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ABSTRACT 
 

The implementation of sustainable waste management in Singapore 

requires effective modeling and simulation methods and tools to evaluate 

process sustainability and to generate sustainable solutions. This 

requirement has however presented several challenges due to the current 

lack of rigorous sustainability measurement methods, effective evaluation 

systems, and localized inventory data. This chapter presents research to 

explore some of the challenging issues in sustainability modeling and 

simulation. It develops a science-based sustainability assessment method 

to measure, evaluate and compare sustainability footprints of alternative 

waste management processes. The method provides two techniques for 

metrics-driven sustainability modeling and agent-based sustainability 

simulation. Together with a technology inventory to provide the localized 

and structured information on waste handling technologies and 
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operations, the method allows systematic and rigorous assessment of 

process sustainability in the Singapore’s waste management context. An 

assessment application to a waste-to-material recovery system is 

presented. Influences of processing technology choices and key operating 

parameters on environmental impact, economic profitability, social 

acceptability and other context-specific concerns of the system are 

measured, simulated and evaluated. The application showed that the two 

techniques in our method have provided a reliable and practical means for 

the local recyclers to model and simulate process sustainability. The 

results have provided them with a better understanding of the factors 

influencing their sustainable practices and facilitated them to identify and 

implement process improvements. 

 

 

1. INTRODUCTION 
 

Waste management practices in Singapore are facing the new 

sustainability challenges: to maintain their operations technically competitive, 

economically profitable, environmentally protective, and socially responsible. 

A series of targets and guidelines have been set for industry to achieve 

sustainable waste management in Singapore [1, 2]. Implementing 

sustainability however embodies enormous changes and interactions from the 

environment, economy, society, technology and regulations [3]. They are 

frequently related to both quantifiable and qualitative concepts, technological 

and non-technological decisions. For example, the sustainability performance 

of a recycling process can be determined by its technological features (e.g. 

process concept, recycling system design, parameters selection), non-

technological conditions (e.g. operating practices, regulations, the local waste 

strategies), and many other influencing factors. These challenging issues 

require consistent sustainability information and reliable sustainability 

assessment to support waste treatment decisions and to evaluate consequences 

from the selected treatments on the environment, economy and society. 

Comprehensive sustainability modeling and simulation methods, techniques 

and tools are therefore needed for a systematic and consistent understanding, 

evaluation, and improvement of waste management practices in Singapore. 

Sustainable waste management broadly implies the development and 

implementation of innovative waste handling technologies and processes that 

minimize environmental impacts, conserve natural resources, protect public 

health and natural ecosystems, and are economically effective. Yet progress 

for sustainability implementation in practice has been hampered. This is 
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mainly attributed to the current lack of reliable sustainability measurement 

techniques, effective evaluation systems, and localized inventory data for 

industry to objectively evaluate and improve sustainability of waste systems. 

In order to respond to the situation, enormous efforts have been made for 

sustainability research in waste management. Included are the following 

research areas: 

 

 Sustainability measurement methodologies and modeling techniques; 

 Evaluation systems and analytical tools;  

 Data needs in sustainability assessment and acquisition of inventories; 

and 

 Sustainability assessment case studies. 

 

For sustainability measurement and modeling in waste management, the 

most commonly used methods include life cycle assessment (LCA), material 

flow analysis (MFA), and sustainability indicators/metrics. A great number of 

waste LCA models have been developed and used in various waste 

management applications. Cleary [4] conducted a comparative analysis on 

twenty LCA models of various waste systems. The analysis found that many 

models lacked transparent methodological assumptions, which made the LCA 

results difficult to interpret and compare. Gentil et al [5] also observed large 

discrepancies in LCA results when different waste LCA models were used. 

They analyzed different LCA methodologies and technical assumptions, and 

highlighted several criteria that could have significant impacts on the results. 

Suggestions were made from their study to strengthen waste LCA modeling. 

Singh et al [6] reviewed the indicator-based sustainability modeling 

methodologies, including the formulation strategy, scaling, normalization, 

weighting and aggregation techniques. According to the dimensions that the 

indicators addressed, they further classified the sustainability indicators 

surveyed into twelve categories covering innovation and technology, 

economy, environment, eco-system, industrial performance, product, energy, 

social and quality of life, and other aspects.  

Although great progress in waste management modeling has been made, 

few models consider all three dimensions of sustainability in the 

environmental, economic and social aspects together with applications of the 

models [7].  

The types of sustainability evaluation tools used in waste management can 

be classified according to the goals that the tools serve, such as for cost-benefit 

analysis, life cycle analysis, carbon footprint, multi-criteria decision analysis 
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(MCDA), and the hybrid. Currently, the most mature evaluation systems used 

in sustainability assessment are LCA-based software tools, such as the GaBi 

system [8] and the EASEWASTE tool [9]. Others include those based on 

applied mathematics (e.g. statistical analysis, simulation, and optimization) 

[10], agent-based systems [11], and decision support systems [12]. For waste 

decision support, MCDA systems are commonly used. In a recent report, 

Huang et al [13] reviewed over 300 environmental applications of MCDA. 

Their analysis indicated that the share of applications of MCDA tools has 

increased significantly over the past 10 years. It was also shown that MCDA 

tools would deliver ranking results with small discrepancies. MCDA and other 

sustainability evaluation systems have provided an effective computing and 

analyzing means to facilitate the selection of the most appropriate waste 

treatment solutions. 

Besides the modeling methods and computing systems discussed above, 

data acquisition in sustainability assessment is another critical issue. This may 

include data collection, validation, processing, and use of data to instantiate 

sustainability models and to enable computation of sustainability footprints of 

the assessed waste systems. Although most of the computing tools provide 

generic life cycle inventories to facilitate efficient use of the software systems, 

availability and quality of site- or process-specific data and other localized 

information are still problematic. Ruiz-Mercado et al discussed the data needs 

and potential data gaps in calculation of sustainability indicators [14]. In a 

detailed analysis of a waste management system, Villeneuve et al used local 

data on waste streams and treatment units to assess the system efficiency in 

terms of recycling rates, energy recovery, emission fluxes and costs [15]. 

Rather than relying on national statistics of waste generation per capita or 

generic characteristics of waste treatment technologies, their analysis was 

based on the specifics of a given waste system to provide decision-makers 

with quantitative arguments. 

Sustainability assessment in waste management practices is rooted 

underneath the use of comprehensive models with transparent and highly 

detailed internal and external influences, robust computational tools, and 

sufficient inventory data. The current assessment methodologies have fulfilled 

the need to certain degree. There exist great improvement potentials in many 

assessment areas. Three of them are identified: sustainability modeling, 

computation tools, and data provision, to which this study intends to 

contribute. 

The method presented in this chapter has an objective to evaluate and 

improve process sustainability in waste management in Singapore by enabling 
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reliable, practical sustainability modeling, simulation, and data acquisition. It 

provides two techniques for metrics-driven sustainability modeling and agent-

based sustainability simulation. Together with a technology inventory to 

provide localized and structured information on waste handling technologies 

and operations, the method allows systematic and rigorous assessment of 

process sustainability in the Singapore’s waste management context. With the 

metrics-driven modeling technique, the process sustainability characteristics 

are integrated with the technical objectives of waste management systems to 

quantify the economic, environmental, social and technological performances 

in model-based computable metrics. The metric models describe and represent 

the interactions between the sustainability perspectives and the processing 

technology choices, key operating parameters, material market conditions, and 

other influencing factors in waste management. Hence, a simulation tool can 

further use the metric models to imitate sustainability behaviors of waste 

management systems with these influencing factors. A software agent is 

developed as the sustainability simulation tool in this study. The agent consists 

of four main parts: 1) a software implementation of the sustainability 

simulation models; 2) a set of Monte Carlo simulation services; 3) a 

technology inventory with key process data of waste handling technologies 

and operations, simulation inputs and their restraints; and 4) an overall 

workflow to coordinate tasks of the agent with other related human/software 

agents. By continually calculating and comparing process sustainability 

characterized by the sustainability metrics, the agent simulates process 

scenarios under uncertain or deterministic conditions to provide a series of 

reference points for evaluation and improvement of sustainability behaviors of 

waste management systems.  

The chapter is organized as follows. The concept of process sustainability 

in waste management and the related work are presented in Section 2. Two 

techniques for metrics-driven sustainability modeling and agent-based 

sustainability simulation are detailed in Sections 3 and 4 respectively. A case 

study is discussed in Section 5 to evaluate process sustainability of material 

recovery options using our techniques developed. A summary of the research 

findings is given in Section 6 together with a future work plan. 
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2. PROCESS SUSTAINABILITY IN WASTE MANAGEMENT 
 

2.1. Waste Management in Singapore 
 

Waste management in Singapore involves the collection, transport, 

treatment, disposal, prevention, reduction, reuse, or recycling of waste, 

including the recovery of materials and energy from waste. As a small island 

city-state, Singapore has a high population density (7,126/sq-km for 2010) and 

a highly industrialized economy (S$59,813/capita GDP for 2010) with very 

limited natural resources especially a severe scarcity of land (total land area: 

712.4 sq-km for 2010) [16]. These characteristics require Singapore to develop 

innovative, forward-reaching waste management strategies to sustain the 

economy growth and living standard increasing. Singapore adopts a three-

prong strategy to reduce the need for landfill. The three strategies are: waste 

minimization at source, recycling to reduce the amount of waste disposed of, 

and incineration to reduce the volume of waste and to recover energy. 

Specifically, the waste strategy has set the following targets to achieve 

sustainable waste management in Singapore [1]: 

 

 To increase the overall waste recycling rate from 44% to 60% by 

2012; 

 To extend the lifespan of Semakau Landfill to 50 years, strive for 

―zero landfill‖ and close the waste loop; and 

 To reduce the need for new incineration plants to one every 10 to 15 

years. 

 

Waste management in Singapore is based on a waste hierarchy for waste 

minimization (reducing, reusing and recycling), followed by incineration and 

landfill [17], as shown in Figure  1. The waste management options at the top 

of the hierarchy are most preferred. 

Figure  1 indicates that out of the 6.52 million tons of waste generated in 

2010, 58% has been recycled, 40% incinerated, and only 2% for landfill [18]. 

In order to meet the targeted 60% recycling rate by 2012, new resources 

recovery facilities have been set to further increase the share of waste 

minimization and reduce that of waste disposal in Figure  1. Another key 

thrust is to enhance waste industry capability by promoting innovative 

technologies to recycle and reduce waste [1] and to maximize recovery of 

recyclables from waste. To ensure the sustainable development in Singapore, 
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these innovative waste management solutions must provide not only the 

technological advances but also the superior environmental, economic and 

social characteristics measured in process sustainability. 

 

 

Figure  1. A hierarchy for waste management in Singapore. 

 

2.2. Concept of Process Sustainability 
 

Although generally understood as a waste business goal with a 

combination of environmental, economic and social objectives, process 

sustainability is difficult to define and operationalize in waste management 

practices. There is currently not even agreed consensus on what specific 

criteria to include in process sustainability, how to measure and compute the 

concept, what datasets to use, and how to evaluate it in real-world waste 

processes.  

It is however recognized that the sustainability of a waste process should 

be more generally understood through a wide range of well-known 

―development drivers for waste management‖. Wilson [19] defined six such 

drivers as public health, environmental protection, resource value of waste, 

closing the loop, institutional and responsibility issues, and public awareness. 

Escalante [20] suggested five basic functions for conceptualization of a 
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sustainable waste management model: public health protection, value 

recovery, pollution control, resource conservation, and climate protection. 

 

Table 1. Process sustainability metrics for waste-to-material recovery 

processes 

 

Sustainability 

Criteria 

Category 

Metrics Key Metrics Variable 

Waste 

Minimization 

Process efficiency Content of materials to be recovered in 

feedstock, recovered content of 

materials. 

Resource use efficiency Selected key process parameters, 

consumptions of resources in a specific 

process, best achievable resource 

consumptions under a given operating 

conditions.  

In-Process 

Recycling 

In-process recycling rate 

for raw materials 

Total consumptions of raw materials, 

recycled materials in the same process 

before disposed as waste from the 

process. 

In-process recycling rate 

for water 

Total consumption of processing water, 

recycled water in the same process 

before disposed as wastewater from the 

process. 

Resources 

Conservation 

Recycled/reused/renewable 

content of material inputs8 

Total weight of recycled/reused/ 

renewable materials consumed, total 

weight of material inputs. 

Recycled/reused/renewable 

materials content of 

outputs 

Total weight of recycled/reused/ 

renewable materials content in outputs, 

total weight of outputs. 

Renewable proportion of 

energy consumed in a 

waste process 

Renewable energy consumed, total 

energy consumed in a waste process. 

Environmental 

Protection 

Carbon footprint for GHG 

emissions 

Material/water/energy use, transport, 

emission factors. 

Energy intensity Total energy consumption normalized 

to a unit of output. 

Water intensity Total water intake normalized to a unit 

of output. 

Waste intensity by mass 

balance 

In-process recycling rate, recovery rate, 

concentration of materials to be 

recovered in feedstock. 
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Sustainability 

Criteria 

Category 

Metrics Key Metrics Variable 

Economic 

Value 

Unit cost / Total 

production cost 

Feedstock price, recovered material 

market value, energy efficiency, 

production volume, batch size. 

Total process revenue from 

waste 

Recovered material/energy market 

value, sales quantity. 

Net present value / Internal 

rate of return 

Net cash flow, lifespan of a waste 

handling facility. 

Payback period Capital investment, annual operating 

cost savings. 

Society 

Responsibility 

TCLP toxicity level of 

process residuals 

TCLP test data for process residuals. 

Restricted substances 

intensity of inputs 

Weight of restricted substances 

consumed for a unit of output.  

Hazard potential of 

chemicals used 

Weighted hazard characteristics of 

chemicals used. 

 

Process sustainability in waste management can be referred as the 

sustainability at process level. It is process based and contextual. Embraced in 

this concept are the requirements on economic, environmental and social 

behaviors of a waste management process. Besides these triple bottom line 

requirements, process sustainability can also be described and assessed by 

other designated, context-specific performance criteria, depending on the 

particular assessment objectives, desired features of the assessed processes, 

resource requirements and feasibility, etc. 

Based on the Singapore’s waste hierarchy (Figure  1) and the generally-

agreed development drivers for waste management [19], six categories of 

quantitative criteria are selected to assess the process sustainability in waste 

management in Singapore. The criteria can capture the effects of waste 

minimization at source, in-process recycling to reduce waste, conservation of 

natural resources (material, water and energy), environmental protection, 

economic value from waste, and social responsibility to protect public health 

and natural ecosystems. Each of the criteria is measured in a computable 

metric. Table 1 summarizes exemplary process metrics used in sustainability 

assessment of waste-to-material recovery processes in this study. 

The metrics in Table 1 describe the relationships between a process 

sustainability criterion and a set of influencing factors (refer to the key metrics 

variables in Table 1) that can be technical characteristics of a waste 
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technology, operating parameters, material market conditions, and so on. As 

such, these computable metrics can provide detailed, process-specific 

sustainability information of a given waste system. The key model variables of 

the metrics in Table 1 have revealed the major data needs for inventories in 

order to compute the metrics and simulate process sustainability. Regarding 

the data needs, metrics modeling and sustainability simulation, Sections 3 and 

4 will elaborate our proposed techniques. But first the background and related 

work in these areas are reviewed as follows. 

 

 

2.3. Sustainability Measurement with Metrics – Existing 

Modeling Approaches 
 

There exist a number of approaches to the development and 

implementation of multi-level sustainability metrics/indicators at the global, 

country, enterprise, product and process levels. The OECD, IEA and IPCC 

have led the efforts in establishing the national- and international-level 

sustainability accounts and indicators. Examples include the OECD’s Material 

Flows and Resource Productivity [21], Energy Efficiency Indicators from the 

IEA [22], and IPCC’s Guidelines for National Greenhouse Gas Inventories 

Reporting [23].  

At the enterprise level, ISO has provided a series of standards for 

establishing environmental management systems (ISO 14001), corporate 

greenhouse gas measurement (ISO 14064), and environmental labeling (ISO 

14023 and 14025). WRI and WBCSD [24] have been developing a set of GHG 

Protocols as a life cycle accounting and reporting standard for businesses. GRI 

[25] has also provided a flexible sustainability reporting framework together 

with a comprehensive set of indicators and methods. The similar initiative in 

Europe is the Eco-Management and Audit Scheme [26] that has worked as a 

voluntary reporting framework for companies to measure and improve their 

sustainability performance. 

At the product and process level, ISO has established methodologies for 

life cycle assessment (ISO 14040 series) and carbon footprint (ISO/CD 14067) 

as important indicators to quantify environmental impacts from products and 

production processes. Other widely adopted, national standards for carbon 

footprinting and labeling include PAS2050 [27] from the UK, the greenhouse 

gas inventory protocol [28] from the USEPA, the carbon footprint technical 

specification [29] from Japan, and many others.  
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Although the multi-leveled sustainability metrics above have played an 

important role in defining objectives and monitoring progress towards 

sustainable development, they need consolidation and harmonization [30]. 

NIST and OECD have begun efforts to address this issue with a focus on 

metrics for sustainable manufacturing. The OECD’s framework for eco-

innovation in industry [31] has been reviewing and consolidating the diverse 

set of existing metrics, and developing an integrated set of core indicators, 

metrics, and data collection guides to measure sustainability of industries, their 

production processes, products and services. Figure  2 shows the published 

sustainability indicators from OECD [32]. The current 18 indicators are 

focused on environmental sustainability only. They are classified into three 

indicator categories: inputs used in industrial processes, operations to turn 

inputs into products, and products (Figure  2). 

 

 

Figure  2. Classification of OECD sustainability indicators. 

A selected set of metrics from the indicator categories in Figure  2 are 

applied to this study to describe some sustainability characteristics of waste-

sourced material recovery processes. These include the metrics for water 

intensity (O1 in Figure  2), energy intensity (O2), renewable proportion of 

energy consumed (O3), restricted substances intensity of inputs (I2), recycled/ 

reused content of material inputs (I3), and recycled/reused materials content of 

products (P1). Specific metrics in the Singapore’s waste management context 

for waste minimization, in-process recycling, resources conservation, 

environmental protection, economic value, and social responsibility of the 
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waste-to-material recovery processes are also established. Their definition and 

classification can be found in Table 1. 

 

 

2.4. Sustainability Simulation – Agent-based Methods 
 

Sustainability simulation is a technique that permits imitation of the 

sustainability performance with particular conditions in waste operations to 

analyze and improve sustainability behaviors of waste management systems.  

The simulation of process sustainability in waste management can be 

achieved in many ways. Among others, agent-based systems would provide an 

effective and practical means to facilitate process sustainability evaluation and 

comparison. An agent system is well suited for simulating the complex 

interactions and interdependencies between the underlying model variables 

(representing recycling system structures, parameters and other influencing 

factors) and the exhibited sustainability behaviors of waste systems under 

heterogeneous, even uncertain conditions. It explores the inter-related effects 

of changes to the waste systems based on an intersection of three scientific 

fields: the sustainability science, agent-based modeling, and computer 

simulation. The sustainability science provides methods to characterize the 

sustainability of a waste system with sustainability models, such as metric 

models discussed earlier. Agent-based modeling uses the sustainability models 

as the basis to formulate behavior models, to define simulation scenarios, and 

to specify relationships between the agents involved in the sustainability 

behaviors analysis. Computer simulation concerns techniques for simulating 

the modeled system behaviors on a computer, such as discrete event, equation-

based, or Monte Carlo simulation.  

Interesting and relevant work have been reported in agent-based 

sustainability assessment and simulation, such as for urban water systems [33], 

logistics systems [34], fishery management [35], housing developments [36], 

ecological economics [37], etc. Although agent-based systems have been 

successful in the above areas, their applications to process sustainability 

evaluation of waste management systems have yet been fully explored. This 

work therefore attempts to fill the knowledge gap by developing an agent-

based system for sustainability evaluation and simulation of waste 

management processes (refer to Section 4 for details). 
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3. METRICS-DRIVEN SUSTAINABILITY MODELING IN 

WASTE MANAGEMENT 
 

3.1. Metrics Development Process and Techniques 
 

As understood from Section 2.2, process sustainability in waste 

management can be viewed from different perspectives. As such, no standard, 

all-inclusive methodology has yet been available for sustainability metrics 

development of waste systems. Our metrics modeling technique draws from 

several methodologies including the LCA framework in ISO 14040 series, the 

OECD’s approach to sustainability indicators development [31], and the 

USEPA’s greenhouse gas inventory protocol [28]. The purpose of the process 

sustainability metrics is to facilitate the waste industry in Singapore to 

measure and evaluate their processes for sustainability improvement. Toward 

this end, six sustainability modeling and assessment activities are conducted:  

 

 Defining goal and scope;  

 Selecting sustainability criteria; 

 Formulating computable metric models;  

 Identifying data needs and collecting, compiling inventory data;  

 Calculating metric values for sustainability evaluation; and  

 Simulating process scenarios to identify improvement potentials.  

 

The idea behind this metrics development process is that in model-based 

metrics, quantifiable sustainability properties of a waste process are expressed 

in quantities with units, values and relationships of the corresponding 

technical, business systems. As these metric variables are related to the 

process technological characteristics and other real-world influencing factors, 

the metric models are functions of process technology choices, waste 

management operations, market conditions, and so on. The model-based 

metrics are hence able to unambiguously characterize, measure, and evaluate 

the process and its sustainability performance, not only for a specified, 

nominal process state but also for various process scenarios to compare and 

explore potentials in performance improvement. This metrics-driven 

sustainability modeling technique is illustrated in Figure  3. 

The techniques used in the six activities in our metrics development 

process in Figure  3 are elaborated. Three are discussed below for goal and 

scope definition, sustainability criteria selection, and inventory preparation. 
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Other two for metrics formulation and scenarios simulation will be covered in 

Sections 3 and 4, while sustainability evaluation will be demonstrated in 

Sections 5 through case studies. 

 

 

Figure  3. A metrics-driven sustainability modeling method. 

The goal and scope definition step in Figure  3 defines the metrics 

modeling goals and assessment system boundary following the general 

principles in the LCA framework. It will also set the limits of data to be 

collected. The key in performing this task is that all definitions must be 

explicitly specified to minimize hidden assumptions. Boundary setting itself is 

actually an influential assumption with potentially large effects on both results 

and the confidence of the decision maker using them [38]. Any flows of 

resources outside the assessment boundary are inherently precluded from 

detailed examination. Hence their effects on the sustainability performance of 

the modeled system would not be directly captured in the metrics, although the 

interactions and connections between the modeled system and its 

upstream/downstream systems can be reflected in the metrics through model 

parameters. Figure  4 depicts an example of boundary setting for metrics 

modeling of waste-to-material recovery processes. The modeling resolution of 

the system concerned and its external environment systems is different as the 

modeling goal has been set for formulating the sustainability characteristics of 

the material recovery process, rather those of its upstream or downstream 

processes. 

The next step in our metrics development process in Figure  3 is selection 

of sustainability criteria. It largely depends on the sustainability assessment 

goals, application needs and contexts, and desired modeling viewpoints as 

discussed in Section 2.2. Most efforts in sustainability definition are focused 

on the triple bottom line. Their sustainability criteria are therefore related only 

to the environmental, economic and social concerns. In the goal and scope 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other Influencing Factors 

 
 

Waste Management Operations 

Process Technologies 

Criteria 

Selection 

Metric Models 

Formulation 

Inventory 

Preparation 

Metrics Computation & 

Sustainability Evaluation 

Scenarios 

Simulation 

Technology 

Inventory 

Process Improvement Potentials 

Metrics Development Process 

Goal & Scope 

Definition 



Modeling and Simulation of Process Sustainability ... 15 

definition step in our modeling process, the purpose of this assessment has 

been defined to facilitate recyclers in Singapore to understand, evaluate and 

compare process sustainability of their waste systems for performance 

improvement. Hence, apart from the conventional triple bottom line, our 

sustainability criteria are selected with taking into additional considerations 

specific to waste management in Singapore – to strive for zero landfill and 

close the waste loop (Section 2.1). The criteria cover six context-specific 

perspectives to define process sustainability as given in Table 1. Under the six 

criterion categories in Table 1, there are 18 sustainability criteria that can be 

customized for use in a specific waste process’ assessment. All criteria are of 

quantitative nature and each introduces a computable metric.  

 

 

Figure  4. Boundary setting for metrics modeling of waste-to-material recovery 

processes. 

The inventory preparation step in Figure  3 involves identifying data needs 

and data sources, and collecting, compiling inventory data for process 

sustainability assessment and scenarios simulation. The inventory data are 

needed to instantiate the metric models and simulation models. Therefore the 

starting point for identifying data requirements is to examine model structures, 

parameters and variables in metric equations. Besides this, many datasets 

needed are measured directly with laboratory or field tests, modeled with 

physical, biological or chemical principles and theories, or observed with field 

guides and experiences. In turn, these activities often help identify additional 

data needs. Available data sources can be from calculation and computation of 

existing data, experiments and measurements, interviews and surveys, 

commercial and open inventory databases, etc. This study also uses local data 

sources to provide context- and process-specific data. They include reviews of 

the existing national mechanisms related to the waste industry, national key 

environmental statistics, waste processing technology reviews, and waste 

management practices in Singapore. For data collection, to have robust 
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processes is the key to ensure data can be collected and managed 

systematically and consistently.  

Using the boundary, criteria selection and data techniques above, six 

categories of computable metrics for process sustainability assessment have 

been selected and listed in Table 1. The key metric variables are also given in 

the table to facilitate inventory data acquisition. The formulation details of six 

metrics selected from the six categories in Table 1 are discussed in the 

following sections. They are carbon footprint for GHG emissions, unit cost, 

TCLP toxicity level of process residuals, resource use efficiency, in-process 

recycling rate for chemicals used, and recycled content of material inputs. The 

application context of the metrics is for the process sustainability evaluation of 

waste-to-material recovery processes. 

 

 

3.2. Environmental Sustainability Metrics 
 

There are four process-based metrics under the environmental protection 

category in Table 1. The carbon footprint metric for GHG emissions from 

waste-to-material recovery activities is elaborated in this section. 

 

3.2.1. Quantification Methods 

There exist several GHG emission quantification methods for industrial 

processes. The most commonly used ones include:  

 

 Direct measurement of GHG emissions over a period of time for a 

specified industrial facility or process; 

 Site data sampling for calculation of GHG emissions from an 

industrial site; 

 Mass balance methods to compare the total amount of mass entering a 

process to that leaving the process for emissions estimation; and  

 Emission factor methods that use the emission factors derived from 

the process-specific, or averaged industry-wise, country-wise 

emission measurements and experiments for emissions calculation.  

 

The choice of an emission quantification method depends on the 

availability of resources and data needed, the degree of accuracy required, and 

the way of the estimates to be used. In this study, an emission factors method 

is selected for estimating carbon footprint in material recovery processes, 
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mainly because of its ease of use and relative low cost for carbon footprint 

estimation.  

Carbon footprint is defined in ISO/CD 14067-1 as a ―weighted sum of 

greenhouse gas emissions and greenhouse gas removals of a process, a system 

of processes or a product system, expressed in CO2 equivalents (CO2e)‖. In 

this study, carbon footprint is used to measure the six types of Kyoto Protocol 

GHG emissions that a particular waste-to-material recovery process would 

cause over its lifetime. Carbon footprint is measured in a unit specified by ISO 

14067-1 for kg-CO2e/functional-unit. We used one kg of recovered material 

as the functional unit in this study. 

The carbon footprint can be measured according to the USEPA’s general 

emissions equation in Emissions Factors and AP-42: 

 

E = AD × EF × (1 - ER/100) (1) 

 

where E = GHG emissions;  AD = activity data; EF = emission factor; ER = 

overall emission reduction efficiency. According to ISO 14064-1, EF is a 

factor relating activity data to GHG emissions, while AD a quantitative 

measure of activity that results in a GHG emission. 

 

3.2.2. Emission Sources Analysis of Waste-to-Material Recovery 

Processes 

The CO2e emissions associated with the process activities for materials 

recovery from waste are identified and categorized into the direct, indirect and 

optional emissions according to USEPA’s Greenhouse Gas Inventory Protocol 

[28]. 

Direct emissions in this study encompass those emitted from processing 

activities for material recovery and from production transport. Indirect 

emissions include those from the generation of electricity consumed for 

material recovery. Optional emissions cover the emissions from the production 

of raw materials used in the recovery processes. Such emissions are the 

consequences of the activities in the recovery processes, but occurred from 

sources at the upstream raw material production. The Guidance [28] termed 

them as optional that can be included in or excluded from the carbon footprint 

analysis for an assessed process with explicit declarations. From the analysis 

above, the emission sources of material recovery from waste can be identified. 

They are: process activities for material recovery; production transportation; 

energy consumed in the process; and materials/chemicals/water consumed in 

waste-sourced material recovery. 
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Applying Eq. (1) to the carbon footprint estimation of material recovery 

processes, we have developed individual metric models for measuring the 

direct, indirect and optional CO2e emissions of the processes concerned.  

 

3.2.3. Formulation of GHG Emissions Metric Models 

 

Direct Emission of CO2e from Transport 

The direct emission Ei from three GHGs: CO2, CH4, N2O is calculated 

based on Eq. (1), using ER = 0 for baseline scenario assessment. The 

calculation formula is given by:  

 

Ei = EFi × ∑j ADj
T
 (2) 

 

where Ei is the i
th

 direct emission; i = (CO2, CH4, N2O); EFi the i
th

 emission 

factor retrieved from an inventory database; ADj
T
 the transport activity data at 

the process step j.  

The individual GHG emissions (CO2, CH4 and N2O emissions) 

calculated from Eq. (2) are converted to carbon footprint (CO2e emissions) by 

use of the following formula: 

 

CFdirect = ∑i (Ei × GWPi) (3) 

 

where CFdirect represents the direct CO2e emissions composed of CO2, CH4 

and N2O emissions (Ei) in transport; Ei is derived from Eq. (2); GWPi is the i
th

 

GWP factor (i = CO2, CH4, N2O). 

The Global Warming Potential (GWP) factors (GWPi) are generic 

constants in Eq. (3) to describe the radiative forcing impact of one mass-based 

unit of a given GHG relative to an equivalent unit of CO2 over a given period 

of time. According to the IPCC standard [39], GWPCO2 = 1, GWPCH4 = 25, and 

GWPN2O = 298. They are used in calculation of Eq. (3) in the present study. 

 

Indirect CO2e Emission from the Use of Electricity  

Assume the energy used for material recovery is electricity. The emission 

factor of purchased electricity for each country/region is usually compiled 

based on a measure of kg CO2e per kWh. Using this factor, the indirect CO2e 

emission can then be calculated by: 

 

CFindirect = EFe × ∑j ADj
e
  (4)
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where CFindirect is the total indirect CO2e emissions from using purchased 

electricity; EFe the emission factor of electricity in Singapore; ADj
e
 the activity 

data of electricity consumed at process step j. 

 

Optional CO2e Emission from the Use of Materials/Chemicals  

Similar to the indirect emission calculation in Eq. (4), the optional CO2e 

emissions from the use of materials and chemicals can be accounted by: 

 

CFoptional = ∑n (EFn × ∑j ADj
n
) (5) 

 

where CFoptional is the optional CO2e emissions induced from the use of 

materials/chemicals in an assessed process; EFn the emission factor of the n
th

 

type of material; ADj
n
 the activity data of material n used at the j

th
 process step. 

 

Total Carbon Footprint 

From the above equations (2)-(5), the core direct, indirect and optional 

CO2e emissions can be estimated. The total carbon footprint of an assessed 

material recovery process is then computed as a summation of these emissions 

by: 

 

CFtotal = CFdirect + CFindirect + Opt(CFoptional) (6) 

 

where CFtotal represents the total carbon footprint of a material recovery 

process; Opt() denotes an optional summation operator. 

 

3.2.4. Application Issues of GHG Emission Metrics 

In Eqs. (2), (4) and (5), emission factors (EF) represent unit rates of 

emission sources. The acquisition of consistent, location-specific emission 

factors is a major challenge in the use of the GHG emission metrics in 

practice. It involves many issues in emission data availability, quality, 

sharability and accessibility. Although EPA, IPCC, EU and many countries 

maintain compilations of emission factors, there still are emission factors not 

readily available, such as those for some chemicals used in waste-to-material 

recovery processes. In this case, the factors need to be estimated based on 

chemical reaction equations and the available data in literature, together with 

additional assumptions. Besides calculation-based methods, emission factors 

can also be acquired by literature survey and by direct measurement and 

experiment methods. 
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Another process-specific model variable in the carbon footprint metrics 

above is activity data (AD). They are quantities of resources consumed for 

process activities. Specifically for material recovery processes, activity data 

include consumptions of process materials/chemicals, water and energy, their 

use efficiency, and production transport distance, etc. In this research, the 

activity data are mainly collected from a pilot-scale material recovery process 

under study or from laboratory experiments. 

It is known from the metric models in Eqs. (2), (4) and (5) that GHG 

emissions are dependent of the process parameters through the metrics 

variables for activity data. Different recovery technologies present different 

requirements on resources consumption and resources efficiency in material 

recovery, which leads to different activity data values. Hence they deliver 

different carbon emissions (CO2e emissions) and different environmental 

performances. By constructing the GHG emissions metrics as functions of 

these process technologies, the derived metric model in Eq. (6) would provide 

an effective tool for evaluating and comparing carbon footprints to explore 

carbon reduction potentials in material recovery from waste. 

 

 

3.3. Economic Valuation Metrics 
 

The economic value generated from a waste system is assessed by four metrics 

in Table 1. Some of the metrics (e.g. net present value and payback period), as 

general economic performance measures, have had mature and standard 

definitions and model expressions. They are therefore not covered here. This 

section introduces the formulation of a process-specific economic metric for 

unit cost.  

 

3.3.1. Process Cost Modeling Method 

To reclaim a given output (Q) of material from waste, a recovery facility 

uses inputs for raw materials (M), labor (L), energy (E) and capital (K). The 

total process cost (C) arising from the reclamation process is determined by 

costs of respective inputs Ci (i = M, L, E, K) and the level of output (Q), with a 

given recovery technology (T). Specific to the waste-based material recovery 

business in Singapore, the feed material cost is a function of the market value 

P of the recovered materials. The total process cost (C) is therefore a function 

of Ci (i = M, L, E, K), Q, T and P. It is expressed as: 

 

C = F(CM, CL, CE, CK, Q, T, P) (7) 
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This study uses unit cost as a key economic metric to measure the process 

economic value. Unit cost (C
U
) is the cost for producing one unit of output 

material recovered from waste by a given recycling technology. According to 

Eq. (7), the unit cost of a recovered material can be represented as: 

 

C
U
 = f(CM

U
, CL

U
, CE

U
, CK

U
, Q

A
, T, P) = ∑i Ci

U
+ CO

U
 (8) 

 

where f() is a function of the unit cost; Ci
U
 (i = M, L, E, K) the unit cost of the 

respective production inputs for raw materials (M), labor (L), energy (E) and 

capital (K); T the given recovery technology reflected by a set of metric 

parameters in Ci
U
 and CO

U
; P the market value of the recovered material; Q

A
 

the quantity of output per year; CO
U
 the other additional cost elements 

included in the unit cost function such as costs for maintenance and space 

rental. 

Each unit cost element Ci
U
 in Eq. (8) can be represented by a cost metric, 

which quantify economic effects of inputs i (i = M, L, E, K) on the production 

output of Q given the process technology T and the recovered material’s 

market price P at time t. On the other hand, the cost metrics also capture the 

influencing technological factors (process concepts, recovery rate, process 

efficiency, etc.) and production conditions (batch size, processing time) for 

optimal material recovery from waste. The cost metrics modeling details are 

explained through the following examples. 

 

3.3.2. Cost Metrics Development 

The key technique used in cost metrics modeling is process mapping that 

establishes relationships between unit cost elements Ci
U
 and process 

internal/external factors. These factors may include process parameters, 

production conditions, economic characteristics, policy influences, etc. The 

mapping is based on the engineering principles, empirical formulas and testing 

data, etc. Take the energy cost formulation as an example. We assume a 

material recovery process relies on electricity as a source of energy. The 

electricity cost metric, CE
U
, in Eq. (8) is closely related to the following 

process details: electricity consumption and energy efficiency at each process 

step, processing time, batch size, and process failure rate. Therefore the 

relationship between electricity cost and the set of process parameters above 

should be established. The economic effects of these influencing factors on the 

electricity cost per unit of qualified output material (non-defective) are 

quantified as: 
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CE
U
 = S ∑j 1/ζj Ej Tj / [B(1-)]  (9) 

 

where S is the unit cost of electricity supply; ζj, Ej, and Tj the energy 

efficiency, electricity consumption, and processing time at the j
th

 process step 

respectively; B the batch size of production; and  the given process failure 

rate. 

The capital investment to a material recovery facility includes the costs for 

equipment, installation and startup investment. The metric model for 

calculating the capital cost is sensitive primarily to differences in the sizing of 

the recovery facility. Given that a base case facility of size Zb would cost Cb, 

the total capital cost, Cx, of a facility of size Zx can then be calculated by 

 

Cx = Cb (Zx / Zb)

, (10) 

 

where  is an investment scale factor. 

Assume that the total capital cost Cx in Eq. (10) can be distributed evenly 

in time over the usable lifetime of the recovery process facility. Using a 

standard capital recovery factor [40], the levelized capital cost metric model 

will be derived as: 

 

CK
A
 = Cx r / [1-(1+r)

-N
], (11) 

 

where CK
A
 represents the allocated annual capital cost; r the real discount rate; 

N the recovery facility lifetime in years.  

By further distributing CK
A
 evenly over the annual production output Q

A
 

and considering the process failure rate  and the process downtime rate , the 

unit capital cost CK
U
 is thus derived by the following metric: 

 

CK
U
 = CK

A
 / [Q

A
(1-)(1-)] (12) 

 

Similarly, the relationships between the other identified unit cost elements 

(i.e. CM
U
, CL

U
 and CO

U
) and their influencing process factors can be 

formulated. For material cost however, as mentioned earlier, the feedstock cost 

is a function of the selling prices of the recovered materials. In this case, the 

material cost metric (CM
U
) is a function of both the process inputs and the 

market conditions. Table 2 summarizes the major influencing factors of cost 

metrics for material reclamation processes from waste.  
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Table 2. Influencing factors of the selected cost metrics 

 

Cost Metric Key Influencing Factor Other Factor 

Material cost 

(CM
U
)  

Material consumption; 

Recoverables concentration in 

feedstock; 

Feedstock purchase price; 

Market value of recovered materials. 

Recovery rate; 

Process failure rate. 

Labor cost 

(CL
U
) 

Processing time per batch of 

production;  

Batch size. 

Process failure rate; 

Equipment downtime; 

Labor Productivity. 

Energy cost 

(CE
U
) 

Energy consumption; 

Energy efficiency; 

Processing time. 

Process failure rate; 

Batch size. 

Equipment 

cost 

(CK
U
) 

Capital investment; 

Production volume. 

Process failure rate; 

Equipment downtime; 

Equipment life span. 

 

 

3.4. Metrics to Measure Social Responsibility of Processes 
 

The social performances of waste treatment processes are measured with three 

metrics in this study. Two metrics are detailed in this section: TCLP toxicity 

level of process residuals and restricted substances intensity of inputs.  

TCLP (toxicity characteristic leaching procedure) is one of regulatory 

requirements commonly used to assess leachability of the hazardous industrial 

wastes dumped in landfills. It has been well known that many industrial wastes 

are toxic with leachable heavy metals or other hazardous volatiles. They can 

impose serious hazards to human health and natural ecosystems. As such, the 

hazardous chemicals use in industrial processes and wastes treatments must be 

compliant with the applicable regulations such as TCLP. The TCLP method 

can be used to determine if process residuals (solid wastes from a waste 

management process) are characteristically hazardous by examining leaching 

levels of the wastes to be disposed of. In the current study, TCLP testing is 

conducted to the process residuals produced after material extraction from 

hazardous industrial wastes. The following TCLP metric is used in the toxicity 

level analysis to determine if a residual is safe for disposal after valuables 

reclaimed. 
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TCLP (measured) <= TCLP (regulated-limit) (13) 

 

The use of this metric in the studied processes will be demonstrated in 

Section 5, which assesses if the measured TCLP values of process residuals 

meet the local TCLP standard [41] for safe disposal. A good understanding of 

the toxicity level of the process residuals would lead to better choices of 

processing techniques and chemicals to reduce the hazards from toxic wastes 

treatment. 

Some waste processing reactions use substances and chemicals restricted 

by law as a proportion of the production. The OECD sustainability indicator 

set [32] has provided a metric, known as restricted substances intensity of 

inputs (I2 in Figure  2), to quantify and monitor the use of restricted 

substances. We adopt the metric to measure the use of restricted substances in 

waste processing to reclaim materials from waste. The metric for restricted 

substances intensity of inputs is defined as: 

 

RSI = ∑j ∑i Subij / NormF (14) 

 

where RSI depicts the restricted substances intensity of inputs; Subij the i
th

 

restricted substance consumed at the j
th

 process step; NormF the normalization 

factor. In the present study, we use one unit of output from a waste facility as 

the normalization factor. 

 

 

3.5. Formulation of the Contextual Sustainability Metrics 
 

Under the context of sustainable waste management in Singapore, one of 

the critical targets is to strive for zero landfill and close the waste loop [1]. To 

serve the needs arising from this, three categories of context-specific 

sustainability metrics have been selected (Table 1) to effectively measure, 

monitor and improve the local waste practices. The context-specific metrics 

categories include: waste minimization at source, in-process recycling, and 

resources conservation. Apart from the triple bottom line based metrics 

defined in Sections 3.2 to 3.4, this section establishes the context based 

sustainability metrics selected from the three categories. 
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3.5.1. Waste Minimization Metrics 

We use two process-specific metrics (process efficiency and resource use 

efficiency) to evaluate the effect of waste minimization at source brought by 

waste-based material recovery practices in Singapore.  

The resource use efficiency metric is a weighted composite indicator to 

quantitatively describe the efficiency in the use of raw materials/chemicals, 

energy and processing water in waste recycling and recovery processes. Our 

earlier report [42] has covered a detailed discussion on resource use efficiency 

in material recovery from waste. The following summarize the definition of 

the metric model for resource use efficiency: 

 

Eff =1- ∑i ∑j [(uij - Uij) / uij] (1/Ni) Wi   

 (15) 

  

where Eff is the composite metric for resource use efficiency of a waste 

processing option; Wi the weight of the i
th

 resource type; i = (material, energy, 

water); uij the measured consumption of the j
th

 resource under the i
th

 resource 

type; j = (material_1, material_2, …, material_n) for the ―material‖ resource 

type and j = (electricity, natural gas, fuel oil, steam, other forms of energy) for 

the ―energy‖ resource type; Uij the expected consumption (best achievables 

under a given production condition) of the j
th

 resource under the i
th

 resource 

type; Ni the total number of the resources under the i
th

 resource type.  

The resource use efficiency metric model in Eq. (15) will be used in a case 

study in Section 5 to measure and compare the usage efficiencies of resources 

in waste treatment by using different material recovery technologies.  

 

3.5.2. In-process Recycling Metrics 

The capability of a waste management system to recycle its used 

chemicals, solutions and processing waters within the same process is 

measured by two metrics: in-process recycling rate for raw materials and in-

process recycling rate for water. The two metrics have similar model structure 

defined by: 

 

R = ∑i RMati / ∑i TMati (16) 

 

where R is the in-process recycling rate for raw materials or for processing 

waters; RMati the i
th

 type of recycled material or water normalized to a unit of 

output; TMati the i
th

 type of total material or water consumed for producing 

one unit of output. 
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3.5.3. Resources Conservation Metrics 

Increasing the recycled and reused content of material inputs will reduce 

the amount of virgin materials required to contribute to resources 

conservation. Similarly, using renewable energy is another important way to 

reduce the demand for non-renewable energy. In general, recycled and reused 

materials and renewable energy sources are also lower in carbon content than 

their counterparts and therefore contribute less to climate change. The 

resources conservation effects brought by the use of recycled, reused and 

renewable materials and energy are measured by the resources conservation 

metrics. We have adopted the OECD’s definitions and formulae [32] for these 

metrics. Details can be found from OECD references [31, 32]. 

 

 

4. AGENT-BASED SUSTAINABILITY SIMULATION 
 

The sustainability metrics in Section 3 have defined the relationships between 

the performance measures and waste system parameters, technology choices, 

external influencing factors, etc. The metrics however need to be implemented 

in a computing, analyzing and simulation environment to facilitate the actual 

use of the metrics to support decision making in waste management 

operations.  

An agent-based sustainability simulation system has been developed in 

this study to fulfill the needs for sustainability evaluation in waste 

management in Singapore. The agent experiments with waste systems’ 

sustainability performances represented in computable metric models. The 

performance experimentation is conducted under controlled scenario 

environments and guided by sustainability simulation models with a 

prescribed set of goals, such as process profitability evaluation, carbon 

footprint reduction, cost sensitivity to market price changes, waste 

minimization potentials analysis, etc. The simulation experiments consist of 

stimulating a waste system under study with Monte Carlo sampling of the 

system variables, then observing system sustainability behaviors and its 

statistics, thus generating estimation to the studied system on its sustainability 

footprints.  

This section highlights our efforts in formulation of sustainability 

simulation models, development of simulation scenarios, software agent 

system design and implementation, and Monte Carlo simulation of 

sustainability performances of waste systems. 

 



Modeling and Simulation of Process Sustainability ... 27 

4.1. Sustainability Simulation Model 
 

A sustainability simulation model is a formalized and simplified representation 

of sustainability performance of a waste system. It is built from one or several 

sustainability metrics, but only the characteristics associated with those 

sustainability performance goals under study are retained and formalized in the 

simulation model as model variables. Other metric variables are converted to 

model parameters in the resulting simulation model. In many cases, a 

performance simulation model is a combination of several computable metric 

models, depending on how the metric models have been defined and what the 

simulation goals are. For example, a process profitability simulation model can 

be built as a ratio between the total process revenue (TR) and the total 

production cost (TC) that are represented by the following metrics:  

 

TR = f1 (Sales quantity, Sales price)  (17) 

 

TC = f2 (Production volume, Unit cost) (18) 

 

Considering the metric variables of unit cost in Eq. (8) and Table 2, we have: 

 

TC = f2 (Production volume, Material consumption, Feedstock price,  

Market value of recovered materials, Processing time, Batch size, …) (19) 

 

Obviously, it is not a good solution to directly use the metrics in Eqs. (17) 

and (19) to formulate the simulation model for process profitability. 

Simplification is required based on objectives of this simulation and model 

structures of the involved metrics. The purpose of the simulation is to examine 

the process profitability of a waste-to-material recovery facility under: 1) 

uncertain pricing market for recovered materials; and 2) changing 

concentrations of recoverables in feedstock (i.e. quality of feedstock). 

Therefore, the metrics variables related to these two aspects are retained, while 

others converted. After the re-formulation, the simplified simulation model for 

process profitability (PP) takes the following form: 

 

PP = TR/TC = f (Production volume, Selling price, Recoverables 

concentration in feedstock) (20) 
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The uncertain unit cost simulation model has the same set of random and 

deterministic variables as the expression in Eq. (20). After applying the same 

simplification principles above, the unit cost (UC) simulation model can be 

represented by: 

 

UC = g (Production volume, Selling price, Recoverables concentration in 

feedstock) (21) 

 

Similarly, simulation models for other sustainability behaviors of waste 

systems can be developed. These include carbon footprint under uncertainty, 

cost sensitivity to market price changes, effect of resource use efficiency on 

waste minimization at source, and so on. Section 5 demonstrates the 

applications of some simulation models in case studies. 

 

 

4.2. Simulation Scenarios 
 

Sustainability simulation is conducted under the controlled computational 

environments to illustrate how the waste management technologies (e.g. a set 

of process parameters, processing procedures and techniques), operations and 

other influencing factors interact with the sustainability performance goals of a 

waste system. Such environments are defined as simulation scenarios. Two 

types of scenarios have been developed for deterministic and probabilistic 

simulations respectively. Details on the development of simulation scenarios 

for deterministic analysis of sustainability in waste-to-material recovery have 

been reported in a previous study [42]. The results are summarized in Table 3 

for five simulation scenarios with deterministic input parameters. Two 

material recovery processes: closed-loop process and open-loop process are 

simulated under the five scenarios to understand sustainability behaviors of the 

two processes. 

Another type of simulation scenarios is designed for sustainability 

evaluation under uncertain context. One example is process profitability 

simulation represented in Eq. (20). The random variables for selling price and 

recoverables concentration in feedstock in Eq. (20) enter the simulation 

following certain probability distributions (details in Section 4.3.4). A variety 

of scenarios have been explored to analyze the process profitability with 

different levels of production volumes, selling prices and concentrations, and 

on a chosen set of deterministic parameters. The scenario settings for selected 

simulation variables and parameters are shown in Table 4. These scenarios are 
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used to explore one of the process sustainability performance goals for process 

profitability. 

The scenario settings in Table 4 have been used in case studies in Section 

5 to derive process profitability analysis under uncertainty, such as under the 

current material market trend, whether a recycler shall expand a pilot-scale 

production to a larger scale still keeping profitability from the material 

recovery operations; the chance to maintain the unit cost within a given range 

even the market prices fluctuating; and other what-if analyses for decision 

making.  

 

Table 3. Simulation scenarios with deterministic input parameters 

 

 

Process 

Parameter 

 

Unit 

Closed-Loop Process Open-Loop 

Process 

Optimal 

Scenario 

Baseline 

Scenario 

Material-

Efficient 

Scenario 

Energy-

Reduction 

Scenario 

Open-Loop  

Scenario 

Feedstock 

consumption  

kg/kg 1.94 1.98 1.94 1.98 2.00 

Acid 

consumption 

kg/kg 1.19 1.62 1.19 1.62 8.16 

Additive_1 kg/kg 0.26 0.27 0.26 0.27 0.27 

Additive_2 kg/kg 0.26 0.27 0.26 0.27 0.27 

Electricity  kwh/kg 17.47 21.84 21.84 17.47 21.84 

Water 

consumption  

liter/kg 3 30.6 3 30.6 49.12 

 

Table 4. Scenario settings for process profitability simulation 

 

Simulation Parameter/Variable Scenario A Scenario B Scenario C 

K
ey

  

P
ar

am
et

er
s 

Process Efficiency 96% 98% 95% 

In-Process Recycling Rate for 

Acid 

80% 85% 0% 

In-Process Recycling Rate for 

Water 

37% 90% 0% 

K
ey

 

V
ar

ia
b

le
s 

Selling Price (probobilistic 

variable) 

$14.50-39.50 / kg-material-recovered 

Concentration (probobilistic 

variable) 

10-55 wt.% 

Production Volume 0-100 ton/year 
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4.3. Agent System Design and Implementation 
 

4.3.1. Multi-agent Environment for Process Sustainability Assessment 

The design and implementation of an agent system is discussed in this 

section. Figure  5 shows a conceptual model to represent the agent in a multi-

agent network for process sustainability assessment of waste-to-material 

recovery systems. 

 

 

Figure  5. A sustainability assessment agent and its environment. 

An overall workflow is designed to coordinate tasks of the agents in the 

multi-agent environment in Figure  5. Included in the workflow are the 

simulation procedures to analyze predefined system performance goals. Table 

5 highlights such a simulation procedure for the Sustainability Assessment 

Agent to analyze the probabilistic process profitability performance.  

As shown in Figure  5, the Sustainability Assessment Agent interacts with 

other five agents in the environment to fulfill performance goals simulation. 

Specifically for the process profitability analysis, the agent interacts with the 

Sustainability Analyst and Data Source Agent through the relationships 

defined between them (refer to Table 5), responses to sustainability assessment 

request from Sustainability Analyst, uses supporting data and methods from 

Data Source Agent, and creates assessments to response the needs of the agent 

network environment. The software development of the sustainability 

assessment agent is presented below. 

 

4.3.2. Functional Structure of the Software Agent 

The Sustainability Assessment Agent is designed to provide deterministic 

and probabilistic sustainability performance analyses in the multi-agent 

environment in Figure  5. Its overall software functional structure is depicted 

in Figure  6. 
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Table 5. A high-level simulation procedure for probabilistic process 

profitability analysis 

 

Sequence Action by Sustainability Assessment Agent 

1  Perceive a request from Sustainability Analyst for process profitability 

analysis  

2  Receive and save simulation inputs 

3  Calculate a statistical sample for unit cost at a given production volume 

 a Generate a random price sample using a real-market historical price 

distribution from Data Source Agent 

 b Generate a random concentration sample using a triangular distribution from 

Data Source Agent 

 c Compute a random unit cost by instantiating Eq. (21) with the random price 

and concentration samples generated  

 d Simulate the random sampling and unit cost computation over 10,000 

replications for a statistical sample of unit cost 

4  Estimate a deterministic process profitability value from the statistical sample 

 a Estimate a true value from the statistical sample of unit cost with a given 

confidence level  

 b Compute a total cost according to Eq. (19) 

 c Compute a deterministic process revenue according to Eq. (17) 

 d Compute a value for process profitability according to Eq. (20) 

5  Analyze the process profitability by repeating the steps above with different 

scenario settings (Table 4)  

 

Figure  6. Software functional structure of the sustainability assessment agent. 
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The software agent is designed to provide four modules of analytical 

functions for environmental, economic, social and context-based performance 

assessment as shown in Figure  6. Among these functions, the analyses to 

carbon footprint, unit cost, cost sensitivity to price changes, and process 

profitability can be probabilistic or deterministic. All the other functions are 

deterministic only. For most of the deterministic analyses, the computable 

sustainability metrics developed in Section 2 are directly used as the 

simulation models. But for probabilistic analyses, simplified and re-formalized 

simulation models (details in Section 4.1) with random variables are 

implemented in the software agent. Currently, some of the analytical functions 

in Figure  6 are still under development.  

Besides providing four functional modules with deterministic and 

probabilistic analytical capabilities above, the sustainability assessment agent 

also maintains a technology inventory. The inventory structures and manages 

the key process data of waste handling technologies and operations, simulation 

inputs and their restraints, and simulation procedures to support the inventory 

data needs from the four functional modules. The design of the Economic 

Profitability Assessment module is detailed in the next section. 

 

4.3.3. Module Design 

Take the Economic Profitability Assessment module in Figure  6 as an 

example. The module is designed to provide five basic computational 

functions for deterministic analysis:  

 

 Input parameter manipulation: This function edits the input 

parameters and process scenario definitions in structured information 

sets and stores them in the technology inventory. Agent algorithms are 

implemented in this function to ensure the communication and 

interaction between this agent and other agents in Figure  5. 

 Cost Breakdown Structure: The function implements the unit cost 

metric model in Eq. (8) and other metrics for individual cost elements, 

such as in Eqs. (9) and (12), in order to provide a cost breakdown 

structure for the given set of input parameters. 

 Unit Cost vs. Production Volume: It analyzes the effect of production 

volume changes on unit cost, i.e. economies of scale. 

 Unit Cost Analysis with Fixed Production Volume: This function 

draws a profile of cost elements at the user-specified production 

volume. 
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 Deterministic Economic Profitability Analysis: It is designed to 

provide a set of analysis methods for economic performances 

assessment, such as calculating process profitability, share of cost of 

materials, process revenue, total production cost, etc.  

 

Figure  7 shows one of the UML use case analyses of this module. The use 

case diagram illustrates how the five functions above will be used in 

deterministic economic sustainability analysis. 

 

 

Figure  7. Use case for deterministic economic performance analysis. 
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Figure  8. Sequence diagram for probabilistic analysis of process profitability. 
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Apart from the five basic functions above used for deterministic analysis, 

this module also provides three Monte Carlo simulation services for 

probabilistic analysis of unit cost, cost sensitivity to price changes, and process 

profitability. Figure  8 is a UML sequence diagram for design of the time-

based execution of simulation procedures associated with the probabilistic 

analysis for process profitability. Basically the module algorithms are 

designed to follow the simulation procedures specified in Table 5. 

 

4.3.4. Implementation of Agent-based Solutions 

The software agent for sustainability assessment in Figure  5 is 

implemented in C# on the .NET platform. It invokes an external charting 

package for display of calculation results. MS Visual Studio was used as the 

integrated development environment for this agent.  

Still take the Economic Profitability Assessment module in Figure  6 as an 

example. As mentioned in the Module Design section, this module provides 

five basic functions for deterministic analysis and three Monte Carlo 

simulation services for probabilistic analysis of economic profitability 

performances of waste management systems. The software implementation for 

one of the five functions, Deterministic Economic Analysis, is described 

below as the first example, followed by another implementation example for 

one of the probabilistic simulation services, Uncertain Unit Cost Analysis.  

The Deterministic Economic Analysis function allows an object of 

Sustainability Analyst to select an economic analysis method built in the 

agent. For example, if a material cost breakdown analysis is selected for 

calculating the share of cost of materials (refer to Figure  7), the agent will first 

retrieve the stored input parameters for a given process scenario setting. It will 

then calculate the cost for each material type at each recycling process step 

based on the material cost metric CM
U
. Before being aggregated into the total 

material cost, the calculated cost for each type of material and for the given 

process scenario is stored in a 2-dimentional array of M×N doubles, where M 

is the maximum number of process scenarios and N the maximum number of 

material types. By performing the algorithm given in Figure  9, the agent 

displays a material cost breakdown for the given simulation scenario.  

Alternatively, the agent can compare the material cost breakdown across 

different process scenarios. Figure  10 shows a screen capture for unit cost 

breakdown and material cost breakdown of five different process scenarios 

simulated. 
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Figure  9. An algorithm for material cost breakdown analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  10. Implementation example for deterministic economic analysis. 

Based on the unit cost breakdown in Figure  10, the share of material cost 

can be computed as a ratio of material cost and unit cost for a specified 

process scenario. In waste-based material recovery operations in Singapore, 

the share of material cost always takes the biggest proportion in the total unit 

cost. Hence the most effective measure to reduce the total unit cost is by 

improving the material cost, i.e., by improving the chemicals/water 

Set M to be the maximum number of process scenarios simulated 

Set N to be the maximum number of types of raw materials used  

Create an array A [M, N] to store material cost breakdown computing results 

for m=1 to M do 

 for n=1 to N do 

  Calculate A [m, n] according to the material cost metric CM
U 

 end for 

end for 

Draw charts for material cost breakdown in A [M, N] 
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consumptions in the recovery processes. The metric for share of material cost 

would facilitate the material cost analysis towards total unit cost reduction.  

The second example is about the implementation of a Monte Carlo 

simulation service for Uncertain Unit Cost Analysis in the Economic 

Profitability Assessment module in Figure  6. As indicated in Eq. (8), the 

material cost for feedstock is a function of the market value of a recovered 

material. When the selling price of the recovered material is higher, a recycler 

would expect high revenues from the waste-based material recovery 

operations, at the same time, higher unit costs due to higher feedstock values 

[42]. The material selling price is uncertain depending on its market value. We 

use the 4-year historical market data (2007-2011) retrieved from the London 

Metal Exchange (LME) as a reference price distribution. Besides this market 

data based price distribution, our Monte Carlo simulation service also provides 

a normal price distribution with the mean and standard deviation taken from 

the 4-year historical price histogram. Both price distributions have been 

implemented in the Economic Profitability Assessment module for Monte 

Carlo simulation of uncertain unit cost.  

 

 

 

 

 

 

 

 

 

 

 

Figure  11. Implementation example for uncertain unit cost analysis. 

Another random variable in the unit cost simulation model in Eq. (21) is 

the recoverables concentration in feedstock. This random variable is 

considered as a triangular distribution with the lower/upper bound and the 

most likely value from our concentration experiments. Figure  11 is a screen 

capture for unit cost changes vs. production volumes (PV) in the uncertain 

context. It is derived from the Monte Carlo simulation using the 4-year 

historical price histogram and the triangular distribution above as the random 

input distributions to calculate one unit cost sample for every PV. The unit cost 

sample with all possible values (10,000 replications) is then used to estimate a 
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true value for unit cost with a probability range of ±20% for every PV. 

Changing PV over (0, 100000) kg/year, the agent will simulate and display the 

unit cost change trend with PV, as shown in Figure  11. 

 

 

5. CASE STUDY: EVALUATING PROCESS SUSTAINABILITY 

OF WASTE-TO-MATERIAL RECOVERY OPTIONS 
 

5.1. Overview of the Waste-to-material Recovery System Studied 
 

Waste-to-material recovery can be any waste management operations that 

divert the recoverable from a waste stream and result in certain materials with 

potential economic, environmental, social or any other benefit. The assessed 

case in this section is a waste-to-metal recovery system. It is designed to 

reclaim metals from hazardous catalytic wastes. There are two metal 

reclamation process options available. They are based on the closed-loop and 

open-loop process concept respectively. Both processes use a common set of 

unit operations, but with unique process techniques, as summarized in Table 6.  

 

Table 6. Common and unique techniques of the two waste-to-metal 

recovery processes 

 

Technique Description 

C
o

m
m

o
n
 

Two-staged acid 

leaching 

Metal enrichment  

Electrowinning 

Leach metal-containing feedstock with acid solutions in 

two stages. 

Enrich the metal concentration in working solutions. 

Plate out pure metal from solutions. 

U
n

iq
u

e 

Closed-loop process 

techniques  

In-process recycling of the used acid, plating solutions 

and dilution waters;  

Acid separation from solutions by electrodialysis. 

Open-loop process 

techniques 

No in-process recycling implemented and recyclables 

being disposed of;  

Replacing acid separation with chemical neutralization of 

acid.  

 

The major difference between the two technologies lies in how the process 

recyclables are treated. In the closed-loop process, its unit operations are 

coupled with in-process recycling techniques, so that the used acid, spent 

plating solutions and dilution waters from the recovery operations can be 



Modeling and Simulation of Process Sustainability ... 39 

recycled and reused within the process itself (Figure  12). The key technique to 

achieve in-process recycling is electrodialysis that separates the used acid from 

working solutions for recycling. On the contrary, the open-loop process does 

not implement these in-process recycling methods and the recyclables become 

part of a waste stream. Specifically for the used acid, instead of going through 

the electrodialysis processing, it is chemically neutralized before disposed of. 

This feature makes the open-loop process to have relatively low energy 

consumption, but very high chemicals use intensity and more hazardous 

chemicals usage to neutralize the used acid. The impacts of the process options 

on the sustainability performances of the studied recovery system are 

quantified and assessed in the next section. Figure  12 shows the 

characteristics of the closed-loop metal recovery process discussed above. 

 

 

 

 

 

 

 

 

 

 

Figure  12. A closed-loop metal recovery process with in-process recycling. 

The difference in the process concept (closed-loop or open-loop) and in 

their corresponding processing methods would determine their raw material 

consumptions, resource use efficiency, process efficiency, in-process recycling 

rate, carbon footprint, production cost, thus their process sustainability 

performances. The following two sections present case studies for 

deterministic and probabilistic sustainability evaluation of the two metal 

recovery process options by using the computable sustainability metrics, 

simulation models, and the software agent system developed in this research. 

The process scenarios and inventory data defined in Tables 3 and 4 are used in 

these case studies. 
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5.2. Deterministic Analysis of Process Sustainability 

Performances 
 

The deterministic characteristics of process sustainability for the studied 

metal recovery system are evaluated in this section. These sustainability 

characteristics include: carbon footprint, unit cost, TCLP toxicity level, and 

resources use efficiency. A designed pilot-scale recovery system is used to 

provide technical parameters, activity data and other process-specific 

information. For deterministic analysis, the computable sustainability metrics 

developed in Section 3 are directly instantiated with these process data and 

generic inventory data. The agent system will then calculate process 

sustainability footprints and evaluate the effects of metal recovery process 

options and other influencing factors on the sustainability performances of the 

system assessed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  13. Comparison of carbon footprints of two recovery technologies for three 

scenarios. 

5.2.1. Impact of Processing Technology Choice on Carbon Footprint and 

Unit Cost 

As discussed in the last section, process concepts and their 

implementation techniques have significant impact on process sustainability. 

By instantiating the carbon footprint metric in Eq. (6) with the inventory data 

collected for the closed-loop and open-loop processes in Table 3, the carbon 

emissions of different metal recovery technologies can be quantified and 

compared. Figure  13 shows the calculation results of the carbon footprints for 

the two technologies under three process scenarios in Table 3: the baseline 
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scenario and optimal scenario of the closed-loop process, and the open-loop 

scenario for the open-loop process.  

The results in Figure  13 indicate that the closed-loop recovery technology 

can deliver lower carbon footprints compared to the impact from the open-

loop technology. The total CO2e emissions from the optimal scenario and 

baseline scenario in the closed-loop process are reduced by 34.65% and 

19.22% relative to that from the open-loop scenario. The biggest reduction is 

from the improved optional emissions (refer to Section 3.2.3 for its definition) 

as shown in Figure  13. This is mainly due to the effect of in-process recycling 

implemented in the closed-loop process. By closing the resource-use loop 

within the recovery process itself, the used dilution waters, chemicals and 

spent plating solutions are recycled and reused for metal reclamation 

operations. Therefore the closed-loop process consumes less quantity of virgin 

chemicals and fresh water, which improves the optional emissions induced 

from the use of materials. At the same time, in-process recycling also 

contributes to reservation of natural resources via reduced use of raw 

materials/chemicals and water.  

The implementation of in-process recycling in closed-loop process can not 

only reduce the total carbon emissions, but also improve the process cost 

performance. This improvement is measured by the economic metrics 

developed in Section 3.3 for the unit cost, labor cost, material cost, and so on. 

To compute the cost metrics, process parameters are collected from the 

designed pilot-scale facility and from our metal recovery experiments. The 

market value from LME is used as a reference selling price to calculate the 

feedstock cost in this study. Table 7 shows the computed unit cost of the three 

process scenarios and their cost breakdown among the key cost elements (Ci
U
 

and CO
U
) at a production volume of 60 ton/year and a reference selling price of 

$20.15/kg (LME market value for the recovered metal on 20-Jan-2012). The 

currency unit in Table 7 is Singapore dollar, S$, (US$ 1 = ~S$1.30). The three 

scenarios are the energy-reduction scenario and baseline scenario of the 

closed-loop process and the open-loop scenario from Table 3.  

Unit cost reduction potentials for the energy-reduction and baseline 

scenarios can be calculated from the data in Table 7. They are measured at 

31.31% and 28.10%, respectively, compared to the open-loop option. For the 

two scenarios of the closed-loop process, the cost reduction is mainly from 

material savings, due to their implementation of the closed-loop process 

concept and their use of electrodialysis to separate acid and make it reusable in 

leaching. In addition, the energy-reduction scenario also presents lower energy 

cost compared to the baseline scenario, achieved from its reduced electricity 
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consumption. The open-loop scenario has the lowest energy cost in Table 7, 

because it does not use electrodialysis. Instead, chemical neutralization is used 

to process the used acid. Acid neutralization requires this process option to 

consume more chemicals, which offsets its cost savings from low energy 

consumption and increases its material cost greatly. The overall impact of the 

open-loop technology on the process economic viability is negative as it 

increases the total unit cost. 

 

Table 7. Unit cost (S$/kg) and cost breakdown for three process scenarios 

 

Cost Element 
Energy-Reduction 

Scenario 

Baseline 

Scenario 

Open-Loop 

Scenario 

Material Cost (CM
U) 12.24 12.24 22.90 

Energy Cost (CE
U) 4.09 5.11 3.25 

Labor Cost (CL
U) 3.36 3.36 3.36 

Equipment Cost (CK
U) 1.00 1.00 1.00 

Others Cost (CO
U) 1.18 1.18 1.31 

Total Unit Cost (CU) $21.86 $22.88 $31.83 

 

Although both the unit cost and the breakdown percentage of contributing 

cost elements vary with the production volume (PV), the material cost always 

takes the biggest share within the total unit cost as shown in Table 7. For 

example at the PV of 60 ton/year, materials contribute 53.5% to the total unit 

cost in the baseline scenario in Table 7. Other dominant cost elements are 

energy cost (22.3%) and labor cost (14.7%). By examining the cost metric 

variables of these dominant cost elements, critical influencing factors to unit 

cost can then be identified. For example, by analyzing the material cost metric, 

the critical influencing factors have been identified as the materials and 

chemicals consumption, recoverables concentration in feedstock, feedstock 

purchase prices and market values of the recovered metal (as shown in Table 

2). Effective management and control of these critical influencing factors 

would have significant impact on the material cost, therefore on the total unit 

cost of metal recovery processes. 

 

5.2.2. Toxicity Management in the Closed-loop Metal Recovery Process 

The feedstock used in this waste-to-metal recovery system is hazardous 

catalytic waste. The waste treatment in the two studied processes also involves 

the use of toxic chemicals. As such, toxicity management in these processes is 

of great and continuous concern of recyclers. In this study, the following 
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measures are implemented with the closed-loop process for toxicity 

management: 

 

 To avoid the use of toxic chemicals in process reactions as much as 

possible, such as by using electrodialysis for acid separation and 

diluent enrichment; and 

 To make the recovery reactions as much complete as possible by 

implementing the multi-staged leaching and in-process recycling 

techniques. 

 

The purpose is to manage and control the process residuals (solid wastes 

from metal recovery operations) to meet the local regulatory requirements [41] 

for safe handling and disposal of industrial wastes in landfills. Towards this 

end, the TCLP procedure was conducted to determine the leachability of the 

process residuals from the closed-loop cycles. The TCLP metric in Eq. (13) 

was then used to evaluate the measured TCLP value against the local standard 

of the TCLP limit that is set at 5 mg/liter [41] by the environmental regulation 

in Singapore. The results are plotted in Figure  14. 

  

 

Figure  14. TCLP testing results. 

The range of TCLP testing data in Figure  14 is 0.84-1.46 mg/liter for the 

residuals from the closed-loop metal recovery process. It is known from the 

test results that the TCLP leaching values of the metal from the process 

residuals fall well below the TCLP allowable level of 5 mg/liter, which 

indicates immobilization of the metal in the process residuals. Hence, the 
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residuals from the closed-loop recovery process would not impose any 

hazardous risks to the environment and society. They are TCLP-compliant for 

safe and responsible disposal.  

 

5.2.3. Evaluation and Comparison of Process Sustainability for Waste 

Minimization at Source 

Waste minimization at source is one of the three key strategies to reduce 

the need for landfill in Singapore [1]. Two metrics have been developed to 

measure the sustainability performances of recycling and recovery processes 

in terms of their effect of waste minimization at source. They are the process 

efficiency metric and the resource use efficiency metric (refer to Table 1). 

The resource use efficiency metric in Eq. (15) measures the composite 

efficiency level in the use of energy, raw materials/chemicals, and processing 

water for alternative metal recovery processes. The resource consumption data 

of materials, energy and water for the two metal recovery process options are 

collected and presented in Table 8. Three process scenarios are assessed in 

Table 8: the open-loop scenario of the open-loop process, the baseline and 

optimal scenarios of the closed-loop process. The table also specifies the 

weight factors for each resource type. The optimal scenario is used as the best 

achievable scenario under the pilot-scale settings of the waste-to-metal 

recovery system. The resource use efficiencies for these scenarios are 

calculated by Eq. (15). The results are also reported in Table 8.  

 

Table 8. Process data to evaluate resource use efficiency of process 

scenarios 

 
Resource 

Type 

(i) 

Resource 

(j) 

Resource Consumption Weight  

Factor 

(Wi) 

Number 

of 

Resources 

(Ni) 

Optimal 

Scenario 

(Uij) 

Baseline 

Scenario 

(uij 
Baseline) 

Open-loop 

Scenario 

(uij 
Open-loop) 

Material 

(kg/kg) 

Feedstock 1.94 1.98 2.00 0.4 4 

Sulfuric 

acid 

1.19 1.62 8.16 

Additive_1 0.26 0.27 0.27 

Additive_2 0.26 0.27 0.27 

Energy 

(kWh/kg) 

Electricity 17.47 21.84 21.84 0.3 1 

Water 

(liter/kg) 

DI water 3 30.6 49.12 0.3 1 

Resource 

Efficiency 

 1 0.633 0.562   
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Compared to the open-loop scenario, the baseline scenario of the closed-

loop process demonstrated higher resource use efficiency in Table 8. However, 

the scenario still has further improvement space compared to the material-

efficient and energy-reduction scenarios of the closed-loop process. Table 9 

compares all the five process scenarios defined in Table 3 for their waste 

minimization effect in terms of their metric characteristics for process 

efficiency and resource use efficiency. 

 

Table 9. Comparison of waste minimization performance across process 

scenarios 

 

Features for  

Waste 

Minimization at 

Sources 

Closed-Loop Process Open-Loop 

Process 

Optimal 

Scenario 

Baseline 

Scenario 

Material-

Efficient 

Scenario 

Energy-

Reduction 

Scenario 

Open-Loop  

Scenario 

Process Efficiency 

Metrics Value (%) 

98 96 98 96 95 

Resource Use 

Efficiency Metrics 

Value 

1 0.633 0.940 0.693 0.562 

 

In summary, the above deterministic process sustainability assessments on 

carbon footprint, unit cost, TCLP toxicity, and waste minimization at source 

suggest that the closed-loop metal recovery process can deliver better 

sustainability performances over the open-loop process for the pilot-scale 

metal recovery system. The baseline scenario, defined according to the 

existing process settings of the pilot-scale system, can be further improved by 

implementing the processing techniques and operations revealed from the 

optimal, material-efficient, and energy-reduction scenarios in this research. 

The next section focuses on the probabilistic analysis of process economic 

profitability to reduce the implementation risks in adoption of sustainable 

waste management technologies and processes. 

 

 

5.3. Monte Carlo Simulation for Process Profitability Analysis 
 

The process profitability has been described as a ratio between the total 

process revenue and the total production cost in Section 4.1. Through 
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analyzing unit cost behaviors, the following investigate process profitability of 

the two metal recovery process options. 

In the unit cost simulation model in Eq. (21), there are two random 

variables: the recovered metal selling price and metal concentration in 

feedstock. We presume the metal selling prices can be sampled from a 4-year 

historical price distribution derived from the LME market pricing data, while 

the metal concentrations sampled from a triangular distribution derived from 

our feedstock characterization experiments. Using the software agent 

developed in Section 4 and the Monte Carlo sampling techniques, random 

values for metal price and concentration are generated from these prescribed 

distributions. Together with other deterministic parameters, these random 

values are used to instantiate the unit cost simulation model for one run. After 

multiple simulation runs, the obtained random outputs from Eq. (21) form a 

random sample of unit cost. The statistical characteristics of the unit cost 

sample, such as its mean and standard deviation are used as indicators for 

evaluating the economic cost performance of the studied metal recovery 

system.  

 

 

 

 

 

  

 

  
 

 

 

 

Figure  15. A unit cost sample for the pilot-scale system. 

Using the scenario settings in Table 4, Monte Carlo simulations have been 

conducted for the defined Scenarios A to C in Table 4. Figure  15 shows an 

uncertain unit cost sample of Scenario A, which is derived from the Monte 

Carlo simulation using the 4-year historical price distribution and the 

triangular metal concentration distribution over 10,000 replications. The 

statistical analysis of the unit cost sample is also shown in the figure. With a 

given production volume of 60,000 kg/year for the pilot-scale recovery 
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system, the chance to maintain the unit cost within a range of S$(20-25)/kg is 

41.1%, no matter how the metal market is fluctuating, as long as it still follows 

the 4-year historical pricing trend. The mean unit cost and the standard 

deviation are S$22.85/kg and 4.22 respectively, as shown in Figure  15.  

Assume the production scale is expanded from the pilot-scale of 60 

ton/year to 100 ton/year. The unit cost is experimented with the Monte Carlo 

simulation again. Table 10 compares the statistical characteristics of the two 

unit cost samples of the pilot-scale system and the designed system with the 

enlarged metal recovery capacity.  

 

Table 10. Comparison of statistical characteristics of two unit cost 

samples 

 

Recovery 

System 

Production 

Volume (ton/year) 

Mean 

(S$/kg) 

Standard 

Deviation 

Unit Cost Range 

(Min, Max) 

Pilot-Scale 60 22.85 4.22 (15.63, 39.17) 

Expanded-Scale 100 22.37 4.21 (15.15, 39.36) 

 

Using the mean in Table 10 as an estimate of the unit cost and the 4-year 

mean price at the LME [44] as the reference selling price, the process 

profitability of the two systems under study can then be calculated according 

to Eq. (20). Table 11 summarizes the calculation results for process 

profitability of the pilot-scale facility and the expanded-scale system. It is 

assumed that the sales quantity is equal to the production volume in order to 

simplify this calculation. 

 
Table 11. Process profitability analysis 

 

 Pilot-Scale Expanded-Scale 

Mean Price [44] (S$/kg) 30.77 30.77 

Sales Quantity (ton/year) 60 100 

Mean of Unit Cost (S$/kg) 22.85 22.37 

Production Volume (ton/year) 60 100 

Process Profitability 1.35 1.38 

 

The results for process profitability analysis in Table 11 can be used to 

support the decision process: whether a recycler shall expand the pilot-scale 

production to a larger scale, under the given market pricing trend. If so, the 
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recycler would have a probability of 39.7% to experience a unit cost in the 

range of S$(20-25)/kg and can expect to profit from the expanded metal 

recovery operations with a slightly higher process profitability level at 1.38 

compared to his current pilot-scale operations with a process profitability of 

1.35.  

 

 

CONCLUSION 
 

Two new techniques for metrics-driven sustainability modeling and agent-

based sustainability simulation have been developed and used in process 

sustainability assessment of waste management systems in Singapore. The 

techniques allow an integration of: 1) science-based characterization of 

process sustainability in metrics models; 2) agent-based simulation to evaluate 

and explore sustainability behaviors of waste systems for 

technology/operation/market changes and what-if scenarios; and 3) technology 

inventory development to enable objective sustainability evaluation and 

simulation. This research also provides a practical and reliable software agent 

for the local waste industry to assess, compare and implement innovative 

waste-to-material recovery technologies to achieve sustainable waste 

management targets. 

To make sustainability performances visible and improvements 

measurable, model-based sustainability metrics provide an effective and 

powerful means. Six categories of model-based, computable sustainability 

metrics have been presented in this chapter, with a focus on the local 

sustainable waste management objectives and the triple bottom line 

considerations. The metrics have been used in evaluating sustainability 

performances of two metal recovery processes. A number of process scenarios 

were analyzed and compared. The process change from one scenario to 

another involves changes in process parameters and other conditions, which 

can be captured by the data used in calculation of the sustainability metrics. As 

such, the model-based metrics can reveal which influencing factors are 

contributing most to which sustainability aspects. 

The software agent is developed with a localized technology inventory to 

allow practical and context-based sustainability assessment using Monte Carlo 

simulation techniques. The agent simulates the interactions between the 

sustainability performances and their influencing factors according to the 

designed simulation scenarios. Both the deterministic and probabilistic 

simulation scenarios have been developed and used in evaluating process 
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sustainability behaviors characterized by the sustainability metric models and 

simulation models. The agent system and its Monte Carlo simulation services 

have demonstrated to be practical and useful as a decision support tool in 

waste-to-material recovery applications. 

A case study for metal recovery from industrial waste has practiced the 

two techniques for metrics-driven sustainability modeling and agent-based 

sustainability simulation. Two metal recovery process options are evaluated. 

The results suggested that the closed-loop process can deliver better 

sustainability performances than the open-loop process does. This is mainly 

because the closed-loop process can better use material, water and energy 

resources by implementing in-process recycling techniques. Compared to the 

open-loop scenario, the carbon footprint and unit cost with the baseline 

scenario of the closed-loop system are improved 19.2% and 28.1%, 

respectively. The closed-loop system also demonstrated the better 

performances in TCLP compliance and waste minimization at source. It can 

deliver a sound process profitability withstanding the metal market pricing 

fluctuations and feedstock quality variations. The case study results have 

provided the local recyclers with solid data and analyses to support their 

sustainability decisions and to facilitate them to identify and improve their 

process sustainability practices. 

Future work for this research is identified to include the following:  

 

 To enrich the content of the technology inventory; 

 To improve the accuracy of the historical price histogram with full set of 

market pricing data from the LME and to update the price histogram with 

the latest available data; 

 To further develop the software agent system and simulation models; and  

 To promote the two techniques developed in this study to more 

applications in sustainable waste management in Singapore. 
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