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Abstract
We study the problem of partial geometric cover, which asks to find the minimum number of
geometric objects (unit squares and unit disks in this work) that cover at least (n − t) of n given
planar points, where 0 ≤ t ≤ n/2. When t = 0, the problem is the classical geometric cover problem,
for which many existing works adopt a general framework called the shifting strategy. The shifting
strategy is a divide and conquer paradigm which partitions the plane into equal-width strips, applies
a local algorithm on each strip and then merges the local solutions with only a small loss on the
overall approximation ratio. A challenge to extend the shifting strategy to the case of outliers is to
determine the number of outliers in each strip. We develop a shifting strategy incorporating the
outlier distribution, which runs in O(tn log n) time. We also develop local algorithms on strips for
the outliers case, improving the running time over previous algorithms, and consequently obtain
approximation algorithms to the partial geometric cover.
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1 Introduction

The geometric cover with outlier is a generalization of the classic geometric cover problems to
the case where there are outliers. As the real-world data usually contain outliers, which can
dramatically affect the output of a general geometric cover algorithm, we hope to exclude the
outliers along with finding an optimal covering. Given n points in the plane and an integer
0 ≤ t ≤ n/2, the geometric cover with outliers asks to find the minimum number of geometric
objects of a given type that cover at least (n− t) points. The uncovered points are referred
to as outliers. The geometric objects we consider in this work are the most two common
ones, namely, unit squares (side length 1) and unit disks (radius 1). Correspondingly, we
call the two problems partial square cover and partial disk cover, denoted by PSC and PDC,
respectively. The problems are formally defined as follows.

▶ Problem 1 (Partial Geometric Covers). Given a planar point set X of size n and an integer
0 ≤ t ≤ n/2, we define three problems as follows.

Partial Unit Square Cover (PSC) find a minimum number of unit squares that cover at
least (n− t) points of X.
Partial Unit Disk Cover (PDC): find a minimum number of unit disks that cover at least
(n− t) points of X.
Restricted Partial Unit Disk Cover (RPDC): find a minimum subset of X such that the
unit disks centered in the subset cover at least (n− t) points of X.

The special case of PSC and PDC when t = 0 are the classical square cover and disk cover
problems, which were motivated by the applications in image processing [25] and wireless
networking [23]. Both of them are known to be strongly NP-hard and hence no FPTAS
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exists [18]. Even when the square or disk positions are restricted to the given point set, the
problem (which becomes RPDC in the disk case) remains NP-hard [7]. Therefore the research
has been considering developing polynomial-time algorithms with a small approximation
ratio and time complexity.

For PSC, Gonzalez gives a 2-approximation with time complexity O(n log n) and a (1 + ϵ)-
approximation algorithm with time complexity O(ϵ−1n1/ϵ) in [14]. The techniques can be
adapted to PDC, producing a (2 + ϵ)-approximation solution in O(ϵ−2n7) time [14, 3] and
also a (1+ ϵ)-approximation in O(ϵ−2n6⌈

√
2/ϵ⌉−1) time [20]. They suffice for a PTAS but for a

constant-factor approximation it could incur a high runtime. Furthermore, an O(n log n)-time
4-approximation algorithm was given in [3] and there also exists a 2.8334-approximation with
runtime O(n(log n log log n)2) in [10].

These algorithms are all for the case of no outliers. To the best of out knowledge, we
only found three papers studying the outlier case of the covering problems as listed in
Problem 1. In [11], Gandhi et al. gave a (1 + ϵ)2-approximation algorithm for PDC which
runs in runtime O(ϵ−1n2⌈

√
2/ϵ⌉2+1). Later in [12], Ghasemalizadeh and Razzazi gave a (1+ ϵ)-

approximation to PSC with outliers in runtime O(ϵ−1n4/ϵ+2) and a (1 + ϵ)-approximation
to PDC with outliers in time1 O(ϵ−1n6⌈

√
2/ϵ⌉+2). Note that their runtimes do not depend

on t, the number of outliers, as their algorithms actually compute the solutions for all
t = 0, . . . , n/2. Additionally for PDC, Inamdar studies the local search methods in [19] and
gives for 0 < ϵ ≤ 1/2 an (1 + 4ϵ)-approximation algorithm that runs in time at least nO(1/ϵ2)

time. The best existing results for both the outlier and the non-outlier cases are summarized
in Table 1, where ℓ = 1/ϵ is the approximation parameter.

Although there are only limited works studying the partial geometric over, detect-
ing outliers along with shape fitting tasks is of special significance in computational geo-
metry and has thus become an enduringly popular research topic. Examples include k-
means/medians/centers clustering with outliers [15], subsets of size (n− t) with the minimum
diameter [6], rectangles of the minimum area that covers at least (n− t) points [24], convex
hulls with outliers [2] and projective clustering with outliers [21].

A particularly important variant of the unit disk cover problem is when the given points
lie within a vertical strip and we define the strip variants of Problem 1 as follows.

▶ Problem 2 (Within-Strip Partial Geometric Covers). Given a planar point set X contained
in a vertical strip of width W and an integer 0 ≤ t ≤ n/2 where n = |X|. We define three
problems as follows.

Within-strip Partial Unit Square Cover (StripPSC) find a minimum number of unit
squares that cover at least (n− t) points of X.
Within-strip Partial Unit Disk Cover (StripPDC): find a minimum number of unit disks
that cover at least (n− t) points of X.
Within-strip Restricted Partial Unit Disk Cover (StripRPDC): find a minimum subset of
X such that the unit disks centered in the subset cover at least (n− t) points of X.

1 We note an omission in the time complexity for PDC claimed in [12] and corrected it in our claim. In
the last paragraph in Section 3 of [12, p553–554], which discusses the adaptation of the strip partial
covering algorithm [12, p551] to disks. It divides the plane into strips of width 1 and group ℓ consecutive
strips. However, when ℓ = 1, the claim that “there can be no disk in the set OPT that covers points in
two adjacent strips in more than one shift partition” at the bottom of [18, p132] would not hold and the
approximation ratio of the original shifting strategy would not continue to hold. To apply the standard
shifting strategy [18] when ℓ = 1, the plane should be divided into strips of width 2 instead of 1. This
leads to a runtime of O(ϵ−1n6⌈

√
2/ϵ⌉+2) instead of the claimed O(ϵ−1n4

√
2/ϵ+2).
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Table 1 Summary of the best existing results (including the non-outlier case) and our main
results. The runtime column suppresses the O(·) notation. The approximation parameter ℓ is always
a positive integer. Some of our results are (α, 1 + δ)-bicriteria approximations, i.e., they achieve an
α-approximation by removing at most (1 + δ)t outliers, where δ > 0 is arbitrary.

Paper Problem Approximation Runtime
Ratio

Unit
Square
Cover

[14] PSC, t = 0 2 n log n

PSC, t = 0 1 + 1
ℓ

ℓ2n4ℓ−1

[12] PSC 1 + 1
ℓ

ℓn4ℓ+2

This work PSC (2, 1 + δ) δ−1nt log n

Unit
Disk

Cover

[14] StripPDC, t = 0, W = 2ℓ 1 n4⌈
√

2ℓ⌉+1

[9] StripPDC, t = 0, W ≤ 4/5 1 n13

StripRPDC, t = 0, W ≤ 4/5 1 n7

[10] PDC, t = 0 2.8334 n(log n log log n)2

[3] PDC, t = 0 4 n log n

[5] PDC, t = 0 7 n

[11] PDC (1 + 1
ℓ
)2 ℓn2⌈

√
2ℓ⌉2+1

[12] PDC 1 + 1
ℓ

ℓn6⌈
√

2ℓ⌉+2

This work

PDC ( 7
2 , 1 + δ) n7t + δ−1nt log n

StripPDC, W ≤ 4/5 1 n7t

RPDC (1 + 6√
5 + 1

ℓ
, 1 + δ) ℓn4t + δ−1ℓnt log n

StripRPDC, W ≤
√

5/3 1 n4t

The strip variants are motivated with the hope to obtain an algorithm of a better
approximation ratio when some restriction is imposed on the input set, which is possible
since the VC dimension might be smaller [16]. Once a local algorithm for the strip version is
obtained, a natural idea for solving the full problem is to first partition the plane into strips
and then merge the local within-strip solutions by the shifting strategy introduced in [18].

A challenge is that we need to determine the number of outliers on each strip in order to
run the local algorithm. In Section 3, we introduce a new shifting strategy to overcome such
challenge. We also prove in Theorem 1 that merging the local solutions will only incur a
small multiplicative loss on the approximation ratio.

For notational convenience, we denote a solution to PSC, PDC, RPDC, StripPSC, Strip-
PDC and StripRPDC by solS(X, t), solD(X, t), solR(X, t), solS(X, W, t), solD(X, W, t) and
solR(X, W, t), respectively, and the optimal solution by optS(X, t), optD(X, t), optR(X, t),
optS(X, W, t), optD(X, W, t) and optR(X, W, t), respectively.

Our Results. We summarize the existing results and our main results in Table 1.
We develop a shifting strategy that approximates the optimal number of outliers on

each strip in Section 3. With the new shifting strategy, we give an O(δ−1nt log n)-time
bicriteria approximation algorithm to PSC, which outputs at most 2 · opt(X, t) unit squares
covering at least n− (1 + δ)t of the given points. This can be viewed as an extension of the
2-approximation O(n log n)-time result in [14] to the outlier case without compromising the
time complexity for small t and constant δ.

For the strip variants of the disk cover, we give an O(n7t)-time exact algorithm for
StripPDC when W ≤ 4/5, improving on the best known non-outlier result of O(n13) time,
and an O(n4t)-time exact algorithm for StripRPDC when W ≤

√
5/3, also improving on the

best known runtime of O(n7). These improvements are close to quadratic for small t.

STACS 2021
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w
W = ℓ · w

· · · −4 −3 −2 −1 0 1 2 3 4 · · ·

Figure 1 The plane is divided into vertical strips of width w, indexed by integers, and ℓ strips
are grouped into a wider one of width W . The figure shows an example of ℓ = 5.

For the original problem of PDC, based on our new results for the strip variant and the
new shifting strategy, we show a 3.5-approximation algorithm with runtime O(n7t). This is
a new trade-off between the approximation ratio and the running time, and is so far the best
running time for an approximation ratio less than 4 for PDC. In the same spirit, we show a
(1 + 6/

√
5 + ϵ)-approximation algorithm for RPDC with a runtime of O(n4t/ϵ), where the

polynomial dependence on n has a constant exponent, independent of ϵ.
We also extend the previous 4-approximation algorithm [3] for the unit disc cover problem

to the outlier case with the same O(n log n) running time. See Appendix C.

2 Organization of the Paper

The high-level approach to solve PSC, PDC and RPDC follows a divide-and-conquer paradigm
known as the shifting strategy [18]. We divide the plane into strips of equal width, run a
local algorithm to solve the subproblem on every strip and then merge the local solutions.
The main challenge is to determine the number of outliers within each strip. Inspired by [15],
we develop a new shifting strategy in the presence of outliers that can in O(tn log n) time
approximate the number of outliers on each strip. We present this new shifting strategy in
Section 3 and then derive a 2-approximation to PSC in Section 4. The disk cover problems
are discussed in Section 5. We state several new geometric observations in Section 5.1, upon
which we design polynomial-time local algorithms that output exact solutions to StripPDC
and StripRPDC in Section 5.2. Finally in Section 5.3, with the local algorithms and the new
shifting strategy, we obtain one bicriteria algorithm for PDC and one for RPDC.

3 A Shifting Strategy Compatible with Outliers

The shifting strategy introduced by Hochbaum and Maass in [18] has been widely employed
in the problem of geometric cover [14, 4, 8, 22, 1, 10, 20, 13]. The strategy requires a partition
of the plane and a local algorithm for each single part of the partition. It runs the local
algorithm for each part and merges the local solutions with only a small loss on the final
approximation ratio. However, in the presence of outliers, we have to determine the number
of outliers distributed to each part. Therefore, in this section, we develop a new shifting
strategy that can approximate the number of outliers on each strip with provable guarantees.

We now illustrate the shifting strategy for PSC, PDC and RPDC with t outliers. Sup-
pose that the plane is divided into (infinitely many) vertical strips of width w (w ≤ 1),
indexed by integers, say, . . . ,−2,−1, 0, 1, 2, . . . from left to right. There are in total ℓ ways
G1, G2, . . . , Gℓ to group ℓ consecutive strips, where Gi = {[k · ℓ + i, k · ℓ + ℓ + i− 1] | k ∈ Z},
i ∈ {0, 1, 2, . . . , ℓ− 1}, resulting in the plane’s being divided into wider strips of width ℓ · w.
See Figure 1 for an illustration. To determine the number of outliers in each wider strip, we
combine the shifting strategy [18] and the idea from [15]. We use i for the grouping index
and j for the index for non-empty strip from left to right in a grouping Gi.
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▶ Theorem 1. With a local algorithm A to a strip of width ℓ · w ≤ 1, we can find a solution
1. solS(X, ⌊(1 + δ)t⌋) ≤ τ ·

(
1 + ⌈1/w⌉

ℓ

)
· optS(X, t) for PSC;

2. solD(X, ⌊(1 + δ)t⌋) ≤ τ ·
(

1 + ⌈2/w⌉
ℓ

)
· optD(X, t) for PDC;

3. solR(X, ⌊(1 + δ)t⌋) ≤ τ ·
(

1 + ⌈2/w⌉
ℓ

)
· optR(X, t) for RPDC;

where τ denotes the approximation ratio of A and δ > 0 is arbitrary.

Proof. Let si (si ≤ n, i = 1, 2, . . . , ℓ) denote the number of non-empty strips of width ℓ · w
in Gi. These strips in Gi are denoted as Si,j , j = 1, 2, . . . , si from left to right. Define
Xi,j = X ∩ Si,j . We apply the local algorithm A to obtain a solution sol(Xi,j , q) for each
q ∈ I where I = {⌊(1 + δ)r⌋|r = 0, 1, 2, . . . , ⌊log1+δ t⌋} ∪ {0, ⌊(1 + δ)t⌋}. We also define
a function fi,j on {0, 1, 2, . . . , ⌊(1 + δ)t⌋}, where fi,j(q) (q ∈ {0, 1, 2, . . . , ⌊(1 + δ)t⌋}) is
defined to be the value of the lower convex hull of {(q, sol(Xi,j , q)) |q ∈ I}. The summation
Fi(qi,1, qi,2, . . . , qi,si

) =
∑si

j=1 fi,j(qi,j),
∑si

j=1 qi,j ≤ ⌊(1 + δ)t⌋ is a convex function.
The minimum point of Fi can be found by going down along the edges of the convex

polygonal surface whose vertices are (qi,1, qi,2, . . . , qi,si
, Fi(qi,1, qi,2, . . . , qi,si

)),
∑si

j=1 qi,j ≤
⌊(1 + δ)t⌋. The details are presented in Algorithm 1. We denote the minimum point by
(ti,1, ti,2, . . . , ti,si). We also let t∗

i,j denote the number of outliers in Xi,j for the optimal
solution opt(X, t), and t′

i,j be the power of 1 + δ between t∗
i,j and

⌊
(1 + δ)t∗

i,j

⌋
. The solutions

on each strip are put together to get

soli(X, ⌊(1 + δ)t⌋) :=
si∑

j=1
sol(Xi,j , ti,j).

As
∑si

j=1 t′
i,j ≤

∑si

j=1⌊(1 + δ)t∗
i,j⌋ ≤ ⌊(1 + δ)t⌋, we then have

si∑
j=1

sol(Xi,j , ti,j) = Fi(ti,1, ti,2, . . . , ti,s) ≤ Fi(t′
i,1, t′

i,2, . . . , t′
i,si

) ≤
si∑

j=1
sol(Xi,j , t′

i,j).

Moreover opt(Xi,j , t′
i,j) ≤ opt(Xi,j , t∗

i,j) as opt(Xi,j , q) is a decreasing function on q. We thus
have

soli(X, ⌊(1 + δ)t⌋) ≤
si∑

j=1
sol(Xi,j , t′

i,j) ≤ τ ·
si∑

j=1
opt(Xi,j , t′

i,j) ≤ τ ·
si∑

j=1
opt(Xi,j , t∗

i,j).

We claim that a unit square can cross at most ⌈1/w⌉+ ℓ strips of width ℓ ·w in G1 ∪ · · · ∪Gℓ.
The proof is deferred to Lemma 5. This indicates that for unit square

ℓ∑
i=1

soli(X, ⌊(1 + δ)t⌋) ≤ τ ·
ℓ∑

i=1

si∑
j=1

opt(Xi,j , t∗
i,j) ≤ τ · (⌈1/w⌉+ ℓ) · opt(X, t).

We finally get a solution

sol(X, ⌊(1 + δ)t⌋) = min
i=1,...,ℓ

soli(X, (1 + δ)t) ≤ τ ·
(

1 + ⌈1/w⌉
ℓ

)
· opt(X, t).

For unit disks, we shall prove in Lemma 5 that a unit disk can cross at most ⌈2/w⌉+ ℓ strips
in G1 ∪ · · · ∪Gℓ and a similar argument as above yields a solution with an approximation
factor of τ ·

(
1 + ⌈2/w⌉

ℓ

)
. ◀

STACS 2021
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Algorithm 1 Local algorithm for every non-empty strip in a grouping.

procedure Shifting(X, t, A, Gi) ▷ X a set of n points, 0 ≤ t < n, Gi a grouping
s← number of nonempty strips in Gi ▷ s ≤ n

I ← {⌊(1 + δ)r⌋ | r = 0, 1, 2, . . . , ⌊log1+δ t⌋} ∪ {0, ⌊(1 + δ)t⌋}
for j = 1, 2, . . . , s do

Xj ← points of X that are on the j-th nonempty strip
Compute the lower convex hull of {(q,A(Xj , q))|q ∈ I} ▷ A is the local algorithm
for tj = 0, 1, . . . , ⌊(1 + δ)t⌋ do

fj(tj)← the value of the lower convex hull at tj , as defined in text
q1 ← 0, q2 ← 0, . . . , qs ← 0
T ← [(fj(tj)− fj(tj − 1), j, tj) |1 ≤ j ≤ s, 1 ≤ tj ≤ ⌊(1 + δ)t⌋]
Sort T according to the partial ordering ≼
for k = 1, 2, . . . , ⌊(1 + δ)t⌋ do

j ← the index such that T [k] = (fj(tj)− fj(tj − 1), j, tj)
qj ← qj + 1

return (q1, q2, . . . , qs)

An algorithm to find the minimum point of Fi(qi,1, qi,2, . . . , qi,si) subject to
∑si

j=1 qi,j ≤
⌊(1 + δ)t⌋ is given in [15], which we reproduce in Algorithm 1. In the remaining of this
subsection, we focus on explaining the algorithm that outputs the minimum of Fi in one
grouping and thus omit the grouping index i in all the subscripts. For example, Fi becomes
F and fi,j becomes fj . Also for convenience, we have the following definition.

▶ Definition 2. Suppose gj(q) := fj(q)− fj(q − 1), then we define a partial ordering such
that gj1(q1) ≼ gj2(q2) if one of the following conditions is satisfied
1. fj1(q1)− fj1(q1 − 1) < fj2(q2)− fj2(q2 − 1)
2. j1 < j2 and fj1(q1)− fj1(q1 − 1) = fj2(q2)− fj2(q2 − 1)
3. j1 = j2 and q1 < q2 and fj1(q1)− fj1(q1 − 1) = fj2(q2)− fj2(q2 − 1)

With the partial ordering on {gj(q)|1 ≤ j ≤ s, 1 ≤ q ≤ (1 + δ)t}, we restate the algorithm
in [15] below. The algorithm can be regarded as a discrete version of gradient descent, at
each step of which we go down along the steepest direction in which the function value
decreases the most. The correctness of Algorithm 1 is ensured by the following two lemmata.

▶ Lemma 3. At the beginning of the k-th iteration in Algorithm 1, we have qj = tj − 1 where
(fj(tj)− fj(tj − 1), j, tj) = T [k].

Proof. For any t′
j < tj , we have fj(t′

j)−fj(t′
j−1) < fj(tj)−fj(tj−1) by the convexity of fj .

Therefore fj(t′
j)− fj(t′

j − 1) must be ahead of fj(tj)− fj(tj − 1) under the partial ordering
≼. This indicates that the update qj ← qj + 1 has been executed (tj − 1) times before. As
the initial value of qj is 0, then at the k-th iteration (fj(tj)− fj(tj − 1), j, tj) = T [k], it must
be true that qj = tj − 1. ◀

We defer the proof of the following lemma to Appendix A for completeness.

▶ Lemma 4 (Lemma 3.3 [15]). Algorithm 1 outputs min f(q1, . . . , qs) subject to
∑s

j=1 qj ≤
⌊(1 + δ)t⌋.

We simply select the minimum among all soli(X, ⌊(1 + δ)t⌋), 1 ≤ i ≤ ℓ as our final
solution. To prove its approximation ratio, we need the following lemma.



Z. Guo and Y. Li 39:7

▶ Lemma 5. Suppose that ℓ · w ≤ 1. If the strip boundary lines in the plane partition do
not cross any point of X, then a unit square can cover points of X distributed in at most
⌈1/w⌉+ ℓ different strips of width ℓ · w in G1 ∪ · · · ∪Gℓ, and a unit disk at most ⌈2/w⌉+ ℓ.

Proof. Let S denote the leftmost and S′ the rightmost strip of width ℓ · w that intersects
a unit square. Also let i1 and i2 denote the indices of the left boundary line of S and S′

respectively. Then the index of the right boundary line of S is i1 + ℓ. Note that the distance
between the right boundary line of S and the left boundary line of S′ is (i2 − i1 − ℓ) · w and
must be smaller than 1. Therefore, we have i2 − i1 < ℓ + 1/w. Since i1, i2 are integers, this
implies that i2 − i1 ≤ ℓ + ⌈1/w − 1⌉. We then conclude a unit square can intersect at most
ℓ + ⌈1/w − 1⌉ + 1 = ℓ + ⌈1/w⌉ strips of width ℓ · w in G1 ∪ · · · ∪ Gℓ. A similar argument
works for unit disks. ◀

The algorithm to partition the plane into vertical strips of width w is presented in
Appendix D. It guarantees that no boundary line crosses a point in X. It remains to develop
local algorithms for the StripPSC, StripPDC and StripRPDC on strip of width W = ℓ · w.

4 Square Cover

In this section, we illustrate the application of Theorem 1 to the partial square cover problem.
We first consider the local problem StripPSC with W = 1. For convenience, we define the
notion of anchored squares as follows. Note that our definition is different from that in [18].

▶ Definition 6 (Anchored Square). For a strip of width W = 1 and a point set X within the
strip, a square is anchored if its left and right sides coincide with the left and right boundary
lines of the strip, respectively, and its upper side crosses a point of X.

As a unit square L can be translated to an anchored one L′ so that L ∩X ⊆ L′ ∩X,
we therefore only consider the anchored squares in StripPSC when W = 1. There are n of
them. Without loss of generality, we can assume that no two points in X have the same
y-coordinates, otherwise we simply rotate the plane. We sort X in the increasing order of
the y-coordinates, say, X1, . . . , Xn. Let Li denote the anchored square with Xi on its upper
side and Bji (j < i) denote the number of points above the upper side of Lj and below the
lower side of Li. Let N [i][k] denote the minimum size of a set of squares that covers Xi

(1 ≤ i ≤ n) and at least (i− k) (0 ≤ k ≤ t) points from X1 to Xi, then we have the following
recursive formula for N [i][k].

N [i][k] = min
j<i

N [j][k −Bji] + 1. (1)

Note that we require Xi to be covered in an optimal cover of N [i][k]. Therefore it is only
necessary to consider in (1) those j’s such that Xj is not covered by Li and Bji ≤ k. Let hi

denote the index of the highest point below the lower side of Li, then only those j ∈ [hi−k, hi]
would be considered. As k ≤ t, there are at most t such candidate j’s. Computing all hi

takes O(n) time and we can store these values. We also note that Bji = hi − j for those
j ∈ [hi − k, hi]. Therefore the recursive formula (1) can be rewritten as

N [i][k] = min
hi−k≤j≤hi

N [j][k − hi + j] + 1.

This is the base of our local algorithm that outputs an exact solution to StripPSC when
W = 1, which we present in Algorithm 2.

STACS 2021
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Algorithm 2 The algorithm that outputs an optimal solution to StripPSC.

1: procedure SquareLocal(X, t) ▷ 0 ≤ t ≤ n/2
2: X ← set of planar points
3: n← |X|
4: sort X so that the y-coordinates of the points are increasing
5: Li ← the anchored square with Xi on its upper side
6: hi ← the index of the highest point of X below Li

7: Initialize array N [j][k]←∞ for 1 ≤ j ≤ n and 0 ≤ k ≤ t

8: for i = 1, 2, . . . , n do
9: for k = 0, 1, . . . , t do

10: N [i][k]← minj∈[hi−k,hi] N [j][k − hi + j] + 1
11: return mink∈[0,t] N [n− k][t− k]

▶ Lemma 7. There exists an exact algorithm to StripPSC in time O(nt log n) when W = 1.

Proof. It takes O(n) time to compute all hi and O(nt) time to compute all Bij for j ∈
[hi − t, hi]. For each k = 0, . . . , t, we maintain a data structure of the dynamic range
minimum query (RMQ) for the one-dimensional array N [1][k], . . . , N [n][k]. The dynamic
RMQ structure in [17] supports both update and query in O(log n) time. For each i = 1, . . . , n

and k = 0, . . . , t, we update the data structure once and query the data structure once.
Therefore, filling the N [i][k] array takes time O(nt log n) in total and the overall runtime is
thus O(nt log n). ◀

▶ Theorem 8. For PSC, there exists an O(δ−1nt log n)-time algorithm which outputs 2 ·
opt(X, t) unit squares that cover at least n− (1 + δ)t of the given points.

Proof. Note that in Algorithm 2, we have computed all N [i][k] for 1 ≤ i ≤ n and 1 ≤ k ≤ t,
that is, we know the optimal solution to StripPSC that cover n − k points of X for all
k = 0, . . . , t when W = 1. With Algorithm 2 as the local algorithm A and ℓ = 1, we
can run Algorithm 1 in O(nt log1+δ n) = O(δ−1nt log n) time and obtain a solution of size
τ ·

(
1 + ⌈1/w⌉

ℓ

)
· opt(X, t) = 2 · opt(X, t) that covers at least n − (1 + δ)t points of X. In

total, the time complexity is O(δ−1nt log n). ◀

5 Disk Cover

In this section, we study the disk cover problems PDC and RPDC. We first introduce the
notions and definitions in Section 5.1. We also prove a few lemmata which are critical for
developing the local algorithms to StripPDC and StripRPDC. In Section 5.2 we describe the
local algorithm in details. And finally in Section 5.3, we solve PDC and RPDC by the local
algorithm in Section 5.2 and the shifting strategy we develop in Section 3 together.

5.1 Geometric Observations
When the disk centers are unrestricted, it is equivalent to considering only the unit disks
whose boundary cross two points of X. Such unit disks are defined as the anchored disks
in [11, 12]. In this work, we extend this notion to include the unit disks with a point in X as
its highest or lowest point and give the formal definition below. We shall only consider the
anchored disks for PDC and StripPDC in the rest of the paper.
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▶ Definition 9 (Anchored Unit Disks). Given a point set X in the plane, a unit disk is
anchored if either there are two points of X on its boundary, or the highest, or the lowest
point of the unit disk is in X.

▶ Lemma 10. It is sufficient to consider only the anchored unit disks in PDC and StripPDC.
There are at most n2 + n anchored disks.

Proof. For any unit disk D, let D′ be the lowest disk such that D′ ∩X ⊇ D ∩X. We can
prove by contradiction that there are two points of X on the boundary of D′ or the highest
point of D′ is in X. If there is no point of X on the boundary of D′, then we can translate
D′ downwards by a small value such that the translated disk still covers D′ ∩X ⊇ D ∩X.
If there is only one point of X on the boundary of D′ and the point is not at the highest
position of D′, we can rotate D′ around this point by a small angle so that the y-coordinate
of the disk center decreases and the rotated disk still covers D′ ∩X ⊇ D ∩X. Either of two
cases would result in a contradiction. There are at most (n−1)n

2 ·2 + n = n2 of such disks. We
also include the disks whose lowest point is in X and it total there are n2 + n of them. ◀

Before presenting the observations related to strip geometric cover, we introduce some
basic notions and lemmata which are helpful for the readers to understand the results.
Definition 11 is inspired by the mutually spanning set in [9], in which one unit disk is
supposed to cover a nonempty subset of X both above and below any other unit disk.
However, the definition of mutually spanning set is too strong and unnecessary. We therefore
revise it into the top spanning set.

▶ Definition 11 (Top Spanning Set). Suppose the points in X lie in a vertical strip of width
w < 1. A set of unit disks is top spanning if the set is either a singleton, or each unit disk
other than the highest one covers a nonempty subset of X above the highest disk.

▶ Definition 12 (Inscribed Rectangles [9]). A unit disk centered in a strip of width W < 1
covers a strip segment of height at least 2

√
1−W 2. The strip segment is referred to as the

inscribed rectangle of the unit disk.

An illustration of the inscribed rectangle is shown in Figure 2.

▶ Definition 13 (Vertical Span). Given a strip and a set of unit disks {D1, . . . , Dm}, the
vertical span is defined to be the height difference between the highest and lowest points of the
strip covered by

⋃m
i=1 Di.

The following lemma was proved for the mutually spanning set in [9] and it is still true
for the top spanning set. We reproduce a proof in Appendix B.

▶ Lemma 14 ([9]). Consider unit disks D1, D2 whose centers o1, o2 are in a vertical strip
of width W < 1. If y(o1) ≥ y(o2) and D2 covers some point above D1, then we conclude that
y(o1)−y(o2) ≤ 1−

√
1−W 2. Further, the span of a top spanning set is at most 3−

√
1−W 2.

We are now ready for proving a few geometric observations. In [9], the authors studied
the within strip unit disk cover where the points are within a given strip, and the unit disks
can only be selected from a finite set D where the disk centers are also witihn the strip. Let
X ′ consist of points in X that are covered by the inscribed rectangles of the disks in D. In [9,
Lemma 5], it is proved that among all C ⊆ D that covers X ′, there exists one covering of
the minimum size and the covering does not contain any mutually spanning set of more than
3 disks. In a similar approach, we can prove the following two lemmata.
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p

h1 h2

√
1− h2

1
√

1− h2
2

W

Figure 2 The figure illustrates the inscribed rectangle. The two vertical lines are the left and
right boundary lines of a strip of width W . The center point p of the unit disk is inside the strip.
The distance from p to the left boundary line is denoted by h1, and the distance to the right
boundary line is denoted by h2. The shadowed area is the inscribed rectangle whose height is
2 min{

√
1 − h2

1,
√

1 − h2
2} ≥ 2

√
1 − W 2.

▶ Lemma 15. When W ≤ 4
5 , there exists an optimal solution on StripPDC that contains no

top spanning set of more than 2 disks.

Proof. Assume that opt is an optimal solution and contains a top spanning set of 3 disks,
say, D1, D2 and D3, from bottom to top. Let p1 be the lowest point of X covered by
D1 ∪D2 ∪D3 and p2 the highest. By Lemma 14, we know the vertical span of D1 ∪D2 ∪D3
is at most 3 −

√
1−W 2. Let D′

1 be the unit disk with p1 as its lowest point and D′
2 be

the unit disk with p2 as its highest point. Then D′
1 covers a segment of length at least

2
√

1−W 2 above p1, and D′
2 covers a segment of length at least 2

√
1−W 2 below p2. Since

2 × 2
√

1−W 2 ≥ 3 −
√

1−W 2 when W ≤ 4
5 , we can replace {D1, D2, D3} with {D′

1, D′
2}

and obtain a smaller solution, contradicting the optimality of opt. Therefore opt does not
contain any top spanning set of 3 unit disks. ◀

▶ Lemma 16. When W ≤
√

5
3 , there is an optimal solution on StripRPDC that contains no

top spanning set of more than 2 disks.

Proof. Assume opt is an optimal cover and contains a top spanning set of 3 unit disks.
Let D1, D2, D3, p1 and p2 be as in the proof of Lemma 15. Besides, by o1, o2 and
o3 we denote the centers of D1, D2 and D3, respectively. From Lemma 14 we know
y(o3) − y(p1) ≤ y(o3) − y(o1) + 1 ≤ 2 −

√
1−W 2. Let p denote the highest point not

covered by D3 and we have y(o3)− y(p) ≥
√

1−W 2. The unit disk D centered at p covers
a strip segment of length

√
1−W 2 below p, and hence D ∪ D3 covers a strip segment

of length 2
√

1−W 2 below o3. When W ≤
√

5
3 , we have 2

√
1−W 2 ≥ 2 −

√
1−W 2 and

(D1 ∪D2 ∪D3) ∩X ⊆ (D ∪D3) ∩X. Replacing D1 ∪D2 ∪D3 with D ∪D3 would give us a
smaller cover, which contradicts the optimality of opt. ◀

5.2 Exact Algorithms to StripPDC and StripRPDC
In this subsection, we develop an exact algorithm for StripPDC from Lemma 15. The detailed
description is in Algorithm 3. In the same way, we can develop an exact algorithm for
StripRPDC from Lemma 16. Let D denote the set of unit disks which are candidates in an
optimal covering. For StripPDC they are the anchored disks as defined in Definition 9 and
for StripRPDC they are the unit disks centered in the point set X. We first state our main
theorem below.
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Algorithm 3 The algorithm that outputs an optimal solution to StripPDC.

1: procedure DiskLocal(X, t)
2: U [i][k]← ∅ for i = 0, 1, . . . , n and k = 0, 1, 2, . . . , n− t

3: G[i][k]← ∅ for i = 1, 2, . . . , n and k = 0, 1, 2, . . . , n− t

4: for i = 1, 2, . . . , n do
5: for k = max(i− t, 0), max(i− t, 0) + 1, . . . , min(i− 1, n− t) do
6: for T ∈ U [i− 1][k] do
7: if the disks in T cover Xi then
8: G[i][k + 1]← G[i][k + 1] ∪ {T}
9: else

10: G[i][k]← G[i][k] ∪ {T}
11: for D ∈ D do
12: if D covers Xi then
13: G[i][k + 1]← G[i][k + 1] ∪ {T ∪ {D}}
14: for k = max(i− t, 0), max(i− t, 0) + 1, . . . , min(i, n− t) do
15: for T ∈ G[i][k] do
16: if |T | ≤ 2 then
17: U [i][k]← U [i][k] ∪ {T}
18: for T1 ∈ U [i][k] do
19: for T2 ∈ U [i][k] do
20: if sig(T1) = sig(T2) and |T1| ≤ |T2| then
21: U [i][k]← U [i][k]− {T2}
22: return any T ∈ U [n][n− t]

▶ Theorem 17. Algorithm 3 computes an exact solution to StripPDC in O(n7t) time when
W ≤ 4/5. If the set of anchored disks is replaced by the set of unit disks centered in X,
Algorithm 3 would output an exact solution to StripRPDC in O(n4t) time.

We follow the dynamic programming introduced in [12, Section 3] to develop a local
algorithm. We assume no two points of X have the same y-coordinates, otherwise we can
rotate X. We also sort X in an increasing order of their y-coordinates. Let X1, X2, . . . ,
Xn denote the sorted points from bottom to top. A subcover is denoted by (k, i, T ) where
T is the set of the disks that cover at least k points between X1 and Xi. The signature of
(k, i, T ), denoted by sig(k, i, T ), consists the highest disk D of T and those in T which cover
at least one point of X above D.

Now we state the idea of the dynamic programming. Let U [i][k] store all the subcovers
that cover at least k points at the i-th step in the algorithm. We iterate over all T ∈ U [i][k].
If T already covers Xi+1, we simply add T into U [i + 1][k + 1]. Otherwise, we add T to
U [i + 1][k] and all possible T ∪ {D} to U [i + 1][k + 1], where D ∈ D is a unit disk that
covers Xi+1. At the end of the i-th iteration, for two subcovers T1 and T2 in U [i + 1][k], if
sig(T1) = sig(T2) and |T1| ≤ |T2|, we remove T2 from U [i + 1][k]. By Lemma 15, there is an
optimal solution to StripPDC that contains no top spanning set of more than 2 disks. It is
obvious that the signature is a top spanning set by Definition 11, we therefore remove T if
|sig(T )| > 2.

Proof of Theorem 17. The correctness of Algorithm 3 is guaranteed by Lemmata 1 and 2
in [12]. For any T ∈ U [i][k], we have |sig(T )| ≤ 2 and therefore there are O(n4) different
signatures. There are no two subcovers with the same signature in U [i][k], so |U [i][k]| = O(n4).
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Observe that U [i][k] is nonempty for at most t values of k, it holds that
∑

k |U [i][k]| = O(n4t).
Furthermore, since the number of disks that cover Xi is O(n2), we have |G[i][k]| = O(n6)
and further

∑
k |G[i][k]| = O(n6t). After we construct G[i][k], we only select some of them

into U [i][k]. The would cost O(n · n6t) time. Besides, we also remove the larger covering
of the sane signature in U [i][k]. The process can be done in linear time with respect to
|U [i][k]|, as shown in [12] with the techniques from [14]. The overall time complexity is then
O(n · t · n4 · n2 + n · t · n6) = O(n7t).

The same algorithm can be applied to StripRPDC and the only difference is that we
use the unit disks centered in X instead as the candidates in a covering. There are n such
disks and by Lemma 16 there are O(n2) different signatures of size at most 2. Also we have
U [i][k] = O(n2) and G[i][k] = O(n3) for StripRPDC. The overall time complexity would be
O(n · t · n2 · n + n · t · n3) = O(n4t). ◀

5.3 Approximation Algorithms to PDC and RPDC
We apply Algorithm 3 as the local algorithm A for PDC and RPDC. Combining with
Theorem 1, we obtain a global algorithm to PDC with approximation ratio 1·

(
1 + ⌈2/w⌉

ℓ

)
= 3.5

for w = 0.4 and ℓ = 2, and a global algorithm to RPDC whose approximation factor is
1 ·

(
1 + ⌈2/w⌉

ℓ

)
≤ 1 + 2

ℓ·w + 1
ℓ = 1 + 6√

5 + 1
ℓ ≈ 3.68 + 1

ℓ .

▶ Theorem 18. There exist a (3.5, 1 + δ)-bicriteria algorithm for PDC which runs in time
O(n7t + δ−1nt log n), and a (1 + 6√

5 + 1
ℓ , 1 + δ)-bicriteria algorithm for RPDC which runs in

time O(ℓn4t + δ−1ℓnt log n).

Proof. Let nj = |Xj |, the number of points in the j-th nonempty strip of the grouping Gi.
For PDC, we apply Algorithm 3 as the local algorithm A in Algorithm 1. Note that in

Algorithm 3, all U [n][n − k] (0 ≤ k ≤ t) are computed. Therefore it takes O(n7
j t) time to

output sol(Xj , tj) for all tj ∈ {⌊(1 + δ)r⌋ | r = 0, 1, 2, . . . , ⌊log1+δ t⌋} ∪ {0, ⌊(1 + δ)t⌋}. On
all the si strips, this would cost O

(
n7

1t + · · ·+ n7
si

t
)

= O(n7t) time. Sorting all the values
fi(ti)− fi(ti − 1) in Algorithm 1 takes O

(
nt log1+δ nt

)
= O

(
δ−1nt log n

)
time. As there are

ℓ groupings, the total complexity is O(ℓn7t + δ−1ℓnt log n). Letting ℓ = 2 and w = 2/5 yields
a 3.5-approximation with time complexity O(n7t + δ−1nt log n).

For RPDC, we prove in the same way that the overall time complexity is O(ℓn4t +
δ−1ℓnt log n). ◀
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A Proof of Lemma 4

Proof. Let (t∗
1, . . . , t∗

s) denote a minimum point of f and it is obvious that
∑s

j=1 t∗
j = ⌊(1+ϵ)t⌋.

We also let (q1, . . . , qs) denote the output of Algorithm 1 and
∑s

j=1 qj = ⌊(1 + ϵ)t⌋. If
(q1, . . . , qs) ̸= (t∗

1, . . . , t∗
s), then there must be some qj1 < t∗

j1
and qj2 > t∗

j2
. As qj1 is the final

output value of Algorithm 1, fj1(t∗
j1

)−fj1(t∗
j1
−1) cannot be in the first ⌊(1+ ϵ)t⌋ elements of

S. Besides, we have fj2(t∗
j2

+ 1)−fj2(t∗
j2

) ≤ fj2(qj2)−fj2(qj2 −1) by the convexity of fj2 and
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fj2(t∗
j2

+1)−fj2(t∗
j2

) must in the first ⌊(1+ϵ)t⌋ elements of S. Therefore fj2(t∗
j2

+1)−fj2(t∗
j2

) ≤
fj1(t∗

j1
)− fj1(t∗

j1
− 1). This indicates that (. . . , t∗

j1
− 1, . . . , t∗

j2
+ 1, . . . ) is also a minimum

point of f and its L1 distance to (q1, . . . , qs) is less than that of (t∗
1, . . . , t∗

s). Repeat this
process, we can finally prove that the output of Algorithm 1 is a global minimum. ◀

B Proof of Lemma 14

Proof. Let D1 and D2 denote the two disks. Without loss of generality, we assume the
center of D1 is higher than that of D2. The vertical distance between their centers can
not exceed

(
1−
√

1−W 2
)
. Otherwise, D2 would be disjoint from the upper edge of the

inscribed rectangle of D1, and thus cannot cover any point above D1. The total span of
D1 ∪D2 is therefore at most 1−

√
1−W 2 + 1 + 1 = 3−

√
1−W 2. ◀

C 4-Approximation to PDC

In this section, we present a simple 4-approximation to PDC by generalizing the maximal
independent set to the outlier case. The definition of partial maximal independent set is
presented below.

▶ Definition 19 (Partial Maximal Independent Set). Given a point set X of size n and an
integer 0 ≤ t < n, a subset S ⊆ X is called a partial maximal independent set if for any
distinct points p, q ∈ S, it holds that d(p, q) > 2 and

∣∣ ⋃
p∈S B(p, 2) ∩X

∣∣ ≥ n− t.

The greedy algorithm with time complexity O(n log n) in [3] can be slightly modified to
a 4-approximation algorithm for PDC, which we present in Algorithm 4.

Algorithm 4 Greedy algorithm which outputs a 4-approximation to PDC.

Require: A set X of n planar points and an integer 0 ≤ t < n.
Y ← X, S ← ∅
Sort Y by x-coordinate
while |Y | > t do

Find the leftmost uncovered point p and S ← S ∪ {p}
Place a right semicircle of radius 2 at p

Remove the points covered by the semicircle from Y

return S

▶ Lemma 20. Algorithm 4 returns a 4-approximation solution to PDC in time O(n log n).

Proof. It is easy to verify that S is a partial maximal independent set. Furthermore, for
any p, q ∈ S, p ̸= q, since d(p, q) > 2, there is no unit disk that can cover both p and
q. Therefore a distinct unit disk is needed to cover each point in S, which implies that
|S| ≤ opt(X, t). Note that four unit disks are sufficient to cover a semicircle with radius 2.
Together with |

⋃
p∈S B(p, 2) ∩X| ≥ n− t, we can obtain 4|S| unit disks that cover at least

(n− t) points of X. Note that 4|S| ≤ 4 · opt(X, t), we see that 4|S| unit disks make up to a
4-approximation. ◀

Although the algorithm is simple, there is a fatal drawback when applying the algorithm
from left to right, it can only detect outliers Xi where i ≥ n− t and cannot detect the others.
The bad case is that some outliers are far away from the other points, and at the same time,
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their x coordinates are around the median of {X1, X2, . . . , Xn}. A unit disk covering such
an outlier usually covers few or no other points, and not removing such isolated outliers
could greatly increase the number of disks in the solution.

D Partitioning the Plane

Algorithm 5 Partitioning the plane into strips such that their boundary lines do not intersect X.

procedure Partition(X) ▷ X is a finite set of planar points
S ← ∅
R← ∅
for p ∈ X do

S ← S ∪ {⌊x(p)/w⌋}
R← R ∪ {x(p)/w − ⌊x(p)/w⌋}

if 0 ∈ R then
S ← ∅
τ ← 1

2 min{r ∈ R : r > 0}
for p ∈ X do

S ← S ∪ {⌊x(p)/w − τ⌋}
return S
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