal relationships between goals: sequence, con-
currency, choice and synchronization. Sequence rela-
tion represents a direct sequential relationship between
one input goal and one output goal; concurrency re-
lation has one input goal but more than one output
goals, and all its output goals can achieve simultane-
ously; choice relation specifies a selective connection
from one goal to other goals; synchronization relation
specifies a synchronization point from different input
goals to a single output goal. With different combi-
nations of the basic temporal relations, Goal Net sup-
ports a wide range of complicated temporal relation-
ships among goals. This is one of the major differences
between Goal Net and other goal modeling methods.

With such a composite goal hierarchy and various
temporal relationships within the hierarchy, a complex
system can be recursively decomposed into sub-goals
and sub-goal nets. In such a manner, the system can
be easily modeled and simplified.

The proposed goal-oriented (GO) methodology
covers four phases, namely Requirement Analysis,
Agent Architecture Design, Detailed Design and Sys-
tem Implementation.

Requirement Analysis: In this phase, system
requirements are modeled as different goals which need

to be achieved. The given problem is modeled in the
manner that what goals need to be achieved, what are
the possible ways to achieve these goals and what are
the relations among different goals. The objective of
this phase is to produce a preliminary high level goal
net.

Agent Architecture Design: The preliminary
goal net is converted to an agent hierarchy by splitting
the goal net using the goal-split policies. Agent com-
munication protocols and system architecture are also
defined in this phase.

Detailed Design: In this phase, for each identi-
fied agent, goals and sub-goals are refined to be closely
bound to the agent. Tasks, perception, knowledge and
message handler for each agent are also specified in de-
tails.

System Implementation: In the implementa-
tion phase, the detailed design specifications in the
previous phases are used for agent implementation.
The detailed implementation includes task develop-
ment, task selection mechanism, goal selection mech-
anism, knowledge management and agent implementa-
tion.

Following this introduction, Sect. 2 describes an e-
learning case study used in this paper. The details of
the four phases are illustrated in Sect. 3 with examples
from the case study. Section 4 gives an evaluation of the
proposed methodology against other agent methodolo-
gies from the perspective of software engineering. The
conclusion is reached in Sect. 5.

2. E-Learning Case Study

In this paper, an e-learning case study is used to il-
lustrate the proposed methodology. An agent-based
e-learning system developed using the proposed GO
methodology is presented.

The case study is elicited based on a small IT en-
terprise, who provides customized e-learning services
in the e-learning grid to some small and medium size
enterprises that belong to an Electronic Business Net-
work (EBN). In order to train some developers Java
programming language, a member company in EBN
has decided to adopt online e-learning services. Cur-
rently there are three related service providers in the
e-learning grid. These service providers offer different
courses at different prices for different technical levels,
and the courses are delivered in the form of learning
objects (LOs). Tests are also provided by the services
for the assessments of learning progress.

To help the employees acquire the new knowledge
easily, an agent based system has been designed to pro-
vide a learner centric e-learning system. The system
provides the following functions:

e Automatically generate a learning path for an em-
ployee based on his/her learning goal and current

IEICE TRANS. INF. & SYST., VOL.Exx-??, NO.xx XXXX 200x

skill level;

e Select and deliver learning courses from different
providers to learners;

e Provide personalized help to the learner in the self-
learning cycle. The self-learning cycle should be re-
peated until the results of the learning assessment
meet the requirements.

e Evaluate and minimize the cost and learning du-
ration for learners.

In the following sections, we will stick on this case
study to illustrate how to use the proposed methodol-
ogy to develop a multi-agent e-learning system.

3. Development Phases

In this section, the four development phases of the pro-
posed methodology are explained in details. To make
things clearer, the e-learning case study is used to il-
lustrate the methodology step by step.

3.1 Requirement Analysis

Requirement analysis is the initial phase in many soft-
ware development methodologies. In the proposed
methodology, Goal Net serves as a problem modeling
and analysis tool from the beginning of the requirement
analysis.

Goals are seen to have substantial promise in aid-
ing the elicitations and elaborations of requirements.
For example, KAoS methodology [9] uses goal as the
key concept in requirement acquisition. Anton [10], [11]
also uses goal as the main guiding concept in developing
requirement specifications. In the requirement analysis
phase, the objective is to derive a preliminary goal net
by identifying goals (what), possible tasks for achieving
the goals (how) and the environment that may affect
how goals are pursued (situation). Unlike the exist-
ing goal-based methods, which analyze an agent’s goal
isolated from its environment, Goal Net analyzes an
agent’s goal together with the agent’s dynamic envi-
ronment. It supports goal selection and action selection
mechanisms for pursuing the agent’s goal in a dynamic
environment.

The first task in this phase is to identify all the
goals and construct a goal hierarchy without transi-
tions. Following a top-down approach, the analysis
starts from the overall goal (root goal in a goal net)
to solve a complex problem. This goal is decomposed
into a set of sub-goals to solve each decomposed prob-
lem. Each sub-goal can be further decomposed to a set
of sub-goals. Such kind of goal decomposition contin-
ues until all the goals in the goal hierarchy can be easily
achieved or can be solved through its sub-goals.

In the e-learning case, the root goal, which is the
final goal of the system, is to provide personalized Java
learning to employees. This goal can be directly de-
composed into three sub-goals, Generate learning path,

SHEN et al.: GOAL-ORIENTED METHODOLOGY FOR AGENT SYSTEM DEVELOPMENT

Learning Object
Delivery

Fig.1 High level goals in our e-learning system.

Z
] Hegotiated)
Start (Select J ——— | Finished
Los P
i % = TR
L] | L] .
Pre-assessed Fermat LO Delivered

Customized

Fig.2 Goal net for course delivery.

Learning object delivery and Assessment as shown in
Fig. 1. However, each of these three goals is still a
complex problem to solve. We can further decompose
these goals. For example, Course Delivery can be de-
composed to Pre-Assessment, which conducts an as-
sessment on learner to decide whether the learner is
eligible to skip a specific learning object, Service Nego-
tiation, which is to negotiate the details of the course
delivery; Format Customization, which is to customize
the standard course format into a user preferred for-
mat, and Course Delivery, which takes care of the real
course transition and presentation. In such a manner,
a goal hierarchy is constructed.

The next step is to identify the interactions or re-
lationships among goals in the goal hierarchy, that is,
add transitions into the goal hierarchy. Without con-
sidering the details of the tasks associated with each
transition, all the possible connections among goals and
corresponding tasks should be figured out based on dif-
ferent temporal relationships. The result after this step
is a preliminary goal net.

Figure 2 illustrates how to identify transitions to
form a goal net. As shown in Fig. 1, Course Delivery
goal is decomposed into four sub-goals. To form a goal
net, we connect all the goals which may possibly have
direct interaction between each other. This is trying to
map the entire scenarios into the goal net.

The last step in the requirement analysis phase
is to model the environment. The general working
environment of agents may include physical environ-
ments such as computers and printers; software en-
vironment such as operating systems, communication
protocols and database; and application specific envi-

Goal : select a Java course

Envi ronnent ’
. Task Li st
Vari abl es

price sel ect from
course school A
flexibility sel ect from
reputation school B
accessibility select from
online delivery school C
quality

Fig.3 A simple GET card.

ronment such as application domain. In the require-
ment analysis phase, we only concentrate on the ap-
plication specific environment because the rest two can
be decided in the detailed design. As different applica-
tions use different methods to model its environment, it
is difficult to provide a general model for environment
modeling. However, a common method is to use vari-
ables to represent the environment sources and the val-
ues of the variables indicate the environment changes.

To simplify the process to identify goals, tran-
sitions and the environment, Goal-Environment-Task
(GET) card is created. Each GET card contains a goal,
the possible tasks to achieve the goal, and the environ-
ment variables. These three elements capture the es-
sential dimensions of goal modeling based on Goal Net.
It can be created by designers or even customers who
are not familiar with Goal Net. Figure 3 shows a sim-
ple GET card illustrating the goal of selecting a java
course from different schools.

The result of the requirement analysis is a complete
preliminary goal net, within which the goals, transi-
tions, the environment variables and the possible task
lists associated with each transition, are clearly defined.

3.2 Agent Architecture Design

Given a complex goal net with hundreds of goals, it is
very difficult to create a single agent pursuing all the
goals. Instead, the goal net can be split into a set of
sub-goal nets, and these sub-goal nets are used as the
goal models for different agents. As a result, a multi-
agent system can be derived from the goal net. Agents
in the multi-agent system modeled by Goal Net are
organized in a hierarchy structure, called Agent Hier-
archy. A higher level agent becomes the coordinator of
the lower level agents. At the same time, it also pur-
sues its own goals. In such a manner, the root goal in
the original goal net becomes the common goal of the
derived multi-agent system. The transitions between
goals will be used for the agent coordination and syn-
chronization.

In order to derive a multi-agent system from a goal
net, we need to create agent identification policies and

split the goal net according to these policies. There are
several factors affecting the agent identification policies:

o Modularity:
problem.

o Reusability: each split goal net can be reused to
take part in a new composition for solving a par-
ticular problem.

e Location: each split goal net is for a distributed
agent.

e Load-balancing: a goal net is split so that agents
have balanced work load.

e Organizational role: each split goal net is corre-
sponding to a role in an organization.

each split goal net solves a sub-

The agent identification policy can be designed
according to the system requirements. Policies deal-
ing with different factors can be applied to the same
goal net split. For example, at higher level split, Loca-
tion, Load-balancing or Modularity can be used whereas
at lower level split, Organizational role, Reusability or
Modularity can be used accordingly.

In Goal Net model, each goal is allowed to have at
most one parent goal; similarly in the agent hierarchy
each agent can only have one coordinator agent. The
coordinator agent is responsibility for coordinating the
child agents according to the original goal net. The
original goal net becomes the coordination plan of the
generated multi-agent system.

In the e-learning case, we apply Modularity agent
identification policy to construct the agent hierarchy.
We simply take the root goal as the e-learning coordi-
nator agent, and create three different agents pursuing
Learning Path Generation goal, Course Delivery goal
and Assessment goal respectively. Learning Path Gen-
eration Agent is to dynamically generate the learning
path for a learner; Course Delivery Agent is responsible
for delivering the correct course content to the learner
in an appropriate format; Assessment Agent provides
the assessment of each course the learner has taken and
evaluates the test results. FE-learning Agent is a coor-
dinator for these three agents. It is still reasonable to
create more agents to pursue lower level sub-goals. For
example, we can create four separate agents to pur-
sue Course Delivery goal according to Fig. 1 and the
Course Delivery Agent will be their coordinator.

After the agent hierarchy has been derived, the
next step is to design the communication protocols
for agents’ interaction. The protocols designed at this
stage are conceptual as the real protocols rely on the
technology used and the agent running platform, which
will be decided in detailed design phase. The concep-
tual protocols define the messages required for agent
communication. The format of the message is applica-
tion independent. A message consists of the following
attributes:

e Message ID: a unique identifier for each message.

IEICE TRANS. INF. & SYST., VOL.Exx-??, NO.xx XXXX 200x

o Message Source: the identifier of the message send-
ing agent.

o Message Destination: the identifier of the message
receiving agent.

e Message Type: the type of content in the message.

o Message Content: the real content data of the mes-
sage.

In the above attribute list, Message Type and Mes-
sage Content are application dependent. The message
receiver handles the message content based on the mes-
sage type. Message ID is automatically generated dur-
ing agent runtime.

The output of this phase is an agent hierarchy
with clear definition of coordination and communica-
tion among agents.

3.3 Detailed Design

In the previous two phases, the skeleton of the multi-
agent system has been developed. In this phase, the
details of the system, such as goal details, task details,
agent communication language, environment percep-
tion mechanism etc., should be designed. The output
of this phase should be able to guide the actual imple-
mentation of the agent system, which will happen in
the next phase.

In the preliminary goal net, all the goals are con-
ceptual and do not have much details, so the first task in
this phase is to fill in the details for each goal. This in-
cludes the attributes of each goal, the goal achievement
function, the goal selection function and other applica-
tion specific goal functions. The attributes specify the
properties of a goal, and they are in a variable-value
manner. The data types of the attributes should be
specified in this step to guide the implementation.

After specifying the details of goals, we need to de-
sign the details of all the transitions, including the tasks
in each transition. Each task associated to a transition
is independent of that transition, which means differ-
ent transitions can reuse the same task. All the task
functions can be designed in this stage.

The environment is also designed in details. This
includes: the environment variables, of which the data
types and possible values should be designed; the envi-
ronment interface, which defines the way that the agent
perceives and interacts with the environment; and the
environment management, which defines how the envi-
ronment variables are changed to represent the latest
situation.

To make the agent run with social interaction,
the details of the agent communication should also be
worked out here. The conceptual protocols designed
in the last phase should be converted into detailed de-
sign according to the agent platform and the real agent
communication language. The message handling mech-
anism for each agent, which defines how an agent deals

SHEN et al.: GOAL-ORIENTED METHODOLOGY FOR AGENT SYSTEM DEVELOPMENT

with different incoming messages under different situa-
tions, should be developed.

An agent modeled by Goal Net lives in a PR2A
life cycle, Perceiving the environment, Reasoning for
its next goal (goal selection), Reasoning for its next
action for achieving the selected goal (action selection)
and Acting in the environment. The design of goal
selection mechanisms and action selection mechanisms
are important parts in the detailed design.

3.3.1 Goal Selection

The goal achievement function is to calculate the
achievement of the goal pursuit. It is important for
the goal measurement. If the partial goal achievement
is used in the system, then the threshold value for de-
cision making must be set for each goal. Goal selection
function is used to select the next goal based on the
goal selection algorithm in Goal Net [2]. The general
factors that will affect the goal selection include the cur-
rent goal achievement, the environment situation, cost,
time, system specified constraints etc. The goal selec-
tion function makes the agent system goal autonomous.

Goal Net supports different reasoning mechanisms
for goal selection based on environment variables, con-
straints defined in real applications. In the E-learning
case, the following environment factors have been taken
into account for selecting the next goal: course price,
learning duration, learner’s skill level associated with
a course and learner’s expectation (such as, minimum
costs, shortest duration or highest skill level). The
agent will select the next course (goal) through a util-
ity function according to the real values of the above
factors. Other reasoning mechanisms such as rule-
based reasoning have also been used in the E-learning
case. For example, whether the course needs to be
re-delivered is based on some rules according to the
learner’s assessment results. The flexibility to choose
different reasoning mechanisms in a goal net is one of
the key advantages of Goal Net model.

3.3.2 Action Selection

Task/action selection mechanism helps an agent to se-
lect a suitable task from the task list to pursue the goal,
and it is the key for the behavior-autonomy of an agent.
In this step, the environment variables defined in the
GET card, the time, the cost and other factors affecting
the task selection should be designed in details. Goal
Net supports flexible actions selection mechanism such
as rule based, probabilistic, fuzzy mechanisms etc.

In our E-learning case, a learner may use differ-
ent terminals like laptop, desktop or PDA to access the
course content. Different terminals have different com-
puting capability, so we customize the same course con-
tent into different formats, either in pure text or with
picture and animation, by applying different tasks dur-

ing format customization based on a rule-based reason-
ing mechanism. In the transition select LOs in Fig. 2,
a Bayesian Network is formed based on the environ-
ment factors for action selection, which is used to de-
cide whether the learner can skip the current learning
object or not, according to his/her current knowledge
and skills. The details will be elaborated in Sect. 3.5.
Upon this point, the system should be able to
be clearly implemented on an agent platform through
guidance by the detailed design of this phase.

3.4 Implementation

In the implementation phase, all the detailed design
should be mapped to the agent platform. The mapping
from design to implementation includes:

e Goal Net Construction: This includes constructing
the goal net designed through the previous phases
and storing it into database. All the information in
Goal Net, including goals, goal interactions, tran-
sitions and tasks should be stored properly.

e Task Development: This includes developing all
the tasks in the goal net and meanwhile all the
tasks should be complying with the agent platform.

o Goal / Task Selection Mechanism Development:
This includes implementing all the goal selection
mechanisms and task selection mechanisms in the
Goal Net.

o Agent Implementation: This is the most difficult
task in implementation. An agent, which firstly
must comply with the agent platform, should also
be able to handle how to load and process the goals
in database, how to fire the transition by selecting
and executing the suitable tasks, how to handle the
messages and how to perceive and interact with the
environment.

To assist the mapping from design to imple-
mentation, the Multi-Agent Development Environment
(MADE) has been developed. JADE [8] has been inte-
grated with MADE. The advantages of the integration
is that by integrating with JADE, MADE is compli-
ant with the standard FIPA [14]; it is able to pro-
vide agent communication mechanism that supports
the standard agent communication language (ACL) and
provide agent management facilities via JADE. With
the integration, we obtained both standard compliant
agent platform support and goal-oriented intelligent
agent development support. MADE is able to assist
developers in both design and implementation phases.
Figure 4 shows the architecture of MADE.

MADE is developed in Java and it has four ma-
jor components: Agent Development Framework, Goal
Net Designer, Goal Net Loader and Agent Creator. An
agent implementation consists of three simple steps, 1)
design/draw the goal net of an agent using Goal Net De-
signer, 2) create an agent using Agent Creator and 3)

| Goal Net Designer |
Agent
Creator

| Goal Net Loader |

Agent Development Framework

| JADE

Java Virtual Machine

Fig.4 The architecture of MADE.

> Multi-Agent Development Toolkit [f=h[<
File Database
[GoalNet Grid || TasK
) GoalNet Grid Agent Grid
=6 Setting
- 51
= s2 [Load I Save]|
@ Transition
= 183 ~Creator
Transition [Add GNet L memovecner |
 Transition
= Casa B [Add State [Remove State |
% Aransition [___Add transttion | Remave Transiti... |
@ Transition
= 185 [___ mssign Task J___Removerask |
@ Transition
=162 ~State Setting
= 153
 Transition 1ds 2
® Transition T s1
= Case
& Transition Description: State1
= s Parent GHet Id: 0
@ Transition
= 63 GNet Iet: 1
= s -
% o omaiiin Number of Input Transi... 0
® Transition Number of Output Tran... o
= []S8 . .
& Transition O Simple (=) Composite
=189 I Save Il Clear |
@ Transition
@ Transition
= 1810
® Transition
 Transition
=811
® Transition

Fig.5 Goal Net designer.

load the goal net into the agent using Goal Net loader.

Goal Net Designer is a visualized design tool to
help developers in the detailed design of a goal net ef-
ficiently. Goal Net Designer provides GUI that allows
users to create goals and transitions. The properties
of goals and transitions such as attributes, functions,
tasks, and action selection mechanisms can be defined.

Figure 5 shows a snapshot of the Goal Net Designer
interface. The left panel allows a developer to change
the structure of the goal net, and the right panel allows
the developer to edit the property of goals, transitions
and tasks. Its graphical interface allows developers to
edit the design easily. The designed goal net can be
automatically saved into predefined database.

Agent Creator is a toolkit helping in creating Goal
Net enabled agents. It creates a dummy agent, which
is called Goal Autonomous Agent, load a goal net from
the database into the created agent through the Goal
Net Loader. Such abilities of the Agent Creator and
Goal Net Designer release developers from the tedious
goal management and agent design work, so that they
can focus on Goal Net logic and agent tasks develop-
ment. The components of the agent that Agent Creator
creates include:

IEICE TRANS. INF. & SYST., VOL.Exx-??, NO.xx XXXX 200x

e Knowledge unit: provides interface to bind other
intelligent engine to process the knowledge data for
agent usage.

e Perception unit: perceives environment changes.

e Data unit: loads/stores data from/into database
for the agent to process.

e Process unit: processes the Goal Net into agent
running order.

e Compute unit: implements the task selection and
goal selection mechanisms.

e Action unit: executes the selected agent tasks.

o Communication unit: handles the messages re-
ceived and messages to be sent.

e (Control unit: manages the goal pursuit and ac-
tion execution, and coordinates different compo-
nents of the agents such as process, communica-
tion, perception and action units. Under normal
circumstances the control unit executes functions
to achieve goals based on the Goal Net model. It
obtains the Goal Net model information from the
process unit, uses the compute unit to perform goal
selection and action selection and executes the ac-
tions using the action unit. It instructs the reac-
tion unit to perform reactive action to changes in
the environment notified by the perception unit. It
decides the order of actions the agent needs to per-
form. For example, the activities of an agent may
include actions for goal pursuit, goal and action
selection, environment change reaction, and com-
munications with users or other agents, etc. The
control unit schedules the above activities.

Agents created by MADE can work on different
duties if different goal net is loaded into its ”brain”.
For the E-learning case, with MADE the major work
becomes the design of the goal nets for the agents, the
implementation of tasks and the action selection mech-
anisms. To run the system, the dummy agents are cre-
ated by Agent Creator and different goal nets are loaded
into the agents via Goal Net Loader. As a result, the
multi-agent system has been successfully developed.

3.5 Agent-based E-Learning Systems

An agent based e-learning system has been developed
based on the e-learning case described in this pa-
per. Experiments have been conducted for evaluat-
ing the system. Agents in the e-learning system de-
veloped based on the proposed GO methodology have
both goal autonomy and behavior autonomy. In the
e-learning system, the course delivery agent uses a
Bayesian network based action selection mechanism to
select suitable learning objects based on the learner’s
skills. There are two cases for consideration here: 1) the
learner has already learned the learning object; 2) the
learner has working experience related to the content of
the learning object which means the learner has accu-

SHEN et al.: GOAL-ORIENTED METHODOLOGY FOR AGENT SYSTEM DEVELOPMENT

Fig.6 The Bayesian network for learning object selection.

Table 1 The node definitions of the Bayesian network.
Node Definition
A used programming language
B learned Java
C used Java
D duration that Java was used
E learning object
Table 2 The probabilities between the nodes of the Bayesian
network.
Node | A=y | B=y | C=y | D=1yr | E=n
A=y 0.5
B=y 0.5
C=y 0.8 0.5
D=1 yr 0.9
E=n 1 0.5 0.5 0.5

mulated some skills about the content of the learning
object through his working experience. For example,
a learner, who has not taken a course about Java, can
possess the skill about Java if he has worked in a project
using Java for a certain period. So whether he needs
to take the learning object about Java is decided by
how long he has used Java for his work and the results
of the pre-assessment. We assume that the longer he
has used Java, the higher the probability that he pos-
sesses the required skill. In this way, Bayesian networks
can be used to decide whether a learner needs to learn
the Java learning object or not. So, in the transition,
if the probability of having the skill that is related to
the learning object is higher than a pre-set threshold,
the learning object will not be selected. Otherwise, the
learning object will be selected.

Figure 6 gives an example Bayesian network for the
learning object selection. Table 1 lists the definitions
of the nodes.

Table 2 lists a setting of the probabilities between
the nodes. In Table 2, ”y” indicates the value ”yes”
while ”n” indicates "no”.

In this experiment, suppose the threshold for the
probability not to select the learning object is 0.5, and
a learner has working experience in Java programming,
if he has worked for more than one year, the probabil-
ity is 0.8%0.5 + 0.5 = 0.9 > 0.5, which indicates that
this learning object is not selected; if he has worked

7
Table 3 Evaluation of different agent development method-
ologies.
FEvaluation Gaia | MaSE | Tropos | Goal
Criteria Net
Goal Role Role Goal Goal
Oriented based based based based
Full No Yes Yes Yes
Development
Cycle
Toolkits No Yes Yes Yes
Developer Low Mediate | Mediate High
Friendliness

for less than one year, the probability is 0.8 * 0.5 =
0.4 < 0.5, which means that the learning object should
be selected. In contrast, if the learner has learned the
learning object, the learning object is not selected be-
cause the probability is 1 > 0.5.

Besides the above described e-learning system,
MADE has been used in different application domains.
Evaluation has been conducted for the agent develop-
ment with and without MADE. Compared to the tra-
ditional agent-based system development in which de-
velopers encounter great difficulties in developing intel-
ligent agents, GO methodology with MADE presents
a user-friendly and easy-to-use approach to intelligent
agent development.

4. Related Work

To date there are several kinds of major methodolo-
gies for agent system development, such as Gaia [3],
[6], MaSE [4], [5], and Tropos [7], etc. These method-
ologies are designed from different perspectives. In this
section, we evaluate our proposed methodology against
these popular agent development methodologies from
the view of software engineering. Following are the
evaluation factors in use:

e (Goal Oriented: measures whether the methodol-
ogy models the agent system in the goal oriented
manner or not.

o System Development Cycle: measures whether the
methodology supports the whole software develop-
ment cycle from initial system requirement to the
final implementation.

e Toolkit: measures whether the methodology has
proposed some toolkit to assist the development of
the agent system.

e Developer Friendliness: measures whether the
methodology is user friendly to the developers, or
whether it is easy to use.

Table 3 shows the results of the simple evaluation
on different agent system development methodologies.
As it is seen, only Tropos and the proposed method-
ology are goal oriented. However, Goal Net models
the temporal relationships between goals and supports
dynamic goal selection and action selection. Moreover,

goal nets can be directly loaded into agents as the men-
tal models of the agents. Therefore intelligent agent
development becomes easier. In addition, the proposed
methodology supports the full software development
cycle. The MADE toolkit is highly user friendly and
it is able to improve developers’ efficiency significantly.

5. Conclusion

In this paper, we have presented a goal-oriented
methodology for developing agent systems. This
methodology is based on the Goal Net model, which
models agent with not only behavior autonomy but also
goal autonomy. The MADE toolkit, which provides a
great assistance to developers in designing and imple-
menting agent system, is also illustrated. A comparison
with different existing agent methodologies from the
software engineering perspective shows that the pro-
posed methodology is a practical, easy-to-use and effi-
cient methodology for agent system development.

References

[1] H. Nwana, and D. Ndumu, A Perspective on Software
Agents Research, Knowledge Engineering Review, Vol. 14,
No.2, pp. 1-18, 1999.

[2] Z. Q. Shen, Goal-oriented Modeling for Intelligent Agents
and their Applications, Ph.D. Thesis, Nanyang Technolog-
ical University, Singapore, 2003.

[3] F. Zambonelli, N. R. Jennings and M. J. Wooldridge, De-
veloping multiagent systems: the Gaia Methodology, ACM
Trans on Software Engineering and Methodology, Vol.12,
No. 3, pp. 317-370, 2003.

[4] S. A. DeLoach, Systems Engineering A Methodology and
Language for Designing Agent Systems, Proc. of Agent Ori-
ented Information Systems, pp. 45-57, 1999.

[5] S. A. DeLoach, Analysis using MaSE and agentTool, Proc.
of Midwest Artificial Intelligence and Cognitive Science
Conference, 2001.

[6] M. J. Wooldridge, N. R. Jennings and D. Kinny, The Gaia
methodology for agent-oriented analysis and design, Au-
tonomous Agents and Multi-Agent Systems, 3, pp. 285-312,
2000.

[7] P. Bresciani , P. Giorgini , F. Giunchiglia , J. Mylopou-
los and A. Perini , Tropos: An Agent-Oriented Software
Development Methodology, Journal of Autonomous Agent
and MultiAgent Systems, 8 (3), pp. 203-236, 2004.

[8] F. Bellifemine, A. Poggi and G. Rimassa, JADE: a
FIPA2000 compliant agent development environment, in
Proceedings of the fifth international conference on Au-
tonomous agents, pp. 216 - 217, Montreal, Quebec, Canada,
2001.

[9] A. Dardenne, A. van Lamsweerde and S. Fickas, Goal-
Directed Requirements Acquisition, Science of Computer
Programming, Vol. 20, North Holland, pp. 3-50, 1993.

[10] A. Anton, Goal-Based Requirements Analysis, Second In-
ternational Conference on Requirements Engineering, Los
Alamitos, California: IEEE Computer Society Press, pp.
136-144, 1996.

[11] A. Anton, Goal Identification and Refinement in the Specifi-
cation of Software-Based Information Systems, Ph.D. The-
sis, Georgia Institute of Technology, Atlanta, Georgia, June
1997.

IEICE TRANS. INF. & SYST., VOL.Exx-??, NO.xx XXXX 200x

[12] P. Massonet, Y. Deville and C. Nve, From AOSE method-
ology to agent implementation, AAMAS 2002, pp. 27-34,
2002.

[13] Z. Q. Shen, R. Gay, C. Y. Miao and X. H. Tao, Goal Ori-
ented Modeling for Intelligent Software Agents, in Proceed-
ings of the 2004 IEEE/WIC/ACM International Conference
on Intelligent Agent Technology (IAT’04), Beijing, China,
September, 20-24, 2004.

[14] Foundation for Intelligent Physical Agents, FIPA Agent
Management Specification,
http://www.fipa.org/specs/fipa00023/, June 2002.

Zhiqi Shen Dr. Zhiqi Shen obtained
his BSc in Computer Science in Peking
University, China, and PhD in Informa-
tion Communication Institute, Nanyang
Technological University (NTU), Singa-
pore. His research interests include
goal-oriented modeling, intelligent soft-
ware agent, software engineering, seman-
tic web/grid, sensor network and their ap-
plications.

Chunyan Miao Dr. Chunyan Miao
received her PhD from School of Com-
puter Engineering, Nanyang Technologi-
cal University (NTU), Singapore. She is
currently an Assistant Professor in the
same school. Her major research inter-
est includes machine learning, intelligent
software agent, agent mediated semantic
web/grid, and agent oriented software en-
gineering.

Robert Gay Professor Robert Gay
obtained his PhD in Electronics Engineer-
ing from the University of Sheffield in
1970. He is currently Director of the Man-
aged Computing Competency Centre and
the Director for Research IT Resources at
NTU. His current research interests and
expertise include Semantic Grid, Knowl-
edge Based Systems, E-learning and In-
tegrated Manufacturing Systems and Ser-
vices.

Dongtao Li Dongtao Li is currently
a postgraduate research student in School
of Computer Engineering, Nanyang Tech-
nological University, Singapore. His
main research interests include Soft-
ware Agent, Multi-Agent System, Agent-
Oriented Software Engineering.

