A novel heterostructure is developed by grafting 1D SnO2 nanorods onto both sides of pre-grown 2D Fe2O3 nanoflakes, forming a comb-like rather than tree-like branched nanostructure. The SnO2 nanorod branches are determined to grow along the [001] direction on the (±001) planes of Fe2O3 nanoflakes. The resulting SnO2@Fe2O3 nanocombs show stabilized cycling performance and improved volumetric energy density compared to pristine Fe2O3 nanoflakes presumably due to the integration of SnO2 branches as well as the 3D hierarchical structural features.

With an ever increasing list of promising applications, there is a surge in developing efficient and scalable strategies for synthesizing nanostructures with diverse and tunable properties. Often the recruitment of other materials with new properties to form core-shell, hetero- and/or doped structures represents a facile pathway to modify materials properties. Heterostructures consisting of chemically distinct materials have thus attracted intense research interest due to the fact that desired properties and multifunctionality can be achieved by fine-tuning their compositions, shapes, and controlled alignments of the primary nanobuilding blocks. Another key motivation underlying the preparation of heterostructures is the potential to realize the integration of nanoscale devices at a level not possible with conventional top-down methods. As a result, architecturally assembling primary building blocks into the expected geometrical heterostructure is highly desired. Nevertheless, the complexity of the required structures and the difficulty in manipulating the entropic and/or energetic constraints of different building blocks remain formidable challenges awaiting to be resolved.

SnO2 and Fe2O3, two of the most investigated functional semiconductors, have attracted great attention due to their wide range of applications in photocatalytic degradation, gas sensing, and random heterostructures. Compared with the other two heterostructures, branched nanostructures possess two outstanding merits. One is a well-defined interface. Different from most Fe2O3–SnO2 heterostructures with a simple physical contact between Fe2O3 and SnO2, Fe2O3–SnO2 branched heterostructures always have a definite epitaxial relationship between these two components. Note that novel properties distinct from individual constituents usually stem from the interface within the heterostructure. The other is greatly increased surface area. This is especially desirable for energy conversion and storage devices as sufficient light harvest and electrolyte infiltration can be ensured. However, regardless of the existence of diverse Fe2O3–SnO2 branched heterostructures, their implementation in energy storage such as LIBs application is rarely reported.

Here, we demonstrate an integrative assembly of one-dimensional (1D) SnO2 nanorods and two-dimensional (2D) Fe2O3 nanoflakes into a novel comb-like SnO2@Fe2O3 branched nanostructure, in which the SnO2 nanorods are epitaxially aligned on both sides of Fe2O3 nanoflakes in a high density and parallel fashion. It should be highlighted for this fabrication that: (1) the overall synthetic procedure is very simple and low cost, involving only two steps: direct heating of the Fe foil in air for the preparation of Fe2O3 nanoflakes and subsequent hydrothermal epitaxial growth of SnO2 nanorods. Such a method does not contain any catalytic impurities and is capable of scaling up. More importantly, it allows the heterogeneous growth of ordered SnO2 nanorod arrays on Fe2O3 nanoflakes, overcoming the potential interfacial dislocation and stretch originating from their lattice-mismatch. (2) It is the first report on using 2D Fe2O3 nanoflakes as the backbones to anchor 1D SnO2 nanorod branches. The resulting comb-like nanostructure indicates the emergence of a new paradigm in branched nanostructures, in contrast to previous “tree-like” morphologies. (3) The interfacial
Fe₂O₃ and SnO₂. (4) The as-obtained SnO₂@Fe₂O₃ comb-like
heterostructures are freestanding on conductive substrates
(e.g., Fe foil). It should be noted that few reports are available on
preparing self-supported Fe₂O₃–SnO₂ heterostructures till now,²⁹,³⁰
let alone branched heterostructures.²⁸ As aforementioned, SnO₂–
Fe₂O₃ branched heterostructures are hardly ever reported for LIBs
application except for our previous attempt on studying the electro-
chemical lithium storage performances of the reverse status, i.e.
Fe₂O₃ on SnO₂ branched nanostructures.²⁸ Herein, given the high
lithium storage capacities of both SnO₂ and Fe₂O₃ and the freestand-
ing feature of the resulting SnO₂@Fe₂O₃ nanocombs, the yielding
composites are further exploited as anodes for LIBs application.
The significance in using such heterostructures for LIBs can be
stressed as follows. This unique freestanding hybrid architecture
can: (1) completely obviate the need for any ancillary additives such
as carbon black and polymer binder; (2) show enhanced reversible
capacity and cycling performance compared to pristine Fe₂O₃, which
is due both to the prior integration with SnO₂ that can offer high
capacity by electrochemically alloying with Li and the large elec-
trode-electrolyte contact area; and (3) alleviate the inferior packing
problems associated with nanostructures owing to the improved
compactness.

Fig. 1a shows the optical images captured during the process
flow for the synthesis of SnO₂@Fe₂O₃ heterostructures. The Fe foil is first
polished, cleaned, and then annealed at 400 °C, enabling the growth of
Fe₂O₃ nanoflakes. X-ray diffraction (XRD) and Raman spectroscopy measurements show that two phases, Fe₂O₃ and Fe₃O₄,
coexist in the sample obtained at this stage (Fig. S1†), which is
consistent with our previous results.⁴¹ The signals of Fe₂O₃ are from a
condensed Fe₂O₄ layer formed on top of the Fe foil, acting as the
precursor for the growth of Fe₂O₃ nanoflakes. An obvious color
change can be viewed before and after annealing. Although eventual
hydrothermal growth of SnO₂ branches does not lead to visible
alteration in color, the branched nanostructures are indeed formed.
Scanning electron microscopy (SEM) images exhibit the evolution
from Fe₂O₃ nanoflakes to SnO₂@Fe₂O₃ nanocombs (Fig. 1b and c).
Interestingly, pristine Fe₂O₃ nanoflakes exhibit very similar
morphologies to the grass (Fig. 1b and its inset). They are smooth
and of the thickness of ~10 nm, having a non-constant planar width
in the range of ca. 60–300 nm (Fig. 1b). After branching with SnO₂,
the SnO₂@Fe₂O₃ nanostructures look quite like dog’s tail grasses, possessing fuzzy surfaces (Fig. 1c and its inset). Further
close observations from the SEM images show that SnO₂ branches
emanate from both sides of Fe₂O₃ nanoflake backbones and are
arranged regularly and parallel to each other on each side, forming an
intriguing double-sided comb-like structure (Fig. 1d and e). Albeit
with dense coverage of SnO₂ nanorods on both sides, the edges of
Fe₂O₃ nanoflakes remain exposed. The average length and diameter
of the secondary SnO₂ nanorods are measured to be ca. 150 nm and
20 nm, respectively.

Detailed microstructures and compositions of these 3D branched
nanostructures are further characterized by transmission electron
microscopy (TEM). It is extremely difficult to analyze the epitaxial
relationship from the lateral view of the heterostructures due to the
large, varying planar dimension of these SnO₂@Fe₂O₃ hierarchical
nanostructures. Consequently, we investigate the Fe₂O₃ stem and the
SnO₂ branch individually and thereby determine their potential
epitaxial relationship. Fig. 2a presents the high-resolution TEM
(HRTEM) image of a Fe₂O₃ nanoflake, showing three groups of
parallel fringes with the same d-spacing of 0.25 nm. Combining with
the corresponding Fast-Fourier Transformation (FFT) pattern taken

![Fig. 1](image-url)
Fig. 1 (a) Optical images of the samples captured during the process flow. Typical SEM images of (b) Fe₂O₃ nanoflakes and (c) SnO₂@Fe₂O₃ heterostructures. Insets in (b) and (c) are the photo images of grass and dog’s tail grass, respectively. (d and e) High-magnification SEM images of SnO₂@Fe₂O₃ heterostructures.

![Fig. 2](image-url)
Fig. 2 (a) HRTEM image, (b) FFT pattern taken from the rectangular area in (a), and (c) corresponding SAED pattern of a Fe₂O₃ nanoflake. (d) Crystal structure of Fe₂O₃ along the [001] zone axis. (e) HRTEM image and (f) corresponding SAED pattern of a SnO₂ nanorod separated from a SnO₂@Fe₂O₃ nanocomb via sonication. (g) TEM image and corresponding EDX elemental mappings of Fe, Sn, and O for a SnO₂@Fe₂O₃ nanocomb, showing the uniform distribution of each element.
from the rectangular area in Fig. 2a (Fig. 2b), the crystalline planes in the HRTEM image can be indexed to (120), (210), and (110) planes of rhombohedral Fe2O3, respectively. Besides, it can be observed that the FFT pattern is in high consistence with the selected area electron diffraction (SAED) pattern (Fig. 2c), which can be indexed in accord with the [001] zone axis of rhombohedral Fe2O3 (Fig. 2d). Thermodynamically, the nanoflakes tend to lay their basal plane on the TEM grid with a fully coated carbon film. The [001] zone axis is observed with several of the nanoflakes with minimal tilting of the samples. Therefore, it can be unambiguously deduced that the exposed surfaces of Fe2O3 nanoflakes are \((\pm 001)\) planes, acting as the substrates for the epitaxial growth of secondary branches. Fig. 2e shows the HRTEM image of a SnO2 nanorod. Similarly, in combination with the corresponding SAED pattern (Fig. 2f), the marked interplanar \(d\)-spacings of 0.32 nm and 0.33 nm correspond to the \((001)\) and \((110)\) lattice fringes of tetragonal SnO2, respectively. The SnO2 nanorod can be determined to grow along the [001] direction.

The TEM analyses suggest that the SnO2 nanorods prefer to branch perpendicularly on the Fe2O3 nanoflakes such that the SnO2 branches epitaxially grow along the [001] direction on the \((\pm 001)\) planes of Fe2O3 nanoflakes, forming a \(001_{\text{SnO}}/(001)_{\text{Fe2O3}}\) interface. The composition of the single SnO2@Fe2O3 nanocomb is further identified by energy-dispersive X-ray spectroscopy (EDX) mapping. It can be seen that the Fe, Sn, and O signals appear all over the whole structure, showing exactly the same shape as observed under TEM (Fig. 2g). Notably, the SnO2 nanorods are tightly adhered onto the surface of Fe2O3 nanoflakes even after 0.5 h sonication (Fig. S2†). This tough structural integrity is highly desirable for energy storage devices that require the active materials can endure repeated cycling processes.

In order to shed light on the evolution process of such a branched nanostructure, samples obtained at different reaction durations were characterized. As shown in Fig. 3a, after the initial 1 h of growth, no visible change occurred in pristine Fe2O3 nanoflakes, whose surfaces remained clean and smooth as before. However, small dot- and needle-shaped nuclei appeared on both sides of Fe2O3 nanoflakes 1 h later (Fig. 3b and S3†). Subsequent growth to 3 h led to the formation of double-sided comb-like SnO2@Fe2O3 nanostructures (Fig. 3c). Further prolonging the growth time only induced the diameter increase of SnO2 nanorods (Fig. 3d). The synthesis and branching process of the SnO2@Fe2O3 hierarchical nanostructures is schematically illustrated for better understanding (Fig. 3e), consisting basically of three steps. Firstly, the Fe2O3 nanoflakes are grown on the Fe foil through a possible solid–liquid–solid (SLS) mechanism that we proposed previously.31 Secondly, the SnO2 nanoparticles hetero-nucleate through dehydration of Sn(OH)2\(^2\)–, followed by epitaxial growth on the surfaces of Fe2O3 nanoflakes, establishing the \(001_{\text{SnO}}/(001)_{\text{Fe2O3}}\) interfaces. Finally, these particles anisotropically grow up into aligned nanorod arrays on both sides of Fe2O3 nanoflakes along the [001] direction, resulting in the 2-fold symmetrically branched SnO2@Fe2O3 nanostructures.

As far as LIBs are concerned, the use of nanomaterials is highly beneficial for improving the capacities and rate capabilities of solid-state electrodes due to the small diffusion lengths and large surface areas. Nevertheless, only those freestanding nanostructures directly grown onto a plane current collector, completely precluding the need for ancillaries and further processing, can well maintain the gains in diffusion length and electronic conductivity associated with the reduced active material size. Meanwhile, the addition of supplementary interfaces (current collector–active materials, active material–active material, active material–binder, etc.) can also be avoided. Recently, the use of composites is a very important study in finding a solution to the problem of the large capacity fading; therefore we intend to employ our resultant self-supported SnO2@Fe2O3 heterostructures directly as a working electrode, aiming at achieving improved performances.

The performances of the bare Fe2O3 nanoflakes and SnO2@Fe2O3 nanocomb as the anodes of LIBs were tested by galvanostatic discharge–charge and cyclic voltammetry (CV) measurements. The preparation of these working electrodes can be accomplished simply by cutting the Fe-foil supported nanostructures into small platelets without further processing (Fig. S4†). As expected, the nano-architectured SnO2@Fe2O3 electrode manifests superior reversibility and cycling stability towards pristine Fe2O3 nanoflakes (Fig. 4). As shown in Fig. 4a, the SnO2@Fe2O3 nanocomb delivers a stable areal capacity with an average value of 0.43 mA h cm\(^{-2}\) up to 150 cycles after initial fast capacity fading, which is about 1.7 times of that for bare Fe2O3 nanoflakes (0.25 mA h cm\(^{-2}\)). The coulombic efficiency of the composite electrode is also slightly improved, which is likely due to the synergistic effect between these two components. For example, the presence of Fe nanoparticles generated from the lithiation process of the inner Fe2O3 core can promote the reversibility of the reaction between SnO2 and Li\(^+\).27 In addition, despite the severe capacity degradation in the first 10 cycles, the SnO2@Fe2O3 heterostructures can always deliver twice the areal capacities of that for Fe2O3 nanoflakes under different current densities (Fig. 4b). Noticeably, both electrodes can exhibit high areal capacity again when the current density is lowered back to 0.18 mA cm\(^{-2}\). The slightly reduced charge transfer resistance (23.6 \(\Omega\)) for the composite electrode towards bare Fe2O3 nanoflakes (29.6 \(\Omega\)) partially accounts for the high capacity at different current rates (inset in Fig. 4b). Fig. 4c and d depict the
but fills the free spaces between the Fe\textsubscript{2}O\textsubscript{3} nanoflakes, resulting in a more dense structure (Fig. 4e). In this case, the improved areal capacity will undoubtedly lead to the enhanced volumetric energy density. It is important to highlight that the lower volumetric energy density is one of the disadvantages that concomitantly appears when nanomaterials are used as the electrodes for LIBs due to the inferior packing of particles. It is even more difficult to improve the volumetric energy densities for those freestanding nanostructures as other materials are difficult to be added without destroying their structures. When such a situation arises, preparation of composites at the nanoscale is highly important.

In summary, we have demonstrated a novel comb-like branched heterostructure by hydrothermally grafting 1D SnO\textsubscript{2} nanorods onto both sides of pre-grown 2D Fe\textsubscript{2}O\textsubscript{3} nanoflakes. The secondary SnO\textsubscript{2} nanorods are determined to grow on the (±001) planes of Fe\textsubscript{2}O\textsubscript{3} nanoflakes along the [001] direction, accounting for the unique 2-fold symmetrical growth. The resulting SnO\textsubscript{2}@Fe\textsubscript{2}O\textsubscript{3} nanocombs show stabilized cycling performance and improved volumetric energy density compared to pristine Fe\textsubscript{2}O\textsubscript{3} nanoflakes, which are presumably due to the integration of SnO\textsubscript{2} branches as well as the 3D hierarchical structural features. We believe such a novel comb-like SnO\textsubscript{2}@Fe\textsubscript{2}O\textsubscript{3} heterostructure is also a promising candidate in photocatalytic, water splitting, and photovoltaic applications.

Acknowledgements

This work is supported by the Singapore National Research Foundation under NRF RF award no. NRF-RF2010-07 and MOE Tier 2 MOE2009-T2-1-037.

Notes and references
