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ABSTRACT
As the rapid development of China’s e-commerce in recent
years and the underlying evolution of adversarial spamming
tactics, more sophisticated spamming activities may carry
out in Chinese review websites. Empirical analysis, on re-
cently crawled product reviews from a popular Chinese e-
commerce website, reveals the failure of many state-of-the-
art spam indicators on detecting collusive spammers. Two
novel methods are then proposed: 1) a KNN-based method
that considers the pairwise similarity of two reviewers based
on their group-level relational information and selects k most
similar reviewers for voting; 2) a more general graph-based
classification method that jointly classifies a set of review-
ers based on their pairwise transaction correlations. Ex-
perimental results show that both our methods promisingly
outperform the indicator-only classifiers in various settings.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering
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1. INTRODUCTION
With the growing availability of review services at online

stores (e.g. amazon.com) and opinion sharing websites (e.g.
epinions.com), consumer-generated reviews become an in-
dispensable part of online shopping; nowadays online shop-
pers will not purchase a product without reading the re-
views. Unfortunately, many of the reviews they read may
not be that genuine as expected. It has been found that
some paid professionals fabricate reviews without even us-
ing the products [2] or consuming the services [1], with the
sole goal of promoting the reputation of their employers or
demoting the competitors.
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Existing review spam tackling approaches focus on detect-
ing spam reviews, spammers and spammer groups in popular
review websites. The general way is to extract engineered
strong indicators from review contents or reviewer behav-
iors which are then used for modeling and learning. Jindal
and Liu [2] use supervised learning to detect three types of
spam reviews: untruthful reviews, reviews on brands only,
and non-reviews. Li et al. [3] identify spam reviews via
semi-supervised learning from the views of reviews and re-
viewers. Ott et al. [8] detect deceptive reviews based on
review text categorization by combining linguistic features
of reviews and features borrowed from studies in psychology.
Lim et al. [4] detect spammers via a scoring model, rank-
ing reviewers based on their behavioral patterns. Mukher-
jee et al. [6] study spammer groups. Reviewer-group based
features are proposed to capture aggregated behavioral pat-
terns of spammer groups. However, little research has been
done to solve this problem in Chinese review websites. The
situation is critical in China, given the great rich-poor divide
and the massive Internet population. China’s Internet users
have hit 564 million by the end of 2012 according to China
Internet Network Information Center (CNNIC). 37.1% of
the entire users are students and unemployed, who are the
ideal source for low-cost information diffusion on the Inter-
net. People join together (aka. the “Internet Water Army")
to post spam reviews for only 0.10 to 0.50 RMB per post-
ing. We argue that more sophisticated spam campaigns are
expected to be spotted due to the sheer size and the orga-
nizational prowess of the “Internet Water Army” in China.
In fact, we have found in a popular Chinese review website
that spammers have evolved to operate in small scales with
well-coordinated attacks, where small groups of spammers
collude to generate a desired result without showing up on
the radar of site moderators.

In this paper, we detect collusive spammers (colluders) in
Chinese review websites. We focus on colluders because 1)
paid spammers in China are more likely to be well organized
and collaborate on tasks coordinated by a shady organizer,
and 2) compared to “individual” versions, colluders may ex-
ert full control over the opinions of the compromised tar-
gets, thereby undermining the trustworthiness of the review
websites. Particularly, 1) We empirically analyze 25 state-
of-the-art spam indicators based on our recently crawled
Chinese review dataset. Anomalies are spotted not only
in the languages the spammers use but also in the behaviors
they act, causing the ineffectiveness of many spam indicators
when used in classification; 2) As we have observed that re-
viewers within “similar” reviewer groups [6] are more likely



to have similar class labels, a KNN-based method is pro-
posed to detect colluders more effectively, in which the sim-
ilarity of two reviewers is computed based on the similarities
of their corresponding groups, then k most similar reviewers
are selected for the final voting; 3) Finally, a more gen-
eral graph-based classification method is proposed by cap-
turing the transaction correlations among reviewers where
the correlation is formed once a pair of reviewers have both
reviewed at least one product within a predefined time inter-
val. Compared to spam indicators, transaction correlations
are much harder to fake once the transactions are made. A
novel colluder graph model based on pairwise Markov net-
work is introduced to capture the transaction correlations,
and an approximate inference algorithm based on the iter-
ative classification algorithm (ICA) [7] is designed where a
reviewer’s class label can be collectively determined not only
by his own intrinsic attributes but also by the class labels
of the neighborhood. To the best of our knowledge, it is the
first time the graph model based method has been used to
detect colluders in online review websites. The experimental
results show that both our methods promisingly outperform
the indicator-only classifiers in various settings.

2. DATA ACQUISITION
We created a colluder dataset by crawling consumer re-

views from Amazon.cn (the Chinese counterpart of Ama-
zon.com): a snapshot of manufacturing product reviews till
August 20, 2012. It contains 1,205,125 reviews written by
645,072 reviewers on 136,785 products (e.g., electronics, house-
wares). Each review has 6 attributes: ReviewerID, Produc-
tID, Product Brand, Rating, Date and Review Text. We
selected Amazon.cn because: 1) Popularity: it is one of the
most popular e-commerce websites in China; 2) Abundance
and Variety: the huge number of consumer reviews cover
a wide range of products; 3) Comparability: many existing
studies such as [4, 1, 12] used datasets from Amazon.com for
evaluation. Thus we believe that the data from Amazon.cn,
which shares similar scheme with Amazon.com, should be
comparable to previous studies.

2.1 Colluder Sampling
To create a dataset that holds sufficient colluders for eval-

uation, the first task is to search for the places where col-
luders would probably be found. A good way to achieve this
is to use frequent itemset mining (FIM), similar with [6]. In
such context, reviewer IDs are regarded as items, each trans-
action is the set of reviewer IDs who have reviewed a partic-
ular product. Through FIM, groups of reviewers who have
reviewed multiple common products can be found. Here we
use maximal frequent itemset mining (MFIM) to discover
groups with maximal size since we focus on the worst spam-
ming activities in our dataset. Following the same parame-
ter settings as [6], 8,915 groups are found, each represented
as a mapping from a set of members (≥ 2) to a set of com-
monly reviewed products (≥ 3). Finally, we merge all the
members of each group into a collection V which consists of
5,055 reviewers in all.

2.2 Annotation
Each reviewer in V should be annotated as either colluder

or non-colluder. It is acknowledged that spammers who ex-
press fake opinions in review websites are hard to identify
due to the lack of ground truth. Fortunately we noticed that

Amazon.cn is practically clearing up the displayed reviews
periodically. We also confirmed that typically a displayed
review will be deleted if it has been regarded as spam or if
its content has been confirmed to be irrelevant to the spe-
cific product, by the website moderators. Thus it would
save great annotation efforts by locating those deleted re-
views in our dataset. We then re-crawl all the reviews of
each reviewer in V on March 25th, 2013, finding that 1,822
out of 5,055 reviewers have at least one of their posted re-
views being deleted by Amazon.cn, during the near seven-
month period1. However, not all of the spam reviews have
been removed from the system, which forces us to manu-
ally examine the remaining reviewers. With the help of the
practical spam review identification guidelines from previous
studies [12, 6], online discussions and our own observations,
as a result, a total of 3,118 non-colluders and 1,937 colluders
are identified. We argue that nowadays for many popular
review websites like Yelp and Amazon, it is common to hire
anti-spam groups to control spam over the sites. They typ-
ically hold information that would be more useful for spam
review detection (e.g., IP Information of reviewers) which is
not publicly available. Nevertheless, for those sites that do
not consistently clean up spam reviews, the practical spam
signals presented in aforementioned sources may facilitate
the annotation process to a great extent.

3. SPOTTING ANOMALIES: EMPIRICAL
ANALYSIS OF SPAM INDICATORS

Effective spam indicators are crucial to the performance
of detecting colluders through modeling or learning. Prior
to our work, existing studies have proposed different spam
indicators in different perspectives. In this section, we per-
form empirical analysis of these indicators on our Chinese
review dataset from a colluder-centric view, i.e., the spam
indicators are categorized into three dimensions - linguis-
tic indicators, individual behavioral indicators and collusive
behavioral indicators - according to a colluder’s potential
reviewing activities on the review sites. Spotted anomalies
are presented together with the evaluations of each indica-
tor. Cumulative histograms (CHs) are used to show the
distributions of the indicator scores over colluders and non-
colluders respectively, which provides a visual intuition for
how well each indicator discriminates colluders. The larger
the gap between the curves of two distributions exhibits,
the better the discrimination capability will be achieved.
Note that although in practice indicators may not be used
individually, our individual evaluation can give a more fine-
grained perspective of how the feasibility of each indicator
would be affected by the changes of the spamming patterns
in real world data, guided by which the potential correlations
among the indicators can be further assessed in practice. All
the indicator scores are normalized to [0,1].

3.1 Linguistic Indicators
Spammers are considered to express opinions in a differ-

ent way with regular reviewers. We evaluate 10 linguistic
indicators (LIs) used in [8, 2, 3]: for the text of each re-
view 1) Unigrams (after Chinese word segmentation); 2)
POS (part-of-speech) tags frequencies; 3) Positive sentiment
word frequency (PWF); 4) Negative sentiment word fre-
quency (NWF); 5) Subjective word frequency (SWF); 6)
1In Amazon.cn, reviewers themselves cannot delete reviews.



Cosine similarity of the review and product descriptions
(SRD); 7) Brand name mentioned frequency (BNF); 8) First
person word frequency (FPF); 9) Second person word fre-
quency (SPF); 10) Squared average length (SAL). Reviews
in Chinese characters are different from those in English
words, where the text is written without any spaces between
words. Word segmentation thus is used to split Chinese
sentences into a sequence of meaningful words. We also
remove stopwords and punctuations from the review text,
and obtain 100 unigrams by using feature selection met-
ric χ2. POS tagging is performed based on the unigrams.
Positive/Negative sentiment words and subjective words are
identified by HowNet. For each reviewer we aggregate all
his reviews into one collection and represent it with these
linguistic indicators. The CHs of each indicator (exclude
Unigrams and POS) are shown in Fig. 1.
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Figure 1: Distributions of colluders (solid) and non-
colluders (dashed) vs. LI scores.

As shown, none of the cumulative histograms of the exam-
ined linguistic indicators show very clear gaps between the
curves. This gives us a hint that nowadays in Chinese review
websites, colluders generally express in a similar way with
ordinary reviewers, or we can say that they behave normally
in the linguistic level. In fact, this is not that surprising
because writing reviews differently (e.g., more passionate)
would not bring any benefit: 1) website moderators may
find these reviews suspicious and then do some cleanups; 2)
readers may find a review untrustworthy if it contains too
many bombastic words, then choose to ignore it.

It is worth noting that in BNF, the curve of non-colluders
lies closer to the left axis, suggesting that non-colluders men-
tion brand names more often than colluders. [2] considers
the reviews that only comment on the brands of specific
products as spam because they believe this kind of reviews
is often biased. While in our case, we find it very likely that
regular reviewers often mention brand names just for refer-
ence. Not a few reviewers buy products greatly relying on
the reputation of specific brands; it is thus natural to com-
ment on brands or just use brands as pronouns. In contract,
colluders write reviews in a more general fashion, they even
do not mention product names in their reviews in practice.

In SAL we can see that non-colluders generally post longer
reviews than colluders. Many of non-colluders are identified,
through our further investigation, as active reviewers who
work hard on their comments. The average squared length
of the text of the reviews written by colluders is 4.03, lower
than the first quartile of that over all the reviews in our
dataset, which is 4.12. Colluders often write reviews with
moderate length probably because they are in a hurry to
move on to the next task for pursuing more profits.

3.2 Individual Behavioral Indicators
Individual behavioral indicators (IBIs) were used effec-

tively in [4, 3]. Only the ones applicable to our dataset
are selected: 1) Review Count (RC); 2) Brand Deviation
Score (BDS); 3) Rating Deviation Score (RDS). 4) Target-
ing Products (TP); 5) Targeting Product Groups (TPG); 6)
General Deviation (GD); 7) Early Deviation (ED). For each
reviewer, BDS measures the deviation in his review counts
over different brands, while RDS measures the variance of
his ratings over different brands. TP evaluates for a par-
ticular product how similar all his reviews are in terms of
ratings and contents. TPG measures the pattern of ratings
towards a set of products sharing common attributes (e.g.,
brand) within a short time interval. GD measures the av-
erage difference between the reviewer rating on one product
versus the product’s average rating, and ED measures how
early the ratings of a product deviate from the average rat-
ing of that product. TP is meaningless in our dataset since
only a small portion of reviewers write multiple reviews for
the same products. Thus the CHs of the remaining six IBIs
are shown in Fig. 2.
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Figure 2: Distributions of colluders (solid) and non-
colluders (dashed) vs. IBI scores.

In the figure, TPG, BDS and RDS exhibit larger gaps
than other three. Specifically, colluders have a much higher
TPG score than non-colluders at any cumulative percent-
age, indicating that colluders tend to review products of the
same brand within a short time period (e.g., 1 day). Also,
the colluder curves for BDS and RDS lie closer to the left
axis, meaning that colluders exhibit less variations in the
number of reviewed brands and ratings given to each brand.
Colluders seem to target a limited number of brands, and
rate all the products under the same brand similarly (e.g.,
consistently high ratings of 4 or 5 stars). Despite the fairly
clear separation in GD, the GD scores of colluders are gener-
ally lower, indicating that their ratings are more consistent
with the product average ratings, which contradicts the ex-
pectation that colluders are the ones often give outlier rat-
ings. This is possible if the compromised products have
been overwhelmed by colluders who all give similar ratings.
We also find that most of the compromised products are
the less popular ones, thus ratings from a small portion of
genuine reviewers would have little impact on the average
ratings. In ED we can hardly separate the curves. In fact, as
confirmed by GETF in Section 3.3, colluders typically post
reviews early. ED performs poorly because the rating devia-
tion of colluders is marginal (with low GD scores). Thus the
low rating deviation scores would effectively neutralize the
higher weights attached to the early reviews of colluders, re-



sulting in similar ED scores with non-colluders. In terms of
RC, colluders seem not to post too many reviews, probably
because they balance their multiple accounts by dispersing
all the reviews.

3.3 Collusive Behavioral Indicators
Since colluders collaboratively post spam reviews on many

products, their collusive behaviors may sell them out, thus
implying the potency of the collusive behavioral indicators.
We select all the 8 collusive behavioral indicators (CBIs)
from [6]: 1) Group Time Window (GTW); 2) Group Devi-
ation (GD); 3) Group Content Similarity (GCS); 4) Group
Member Content Similarity (GMCS); 5) Group Early Time
Frame (GETF); 6) Group Size Ratio (GSR); 7) Group Size
(GS); 8) Group Support Count (GSUP). GTW evaluates
how close, temporally, the members of a group write reviews
for a particular product. GD flags a group as suspicious if its
ratings diverge significantly from other reviewers for a par-
ticular product. GCS and GMCS calculate the maximum
average cosine similarities among inter-member reviews and
among individual member’s reviews, respectively. GETF re-
veals how early a group post reviews for common products.
GSR measures the averaged ratio of the group size to the
actual reviewer number of each common product. GSUP
records the number of the common products reviewed by a
group. However, these indicators are originally group-based
while our task is reviewer-based. We thus first generate the
group-based scores for each reviewer group (see Section 2.1),
then each reviewer will inherit the group-based score from
the corresponding group. For those involved in multiple
groups the highest score will be chosen, as we intend to
capture the worst spamming behaviors of colluders. Fig. 3
shows the CHs of the CBIs.
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Figure 3: Distributions of colluders (solid) and non-
colluders (dashed) vs. CBI scores.

As shown, GTW, GETF and GSR also perform well in
our case. GS shows a clear gap when cumulative percentage
≥ 0.3. It is not surprising that the sizes of colluder groups
are typically larger. However, we also notice the overlap
appearing at the beginning of both curves in GS, indicating
that quite a few colluder groups have similarly small sizes
with benign ones which may form at random. GCS and
GMCS show interesting results about the review contents.
In GCS, neither the result of colluders nor non-colluders is
more statistically significant than each other. In GMCS even
colluders achieve lower scores than non-colluders, implying
that nowadays colluders tend not to copy from neither their
own prior reviews nor those of the accomplices. In fact we
find that many specifications of online published spamming
tasks explicitly state that copying is not allowed during the
whole campaigns, so we speculate that spammers may not

get paid if they simply cut-and-paste prior reviews. GD
fails for the same reason as General Deviation (Section 3.2).
GSUP performs the worst, implying that colluders are not
likely to work together on too many common products in
Chinese review websites.

3.4 Indicators Comparison and Discussion
We obtain AUC scores for each indicator (Fig. 4) using a

Logistic Regression classifier. The AUC ranking is roughly
consistent with the situation illustrated in the cumulative
histograms. Linguistic indicators generally underperform in
this simple detection setting, which has also been observed
in [6]. In terms of the combinations, IBI+CBI performs the
best which is in fact the combination of all behavioral indi-
cators. It seems that for a spammer it is easier to comment
just as a regular reviewer, however, it is much harder to
fake or even change the spamming actions which in most
cases are driven by the specifications or tactics of the spam
campaigns. We further investigate why those eight behav-
ioral spam indicators (General Deviation, ED, RC, Group
Deviation, GCS, GMCS, GS, GSUP) perform poorly.

In fact, when computing CBI scores for each group we ob-
served that 63.4% colluders belong to more than one group
while only 25.5% non-colluders meet this criteria. For illus-
tration, we randomly pick a colluder who is the member of
13 groups and make the following observations: (o1) Low
GSUP: 12 out of the 13 (92.3%) have only 3 common prod-
ucts while the remaining one has 4; (o2) Low GS : 5 have size
2, 3 have size 3, 4 have size 4, and 1 has size 5; (o3) Low brand
variations: all 13 groups target products of one particular
brand; (o4) Similar ratings: among all 124 product-rating
pairs, 21 (16.9%) are 4 stars, and 103 (83.1%) are 5 stars.
There are no ratings lesser than 4 stars; (o5) Overlapping
colluders: among all 78 group-group pairs, 69 (88.5%) have
one common member, 8 have two, and one pair even has
three common members; (o6) Overlapping products: among
all 78 group-group pairs, 57 (73.1%) have at least one com-
mon product. Note that these groups have very low GSUP.

To better understand how these tiny groups cooperate
with each other, we draw a bipartite graph to represent the
relationship among groups, colluders and products. Fig. 5
shows an example, in which all 4 groups of colluders share
a common member “Z4”. C1 and C2 both review products
“1C” and “88” while C3 and C4 both review products “7Y”
and “1C”. Such an arrangement suffices to evade the capture
of those defective behavioral indicators:
• Groups C1 and C2 (likewise C3 and C4) would have

been merged into one bigger group if both groups write
reviews for at least three common products (see Sec-
tion 2.1). Now that they are single groups, GS will
fail to distinguish them from normal ones (randomly
formed groups);

• The GSUP of these groups are also in the same scale
as normal ones which may coincidentally review a few
common products;

• From (o4) we know that groups that target products
of the same brand would give consistently high/low
ratings. If a less popular product is overwhelmed by
many such groups, the majority rule followed by ED,
General Deviation and Group Deviation would become
invalid since the ratings given by colluders will be close
to the average ratings of the compromised products.
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4. DETECTING COLLUDERS
Through the above analysis, we are not quite confident

about the stability of the spam indicators when detecting
colluders in Chinese review websites. Colluders may learn
and change their tactics and eventually adapt to evade exist-
ing anti-spam techniques that equip with those indicators.
In this section, we attempt to solve this problem from an-
other perspective that may bypass the potential defects of
the spam indicators.

4.1 The KNN-based Method
According to the observations in Section 3.4 suspicious

groups are found to be highly similar with each other in
terms of overlapped members and reviewed products, and
similar ratings. This is because given a dense reviewer-
product bipartite graph, by using the FIM algorithm with
fixed parameter settings, the whole graph would be decom-
posed into many small pieces of fully connected sub-graphs
(groups) that may have many overlapped nodes (members
and products). Such small sub-graphs may dilute the ef-
fectiveness of some indicators as discussed in Section 3.4.
However, being used properly, these tiny groups may be fa-
vorable to detect colluders in a novel way. In this section
we propose a KNN-based method to detect colluders by uti-
lizing the similarities between such groups. Let {cj}m

j=1 be
a set of groups and {vi}n

i=1 be a set of reviewers with each
associated with an vector ai of attributes (instantiated as
specific spam indicators in our case). Note that each re-
viewer may belong to multiple groups. By modeling the
colluder detection problem as a binary classification prob-

lem, our goal is to assign each reviewer vi with a class label
li ∈ {pos, neg}2. The idea is that given a set of groups,
the reviewers who belong to “similar” groups may be more
likely to have the same class labels. Thus the class label of
a reviewer vi can be determined commonly (e.g., via voting)
by a set of k reviewers who belong to groups most “similar”
to the groups vi belongs to. Now, we begin by measuring
the pairwise similarity of two groups which consists of three
components as follows:

Common Member Ratio measures the Jaccard simi-
larity of the sets of members of two groups:

scmr = #(Mi ∩Mj)
#(Mi ∪Mj) (1)

where Mi and Mj are the member sets of groups ci and cj .
Common Product Ratio is computed as the sum of

the number of products of the same brands reviewed by
each group, divided by the sum of the number of products
reviewed by each group:

scpr = max
b∈B

#(Pb,i) + #(Pb,j)
#(Pi) + #(Pj) (2)

where B is the set of common brands reviewed by both
groups ci and cj . Pb,i (Pb,j) is the set of the products with
brand b reviewed by group ci (cj), and Pi (Pj) is the set of
the products reviewed by group ci (cj).

Common Brand Rating Deviation computes the de-
viation between the average ratings given to the products
of common brands reviewed by two groups, by using the
normalized inverted RMSD (Root Mean Square Deviation):

scbrd = 1

1 +
√

1
|B|

∑
b∈B

(rb,i − rb,j)2
(3)

where rb,i (rb,j) is the average rating given to the products
with brand b by group ci (cj).

Thus, the pairwise similarity of two groups is defined as
the weighted average of the above measurements:

sci,j =

∑
wksk

wksk
(4)

2Reviewers labeled as colluders are positive instances.



Algorithm 1: The KNN-based Method
Input : Training data: D; Test data: T ; k
Output: Spam label for each reviewer v

1 foreach vi ∈ T do
2 compute svi,j with each instance vj = (aj , lj) ∈ D;
3 choose k instance v′

j ∈ D with highest nonzero sv;
4 add to Dk;
5 if |Dk| < k then
6 add KNN a(D,aj , k − |Dk|) to Dk;
7 li ← arg max

l∈{pos,neg}

∑
v′

j
∈Dk

I(l = l′j);

8 return {li};

where sk ∈ {scmr, scpr, scbrd} and wk is the non negative
weight for sk such that

∑
wk = 1.

Having defined the pairwise similarity of two groups, the
pairwise similarity of two reviewers is computed by taking
the average over the pairwise similarity of each pair of their
respective groups:

svi,j =

∑
k∈Ci

∑
l∈Cj

sck,l

|Ci| · |Cj |
(5)

where Ci and Cj are the set of groups that have reviewer
vi and vj respectively. We thus present the design of our
KNN-based method for colluder detection in Alg. 1. The k
nearest neighbors of reviewer vi are selected according to the
pairwise similarity score computed with each reviewer vj in
training data D (lines 1-4). However, if there are not enough
reviewers (≤ k) in D to achieve svi,j > 0, the vacancies will
be filled by performing the traditional KNNa(�) algorithm
that computes the distance between two reviewers based on
their own attribute vectors a (lines 5-6). Finally, the class
label of reviewer vi is assigned as the one that covers most
of the reviewers in Dk, wherein I(�) is the identity function
that takes value 1 if l = l′j and 0 otherwise (line 7).

4.2 The Graph-based Classification Method
Although shown to be heuristic, the KNN-based method

has made the first attempt to exploit the relational infor-
mation of reviewer groups to conduct detection. Unlike the
review contents or reviewing behaviors, the group structures
of colluders are harder to fake because they have to review
the assigned products to make profits. Once a set of col-
luders have reviewed multiple common products together,
they will be merged into a group. Moreover, the KNN-
based method explores the correlations among colluders by
measuring their similarities. This is intuitive because col-
luders do not work alone. They are well-organized, thus
they must be correlated. However, the KNN-based method
may rely too much on groups. The major limitation is that
in practice the parameters are hard to set when splitting
reviewers into groups. If being tightly set, false negatives
would increase otherwise false positives would grow up. In
addition, the group-level relational information may become
quite sparse in some datasets. We have shown that (Sec-
tion 5.1) if there are not sufficient neighbors with non-zero
sv for voting, the KNN-based method could degenerate into
a traditional KNN classifier that only considers individuals’
intrinsic attributes which are volatile in practice.

More general and flexible approaches are expected to de-
tect colluders while carrying on the explorations made by the
KNN-based method. We thus present our second method
to detect colluders based on the observation that there is
another type of information which may also be hard to
deceive practically once the spam campaigns have taken
place, which is the transaction correlations among review-
ers. Given two reviewers and their transaction histories,
their transaction correlation forms once they have both re-
viewed at least one product within a predefined time win-
dow. We observed that colluders are more likely to review
the same products with other colluders within the period of
the spam campaigns. Thus if we artificially link two review-
ers with an edge once they are found to be transactionally
correlated with each other bounding by a time window ∆t, it
turns out that colluders will be more likely to appear as the
neighbors of other colluders than non-colluders. Mapping to
the classification setting, we say that interlinked reviewers
are more likely to have the same class labels than remote
pairs. As such, the determination of a reviewer’s class label
can be influenced not only by his own attributes, but also by
the class labels of the neighborhood. Thus the class labels
of the interconnected reviewers can be inferred collectively
during the classification, which is the very idea of collective
classification [7, 10] that attempts to jointly classify a set
of unlabeled instances which can be implicitly or explicitly
interrelated. To this end, in order to conduct the classifica-
tion collectively, we first need a graph model to represent the
interconnections among reviewers and then a classification
framework for the inference.

4.2.1 Colluder Graph Model
Our colluder graph model is based on the pairwise Markov

network [11] as the assumption is made that the class la-
bels of reviewers can only be inferred from the attributes
of the corresponding reviewers and the class labels of the
direct neighbors3. Accordingly, we define a colluder graph
CG,{L ∪ A, E ,∆t}. The nodes set L = {Li}m

i=1 is the set
of the class labels to be assigned to each reviewer vi, whose
values {li|li ∈ {pos, neg}}m

i=1 are unobserved and need to
be determined. The nodes set A = {Aj}n

j=1 is the set
of observed attributes associated with each reviewer which
can be spam indicators as discussed in Section 3. E is the
set of edges where (Li, Lj) ∈ E if vi and vj have reviewed
κ(κ ≥ 1) common product(s) within the time window ∆t,
and (Li, Aj) ∈ E if Aj is one of the attributes associated
with reviewer vi whose class label is Li. For brevity of nota-
tion, we denote by Ai = (Ai1, ..., Aik) the attribute vector
associated with reviewer vi, thus (Li, Aij) ∈ E , j ∈ [1, k],
and by ai = (ai1, ..., aik) the value of Ai. Our goal is to col-
lectively assign each reviewer vi with an appropriate class
label li ∈ {pos, neg}. Thus the colluder graph model CG is
associated with the global probability distribution:

log(Pr(l|CG)) =
∑

Li∈L

log(ϕi(li))+
∑

(Li,Lj )∈E

log(ψij(li, lj))−logZ (6)

3This is reasonable because based on the rules of the for-
mation of the edges between reviewers’ labels shown later
in the definition of our colluder graph model, the interrela-
tions between one reviewer and the neighbors of his direct
neighbors make little sense provided that they may not have
necessarily reviewed common products at all.



ϕi(li) = ψi(li)
∏

(Li,Aj )∈E

ψij(li) (7)

where ψi(li), ψij(li), ψij(li, lj) correspond to the potential
functions over three types of cliques Li ∈ L, (Li, Aj) ∈ E
and (Li, Lj) ∈ E respectively. Z is the regularization fac-
tor. In Eq.(6), ϕi can be obtained through the computation
of the distribution over li given the attribute ai associated
with reviewer vi; while ψij should involve relational infor-
mation of reviewers vi and vj to allow the adjacent class
labels to affect the classification result. The definition of
the potential functions will be presented in the subsequent
section, together with the presentation of the inference al-
gorithm. Given Eq.(6), our goal is to find the appropriate
configuration of the class labels l̂ for all the reviewers that
maximize the following objection function:

l̂ = arg max
l

log(Pr(l|CG)) (8)

4.2.2 Collective Inference Algorithm
It is feasible to perform exact inference for a given Markov

network if it has special structures such as trees. How-
ever, in our case, a CG typically consists of thousands of
nodes and loops; thus it becomes impossible to apply ex-
act inference to the optimization function (Eq.(8)). Hence
approximate inference algorithms are needed to tackle this
issue. Previously, [9] and [5] have evaluated different ap-
proximate inference algorithms on synthetic data and real
world data respectively and found Iterative Classification
Algorithm (ICA) to be more reliable. As such, we will base
our design of the collective inference algorithm on ICA [7]
to infer the probable class labels for each reviewer.

We first define the potential functions used in Eq.(6) as:

ϕi(li) = Pr(li|ai) (9)

ψij(li, lj) = cri,j · cdi,j · I(li = lj) (10)

where ϕi(li) is computed as the probability of assigning vi

with li given the attribute ai. I(�) is the identity function
(see Section 4.1). cri,j and cdi,j are collusion scoring func-
tions where cri,j calculates the collusive rate of vi and vj

which captures the collaboration frequency of vi and vj dur-
ing the period ∆t, and cdi,j calculates the collusive degree
of vi and vj which captures the collaboration intensity of vi

and vj during the period ∆t. They are formalized as:

cri,j = #(gi ∩ gj)
#(gi ∪ gj) (11)

cdi,j = 1
1 +

√
1
n

∑n

k=1(rik − rjk)2
(12)

where in Eq.(11) gi (gj) denotes the products reviewed by vi

(vj) within ∆t. #(gi ∩ gj) denotes the number of products
commonly reviewed by vi and vj within ∆t, and #(gi ∪ gj)
denotes the number of products reviewed by either vi or vj

within ∆t. cri,j equals to 1 if both of them have exactly
reviewed the same set of products. The intuition is that the
more common products two reviewers have reviewed within
a certain period, the more likely they may collude with each
other. Note that although this notion attaches little signifi-
cance to non-colluders, the classification process will not be
affected. In Eq.(12), rik (rjk) is the rating given to product
k by vi (vj). Thus cdi,j is the normalized inverted RMSD

Algorithm 2: Collective Inference Algorithm
Input : Colluder Graph CG
Output: Spam label for each reviewer v
// Bootstrapping

1 foreach Li ∈ L do
2 pi ← max

l
ϕi(l); li ← arg max

l

ϕi(l);

// Iteration Classification
3 for q = 1 to M do
4 foreach Li ∈ L do
5 pi(li|CG, l)←α exp{

∑
Lj ∈N(Li)

cri,j ·cdi,j ·pj(li)·ϕi(li)}

such that
∑

l∈{pos,neg} pi(l|CG, l) = 1;
6 pi ← max

l
pi(l|CG, l);

7 li ← arg max
l

pi(l|CG, l);

8 k ← (q/M)× |L|;
9 Update li with top-k pi;

10 return {li};

over all pairs of ratings given to the n common products
reviewed by both vi and vj . cdi,j equals to 1 if both vi and
vj give exact the same ratings to their common products.
Note that Eq.(12) does not consider the rating scale of each
reviewer because spammers always choose the same scale
that is consistent with the perceptions of the masses (e.g.,
reviews with 4 or 5 stars are regarded as positive reviews
while 1 or 2 stars as negative ones).

The collective inference algorithm is presented in Alg. 2. li
is the current most likely assignment of the class label for re-
viewer vi, and pi is the corresponding probability. α is a tem-
poral normalized factor. For each reviewer, the unobserved
class labels and the corresponding distributions are initial-
ized based on the attribute-label clique potential functions
(Eq.(9)) in the bootstrapping (lines 1-2). In the iteration
classification, each iteration recomputes the distribution of
the class label of each reviewer conditioned on the current
class label distributions of the neighborhood by using the
potential function ψij(li, lj) (lines 4-7). At the end of each
iteration, top-k confident class labels are updated where k
linearly increases with the iteration times (lines 8-9).

5. EXPERIMENTAL ANALYSIS

5.1 Evaluation of the KNN-based Method
As shown in Alg. 1, the core of our KNN-based method

is to compute the pairwise similarity of two reviewers and
choose k most similar ones for voting. The performance will
heavily rely on the hypothesis that the pairwise similarity of
two reviewers within the same class should be higher than
that between reviewers having opposite class labels. Fig. 6
shows the distributions of the pairwise similarity scores over
three types of reviewer pairs: neg-neg pairs, neg-pos pairs
and pos-pos pairs. Recall that colluders are considered as
positive instances.

Fig. 6 shows clear separations between the three curves.
The pos-pos pairs generally have much higher sv (the pair-
wise similarity of two reviewers) than the other two. In
Section 3.4 we have revealed that colluders are often found
in multiple similar groups in terms of overlapped members,



Table 1: Statistics of colluder graphs with different time window settings. The statistics of the colluder
graphs corresponding to ∆t = 14, 28, 42, 56, 70, 84, 98, 112 are not shown due to the space constraints.

Size #(pos) #(neg) #(neg-neg) #(neg-pos) #(pos-pos) %(neg-neg) %(neg-pos) %(pos-pos) Density
∆t = 7 4496 1894 2602 6416 1473 22420 0.212 0.049 0.740 0.0030
∆t = 21 4869 1924 2945 15618 2989 40298 0.265 0.051 0.684 0.0050
∆t = 35 4931 1928 3003 24066 4348 53815 0.293 0.053 0.654 0.0068
∆t = 49 4963 1932 3031 31848 5537 64190 0.313 0.055 0.632 0.0082
∆t = 63 4978 1932 3046 39179 6674 73462 0.328 0.056 0.616 0.0096
∆t = 77 4997 1935 3062 46165 7595 82032 0.339 0.056 0.604 0.0108
∆t = 91 5010 1935 3075 52587 8571 89575 0.349 0.057 0.594 0.0120
∆t = 105 5020 1935 3085 58951 9412 96107 0.358 0.057 0.584 0.0131
∆t = 119 5023 1935 3088 65195 10176 101848 0.368 0.057 0.575 0.0141
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Figure 6: Distributions of the pairwise similarity
scores over three different type of reviewer pairs.
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Figure 7: Distribution of the number of the neigh-
bors with non-zero sv for each reviewer.

commonly reviewed products and similar ratings. These fea-
tures are all captured by the three similarity measures de-
fined in Section 4.1. When choosing the nearest neighbors
with the top-k highest sv for voting a colluder’s class la-
bel, as much more pos-pos pairs achieve higher sv than the
neg-pos ones, most chosen nearest neighbors will be positive
instances, which is the very case we desire. Similar situ-
ation applies to non-colluder instances given the apparent
gaps between the curves of neg-pos pairs and neg-neg pairs.
It is also worth noting that the distribution of sv is quite
sparse, over 97.5% of the pairwise similarity scores between
any of the reviewer pairs in our dataset are zero. This would
be problematic when many instances in the dataset do not
have enough neighbors with nonzero sv for voting, our KNN-
based method would then degenerate into a traditional KNN
classifier that only considers individuals’ attributes for de-
cision making. In our case, half of the reviewers have no
more than 22 neighbors with non-zero sv (Fig. 7). Thus our
method is in essence an extension of the classic classification
approaches by exploiting the reviewer group-level relational
information to improve the final performance.

Finally, we evaluate the classification performance of the
KNN-based method using the standard metrics - precision,
recall and f1-score where precision and recall are the ratio of
the predicted true colluders to the predicted reviewers and
true colluders, respectively. Besides, as the classes in our
dataset are of quite different sizes, MCC (Matthews Corre-
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Figure 8: Performance (F1-score and MCC) of the
KNN-based method vs. the number of nearest
neighbors k. Error bars show the standard error
of the mean.

lation Coefficient) is also included which is a more balanced
measure for skewed binary classifications. 10-fold cross-
validation is used to create dataset splits for training and
testing based on the dataset presented in Section 2. The
combination of all the spam indicators LI+IBI+CBI is used
as the attributes a for the traditional KNNa(�) algorithm.
For simplicity, the weights in Eq.(4) are equally set. The
results are shown in Fig. 8. We can see that our KNN-based
method for colluder detection can achieve encouraging re-
sults when the k is not too large. Specifically, when k = 5
the F1-score attains 0.914, which drops accordingly as k
becomes larger. This again verifies the fact that as more
neighbors are set to be chosen from the training set, the
ones in the test set may have greater portion of neighbors
with whom the pairwise similarity scores attain zero. The
traditional KNN algorithm thus steps in to fill up the va-
cancies. As such, subsequent experiments will choose small
k to reduce the chance of degeneration.

5.2 Evaluation of the Graph-based Method
We first generate a collection of colluder graphs according

to the definition described in Section 4.2.1 using different
parameter settings. Recall that an edge forms between the
class labels of two reviewers if they have reviewed κ(κ ≥ 1)
common product(s) within a time window ∆t. In our ex-
periments, we set κ to 1 so as to capture the potential edges
among reviewers as many as possible. The time window ∆t
is set from 7 to 119 days with an interval of one week long.
For each parameter setting, the largest connected compo-
nent of the resulting graph is taken as an instance of our col-
luder graphs. The statistics of the resulting colluder graphs
are shown in Table 1. For data preparation, as Alg. 2 is
fed into networked data, k-fold cross-validation like methods
may not be suitable because splitting the dataset randomly
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Figure 9: Performance (F1-score and MCC) of
the graph-based classification method with different
time windows. Error bars show the standard error
of the mean.

into k subsets and using k− 1 of them for training will lead
to an expectation of (k − 1)/k of neighbors of a test node
being labeled, which can bias the classification results. In-
stead, we use a breadth-first search (BFS) based strategy in
which we construct splits for test data by randomly selecting
the starting node and expanding around it till a predefined
sample size has been reached4. The selected set of nodes Te
are used for testing and the rest, denoted as Tr, are used for
training. Note that, evaluation metrics are measured only
on the subset of Te that has no neighbors in Tr. In our ex-
periments, for a given colluder graph, we repeat this process
multiple times and obtain 10 test-train pairs of splits where
the class distribution of each test data is close to that of
the entire dataset (near stratified). The resulting collection
of splits for a given colluder graph with time window ∆t is
denoted as BS∆t. SVM is used as the local classifier in the
bootstrapping and the combination of all the spam indica-
tors LI+IBI+CBI serves as the attribute set. The iteration
number is set to 10. Fig. 9 shows the performance of our
graph-based classification method (GC).

We observe that GC achieves promising results in a steady
manner as the colluder graph expands incrementally. This
is not surprising because at the beginning when ∆t = 7 the
colluder graph has already possessed very high homophily:

#(pos−pos)
#(pos−pos)+#(neg−pos) = 93.8% (from Table 1) of the colluder-
induced edges connect colluders at both ends, meaning that
a colluder will have a chance of 93.8% to choose another
colluder as neighbors; similarly, a non-colluder will have a
chance of 81.3% to choose another non-colluder as neigh-
bors. This property greatly benefits the iteration phase of
the collective inference algorithm where class labels are up-
dated by seeking neighborhood for consulting.

As shown in Table 1, as the time window becomes larger,
more and more neg-neg and neg-pos edges are added to the
colluder graph. When the time window reaches 119 days, the
pos-pos edges ratio drops to 57.5% while the neg-pos edges
ratio goes up to 5.7%. One may worry that the added neg-
pos edges could possibly affect the relabeling of colluders in
each iteration because colluders are expected to have more
non-colluder neighbors than before. However, the answer is
no. Because when deciding the class labels of each reviewer,
in addition to the neighbors’ class labels being taken into
account, the collusion scoring functions (cr and cd) also take
effect as the weights of the edges. As shown in Fig. 10, as the
time window becomes larger, the boxes of neg-pos edges and

4Empirically, we set the predefined sample size as half of the
size of the corresponding colluder graph.
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Figure 10: The distribution of the weights (cr · cd) of
the colluder graph edges vs. different time window
settings with ∆t = 7, 42, 84, 119.
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Figure 11: Distribution of the time intervals asso-
ciated with different types of edges in the colluder
graph with ∆t = +∞. The median values are dis-
played above the corresponding boxes.

pos-pos edges are shifting downwards due to many newly
added edges having lower cr · cd (also note that the cr · cd
of neg-pos edges are significantly lower than that of pos-pos
edges all the time). As a result, these newly added neg-pos
edges would exert much weaker effects on the determination
of the class labels of colluders than the “older” pos-pos edges
such that the overall performance will not get worse (Fig. 9).

How to set the time window properly to form a “good”
colluder graph that is sufficient to catch most of the collud-
ers in Chinese review websites? We argue that in practice
the time window can be set based on the domain knowledge
from anti-spam experts or the experiences of website medi-
ators. In our case we plot the distributions of time intervals
associated with different types of edges in the colluder graph
with ∆t = +∞ (Fig. 11). The median value (50 days) of the
time intervals associated with all the pos-pos edges seems to
be a fair lower bound for the time window ∆t. With this
setting, most of the pos-pos edges are retained and not many
neg-post are included so as to achieve a relatively high pu-
rity of the colluders’ neighborhood, on the other hand, we
can see from Table 1 that when ∆t = 49 the colluder graph
have already covered 1932/1937=99.7% colluders.

5.3 Performance Comparison
Finally, we compare our two methods (KNN+5 and GC)

with two baseline indicator-only classifiers (KNN and SVM).
For KNN and KNN+ we set k = 5. For GC, SVM is also
used as the local classifier in the bootstrapping. We set
∆t = 50. Thus BS50 is used as the evaluation dataset.
Five spam indicator sets - LI, IBI, CBI, BI (IBI+CBI) and
their combination (ALL) - are evaluated with each of the
aforementioned classifiers. The results are shown in Table 2.
5We here denote our KNN-base method as KNN+.



Table 2: Performance comparison of the proposed methods (KNN+ and GC) and two baseline classifiers
(KNN and SVM). Our proposed methods respectively improve over both of the baseline classifiers at the
confident level of 95% based on two-tailed t-test.

Precision Recall F1-score MCC Precision Recall F1-score MCC
KNN(LI) 0.606±0.010 0.698±0.012 0.648±0.007 0.456±0.013 SVM(LI) 0.631±0.012 0.624±0.026 0.627±0.016 0.489±0.020
KNN(IBI) 0.658±0.012 0.688±0.017 0.672±0.012 0.424±0.019 SVM(IBI) 0.682±0.013 0.625±0.009 0.652±0.009 0.452±0.012
KNN(CBI) 0.795±0.015 0.749±0.017 0.771±0.015 0.663±0.020 SVM(CBI) 0.762±0.008 0.794±0.008 0.777±0.007 0.638±0.010
KNN(BI) 0.789±0.017 0.819±0.015 0.803±0.014 0.705±0.019 SVM(BI) 0.833±0.010 0.827±0.008 0.829±0.007 0.725±0.010
KNN(ALL) 0.805±0.015 0.858±0.010 0.830±0.009 0.742±0.014 SVM(ALL) 0.840±0.012 0.828±0.013 0.834±0.011 0.732±0.017
KNN+(LI) 0.869±0.019 0.936±0.007 0.900±0.013 0.852±0.018 GC(LI) 0.849±0.016 0.866±0.037 0.854±0.022 0.790±0.026
KNN+(IBI) 0.870±0.010 0.937±0.009 0.902±0.005 0.852±0.009 GC(IBI) 0.866±0.014 0.859±0.036 0.859±0.021 0.798±0.025
KNN+(CBI) 0.888±0.011 0.930±0.007 0.908±0.007 0.863±0.008 GC(CBI) 0.893±0.018 0.887±0.014 0.888±0.010 0.841±0.012
KNN+(BI) 0.877±0.011 0.933±0.011 0.903±0.005 0.855±0.008 GC(BI) 0.939±0.011 0.904±0.018 0.919±0.009 0.874±0.016
KNN+(ALL) 0.874±0.010 0.945±0.004 0.909±0.004 0.863±0.005 GC(ALL) 0.927±0.010 0.908±0.029 0.914±0.019 0.879±0.025

We observe that both our methods promisingly outper-
form the baseline classifiers on all indicator sets. KNN+
achieves stably well regardless of the indicator sets. The
F1-score of KNN+ is improved over the baseline classifiers
by 8.9% to 43.5%. This is not surprising because when k is
small, most reviewers will succeed in finding the most similar
neighbors who are very likely to have the same class labels,
thus KNN+ will not degenerate into traditional KNN (us-
ing spam indicators only), the results will not be affected by
specific indicator sets. GC also works well, whose F1-score is
increased over the baseline classifiers by 9.6% to 36.2%. By
comparing the two proposed methods we find that neither
is statistically more significant than each other. Compara-
tively, GC slightly suffers from inferior indicators (LI and
IBI), however, it will recover and even rush ahead once bet-
ter indicators are utilized for bootstrapping. This is because
once the local classifier of GC makes some errors locally in
the bootstrapping, the errors would propagate to other parts
of the network within just a few iterations. Finally, by using
more powerful indicator sets like BI and ALL, GC achieves
the best results in terms of both F1-score (GC(BI)) and
MCC (GC(ALL)).

6. CONCLUSION AND FUTURE WORK
In this paper, we detect colluders in Chinese online re-

views. Empirical analysis is conducted on recently crawled
product reviews from a popular Chinese e-commerce web-
site. Anomalies are spotted not only in the languages col-
luders use but also in the behaviors they act, causing the
failures of many inspected state-of-the-art spam indicators.
Two novel methods are then proposed. Both of the methods
have made good use of the invariant concealed in the dynam-
ics of spam campaigns and treat the reviewers’ behavioral
histories as relational data. Experimental results show that
both of the methods promisingly outperform the baseline
indicator-only classifiers. In the future, we will continue to
verify our proposed approaches on more datasets.
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