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We have developed a new approach to the computation of third-order spectroscopic signals of molec-
ular rings, by incorporating the Davydov soliton theory into the nonlinear response function formal-
ism. The Davydov D1 and D̃ Ansätze have been employed to treat the interactions between the ex-
citons and the primary phonons, allowing for a full description of arbitrary exciton-phonon coupling
strengths. As an illustration, we have simulated a series of optical 2D spectra for two models of
molecular rings. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820135]

I. INTRODUCTION

Solar to chemical energy conversion in photosynthe-
sis is one of the most important biological processes. Spe-
cialized light harvesting complexes in bacteria and green
plants are well-known to harvest and transfer solar energy
to photochemical reaction centers (RC) with nearly 100%
efficiency.1–3 Central to the energy transfer process in pho-
tosynthetic machinery are aggregates of pigments that serve
as antenna as well as a transport network for excitons gener-
ated by solar photons. In purple bacteria, for example, they are
found in the form of rings comprised of sixteen to thirty four
pigments. The B850 ring in purple bacteria, also called the
light harvesting complex II (LH2), consists of 16 tightly po-
sitioned bacteriochlorophylls-a (BChls-a), with the Mg–Mg
distance about 9.36 Å for the 1α − 1β dimer, and about
8.78 Å for the 2α − 1β dimer.4 Molecules forming such rings
generally interact with a bath consisting of nuclear degrees
of freedom. The intra-ring dynamics is usually described by
the Holstein model,5 in which the vibrations of the molecules
generate high frequency phonon modes that may undergo co-
herent oscillatory motion. On the other hand, the surroundings
of the ring (such as water and protein matrix) are generally
modeled by a continuous distribution of oscillators that yield
irreversible relaxation.6

Nonlinear femtosecond optical spectroscopy is one of the
major sources of information on the functioning of photo-
synthetic systems.7, 8 With recent technological advances, the
technique of two-dimensional (2D) electronic spectroscopy
has emerged as a highly sophisticated tool for studying ex-
citonic relaxation and dephasing in a variety of molecular
and biological systems.9–24 Coherent and incoherent exciton
dynamics in H- or J-type aggregates and in light-harvesting
complexes can be probed by various optical measurements
such as time-resolved fluorescence,12, 25, 26 pump-probe,27–29

photon echoes,30–32 2D electronic spectroscopy,9, 15, 18–22 and
2D infrared spectroscopy.13, 33–35 The availability of nonlinear
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optical responses has also enormously enriched our knowl-
edge on the role of disorder in molecular transitions and the
effects caused by multiexciton interactions.11, 14

The information delivered by various spectroscopic tech-
niques is encoded into the third-order optically induced po-
larization P(3)(t). There exist a variety of theoretical meth-
ods for the simulation of P(3)(t) (see Refs. 6–9 and 36–40
for recent reviews). They can broadly be subdivided into the
perturbative and the nonperturbative approaches. The idea
of the nonperturbative approach is to incorporate all rele-
vant laser fields into the system Hamiltonian (which thus be-
comes time-dependent), and to numerically calculate the dy-
namics of the driven system.39, 40 For example, the nonpertur-
bative approach can be combined with multiconfigurational
time-dependent Hartree (MCTDH) method,41 which is one of
the most powerful currently available methods for computing
many-body quantum dynamics, allowing for the fully quan-
tum mechanical calculation of steady-sate42 and femtosecond
four-wave-mixing43, 44 optical signals.

The most popular and mature is, however, the pertur-
bative approach, in which the field-matter interactions are
treated perturbatively, and P(3)(t) is expressed as a triple time
integral involving the third-order response functions.6, 9, 36

The response functions can be evaluated analytically and ex-
actly for the multilevel displaced Brownian oscillator model.6

The model comprises several electronic states with the mul-
timode shifted harmonic potential energy surfaces, yield-
ing a “zero order” description for many materials systems.
For describing complex systems with interstate (excitonic)
couplings, we have to go beyond that description. A com-
mon practice is to adopt the system-bath partitioning, and
this is where theoretical nonlinear spectroscopy meets the-
ory of open quantum systems and quantum master equations
(QMEs).45, 46 Due to the enormous complexity of photosyn-
thetic systems, the interpretation of the results is however
still a huge challenge, and the validity of the exciton ap-
proach when subjected to the coupling to different types of
baths ranging from water to proteins is contentious. Proper
interpretation of measured signals and extraction of useful
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information out of them are virtually impossible without ad-
equate theoretical support. If the bath dynamics is faster than
that of the system, one can consider the bath as Marko-
vian and neglect the memory effects in the reduced system
dynamics. If the system dynamics is faster than (or com-
parable to) that of the bath, one has to resort to a non-
Markovian description. Non-Markovian QMEs provide finer
details of the excitonic dynamics.10, 47–50 It is well known that
the Markovian exciton theory leads to the Lorentzian line-
shapes, while non-Markovian processes yield more compli-
cated lineshapes.6, 11, 12

In a functional photosynthetic system, transport proper-
ties can be studied via modeling of a quasiparticle called po-
laron, which comprises an exciton coupled to its surround-
ing phonon cloud. Since the exciton-phonon coupling in such
systems is typically not weak, the applicability of the QME
with second-order perturbative truncation such as the Red-
field equation may be rendered invalid. The small-polaron
transformation51 extends the domain of validity of the Red-
field equation towards stronger system-bath couplings,52–55

but does not allow yet for arbitrary coupling strengths. On
the other hand, the path integral formalism allows us to han-
dle strong system-bath coupling by introducing the Feynman-
Vernon influence functional. This method has earlier been
employed to study the nonperturbative equation of motion
in various light-harvesting complexes.47–50 Existing nonper-
turbative results are limited to comparatively small systems.
Recently, some progress was made in calculating LH2 ring
by using a scaled hierarchical equation of motion (HEOM)
approach, which can be applied to systems with 18 or
fewer pigments.56 Furthermore, it is commonly assumed that
phonon degrees of freedom are at thermal equilibrium before
the optical pulses come. This assumption may not be fulfilled
while dealing with fast exciton dynamics (hundreds of fs) and
strong exciton-phonon coupling.

In order to circumvent aforementioned difficulties, the
Dirac-Frenkel time-dependent variational method has been
adopted by a number of authors to investigate the real-time
dynamics of the Davydov Ansätze.57–62 Using the same com-
putationally efficient approach, we have previously calculated
with sufficient precision the detailed inter- and intra-ring dy-
namics of LH2 rings in purple bacteria.63, 64 In this work, two
trial states from the hierarchy of Davydov Ansätze, namely,
the Davydov D1 and D̃ trial states, are used to simulate the
intra-ring dynamics of a single B850 ring. The two Ansätze
have been shown to yield accurate results when describing the
excitonic dynamics over a wide range of the exciton-phonon
coupling strength.61, 62, 64, 65 The primary phonons in the B850
ring are believed to be in the range of 1500 cm−1,66 which jus-
tifies a zero-temperature treatment in studying the exciton dy-
namics. The secondary continuous phonons can be attributed
to the protein matrix and have much lower energies. The sec-
ondary phonons can thus be viewed as a channel for relaxation
and can be treated by the lineshape method.

In the present paper, we incorporate the description of
the system dynamics in terms of the Davydov Ansätze into
the framework of nonlinear response functions. The rest of
the paper is organized as follows: Section II comprises the
model and the methodology employed in this work. As an

illustration, Sec. III displays and discusses simulation results
of optical 2D spectra for two model J-aggregates, in which the
transition dipoles are tangentially oriented. Our main results
are briefly summarized in Sec. IV.

II. METHODOLOGY

A. Model system

We consider a one-dimensional molecular ring con-
structed by N interacting molecules (such as BChls-a) embed-
ded in a protein environment. The total Hamiltonian for this
model can be written as

H = HS + HB + HSB. (1)

There exist two major approaches to the system-bath par-
titioning in excitonic systems (see Refs. 8, 36, and 67–71
for a comprehensive discussion). In the first approach, a
few high-frequency vibrational modes with strong exciton-
phonon coupling are incorporated into the system Hamilto-
nian and treated explicitly. The rest of the vibrational modes
are assumed to form a heat bath. The bath is normally treated
as harmonic, with bilinear system-bath coupling. In the sec-
ond approach, all vibrational modes are incorporated into the
bath. The two models of the exciton transport are, in principle,
equivalent. Via a canonical transformation, on the one hand,
we can switch from one description to the other by incorporat-
ing the system modes into the bath or by singling-out several
(high-frequency) modes from the bath and treating them ex-
plicitly. On the other hand, the more vibrational modes with
strong exciton-phonon coupling are incorporated into the sys-
tem Hamiltonian, the simpler is the bath spectral density, and
the weaker (in general) is the system-bath coupling.

In the present paper, we follow the first approach. The
first term in Eq. (1) is a Holstein Hamiltonian describing ex-
citations in the molecular ring:72

HS = Hex + Hph + Hex−ph. (2)

Here, Hex is the Frenkel-exciton Hamiltonian,

Hex = εg|g〉〈g| +
N∑

m=1

εm|m〉〈m| +
N∑

m=1

∑
n�=m

Jnm|n〉〈m|, (3)

εg ≡ 0 is the energy in the ground excitonic state, εm is the
excitation energy of the molecule m, |m〉 is the state in which
only the molecule m is excited, and Jnm is the coupling be-
tween the molecules n and m. Hph is the phonon Hamiltonian
which describes the primary vibrations of the molecular ring

Hph =
∑

q

¯ωqb
†
qbq, (4)

and Hex–ph is responsible for the exciton-phonon coupling
which is assumed to be site-diagonal:

Hex−ph =
∑

q

N∑
m=1

gq¯ωq

(
bqe

−iqm + b†qe
iqm

) |m〉〈m|. (5)

bq (b†q) denotes the annihilation (creation) operator of the pri-
mary phonon with frequency ωq, gq is the exciton-phonon
coupling strength, and dimensionless momentum is denoted
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by q = 2πnq/N (nq = −7, −6, . . . , 8), where N = 16. We
assume a linear dispersion for the primary phonon,

ωq = ω0 + 2W (|q|/π − 1/2) , (6)

and consider the elliptic form of the phonon bath correlation
function,

C00(ω) = 1

N

∑
q

g2
qω

2
qδ(ω − ωq)

= 2Sω2

NπW 2

√
W 2 − (ω − ω0)2. (7)

Here, ω0 is the central phonon frequency and W is the fre-
quency bandwidth. The exciton-phonon coupling can conve-
niently be characterized via the Huang-Rhys factor S defined
by the relation

1

N

∑
q

g2
qωq = Sω0. (8)

Here, gq can be obtained from Eqs. (6)–(8) for a given Huang-
Rhys factor S and a phonon bandwidth W .61

The second and the third terms in Eq. (1) describe in-
teraction of HS with “the rest of the world,” viz., with the
low-frequency intramolecular vibrations of BChls-a and with
nuclear degrees of freedom of the environment. Having in-
corporated the vibrational modes with strong exciton-phonon
coupling into HS, we may utilize a rather simplified descrip-
tion of HB and HSB, since they are responsible for (relatively
long time) population decays and dephasings. Motivated by
the symmetry of the molecular ring, we assume a harmonic
bath with site-independent system-bath couplings,

HB =
∑

j

¯�ja
†
j aj , (9)

HSB =
∑

j

N∑
m=1

κj¯�j (aj + a
†
j )|m〉〈m|. (10)

Here, aj (a†
j ) is the annihilation (creation) operator of a

phonon of the bath with frequency �j, and κ j is the exciton-
bath coupling strength of the jth bath mode. The bath spectral
density is determined by

D(ω) =
∑

j

κ2
j �2

j δ(ω − �j ). (11)

B. Response functions and 2D spectroscopy

To simulate optical 2D spectra, we employ the nonlinear
response function approach as reviewed in Refs. 9 and 36.
We define the field-matter interaction Hamiltonian in the
dipole approximation and in the rotating wave approximation
as follows:

HF (t) = −
3∑

a=1

N∑
m=1

Ea(t − τa)eikar−ωa (t−τa )eaμm|m〉〈g|

+H.c., (12)

Here ea , ka , ωa, Ea(t), and τ a denote the polarization, wave
vector, carrier frequency, dimensionless envelope, and the
central time of the pulses. μm is the matrix element of
the transition dipole moment between the excitonic ground
state |g〉 and an excitonic excited state |m〉 (for simplicity, we
assume |μm| = μ).

It is common to define the pulse arrival times in the
system-field Hamiltonian (12) as follows:

τ1 = −T − τ, τ2 = −T , τ3 = 0, (13)

where τ (the so-called coherence time) is the delay time
between the second and the first pulse, and T (the so-called
population time) is the delay time between the third and the
second pulse. Before the optical excitation (t � −T − τ ), the
system is assumed to be in its global ground state |g〉|0〉ph

(|0〉ph is the vacuum state of the primary phonons), while
the heat bath is in thermal equilibrium at temperature Teq.
Adopting this factorized initial condition, we neglect correla-
tions between the primary system and the “rest of the world.”
This is not a severe assumption, since all strong interactions
and correlations are incorporated into the primary system de-
scribed by Hamiltonian (2).

After the Hamiltonians (1) and (12) have been defined,
the third-order optically induced polarization P(3)(t) can be
(formally) expressed in terms of the nonlinear response func-
tions Ri, i = 1–4.6, 9, 36 To evaluate the photon echo signal, we
need the component of P(3)(t) in the direction −k1 + k2 + k3,
which yields the so-called rephasing (subscript R) contribu-
tion P

(3)
R (t), as well as the component of P(3)(t) in the direc-

tion k1 − k2 + k3, which yields the so-called non-rephasing
(subscript NR) contribution P

(3)
NR(t). Assuming that the pulse

durations are much shorter than all relevant system and bath
times, we can substitute the pulse envelopes Ea(t − τ a) by
delta-functions (the so-called impulsive limit). We can then
write,

P
(3)
R (τ, T , t) ∼ −i [R2(τ, T , t) + R3(τ, T , t)] (14)

and

P
(3)
NR(τ, T , t) ∼ −i [R1(τ, T , t) + R4(τ, T , t)] . (15)

Once the polarizations (14) and (15) are known, the rephasing
and non-rephasing 2D photon echo spectra are evaluated by
two-dimensional Fourier-Laplace transforms as follows:

SR(ωτ , T , ωt )

= Re
∫ ∞

0

∫ ∞

0
dtdτ iP

(3)
R (τ, T , t)e−iωτ τ+iωt t , (16)

SNR(ωτ , T , ωt )

= Re
∫ ∞

0

∫ ∞

0
dtdτ iP

(3)
NR(τ, T , t)eiωτ τ+iωt t . (17)

The total 2D signal is defined by the sum of the two,

S(ωτ , T , ωt ) = SR(ωτ , T , ωt ) + SNR(ωτ , T , ωt ). (18)

The response functions Ri are defined in the standard way (see
Refs. 9 and 36) in terms of the projections of the total Hamil-
tonian (1) onto the excitonic ground state |g〉, and onto the
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manifold of the singly excited electronic states {|m〉}. To eval-
uate these response functions, we start from considering the
impact of the external vibrational bath (9). It is important to
realize that the system-bath Hamiltonian (Eq. (10)) commutes
with the system Hamiltonian (Eq. (2)). In such a case, the
bath degrees of freedom can be traced out analytically, yield-
ing an exact master equation for the reduced (system) density
matrix.74, 75 As for the response functions, we can additionally
make use of the fact that the system-bath coupling is the same
for all excitons. Thus, the bath-induced relaxation and dephas-
ing are accounted for exactly through the lineshape factors Fi

within the second-order cummulant expansion. We therefore
obtain

R1(τ, T , t) = F1(τ, T , t)
∑

n,n′,n′′,n′′′
Cn,n′,n′′,n′′′

ph〈0|〈n|e i
¯
HST |n′〉〈n′′|e− i

¯
HS (τ+T +t)|n′′′〉|0〉ph,

R2(τ, T , t) = F2(τ, T , t)
∑

n,n′,n′′,n′′′
Cn,n′,n′′,n′′′

ph〈0|〈n|e i
¯
HS (τ+T )|n′〉〈n′′|e− i

¯
HS (t+T )|n′′′〉|0〉ph,

(19)

R3(τ, T , t) = F3(τ, T , t)
∑

n,n′,n′′,n′′′
Cn,n′,n′′,n′′′

ph〈0|〈n|e i
¯
HSτ |n′〉〈n′′|e− i

¯
HSt |n′′′〉|0〉ph,

R4(τ, T , t) = F4(τ, T , t)
∑

n,n′,n′′,n′′′
Cn,n′,n′′,n′′′

ph〈0|〈n|e− i
¯
HSt |n′〉〈n′′|e− i

¯
HSτ |n′′′〉|0〉ph.

Here,

Cn,n′,n′′,n′′′ = (e1μn)(e2μn′)(e3μn′′ )(e4μn′′′ ) (20)

are the geometrical factors which must be averaged over the
orientations of the transition dipole moments μn. If reorien-
tation of μn can be neglected on the timescale of the exper-
iment, the (static) orientational averaging can be done ana-
lytically (see, e.g., Refs. 76 and 77). Denoting the averaging
by overbar and assuming, for simplicity, that all laser beams
possess the same polarization, we obtain

C̄n,n′,n′′,n′′′ = 1

15
((μnμn′)(μn′′μn′′′ )

+ (μnμn′′ )(μn′μn′′′ ) + (μnμn′′′ )(μn′′μn′)).

(21)

While evaluating the response functions, the coefficients C̄

[Eq. (21)] should be inserted instead of C [Eq. (20)].
The system propagators e

i
¯
HST in Eqs. (19) describe co-

herent dynamics of the molecular ring, while the lineshape

factors Fi are explicitly defined as follows:6, 9, 36

F1(τ, T , t)

= e−g∗(t)−g(τ )−g∗(T )+g∗(T +t)+g(τ+T )−g(τ+T +t),

F2(τ, T , t)

= e−g∗(t)−g∗(τ )+g(T )−g(T +t)−g∗(τ+T )+g∗(τ+T +t),

(22)
F3(τ, T , t)

= e−g(t)−g∗(τ )+g∗(T )−g∗(T +t)−g∗(τ+T )+g∗(τ+T +t),

F4(τ, T , t)

= e−g(t)−g(τ )−g(T )+g(T +t)+g(τ+T )−g(τ+T +t),

where g(t) is the lineshape function,

g(t) =
∫ ∞

0
dω

D(ω)

ω2

×
[

coth
¯ω

2kBTeq

(1 − cos ωt) + i (sin ωt − ωt)

]
.

(23)

A common procedure for the construction of the response
functions Ri is as follows.9, 36 To account for bath-induced re-
laxation and dephasing, one diagonalizes the system Hamil-
tonian, evaluates diagonal fluctuations exactly, and treats off-
diagonal fluctuations at different levels of approximation.
In the present case, due to the symmetry of HS and HSB,
we do not need to diagonalize HS and resort to additional
approximations. This is the first reason for choosing the
bath and system-bath coupling Hamiltonians as specified by
Eqs. (9) and (10). The second reason rests on physical
grounds. The fast vibrational modes with strong exciton-
phonon couplings are incorporated into the system Hamil-
tonian (2) and are accounted for explicitly via the Davydov
Ansätze (25) and (26). The remaining vibrational modes con-
stituting the bath have relatively low frequencies. It is thus not
unreasonable to assume that the BChls comprising the molec-
ular ring experience concerted fluctuations. Indeed, the bath
described by Eqs. (9) and (10) is equivalent to the fully cor-
related bath (see, e.g., Ref. 71 and references therein), and
the bath correlations affect the peak shapes in 2D spectra. In
this work, we focus on the application of Davydov Ansätze
to nonlinear optical spectroscopy rather than on the discrim-
ination between different bath models. The bath of Eqs. (9)
and (10) is useful for our purpose, since it yields, without ad-
ditional approximations, the simple lineshape functions (23)
describing the population relaxations and dephasings.

C. The Davydov Ansätze

After the bath-induced relaxations have been accounted
for, we concentrate on the evaluation of the system propaga-
tors in Eqs. (19). Here we come up at the second crucial point
in our derivations and substitute the propagators by the corre-
sponding Davydov Ansätze,

e− i
¯
HSt |n〉|0〉ph = |�σ (t)〉, (24)
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namely, the Davydov D1 Ansatz (σ = D1) and its simplified
version, the D̃ Ansatz (σ = D̃).61, 62 The corresponding trial
wave functions take the following forms:

∣∣�D1 (t)〉 =
∑
m

αm(t)|m〉 exp

{∑
q

[
λm,q(t)b̂†q − H.c.

]} |0〉ph,

(25)

|�D̃(t)〉 =
N∑

n=1

αn|n〉e
∑

q (βqe−iqn−λq )b†q−(β∗
q eiqn−λ∗

q )bq |0〉ph.

(26)

Time-dependent variational parameters α, β, and λ are ob-
tained from solving a set of differential equations generated
by the Lagrangian formalism of the Dirac-Frenkel variational
method.73 The initial condition we set up for the D1 Ansatz is
that the exciton is located on site m = 0 in the molecular ring
at t = 0, i.e., αm(0) = δm0, and there is initially zero phonon
displacement over the entire ring, i.e., λmq(0) = 0, while for
the D̃ Ansatz, we have αn(0) = δn0, λq(0) = 0, and βq(0) = 0.
The reader is referred to the Appendix for more details on the
time-dependent variational procedure and on the applications
of the Davydov Ansätze to molecular rings.

Before we proceed to the calculation of 2D spectra, it is
appropriate to discuss the following two issues:

(i) We have chosen the D1 and D̃ Ansätze because they
account for exciton-phonon correlations, and are thus more
suitable for describing the system responses on short laser
fields, which can result in optical excitations localized on spe-
cific exciton and phonon modes. As has been demonstrated
in Refs. 61 and 62, the Ansätze allow us to faithfully repro-
duce polaron dynamics and linear absorption spectra of cyclic
1D J-aggregates in the broad range of the exciton-phonon and
exciton-exciton coupling parameters. As for the application of
the Ansätze to the calculation of third-order optical signals, it
is crucial to note that the nonlinear response functions (19) are
uniquely determined by the propagator (24), which, in turn, is
approximated by the Davydov Ansätze (25) and (26). The va-
lidity of the Davydov Ansätze (25) and (26) in reproducing the
propagator (24) is proven in Refs. 61, 62. This also guarantees
their validity in reproducing the response functions (19).

(ii) The Davydov Ansätze D1 and D̃ describe single-
exciton excitations. As a result, we have restricted our analy-
sis to the consideration of the system Hamiltonian (Eq. (2)) in
the ground excitonic state |g〉 and the manifold of the singly
excited excitonic states {|m〉}. This level of description is
sufficient to treat time- and frequency-resolved spontaneous
emission (cf. Ref. 5). Any other four-wave-mixing signal has
excited state absorption (ESA) contributions involving higher
excited electronic states (for polyatomic molecules) or dou-
bly excited excitonic states (for molecular aggregates). There
exist several arguments in favor of neglecting ESA for the
molecular rings considered in the present paper. As is well
known4, 66 and explained in Sec. II D, the B850 ring can be
regarded with a good accuracy as a two-level excitonic sys-
tem. Hence, the contribution of the ESA to optical responses
of such a system should not be significant. Furthermore, the
ESA contributions to 2D signals are sometimes negligible due

to the other reasons (see, e.g., Refs. 78 and 79 on optical
2D spectra of Fenna-Matthews-Olson photosynthetic com-
plex). In addition, as we argue in Sec. III, the calculated
2D responses exhibit many features which are not affected
by the ESA. Nevertheless, the 2D signals considered below
should be regarded, rigorously speaking, as model signals.
Inter alia, we have found it elucidating to represent our results
as 2D spectra, which reveal Franck-Condon active vibrations
through the peaks in the ωτ , ωt plane. On the other hand, there
are approaches allowing one to construct the Davydov An-
sätze for doubly excited excitonic states (see Refs. 80–82 and
references therein). Work is in progress to incorporate these
approaches into the description of third-order optical signals.

D. Control parameters

Having outlined the general theory, we specify the
Hamiltonians which are used in the present work for the cal-
culation of 2D spectra. For the molecular ring, we consider
tangentially oriented configuration of the transition dipoles
μn (head-to-tail). The site energies εm in the Hamiltonian (3)
are assumed to be identical, i.e., εm = ε. We set ε = 0, mean-
ing that the frequencies ωt and ωτ of 2D optical spectra are
given relative to the vertical excitation energy ε.

The exciton-exciton coupling is of the form

Jnm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 J1 W1,3 · · · J2

J1 0 J2 · · · W2,N

W3,1 J2 0 · · · ·
· · · · · · ·
· · · · 0 J2 WN−2,N

· · · · J2 0 J1

J2 · · · WN,N−2 J1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(27)
Specifically, we consider two models. The toy model
(Fig. 1(a)) assumes identical nearest-neighbor couplings J1

= J2 = J. The realistic model (Fig. 1(b)) describes struc-
tural dimerization, implying J1 �= J2. Additionally, it includes
the dipole-dipole couplings Wnm between the nth and mth
BChl-a,4

Wn,m = C

[
dn · dm

|rnm|3 − 3(dn · rnm)(dm · rnm)

|rnm|5
]

. (28)

Here C is the proportionality constant, rij is the vector con-
necting the ith and jth monomers, and di are the unit vec-
tors of the transition dipole in the ith BChl-a. In the present
work, the following parameters4 are adopted: J1 = 0.074 eV,
J2 = 0.061 eV, and C = 79.44 Å3 eV.

The toy model has a doubly degenerate optically al-
lowed energy state in the lower band with the energy
at −2J cos(±π

8 ) = −0.5543¯ω0. The redshift of spectra
is a characteristic feature of J aggregates. The realis-
tic model has two doubly degenerate optically allowed
states with the energies −0.7878¯ω0 and 0.4432¯ω0. The
transition dipole moments for the lower degenerate lev-
els are μl = 1.9320(−2.0648)ex + i2.0648(1.9320)ey, while
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FIG. 1. (a) The toy model of a molecular ring mimicking LH2. Only the
nearest-neighbor intermolecular coupling J1 = J2 is assumed. (b) A realistic
model in which structural dimerization is introduced, implying J1 �= J2.

those for the upper levels are μu = 0.0057(−0.0622)ex

− i0.0622(0.0057)ey, where ex and ey (unit vectors) label
two orthogonal directions in the plane of the B850 ring as
shown in Fig. 1. The transition dipole moments for the up-
per levels are clearly much smaller than those for the lower
levels. Therefore, the B850 ring can be approximately re-
garded as a two-level system. This lends strong support to
neglecting the doubly excited excitonic states in the system
Hamiltonian (2).

Our choice of two different models of molecular rings is
motivated by the following arguments. Recently, effects re-
lated to vibrational coherent dynamics have unambiguously
been detected in optical 2D spectra of various molecular
species.83–85 The question of how to distinguish between elec-
tronic and vibrational oscillations in peak intensities in 2D
spectra is under active debate.86–91 In order to check if the
Davydov Ansätze grasp vibrational features in 2D spectra of
molecular rings, the averaged primary phonon energy ¯ω0 in
Eq. (6) in the toy model is fixed to a low value of 0.05 eV:
BChls a possess a number of Franck-Condon active vibrations
in the spectral range of ∼0.01–0.1 eV.92–94 In addition, the
analysis of whole body of available spectroscopic data on the
B850 band of LH2 yields the bath spectra densities (involving
all internal and environmental nuclear degrees of freedom)
peaked at several hundreds of wave numbers.95, 96 As for the
realistic model, we set a realistic higher-energy ¯ω0 = 0.207
eV.66, 97 The values of the bandwidth W and the Huang-Rhys
factor S are varied.

Two different models of molecular rings stipulate the
consideration of two different models of baths of secondary
phonons. The toy model emphasizes vibrationally coherent
responses and requires more careful description of the phonon
bath. Its spectral density (Eq. (11)) is taken in the Drude form

D(ω) = 2η
γω

ω2 + γ 2
, (29)

where ¯η = 0.005 eV and ¯γ = 0.003 eV. The ensuing
lineshape functions are evaluated according to Eq. (23) with
the inclusion of low-temperature Matsubara terms (see, e.g.,
Ref. 6). The realistic model treats the B850 band of LH2 in
a “realistic” environment with strong electronic dephasing,
leading to our choice of simple exponential or Kubo-like line-
shape functions.
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FIG. 2. Time evolution of the 2D spectrum for S = 0.5, W = 0.8¯ω0,
J = 0.3¯ω0, and Teq = 50 K.

2D spectra (16)–(18) were calculated as prescribed
by Eqs. (14), (15), and (19). S(ωτ , T, ωt) discussed in
Sec. III A are evaluated under the assumption that the ge-
ometrical factor C̄n,n′,n′′,n′′′ (Eq. (21)) can be substituted by
an effective constant n-independent C̄ (several representative
calculations with n-dependent C̄n,n′,n′′,n′′′ yielded virtually in-
distinguishable results). S(ωτ , T, ωt) discussed in Sec. III B
are computed without resorting to the above approximation.

III. RESULTS AND DISCUSSION

A. The Davydov D̃ Ansatz

In this section, we present 2D photon-echo spectra
S(ωτ , T, ωt) computed for a molecular ring with N = 16 us-
ing the Davydov D̃ Ansatz (26). We first consider interme-
diate exciton-phonon coupling with the Huang-Rhys factor
S = 0.5, the bandwidth W = 0.8¯ω0, and the transfer inte-
gral J = 0.3¯ω0. 2D spectra are shown in Fig. 2 for several
population times T = 0, 3πω−1

0 , 6πω−1
0 , and 12πω−1

0 (0, 124
fs, 248 fs, and 496 fs).

At T = 0, the spectrum exhibits a single peak at
ωτ = ωt ≈ −0.04 eV. Since the exciton-phonon coupling is
rather weak, the spectrum is similar to that of the two-level
system. Initially, the peak shape is elliptical and is elongated
along the diagonal. As T increases, the peak symmetry axis
rotates clockwise, tending to be parallel to the ωt axis. Be-
sides this dynamic inhomogeneous broadening, the splitting
between the absorption peak and the stimulated emission peak
due to the population relaxation is also visible. At sufficiently
long population time, the spectrum becomes stationary and
exhibits the Stokes shift of 2λ ≈ 0.03 eV down from the diag-
onal (λ being the solvent reorganization energy).

Now we consider strong exciton-phonon coupling
(S = 2) and the associated band narrowing (W = 0.1¯ω0).
The corresponding 2D spectra for J = 0.1¯ω0 and Teq = 50 K
are shown in Fig. 3(a) for several values of the population
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FIG. 3. (a) Time evolution of the 2D spectrum in the case of strong exciton-
phonon coupling (S = 2) and narrow phonon band (W = 0.1¯ω0) for
J = 0.1¯ω0 and Teq = 50 K. (b) Linear absorption spectrum.

time T. A multi-peak spectral structure caused by the strong
exciton-phonon coupling is clearly observed. Similar vibronic
multi-peak patterns show up in 2D signals of many systems:
e.g., displaced harmonic oscillators,98–101 anharmonic
oscillators,102 systems with avoided crossings,103–105 vibronic
dimers,106 and “torsional” dimers.107

The linear absorption spectrum shown in Fig. 3(b) can be
“read out” of the diagonal (ωτ = ωt) part of the 2D spec-
trum at T = 0. The leftmost peak and the highest inten-
sity peak in Fig. 3(b) correspond to the zero-phonon and the
one-phonon sublevels. They are located at ¯ω ≈ −0.108 eV
and −0.057 eV, respectively (highlighted by vertical lines). A
slight red shift of these peaks from −S¯ω0 = −0.1 eV and
−(S − 1)¯ω0 = −0.05 eV is due to the finite J and the pres-
ence of the heat bath.

As is seen from Fig. 3(a), the diagonal and off-diagonal
peaks may move, as well as change their shape and ampli-
tude with the population time. The time evolution of the peak
shapes is similar to that in Fig. 2. The Stokes shifts due to the
energy reorganization are also seen. At T = 0, the strongest
absorption and emission peaks coincide and are located at
¯ωτ = ¯ωt = −0.057 eV. At longer T, the population re-
laxation moves the highest intensity emission peak down to
(¯ωτ , ¯ωt) ≈ ( − 0.108 eV, −0.138 eV).

To extract further details about the polaron dynamics
from the 2D spectra, we analyze the population-time evo-
lution of the peak intensities. The peak intensity evolutions
are almost insensitive to the presence of ESA, since they pre-

FIG. 4. Time evolutions of diagonal and off-diagonal peaks of the 2D spec-
trum. Panel (a) is for the Drude bath, while panel (b) is for the corresponding
Markovian bath.

dominantly reflect the system dynamics in the singly excited
excitonic state. Figure 4 shows T-evolutions of two leftmost
diagonal peaks (solid and dashed blue lines) and the corre-
sponding two cross peaks (dotted red and dashed-dotted green
lines). The peak intensities are seen to oscillate with the char-
acteristic phonon frequency ∼ω0. Related vibrational beat-
ings in the population-time dynamics of peaks in 2D optical
spectra have been measured.83–85

The peak dynamics are also sensitive to specific mech-
anisms of bath-induced relaxations. This is clearly demon-
strated by the comparison of panels (a) and (b) of Fig. 4.
Panel (a) corresponds to the heat bath with the Drude spec-
tral density (11), while panel (b) corresponds to the respective
Markovian bath, for which the lineshape factors Fi in Eq. (22)
are replaced with exp [− �(τ + t)], where � = 0.1ω0 is a phe-
nomenological dephasing constant. Consider T-evolutions of
the off-diagonal peaks. In panel (a) the cross peak lying below
the diagonal (dotted-red line) gains its amplitude as compared
to the other cross peak (dashed-dotted green line). This is a di-
rect consequence of the bath-induced relaxation. In panel (b),
the intensities of the two cross peaks are nearly the same. The
pure dephasing Markovian bath does not account for excitonic
population relaxation, rendering 2D signals symmetrical with
respect to the diagonal ωτ = ωt.

Figure 5 displays the 2D spectra for the population time
T = 12πω−1

0 = 496 fs at elevating temperatures Teq = 0, 50,
100, and 150 K. As expected, temperature broadens the peak
shapes and blurs the multi-peak structure out.

B. The Davydov D1 Ansatz

We also simulate 2D spectra within a more general
D1 Ansatz. We employ the Markovian bath model which is
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FIG. 5. 2D spectra at the population time T = 496 fs for several bath tem-
peratures. Other parameters are the same as in Fig. 3.

similar to the one we used to calculate the peak dynamics in
Fig. 4(b), but accounts for a finite lifetime of the singly ex-
cited excitonic states. Specifically, we consider the lineshape
factors (22) in the form

Fi(τ, T , t) = exp[−�(τ + t) − �′T ], (30)

assuming the dephasing rate � = 0.1ω0 and the population
rate �′ = 0.06ω0 (1/�′ = 332 fs). The spectra at T = 0
are plotted in Fig. 6. The left column corresponds to the toy
model, while the right column is for the realistic model. The
upper, middle, and lower panels correspond to the rephas-
ing, non-rephasing, and total 2D spectra, respectively. Due to
rather strong dephasing, the spectra resemble those of a two-
level system and reveal only a single peak (cf. Fig. 2). Accord-
ingly, the rephasing (upper panels) and non-rephasing (middle
panels) spectra are, approximately, the mirror images of each
other. The comparison of spectra in panels (a) and (c) with
those in panels (b) and (d) can hardly reveal any difference
between the toy and realistic models. On the other hand, the
total signals in the lower panels do exhibit certain differences.
For example, the star-like shape of the spectrum in Fig. 6(f)
is slightly destroyed owing to the contributions of weak tran-
sitions to the upper levels with the energy 0.4432¯ω0. There-
fore, the heat bath does not entirely wash out fine details of
the system dynamics. These details may manifest themselves
through certain features in 2D signals of molecular rings even
under “realistic” conditions.

We have also employed the Davydov D1 Ansatz for ex-
amining the influence of static disorder on 2D signals. The
disorder was accounted for by a Gaussian distribution of the
(reduced) site energies εm with the dispersion δεm = 0.3ω0.
The results of these calculations are illustrated by Fig. 7,
which depicts 2D spectra for several population times T.

Let us first consider the left column of Fig. 7, which
shows S(ωτ , T, ωt) calculated with the lineshape factors
(30). At this level of description, the Markovian bath causes
homogenous broadening of spectral features, and disorder

FIG. 6. 2D spectra at T = 0 calculated via D1 Ansatz in the limit of Marko-
vian bath-induced homogeneous broadening. The left column corresponds
to the toy model (S = 0.5, W = 0.8¯ω0, J = 0.3¯ω0), while the right col-
umn is for the realistic model (see Sec. II D for details). The upper, middle,
and lower panels correspond to the rephasing, non-rephasing, and total 2D
spectra.

is the unique source of inhomogeneous broadening. The
disorder-induced inhomogeneous broadening thus persists as
the population time increases, as shown in Figs. 7(a), 7(c),
and 7(e).

The right column of Fig. 7 depicts S(ωτ , T, ωt) computed
with the Kubo lineshape function

g(t) = χ

�2
K

[exp(−�Kt) + �Kt − 1], (31)

which is a classical (high-temperature) limit of the lineshape
function (23) for the Drude spectral density (29). We as-
sume “realistic” values of the parameters, �K = 0.25ω0 and
χ = 1.23ω2

0, which yield strong bath-induced dephasing. It
thus serves as the reason to why the peak shapes in the right
column of Fig. 7 are much broader than those in the left
column.

The Kubo lineshape function (31) corresponds to a
non-Markovian bath. The ensuing lineshape factors (22) en-
sure inhomogeneously broadened peaks in 2D spectra at short
population times (T � 1/�K). At longer times (T � 1/�K), the
lineshape factors (22) recover their Markovian form (30), and
the peaks become inhomogeneously broadened. Therefore,
the bath-induced inhomogeneous broadening becomes less
pronounced as T increases. On the other hand, the inhomoge-
neous broadening due to the static disorder is T-independent.
We thus expect that the peaks become more homogeneously
broadened as T increases. This is evident in Figs. 7(b), 7(d),
and 7(f).
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FIG. 7. Time evolution of 2D spectra for the realistic model of the molec-
ular ring (S = 0.5, W = 0.8¯ω0) with Gaussian site-energy static disorder
(the dispersion δm = 0.3¯ω0). Left column corresponds to the Markovian
lineshape factors (30), while the right column is for the Kubo lineshape
model (31).

IV. CONCLUSION

We have developed a new approach to the computa-
tion of third-order spectroscopic signals of molecular rings,
by incorporating the Davydov soliton theory into the non-
linear response function formalism. We have employed the
Davydov D1 and D̃ Ansätze to treat the interaction between
the excitons and the primary phonons. Our approach allows
for strong exciton-phonon couplings and non-Markovian heat
baths with arbitrary spectral densities. As an illustration, we
have simulated a series of optical 2D spectra for two model
molecular rings in the presence of intermediate and strong
exciton-phonon coupling, exciton transfer integral, as well as
bath-induced relaxation and dephasing. We hope that the
developed approach may provide new insights into struc-
tural properties and relaxation dynamics of realistic excitonic
systems.
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APPENDIX: DETAILED DERIVATION OF EXCITON
DYNAMICS IN ONE-RING SYSTEM

First, we take as an example the D̃ Ansatz on a chro-
mophore ring with only nearest-neighbor coupling to illus-
trate how the Dirac-Frenkel time-dependent variational pro-
cedure can be applied to reveal the polaron dynamics in a 1D
system. For the D̃ Ansatz, the dynamical behavior of the entire
system can be determined if the time-dependent variation pa-
rameters αm(t), βq(t), and λq(t) are obtained. For this purpose,
the Lagrangian is evaluated first, and the equations of motion
for those variation parameters can be derived as

d

dt

(
∂L

∂α̇∗
m

)
− ∂L

∂α∗
m

= 0, (A1)

d

dt

(
∂L

∂β̇∗
q

)
− ∂L

∂β∗
q

= 0, (A2)

d

dt

(
∂L

∂λ̇∗
q

)
− ∂L

∂λ∗
q

= 0, (A3)

where the Lagrangian L is formulated as follows:

L = 〈D̃(t)| i¯
2

←→
∂

∂t
− Ĥ |D̃(t)〉

= i¯

2

[
〈D̃(t)|

−→
∂

∂t
|D̃(t)〉 − 〈D̃(t)|

←−
∂

∂t
|D̃(t)〉

]

−〈D̃(t)|Ĥ |D̃(t)〉. (A4)

Based on Eqs. (A1)–(A4), the time-dependent wave function
|�D̃(t)〉 is determined. The equations of motion for the time-
dependent variational parameters αn(t), βq(t), and λq(t) can be
written as

−iα̇n(t) = i

2
N−1αn

∑
q

[(
β̇qe

−iqn − λ̇q

)(
β∗

q eiqn − λ∗
q

)

− (
β̇∗

q eiqn − λ̇∗
q

)(
βqe

−iqn − λq

)]
+ Jαn+1Sn,n+1 + Jαn−1Sn,n−1

−N−1αn

∑
q

ωq |βqe
−iqn − λq |2

−N−1/2αn

∑
q

gqωq

[
β∗

q − λ∗
qe

iqn + βq − λqe
iqn

]
, (A5)



104103-10 Huynh et al. J. Chem. Phys. 139, 104103 (2013)

−iN−1
∑

n

|αn|2λ̇q(t) = −i
∑

n

|αn|2β̇qe
−iqnN−1

+ 1

2
N−1J

∑
n

α∗
nαn+1Sn,n+1

βq[e−iqn − e−iq(n+1)]

+ 1

2
N−1J

∑
n

α∗
nαn−1Sn,n−1

βq[e−iqn − e−iq(n−1)]

+N−1
∑

n

|αn|2ωq

(
βqe

−iqn − λq

)

+N−1/2
∑

n

|αn|2gqωqe
−iqn, (A6)

−iN−1
∑

n

|αn|2β̇q = −iN−1
∑

n

|αn|2λ̇qe
iqn

+ JN−1
∑

n

α∗
nαn+1Sn,n+1

[
βq(e−iq − 1) + 1

2
λqe

iqn(eiq − 1)

]

+ JN−1
∑

n

α∗
nαn−1Sn,n−1

[
βq(eiq − 1) + 1

2
λqe

iqn(e−iq − 1)

]

−N−1
∑

n

|αn|2ωq

(
βq − λqe

iqn
)

−N−1/2
∑

n

|αn|2gqωq, (A7)

with

Sn,m = exp

[
−1

2
N−1

∑
q

|βqe
−iqn − λq |2

]

exp

[
−1/2N−1

∑
q

|βqe
−iqm − λq |2

]

exp

[
N−1

∑
q

(
β∗

q eiqn − λ∗
q

)
(
βqe

−iqm − λq

)]
. (A8)

Next, we move on to the more sophisticated D1 Ansatz
and derive the equation of motions of the variational parame-
ters for polaronic dynamics in a chromophore ring with long-
range interactions Jmn. A similar procedure will be followed
once the Lagrangian is evaluated for the D1 Ansatz. The equa-
tions of motions for the time-dependent variational parame-
ters αn(t) and λnq(t) can be obtained as

α̇n(t) = i[Tn(t) + αn(t)Rn(t)], (A9)

and

λ̇nq(t) = i

[
�nq(t)

αn(t)
+ gq√

N
ωqe

−iqn − ωqλnq(t)

]
. (A10)

Auxiliary functions introduced term in Eqs. (A9) and
(A10) are given as

�nq(t) = iλ̇nq(t) + gq√
N

ωqe
−iqn − ωqλnq(t), (A11)

Rn(t) = Re
∑

q

[
�nq(t) + gq√

N
ωqe

−iqn

]
λ∗

nq(t), (A12)

Tn(t) =
∑
m

Jnmαm(t)Snm(t), (A13)

�nq(t) =
∑
m

Jnmαm(t)Snm(t)[λmq(t) − λnq(t)], (A14)

with the Debye-Waller factor Snm(t) given by

Snm(t) = exp

{ ∑
q

[
λ∗

nq(t)λmq(t)

− 1

2
|λnq(t)|2 − 1

2
|λmq(t)|2

]}
. (A15)
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