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Abstract—As an increasing number of elderly people start to use 

online services, there is an urgent need to protect them from 

exploitation by malicious service providers (SPs). Testimonies 

and direct interaction experiences are both useful sources of trust 

evidence, but the weight given to each source to estimate a SP’s 

trustworthiness is hard to determine. We propose a 

reinforcement learning based method to dynamically determine 

the optimal fix of direct and indirect trust evidence to help the 

elderly users form an accurate trust opinion on SPs. Extensive 

simulations have demonstrated the proposed method 

significantly outperforms existing approaches in terms of 

mitigating the adverse effect of unreliable third party testimonies. 

Keywords-trust; reputation; learning 

I.  INTRODUCTION 

As online services grow in number and variety over the past 
decade, more and more people carry out transactions involving 
valuable resources (both tangible and intangible) with others 
through the Internet. Trust among these individuals is essential 
for transactions to happen. The trusting party is often exposed 
to risks caused by the behavior of the trusted party. 

 

Figure 1.  Worldwide age dependency ratio (data from the World Bank) 

In recent years, the world has witnessed a growing global 
aging phenomenon. The age dependency ratio - the ratio of 
older dependents (people older than 64) to the working-age 
population (those ages 15-64) - has been consistently rising as 
shown in Fig. 1, which resulted in many elderly people in both 
the developed and the developing world having to live away 
from their children. This current cohort of the elderly 
populations is aging alongside the booming Internet. As they 
are expected to live independently for a longer time than their 
predecessors, it is reasonable to assume that the trend is 
towards the elderly populations increasingly lever online 
services to carry out more and more activities. 

Trust is the extent to which one party is willing to depend 
on something or somebody in a given situation with a feeling 

of relative security, even though negative consequences are 
possible [1]. Without the mechanisms to gauge the interaction 
partner’s social signals, an important part that help people 
judge the trustworthiness of a person in face to face 
interactions is missing. Therefore, computational trust models 
which evaluate one’s trustworthiness through observing his 
past behaviors are used instead. Such models can be a valuable 
help to protect the elderly Internet users against malicious or 
selfish online service providers (SPs). 

As online services flourish, so are mechanisms for people 
to provide feedback about their experience using them. 
Existing evidence based trust models often make use of two 
distinct sources of information to evaluate the trustworthiness 
of a service: 1) direct trust evidence: a service consumer’s 
direct experience with a service provider, and 2) indirect trust 
evidence: the gossips about the service provider he receives 
from others. In these models, a service consumer uses past 
interaction outcomes with a service provider to estimate his 
future trustworthiness. Direct trust evidence is considered the 
most relevant to a service consumer. However, acquiring 
enough of it to make an accurate estimation of a service 
provider’s trustworthiness requires large effort for the service 
consumer to explore and may expose him to a high level of risk 
of being cheated by unreliable service providers. Indirect trust 
evidence from witnesses (other consumer who interacted with a 
service provider before) can be useful in reducing a consumer’s 
risk exposure. However, this introduces new uncertainties as 
the indirect trust evidence may be inaccurate due to malicious 
or selfish behavior by the witnesses. Thus, one of the most 
important research questions in evidence based trust models is 
how to mix the direct and indirect trust evidence about a 
service provider to accurately estimate its trustworthiness. 

The majority of the existing trust models adopt a weighted 
average approach in mixing these two sources of evidence [2]. 
Direct trust evidence is often assigned a weight of γ (0 ≤ 𝛾 ≤
1), and indirect evidence is then assigned a weight of (1 − 𝛾).  
In most existing approaches, it is assumed γ is the same across 
all known service providers and its value is predetermined by 
domain experts [3]. In this paper, we propose a reinforcement 
learning based method to dynamically determine the weight 
assigned to each source of trust evidence based on the outcome 
of a consumer’s interaction with service providers. The model 
learns a unique γ value for each service provider known by a 
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consumer to enhance its accuracy. Experimental results 
demonstrate that the proposed method significantly 
outperforms existing approaches. 

II. RELATED WORK 

Existing approaches for mixing direct and indirect trust 
evidence to evaluate a service provider’s trustworthiness can be 
divided into two broad categories: 1) static approaches, where 
the value of γ is predefined, and 2) dynamic approaches, where 
the value of γ is updated during the lifetime of a service 
consumer. 

A. Static Approaches 

A long list of literature exists where static γ values are used 
in computational trust models. The majority of them tend to 
take a balanced approach by assigning the value of γ to 0.5 [4], 
[5], [6], [7]. In some more focused studies, the authors assigned 
the value 0 [8], [9], or 1 [10], [11] to γ to exclusively use only 
one source of trust information to make their decisions. Barber 
and Kim [12] have empirically proved, without considering the 
possibility of misleading indirect trust evidence, that direct 
experience is effective over the long term, but indirect trust 
evidence gives an accurate picture more quickly. Thus, by 
discarding one source or the other, approaches that assign 0 or 
1 to γ forfeit part of the advantages of an evidence based trust 
model. However, using one static value for γ across all 
environmental conditions is not always an optimal approach.  

B. Dynamic Approaches 

Some existing work has explored varying the value of γ 
dynamically based on different assumptions. In [13], the 
authors alter the value of γ based on the number of direct 
observations on the behavior of a service provider available to 
a consumer. The paper assumes that every consumer starts 
from having no prior interaction experience with a service 
provider, and gradually accumulates direct trust evidence over 
time. It initially completely relies on indirect trust evidence to 
select service providers. As the number of repeated interactions 
with a service provider j increase, the value of γ also increases 

according to the formula 𝛾 =  
𝑁𝑗

𝑏

𝑁𝑚𝑖𝑛
, 𝑖𝑓 𝑁𝑗

𝑏 < 𝑁𝑚𝑖𝑛

1, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 , where 

𝑁𝑗
𝑏 is the total number of direct observations of consumer b on 

service provider j, and 𝑁𝑚𝑖𝑛  is the minimum number of direct 
observations determined by an acceptable level of error ε and a 
confidence c according to the Chernoff Bound Theorem:   

𝑁𝑚𝑖𝑛 = −
1

2𝜖2 ln(
1−𝑐

2
). This approach is not concerned with the 

accuracy of the indirect trust evidence when altering the value 
of γ. Rather, its aim is to accumulate enough direct trust 
evidence so that a consumer can make a statistically significant 
estimation on the trustworthiness of a service provider without 
relying on indirect trust evidence. In order to achieve a high 
level of confidence and low level of error, 𝑁𝑚𝑖𝑛  can be very 
high. For example, a 90% confidence of at most 5% error 
requires at least 185 direct interactions. In real life applications, 
this may cause the service consumer to be exposed to 
significant risk of being cheated. In addition, since the value of 
γ eventually reaches 1, the approach is assuming that the 
behavior pattern of the service provider will never change. This 

may not always be true and it limits the applicability of the 
approach under certain circumstances. 

Fullam and Barber [14] proposed a approach based the Q-
learning technique [15] to select an appropriate γ value from a 
predetermined set of candidate values to be used to evaluation 
the trustworthiness of all potential service providers at each 
time step. The candidate γ values are set as { 𝛾1, … , 𝛾𝑛 } 
assuming expert opinions about the underlying system 
characteristics are available. Based on the reward accumulated 
by a consumer under different γ values using the Q-learning 
technique at each time step, the γ value associated with the 
highest accumulated reward is selected. This work took the 
first step towards using real-time interaction outcomes to drive 
the consumer’s subsequent interaction decisions. However, as 
the γ values are selected from a predetermined set, it is still 
partially relying on heuristics. The set of possible alternative γ 
values can impact the performance of the approach. 

III. PROBLEM FORMULATION 

TABLE I.  NOTATIONS USED IN THIS PAPER TO DESCRIBE THE PROBLEM 

𝑐𝑖  A consumer 

𝑠𝑗  A service provider 

𝑤𝑘  A witness  

𝑊𝑖,𝑗  A set of witnesses for 𝑠𝑗  known to 𝑐𝑖 . 

𝑂𝑡
𝑖,𝑗

 The binary outcome of interaction between 𝑐𝑖  and 𝑠𝑗  at time t. 

𝑑𝑡
𝑘 ,𝑗

 A testimony from 𝑤𝑘  with regard to 𝑠𝑗  at time t. 

𝐷𝑡 ,𝑑
𝑖 ,𝑗

 The binary decision by 𝑐𝑖  on whether to interact 𝑠𝑗  with at time 

t based on direct trust evidence only. 

𝐷𝑡 ,𝑖𝑛𝑑
𝑖 ,𝑗

 The binary decision by 𝑐𝑖  on whether to interact 𝑠𝑗  with at time 

t based on indirect trust evidence only. 

C The cost in utility incurred by 𝑐𝑖  when engaging the service of 

𝑠𝑗 . 

G The gain in utility after a successful interaction 𝑐𝑖  and 𝑠𝑗 . 

𝑝𝑚 ,𝑡  The probability that testimonies from witnesses mislead the 

interaction decision of 𝑐𝑖  with regard to 𝑠𝑗  at time t. 

𝛾𝑖,𝑗  The weight assigned to direct trust evidence about 𝑠𝑗  by 𝑐𝑖 . 

In this paper, we use the list of notations in Table I to 
describe the problem. We consider an open online system 
where the participants can play two types of roles: 

1) Service providers, who provide services needed by 
others and do not need to rely on others to complete these 
services; and 

2) Consumers, who need  to rely on the service providers 
to accomplish certain goals. 

In the eyes of a consumer, other consumers who provide it with 
indirect trust evidence (i.e., testimonies) about a service 
provider are regarded as witnesses.  

Assuming at each time step t, a consumer 𝑐𝑖  will at most 
interact with one 𝑠𝑗 . Each time, 𝑐𝑖  chooses the interaction 

partner from several candidate 𝑠𝑗 s according to their estimated 

trustworthiness. Whenever 𝑐𝑖  needs to assess the 
trustworthiness of a service provider 𝑠𝑗 , he draws upon both 

his own direct trust evidence with 𝑠𝑗  (if there is any) as well as 

asks for testimonies from the set of witnesses 𝑊𝑖 ,𝑗  who are 

known to have interacted with  𝑠𝑗  before. A witness  



𝑤𝑘  may reply 𝑐𝑖  with a testimony 𝑑𝑡
𝑘 ,𝑗

. A malicious 𝑤𝑘  can be 

assumed to misbehave in two ways: 1) consistent lying, where 
𝑤𝑘  always replies with the opposite of what he believes the 
true trustworthiness of 𝑠𝑗  should be following an independent 

and identically distributed (i.i.d.) lying probability; and 2) 
collusion, where𝑤𝑘   only gives unfairly positive testimonies 
about a small set of 𝑠𝑗 s with whom they collude, but gives fair 

testimonies about others. All 𝑑𝑡
𝑘 ,𝑗

 received by 𝑐𝑖  are given 

equal weight when evaluating the trustworthiness of 𝑠𝑗 . 

Depending on the presence of both types of the decision on 
which candidate 𝑠𝑗  is to be selected for interaction by 𝑐𝑖  at 

time step t might be adversely affected. 

In order to hire 𝑠𝑗 , 𝑐𝑖  incurs a utility cost of C. If 𝑠𝑗  

successfully completes the task assigned to it by 𝑐𝑖 , 𝑐𝑖  receives 
a utility gain of G. In this paper, we assume C < G, and the 
values of C and G are the same for any pair of 𝑐𝑖  and 𝑠𝑗 . If 𝑐𝑖  
decides to interact with 𝑠𝑗  at time step t, we assume the 

outcome of the interaction 𝑂𝑡
𝑖 ,𝑗

 can be observed by 𝑐𝑖  within 

the same time step. We assume that 𝑂𝑡
𝑖 ,𝑗

to be either successful 

(𝑂𝑡
𝑖 ,𝑗

= 1)  or unsuccessful (𝑂𝑡
𝑖 ,𝑗

= 0) . New 𝑤𝑘  for 𝑠𝑗  

discovered by 𝑐𝑖  over time are added into 𝑊𝑖 ,𝑗 . The objective 

is to maximize the time averaged utility gain of 𝑐𝑖  throughout 
his lifetime in the presence of malicious 𝑠𝑗 s and witness agents 

lim𝑇→∞
1

𝑇
 [ 1 − 𝑝𝑚 ,𝑡 ⋅  𝐺 − 𝐶 − 𝑝𝑚 ,𝑡 ⋅ 𝐶𝑇

𝑡=1 ]        (1) 

by adjusting the value of 𝛾𝑖 ,𝑗  based on 𝑂𝑡
𝑖 ,𝑗

 over time through 

minimizing 𝑝𝑚 ,𝑡 . In an open system, the interactions between a 

consumer and a service provider do not have specific ending 
times. Therefore, the total number of interactions between any 
consumer and service provider pair cannot be known in 
advance. 

IV. THE PROPOSED METHOD 

To solve the aforementioned problem, we propose a 
reinforcement learning (RL) based method to dynamically 
adjust the weight given to the two sources of trust evidence. 
The advantage of a RL based method is that it can learn 
directly from raw experience without a preconceived model of 
the environment dynamics. In addition, since RL does not need 
wait for the final outcome of a long series of interactions to be 
available before making estimations, it is suitable for our 
problem where interactions between any pair of 𝑠𝑗 and 𝑐𝑖  can go 

on indefinitely. 

The proposed method is focused on addressing the 
problem of adapting a 𝑐𝑖’s the reliance on the two sources of 
trust evidence during its lifetime. It does not matter which 
model 𝑐𝑖  uses to evaluate the trustworthiness of a 𝑠𝑗 . However, 

to facilitate the discussion in the following parts of this paper, 
we assume the popular Beta Reputation System (BRS) [16] is 
used as the underlying trust evaluation model for the 
consumers. The BRS estimates the trustworthiness of a 𝑠𝑗  as 

follows: 

𝜏𝑖 ,𝑗 = 𝐸 Pr 𝑠𝑗   =
𝛼

𝛼 + 𝛽
 

𝛼 = 𝑁𝑝 + 1, 𝛽 = 𝑁𝑛 + 1                          (2) 

where 𝜏𝑖 ,𝑗  denotes the trustworthiness value of 𝑠𝑗  based on the 

direct trust evidence from 𝑐𝑖 . It is equivalent to the expectation 
of the probability that 𝑠𝑗  will successfully serve 𝑐𝑖 ’s requests 

in the future. 𝑁𝑝  is the total number of successful interactions 

between 𝑠𝑗 and 𝑐𝑖  so far, and 𝑁𝑛  is that of the successful 

interactions. 

In the proposed method, 𝑐𝑖’s actions regarding the choice 
between the two sources of trust evidence for any 𝑠𝑗  is divided 

into two parts: 1) applying the current strategy (using the latest 
𝛾𝑖 ,𝑗  value to estimate the trustworthiness of 𝑠𝑗 , and 2) updating 

the 𝛾𝑖 ,𝑗  value based on the latest interaction outcome if 𝑠𝑗  is 

chosen as the interaction partner for the last time step. These 
two parts as realized as the actor module and the critic module 
respectively according to the principles of the Actor-Critic 
learning method [15]. For each 𝑠𝑗  known to a 𝑐𝑖 , two  critic 

module are present for the two sources of trust evidence and 
one actor module is present for estimating the trustworthiness 
of this 𝑠𝑗 . 

A. The Critic Module 

The critic module in the proposed method performs the task 
of reward accumulation. Since the two critic modules for each 
known 𝑠𝑗  are essentially the same but only taking in different 

sources of input data, in the following part, we will only 
discuss the critic module for direct trust evidence. 

The value function of the critic module is designed based 
on the objective function presented in Eq. 1: 

𝑟𝑑 =
1

𝑇𝑖 ,𝑗

 [(𝜇𝑡 ∙  𝐺 − 𝐶 − (1 − 𝜇𝑡) ∙ 𝐶)]

𝑇𝑖 ,𝑗

𝑡=1

 

𝜇𝑡 =  
0, 𝑖𝑓𝐷𝑡 ,𝑑

𝑖 ,𝑗
= 1|𝑂𝑡

𝑖 ,𝑗
= 0 𝑜𝑟 𝐷𝑡 ,𝑑

𝑖 ,𝑗
= 0|𝑂𝑡

𝑖 ,𝑗
= 1  

1, 𝑖𝑓𝐷𝑡 ,𝑑
𝑖 ,𝑗

= 1|𝑂𝑡
𝑖 ,𝑗

= 1 𝑜𝑟 𝐷𝑡 ,𝑑
𝑖 ,𝑗

= 0|𝑂𝑡
𝑖 ,𝑗

= 0
  

𝐷𝑡 ,𝑑
𝑖 ,𝑗

=  
0, 𝜏𝑖 ,𝑗 < 𝜃

1, 𝜏𝑖 ,𝑗 ≥ 𝜃
 .                                (3) 

𝑟𝑑  can be considered as the discrete time averaged reward 
accumulated by the direct trust evidence source. 𝑇𝑖 ,𝑗  represents 

the total number of interactions between 𝑠𝑗 and 𝑐𝑖 . 𝜇𝑡  is a 

variable determining whether the direct trust evidence source 
should be rewarded or punished at each time step. Its value 
toggles between 0 and 1 according to the relationship between 

the interaction decision 𝐷𝑡 ,𝑑
𝑖 ,𝑗

 as suggested by the direct 

trustworthiness evaluation 𝜏𝑖 ,𝑗  and the observed actual 

interaction outcome 𝑂𝑡
𝑖 ,𝑗

 after the overall interaction decision is 

made. As 𝐷𝑡 ,𝑑
𝑖 ,𝑗

 is only one component of the overall interaction, 



it is possible that 𝐷𝑡 ,𝑑
𝑖 ,𝑗

 suggests not to interact with 𝑠𝑗  and yet 

the overall decision is otherwise. 

Once the latest 𝑟𝑑  is available, it is compared with the 
baseline discrete time averaged reward accumulated by the 
direct trust evidence source 𝑟𝑑  to update the learning parameter 
𝑝𝑑  according to:  

𝑝𝑑 ← 𝑝𝑑 + 𝜌 ∙  𝑟𝑑 − 𝑟𝑑  ∙ (1 − 𝜋𝑑) 

0 < 𝜌 ≤ 1.                                        (4) 

𝜌 represent the rate of learning for the proposed method. It 
affects the size of change that can be achieved at each step of 
learning. 

After 𝑝𝑑  is updated, 𝑟𝑑  is updated as follows: 

𝑟𝑑 ← 𝜑 ∙ 𝑟𝑑 + (1 − 𝜑) ∙ 𝑟𝑑  

0 < 𝜑 ≤ 1.                                        (5) 

𝑟𝑑  can be regarded as a basis for comparing whether 𝑐𝑖  has 
become better off or worse off by aggregating the direct trust 
evidence into the estimation for the trustworthiness of 𝑠𝑗  using 

the latest 𝛾𝑖 ,𝑗  value. 𝜑 is the weight assigned to the baseline 

value before it has been updated.  

Similarly, the learning parameter 𝑝𝑖𝑛𝑑  for the indirect 
source of trust evidence can be obtained. When both 𝑝𝑑  and 
𝑝𝑖𝑛𝑑  are obtained, the learning parameters 𝜋𝑑  and 𝜋𝑖𝑛𝑑  can be 
updated according to the Gibbs Softmax method [15] as: 

𝜋𝑑 =
𝑒𝑝𝑑

𝑒𝑝𝑑 +𝑒𝑝𝑖𝑛𝑑
  

𝜋𝑖𝑛𝑑 =
𝑒𝑝𝑖𝑛 𝑑

𝑒𝑝𝑑 +𝑒𝑝𝑖𝑛𝑑
.                                (6) 

A desirable characteristic of this method is that 𝜋𝑑  and 𝜋𝑖𝑛𝑑  
can be regarded as the probability of selecting each source of 
trust evidence (𝜋𝑑 + 𝜋𝑖𝑛𝑑 = 1). Therefore, we assign 𝛾𝑖 ,𝑗  to be 

equal to 𝜋𝑑 . 

B. The Actor Module 

The actor module is concerned with the strategy for 
aggregating the trust evidence from the two available sources. 
Since, in this paper, we do not keep track of the credibility of 
individual witnesses, a simple average over the available 
testimonies about 𝑠𝑗  from all 𝑤𝑘s who have responded to 𝑐𝑖’s 

request is taken. This value is then combined with  𝜏𝑖 ,𝑗   using 

the following equation 

𝑟𝑝𝑗 = 𝛾𝑖 ,𝑗 ∙ 𝜏𝑖 ,𝑗 + (1 − 𝛾𝑖 ,𝑗 ) ∙
1

𝑀
 𝑑𝑡

𝑘 ,𝑗𝑀
𝑘=1 .           (7) 

𝑑𝑡
𝑘 ,𝑗

 denotes a testimony about 𝑠𝑗  from𝑤𝑘   at time step t. It has 

the same format with 𝜏𝑖 ,𝑗  since, assuming  𝑤𝑘  is completely 

honest, he should have provided direct trustworthiness 
evaluation about 𝑠𝑗  to 𝑐𝑖 . 𝑟𝑝𝑗  represents the overall reputation 

of 𝑠𝑗  which is used by 𝑐𝑖  to estimate 𝑠𝑗 ’s true trustworthiness. 

At each time step, 𝑐𝑖  might have more than one candidate 𝑠𝑗 s 

to choose from. In this paper, we assume 𝑐𝑖  will always select 
the 𝑠𝑗  with the highest 𝑟𝑝𝑗  to interact with. 

V. EXPERIMENTAL EVALUATION 

In order to evaluate the effectiveness of the proposed 
method against malicious witness populations, we designed a 
simulation test-bed with a simple economic system. Groups of 
autonomous consumer agents equipped with three static 
methods and two state-of-the-art dynamic methods for 
determining the value of 𝛾𝑖 ,𝑗  compete with those equipped with 

the proposed method in the test-bed. Their performances are 
judged with practical metrics. Under two different sets of 
experiment conditions, it has been observed that the proposed 
method significantly outperforms all other methods in terms of 
reducing the normalized average utility loss of the consumers. 

A. Experiment Environment 

The environment of each experiment consists of 𝑁𝑠 = 100 
service provider agents with different behavior patterns and 
𝑁𝑤 = 100 common witness agents who accumulate direct trust 
evidence about service provider agents and provide testimonies 
to requesting consumer agents following different strategies. 
These agents are allowed to run for 𝑇𝑠 time steps to accumulate 
some direct trust evidence before agents equipped with various 
𝛾𝑖 ,𝑗  calculation methods join the environment. Since it is not 

possible to enumerate all service provider population behavior 
patterns, we select one which consists of 20% honest SPs 
(agents who complete their assigned tasks successfully 90% of 
the time), 40% unreliable SPs (agents who complete their 
assigned tasks successfully 30% of the time), and 40% 
malicious SPs (agents who complete their assigned tasks 
successfully 10% of the time). This is a highly hostile SP 
population. It is assumed that if the proposed method can 
perform well under such a hostile environment, it should 
perform well under more accommodating environments, too. 
Thus, in the experiments, we only need to alter the behavior 
pattern of the witness agents. 

The common witness agents follow three behavior patterns: 

1) Honest, honest witness agents give out their 

untempered direct trustworthiness evaluations as testimonies 

90% of the time; 

2) Badmouthing (BM), BM witness agents give out 

unfairly negative testimonies 90% of the time; 

3) Ballot-stuffing (BS), BS witness agents give out unfairly 

positive testimonies 90% of the time. 

In each experiment, the composition of the common witness 

agent population is altered to simulate different conditions. In 

the following sections, Hon denotes a population consisting 

entirely of honest witness agents. BMn denotes a population 

consisting of n% BM witness agents and the rest are honest 

witness agents. BSn denotes a population consisting of n% BS 

witness agents and the rest are honest witness agents. 
Five groups of consumer agents are used to compete with 

the group of consumer agents equipped with the proposed 
method. They are: 



1) Group 𝛾 = 0, agents who completely rely on indirect 

trust evidence; 

2) Group 𝛾 = 0.5, agents who rely on a balanced fix of 

direct and indirect trust evidence; 

3) Group 𝛾 = 1 , agents who completely rely on direct 

trust evidence; 

4) Group M2002, agents who use the method described in 

[13] to set the γ value; 

5) Group F&B2007, agents who use the method described 

in [12] to set the γ value. 

The group of agents equipped with the proposed method is 

labeled as Group Y2012. Each group consists of N=10 agents 

and they only requests for testimonies from the common 

witness agent group. Each consumer agent needs to complete 

200 tasks with SPs. The values selected by the parameters 

involved in the proposed method are listed in Table II. 

TABLE II.  PARAMETER VALUES USED IN THE SIMULATION 

𝜑 𝜌 C G 𝜃 M 

0.6 0.4 1 5 0.5 5 

B. Evaluation Metric 

The normalized average utility gain 0 ≤ 𝜍 ≤ 1 is used to 
gauge the performance of various groups of competing agents 
in the experiments. It is calculated as 

𝜍 =
1

𝑇∙𝑁
  𝑔𝑖 ,𝑡

𝑁
𝑖=1

𝑇
𝑡=1 −𝐶

𝐺−𝐶
.                             (8) 

T is the total number tasks completed by each 𝑐𝑖 , N is the 
number of consumer agents in each group, and 𝑔𝑖 ,𝑡  is the actual 

utility gain of each 𝑐𝑖  at time step t. 

C. Observations 

The first set of experiments is conducted under non-
collusive common witness agent populations. The common 
witness population composition is altered from BM100 to Hon 
and then to BS100 to test the performance of different groups 
of consumer agents. The results are summarized in Fig. 2 and 
Fig. 3. It can be observed that Group 𝛾 = 1 achieved the lowest 
𝜍  value as they need more exploration to identify the 
trustworthy SPs. Completely relying on indirect trust evidence 
is also not a good strategy as the performance of Group  𝛾 = 0 
is heavily affected by the presence of unreliable witness agents 
of both BM and BS types. However, the saving in exploration 
resulted from completely relying on testimonies from other did 
allow Group 𝛾 = 0  to achieve higher 𝜍  values than Group 
𝛾 = 1  except under extremely hostile witness agent 
populations of BM100 and BS100. The performance of the 
Group 𝛾 = 0.5 is the best among the three groups using static 𝛾 
values. Group F&B2007’s performance is similar to that of 
Group M2002. As F&B2007 tries to learn which static strategy 
(𝛾 = 0, 0.5, 𝑜𝑟 1 ) is the best under different conditions, its 
performance more or less tracks that of Group 𝛾 = 0.5. Group 
Y2012 outperforms all other methods under all testing 
conditions.  

 

Figure 2.  The performance of various methods against different non-

colluding witness population configurations 

 

Figure 3.  Boxplots comparing the performance of various methods against 
different non-colluding witness population configurations 

The second set of experiments is conducted under collusive 
common witness agent populations. Under this condition, a BS 
witness agent only gives out unfairly positive testimonies when 
the SP of interest is a malicious SP. The common witness 
population composition is altered from Hon to BS100. The 
results are summarized in Fig. 4 and Fig. 5. The relative 
performances of different groups are similar to non-collusive 
conditions. The improvement of Group Y2012 in terms of 
average percentage reduction in normalized average utility loss 
(1 − 𝜍 ) is significant against all other groups as shown in 
Table III. Nevertheless, the improvements under collusive 
conditions are lower than under non-collusive conditions. This 
is due to the fact that collusive witness agents appear to 
behavior strategically (provide reliable testimonies about non-
colluding SPs, but provide unfair testimonies about colluding 
SPs). Without evaluating the credibility of individual witness 
agents, collusion is difficult to defend against. 



 

Figure 4.  The performance of various methods against different colluding 

witness population configurations 

 

Figure 5.  Boxplots comparing the performance of various methods against 
different colluding witness population configurations 

TABLE III.  IMPROVEMENT OVER EXISTING METHODS (% REDUCTION IN 

NORMALIZED AVERAGE UTILITY LOSS) 

Methods 

Malicious Witness Population 

Behavior 

Non-Collusion Collusion 

Static 

Methods 

γ = 0 40.48% 32.42% 

γ = 0.5 22.09% 26.04% 

γ = 1 54.48% 53.23% 

Dynamic 

Methods 

M2002 29.46% 15.58% 

F&B2007 26.01% 21.66% 

VI. CONCLUSIONS AND FUTURE WORK 

This paper proposed a method to dynamically learn the 
optimal mix of direct and indirect trust evidence for estimating 
the trustworthiness of SPs. The method has significantly 
outperformed existing approaches under extensive simulations 
and has the potential to help elderly users select trustworthy 
online service providers under highly hostile witness 
populations. In subsequent research, we will incorporate 
learning based witness credibility evaluation mechanisms to 
improve the effectiveness of the proposed method against 
collusion. 
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