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Recent years have witnessed an increasing popularity of algorithm design for distributed data, largely due

to the fact that massive datasets are often collected and stored in different locations. In the distributed

setting, communication typically dominates the query processing time. Thus, it becomes crucial to design

communication efficient algorithms for queries on distributed data. Simultaneously, it has been widely

recognized that partial optimizations, where we are allowed to disregard a small part of the data, provide

us significantly better solutions. The motivation for disregarded points often arise from noise and other

phenomena that are pervasive in large data scenarios.

In this paper we focus on partial clustering problems, k-center, k-median and k-means objectives, in the

distributed model, and provide algorithms with communication sublinear of the input size. As a consequence

we develop the first algorithms for the partial k-median and means objectives that run in subquadratic running

time. We also initiate the study of distributed algorithms for clustering uncertain data, where each data point

can possibly fall into multiple locations under certain probability distribution.
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1 INTRODUCTION
The challenge of optimization over large quantities of data has brought communication efficient

distributed algorithms to the fore. From the perspective of optimization, it has also become clear

that partial optimizations, where we are allowed to disregard a small part of the input, enable us

to provide significantly better optimization solutions compared with those which are forced to

account for the whole input [4, 19]. While several algorithms for distributed clustering have been

proposed, partial optimizations for clustering problems, introduced by Charikar et al. [4], have

not received as much attention. While the results of Chen [6] improve the approximation ratios,

the running time of the k-median and k-means versions have not been improved and the (at least)

quadratic running times have remained as a barrier.
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In this paper we study partial clustering under the standard (k, t)-median/means/center objective

functions, where k is the number of centers we can use and t is the maximum number of points

we can ignore. See Definition 1.1 below for a formal definition. In the distributed setting, let s
denote the number of sites. The (k, t)-center problem has recently been studied by Malkomes et

al. [21], who gave a 2-roundO(1)-approximation algorithm with Õ(sk + st) bits of communication
1
,

assuming that each point can be encoded inO(1) bits. In fact, we observe that results from streaming

algorithms [15] can in fact provide us 1-round O(1)-approximation algorithms with Õ(sk + st) bits
of communication for (k, t)-center, (k, t)-median, and (k, t)-means. However, in many scenarios of

interest, we have n > t ≫ k and t ≫ s . Thus the st term generates a significant communication

burden. In this paper we reduce Õ(st) to Õ(t) for the (k, t)-center problem, as well as for (k, t)-
median and (k, t)-means problems and unify their treatment. We also provide the first subquadratic

algorithms for median and means version of this problem.

Large data sets often have erroneous values. Stochastic optimization has recently attracted a lot of

attention in the field of databases, and has substantiated as a subfield called ‘uncertain/probabilistic

databases’ (see, e.g., [22]). For the clustering problem, a method of choice is to first model the

underlying uncertainty and then cluster the uncertain data. Clustering under uncertainty has been

studied in centralized models [8, 16], but the algorithms proposed therein do not consider commu-

nication costs. Note that it typically requires significantly more communication to communicate

a distribution (for an uncertain point) than a deterministic point, and thus black box adaptations

of centralized algorithms do not work well in the distributed setting. In this paper we propose

communication-efficient distributed algorithms for handling both data uncertainty and partial

clustering. To the best of our knowledge neither distributed clustering of uncertain data nor partial

clustering of uncertain data has been studied. We note that both problems are fairly natural, and

likely to be increasingly useful as distributed cloud computing becomes commonplace.

Models and Problems. We study the clustering problems in the coordinator model, which is a

popular model in the study of multiparty communication, see, e.g. [23]. In the coordinator model,

there are s sites and one central coordinator, who are connected by a star communication network

with the coordinator at the center. However, direct communication between sites can be simulated

by routing via the coordinator, which at most doubles the communication. The computation is in

terms of rounds. At each round, the coordinator sends a message (could be an empty message) to

each site and every site sends a message (could be an empty message) back to the coordinator. The

coordinator outputs the answer at the end
2
. The input A is partitioned into (A1, . . . ,As ) among

the s sites. Let ni = |Ai |, and n = |A| =
∑

i ∈[s] ni be the total input size.
We will consider clustering over a graph with n nodes and an oracle distance function d(·, ·).

An easy example of such is points in Euclidean space. More complicated examples correspond to

documents and images represented in a feature space and the distance function is computed via a

kernel. We now give the definitions of (k, t)-center/median/means.

Definition 1.1 ((k, t)-center,median,means). Let A be a set of n points and k , t are integer parame-

ters (1 ≤ k ≤ n, 0 ≤ t ≤ n). In the (k, t)-median problem we want to compute

min

K ,O⊆A

∑
p∈A\O

d(p,K) subject to |K | ≤ k and |O| ≤ t,

1
In this paper, we hide poly logn factors in the Õ notation, even when the function in O (·) does not depend on n. Note
that this is different from the typical usage that Õ (f ) hides the factors of poly(log f ).

2
We note that any algorithm in the coordinator model can also be implemented in parallel computation models such as

MapReduce [10] – we can just pick an arbitrary machine as the coordinator.
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whered(p,K) = minx ∈K d(p, x). We typically callK the centers andO the outliers. In the (k, t)-means

and the (k, t)-center problemwe replace the objective function

∑
p∈A\O d(p,K)with

∑
p∈A\O d

2(p,K)
and maxp∈A\O d(p,K) respectively.

In the definition above, we assume that centers are chosen from the input points. In the Euclidean

space, compared with the setting of unconstrained centers, such restriction will only affect the

approximation by a factor of 2.

For the uncertain data, we follow the assigned clustering introduced in [8]. Let P be a finite set

of points in a metric space. There are n input nodes A, where node j follows distribution Dj over

P. Each site i knows the distributions Dj associated with the nodes j ∈ Ai .

Definition 1.2 (Clustering Uncertain Data). In clustering with uncertainty, the output is a subset

K ⊆ P of size k (centers), a subset O ⊆ P of size at most t (ignored points), as well as a mapping

π : A → K . In every realization σ : A → P of the values of the input nodes, node j ∈ A (now

realized as σ (j) ∈ P) is assigned to the same center π (j) ∈ K . In uncertain (k, t)-median, the goal is

to minimize the expected cost

E
σ∼

∏
j∈A Dj


∑
j ∈A\O

d(σ (j), π (j))

 =
∑
j ∈A\O

E
σ∼Dj

[d(σ (j), π (j))] . (1)

The definition of uncertain (k, t)-means is basically the same as uncertain (k, t)-median, except that

we replace the objective function (1) with

∑
j ∈A\O Eσ∼Dj

[
d2(σ (j), π (j))

]
. For uncertain (k, t)-center,

we have two objectives:

max

j ∈A\O

(
E

σ∼Dj
[d(σ (j), π (j))]

)
(2)

E
σ∼

∏
j Dj

[
max

j ∈A\O
d(σ (j), π (j))

]
(3)

Note that these two objectives are not equivalent, since E andmax do not commute in Equation (3)

and we cannot equate it to (2). Equation (2) is in the same spirit as Equation (1), and corresponds to a

per pointmeasurement.We term this problem as uncertain (k, t)-center-pp. Equation (3) corresponds
to a more global measurement and we term this problem as uncertain (k, t)-center-g. This version
was considered in [8, 16].

Our Results. We present all our results in Table 1, which include both one-round and two-round

algorithms. In the column of ‘Local Time’, the first is the local computation time of all sites, and

the second is the local computation time at the coordinator. Observe that the total running time is

Õ(
∑

i n
2

i ), which becomes Õ(n2/s) if the partitions are balanced. This shows that we can reduce the

running time by distributing the clustering across many sites.

In particular we have obtained the following algorithms which finish in two-rounds in the

coordinator model. We say a solution is an (α, β)-approximation if it is a solution of cost αC while

excluding βt points, where C is the optimum cost for excluding t points. In addition, we denote by

B the number of bits required to encode a point.

(1) We give (O(1), 1)-approximation algorithms with Õ((sk + t)B) communication for the (k, t)-
median (Section 3) and the (k, t)-center (Theorem 4.3) problems. The lower bounds in [5] for

the t = 0 case indicate that these communication costs are tight, if we want to output all the

outliers (which our algorithms do), up to logarithmic factors. We also give an (O(1+ 1/ϵ), 1+ ϵ)-
approximation algorithm with Õ((sk + t)B) communication for the (k, t)-median (with better

running time) and the (k, t)-means (Theorem 3.1) problems.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Objective Approx. Centers Ignored Rounds Total Comm. Local Time

median O (1) k t 1 Õ ((sk + st )B) Õ (n2

i ), Õ (k
2s3t 5)

2 Õ ((sk + t )B) Õ (n2

i ), Õ (k
2t 2(sk + t )3)

(2 + δ )t 2 Õ (s/δ + skB) Õ (n2

i ), Õ (s
2k7)

means/

median

O (1 + 1/ϵ )
k , (1 + ϵ )t or (1 + ϵ )k , t 1 Õ ((sk + st )B) Õ (n2

i ), Õ ((sk + st )
2)

2 Õ ((sk + t )B) Õ (n2

i ), Õ ((sk + t )
2)

k (2 + ϵ + δ )t
2 Õ (s/δ + skB) Õ (n2

i ), Õ ((sk )
2)

(1 + ϵ )k (2 + δ )t

center O (1) k t 1 Õ ((sk + st )B) Õ ((k + t )ni ), Õ ((sk + st )2)
2 Õ ((sk + t )B) Õ ((k + t )ni ), Õ ((sk + t )2)

(2 + δ )t 2 Õ (s/δ + skB) Õ (n2

i ), Õ ((sk )
2)

uncertain

median/

means/

center-pp

as in the regular case above
regular case runtime+O (niT ),

unchanged

center-g

O (1 + 1/ϵ ) k (1 + ϵ )t 2 Õ (skB + t I + s log∆) Õ (n2

i log∆), Õ ((sk + t )
2)

O (1) t 1 Õ (s(kB + t I ) log∆) Õ ((k + t )ni log∆), Õ (s2(k + t )2)

Table 1. Our results. T denotes the runtime to compute 1-median/mean of a node distribution, I is the
information encoding a node in the uncertain data case, B the information encoding a point and ∆ the ratio
between the maximum pairwise distance and the minimum pairwise distance in the dataset. The algorithms
for k, (1 + ϵ)t bicriteria are randomized algorithms with success probability at least 1 − 1/poly(n), but when
ϵ = 1 the randomized algorithm can be derandomized. All other algorithms are deterministic.

(2) We show that for (k, t)-median/means and (k, t)-center-pp the above results are achievable even
on uncertain data (Theorem 5.6). For uncertain (k, t)-center-g we obtain an (O(1 + 1/ϵ), 1 + ϵ)-
approximation algorithm with Õ(skB + tI + s log∆) communication, where I is the information

to encode the distribution of an uncertain point, and ∆ is the ratio between the maximum

pairwise distance and the minimum pairwise distance in the dataset (Theorem 5.14).

Our results for the (k, t)-center problem improves that in [21]. And as far as we are aware, our results

on distributed (k, t)-median/means and of uncertain input are the first of their kinds. Our results

for distributed (k, t)-median or means also lead to subquadratic time constant factor approximation

centralized algorithms, which have been left open for many years.

Our two-round algorithms can be easily modified to be one-round at the cost of bigger commu-

nication costs and longer runtime, which will be explained in Section 6.

Technical Overview. The high level idea of our algorithms is fairly natural: Each site first performs

a preclustering, i.e., it computes some local solution on its own dataset. Then each site sends the

centers of the local solution, number of attached points to each center and the ignored points to

the coordinator, who will then solve the induced weighted clustering problem.

A major difficulty is to determine how many points to ignore in the local solution at each site.

Certainly for the sake of safety each site can ignore t points and send all ignored t points to the
coordinator for a final decision. This would however incur Θ(st) bits of communication. To reduce

the communication of this part to O(t), we hope to find {t1, . . . , ts } such that

∑
i ti = t and each

site i sends a solution with just ti ignored points. At the cost of an extra round of communication,

we solve the minimization problem

∑
i fi (ti ) subject to

∑
i ti = t for convex functions { fi }. It is

tempting to take fi (ti ) to be the cost of local solution with ti ignored points on site i , however, such
fi is not necessarily convex. The remedy is to take a lower convex hull of fi instead, which can be

shown to have only a mild effect on the solution cost. The convex hull of t points can be found in

O(t log t) time, and we can further reduce the runtime without compromising approximation ratio

by computing local solutions on each site for only log t geometrically increasing values of ti .
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Fig. 1. An example of a compressed graph produced

For uncertain data, it is natural to reduce the clustering problems to the deterministic case. To this

end, we ‘collapse’ each node j to its optimal center in P. For instance, for the (k, t)-median problem,

each node j is ‘collapsed’ to yj = argminy∈P Eσ [d(σ (j),y)], called the 1-median of node j. It may

be tempting to consider the clustering problem on the set of 1-medians, but the ‘collapse’ cost is

lost, hence we construct a compressed graphG that allows us to keep track of the collapse costs. The

graph looks like a clique with tentacles, see Figure 1. The 1-medians form a clique in G with edge

weight being the distance in the underlying metric space; for each 1-median yj , we add a tentacle

(an edge) from yj to a new vertex pj with edge weight being the collapse cost Eσ [d(σ (j),yj )]. We

manage to show that the original clustering problem is equivalent, up to a constant factor in cost,

to the clustering problem on the compressed graph where the facility vertices are 1-medians {yj }
and the demand vertices are {pj }. Our previous framework for deterministic data is then applied to

the compressed graph.

Lastly, for the global center problem with uncertain data, we build upon the approach developed

in [16], which uses a truncated distance function Lτ (x,y) = max{d(x,y) − τ , 0} instead of the

usual metric distance d(·, ·). Our algorithm performs a parametric search on τ , and applies our

previous framework to solve the global problem using local solutions. Now in the analysis of the

approximation ratio we need to relate the optimum solution to the solution with truncated distance

function, which is a fairly nontrivial task.

Related Work. In the centralized model, Charikar et al. gives a 3-approximation algorithm for

(k, t)-center, and an (O(1),O(1)) bicriteria algorithm for (k, t)-median [4]. This bicriteria was later

removed by Chen [6], who designed an O(1)-approximation algorithm using Õ(k2(k + t)2n3) time.

Feldman and Schulman studied the (k, t)-median problem with different loss functions using the

coreset technique [13].
On uncertain data, Cormode and McGregor considered k-center/median/means where each Di

is a discrete distribution [8]. Guha and Munagala provided a technique to reduce the uncertain

k-center to the deterministic k-median problem [16]. Wang and Zhang studied the special case of

k-center on the line [24]. We refer the readers to the survey by Aggarwal [1].

Clustering on distributed data has been studied only recently. In the coordinator model, in

the d-dimensional Euclidean space, Balcan et al. obtained O(1)-approximation algorithms with

Õ((kd + sk)B) bits of communication for both k-median and k-means [2]. Their results on k-
means were further improved by Liang et al. [20] and Cohen et al. [7]. Chen et al. provided a

set lower bounds for these problems [5]. In the MapReduce model, Ene et al. designed several

O(1)-approximation O(1)-round algorithms for the k-center and the k-median problems [12]. Im

and Moseley further studied the partial clustering variant [17], however their algorithms require

communication polynomial in n. Cormode et al. studied the k-center maintenance problem in the

2
For a general discrete distribution onm points in Euclidean space with P be the whole space, T = O (m) [11]; for special
distributions such as normal distribution, T = O (1).
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distributed data stream model where the coordinator can keep track of the cluster centers at any

time step [9].

2 PRELIMINARIES
Notation. We use the following notations in this paper.

• sol(Z ,k, t,d): A solution (computed by an algorithm) to the median/means/center problem

on point set Z with at most k centers and at most t outliers, under the distance function d ;
• opt(Z ,k, t,d): An optimal solution to the median/means or center problem on point set Z
with at most k centers and at most t outliers, under d ;
• Csol(Z ,k, t,d): The cost of the solution sol(Z ,k, t,d);
• Copt(Z ,k, t,d): The cost of the solution opt(Z ,k, t,d);
• π (j): The center to which point j is attached.

When Z lies in a metric space and d agrees with the distance function on the metric space, we omit

the parameter d in the notations above.

Combining Preclustering Solutions.We review a theorem from [15], which concerns combining

local solutions into a global solution. The problems considered in the theorem have no outliers
(t = 0) and lie in a metric space, so we abbreviate the notation sol(Z ,k, t,d) to sol(Z ,k), etc.

Theorem 2.1 ([15]). Suppose that A = A1 ⊎ · · · ⊎ As (disjoint union) and {sol(Ai ,k)} are the
preclustering solutions at sites. LetM = {π (j) : j ∈ A} and L =

∑
j ∈A d(j, π (j)), where π (j) denotes

the preclustering assignment. Consider the weighted k-median problem on M where the weight of
m ∈ M is defined to be the number of points that are assigned to m in the preclustering, that is,
|{j | j ∈ A, π (j) =m}|. Then

(i) There exists a weighted k-median solution sol(M,k) such that Csol(M,k) ≤ 2(L + Copt(A,k)).
(ii) Given any weighted k-median solution sol(M,k), there exists a k-median solution sol(A,k) such

that Csol(A,k) ≤ sol(M,k) + L.

Consequently, there exists a k-median solution sol(A,k) such that Csol(A,k) ≤ 2γ (L + Copt(A,k)) + L
and centers are restricted toM, where γ is the best approximation ratio for the k-median problem.

Corollary 2.2. The result in Theorem 2.1 extends to

(i) the k-center problem;
(ii) the k-means problem with weaker constants, using a relaxed triangle inequality;
(iii) the (k, t)-median/means/center approximation on the weighted point set M (with γ being the

corresponding bicriteria approximation ratio), provided the preclustering does not ignore any
points. Otherwise the total number of ignored points is the sum of the ignored points in the
clustering and preclustering phases.

3 (k, t)-MEDIAN AND (k, t)-MEANS
In this section, we first present a two-round algorithm in Section 3.1 and then analyse it in Section 3.2.

We improve the algorithm for a better communication complexity in Section 3.3 in the case where

we are only interested in the clustering and do not output the list of outliers. Finally in Section 3.4

we show how to obtain an subquadratic-time centralized algorithm by simulating a distributed

algorithm sequentially.
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3.1 Algorithm
Our algorithm for distributed (k, t)-median clustering is provided in Algorithm 1. For integer pairs

(i,q), we consider the lexicographical order as partial order, that is,

(i1,q1) ≺ (i2,q2) if

{
i1 < i2; or
i1 = i2 and q1 < q2.

(4)

Algorithm 1 Distributed (k, (1 + ϵ)t)-median clustering

Input: A = A1 ⊎ · · · ⊎ As , k ≥ 1, t ≥ 0 and ρ > 1

Output: sol(A,k, (1 + ϵ)t) such that Csol(A,k, (1 + ϵ)t) = O(1 + 1/ϵ) · Copt(A,k, t)
1: for each site i do
2: I← {⌊ρr ⌋ : 1 ≤ r ≤ ⌊logρ t⌋, r ∈ Z} ∪ {0, t}
3: Compute sol(Ai , 2k,q) for each q ∈ I ◃ Use the algorithm in Theorem 3.2

4: Compute the (lower) convex hull of the point set {(q, Csol(Ai , 2k,q))}q∈I, which induces a

function fi (·) defined on {0, . . . , t}
5: Send the function fi (·) to the coordinator

6: end for
7: Coordinator computes ℓ(i,q) = fi (q − 1) − fi (q) for each 1 ≤ i ≤ s and each 1 ≤ q ≤ t
8: Coordinator stably sorts all {ℓ(i,q)} in decreasing order

3

9: Coordinator finds ℓ(i0,q0) of rank
4ρt and sends ℓ(i0,q0), i0 and q0 to all sites

10: for each site i do
11: ti ← max{q : ℓ(i,q) ≥ ℓ(i0,q0)} ◃ define max ∅ = 0

12: if i = i0 then
13: ti←min{q ∈ I : q ≥ q0 and Csol(Ai , 2k,q0) = fi0 (q0)}
14: end if
15: Send the coordinator the 2k centers built in sol(Ai , 2k, ti ), the number of points attached to

each center, and the ti unassigned points

16: end for
17: Coordinator considers the union of the centers obtained from each site and the unassigned

points, and outputs sol(A,k, (1 + ϵ)t). ◃ Use Theorem 3.2 and Remark 2

On a high level, the algorithm consists of two rounds. In the first round, each site guesses

the number of points to exclude in its local input by computing the solution sol(Ai , 2k,q) for
logarithmically many values of q, then computes a convex hull of the costs for these values of q and

sends the convex hull to the coordinator. The coordinator then determines a cost threshold, which

will in turn determine the number of points to exclude on each individual site, and guarantees

that the overall solution obtained this way is a constant-factor approximation. The coordinator

then sends the threshold back to the sites. In the second round, each site determines the number of

points to exclude from its local input, and sends the preclustering results to the coordinator and

the coordinator then computes an overall solution.

We present the main theorem regarding the algorithm and defer the proof to the next subsection.

Theorem 3.1. For the distributed (k, t)-median problem, with probability at least 1 − 1/poly(n),
Algorithm 1 with ρ = 2 outputs sol(A,k, (1 + ϵ)t) satisfying Csol(A,k, (1 + ϵ)t)) ≤ O(1 + 1/ϵ) ·
Copt(A,k, t). The sites communicate a total of Õ((sk + t)B) bits of information with the coordinator
over 2 rounds. The runtime at each site is Õ(n2i ) and the runtime at the coordinator is Õ((sk + t)2). The
same result holds for (k, t)-means with larger constants in the approximation ratio and the runtime.
The algorithm can be derandomized when ϵ = 1.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Remark 1. In Line 17 of Algorithm 1, (i) no input point is ignored in the preclustering; (ii) if the
preclustering aggregated q points but the coordinator’s algorithm chooses less than q copies (to exclude
exactly t ) then the proofs are not affected in any way.

3.2 Analysis of Algorithm
To prove the correctness of Algorithm 1, we begin with a theorem about approximating (k, t)-
median or means with a different trade-off between the approximation ratio and the runtime from

that in [4]. The result in [4] is built upon the algorithm in [3], which increases the running time to

cubic time for a better approximation factor. In the theorem below we aim at quadratic runtime

and build our algorithm upon [18].

Theorem 3.2. Let ϵ ∈ (0, 1]. We can compute sol(Z ,k, (1 + ϵ)t) and sol(Z , (1 + ϵ)k, t) for the
(k, t)-median problem using an algorithm in Õ(|Z |2) time such that
(a) Csol(Z ,k, (1 + ϵ)t) ≤ O(1 + 1/ϵ) · Copt(Z ,k, t), and
(b) Csol(Z , (1 + ϵ)k, t) ≤ O(1 + 1/ϵ) · Copt(Z ,k, t).
The algorithm for approximation guarantee (a) is randomized and succeeds with probability at least
1 − 1/poly(log |Z |), while the algorithm for approximation guarantee (b) is deterministic.

The result extends to the (k, t)-means problem with slightly larger constants.

Proof. Using [18], we can obtain in Õ(|Z |2) time two solutions with k1, k2 centers and each

solution ignores exactly t outliers, where k1 < k < k2. Although not explicitly stated in [18], but as

observed in [4], the algorithm is applicable to the outlier case as we can simply stop the algorithm

when there are t points unprocessed.
Next we shall show approximation guarantee (a) by constructing a solution of exactly k centers

with a similar procedure as the randomized rounding in [18]. Set a = (k2 − k)/(k2 − k1). First, we
iteratively pair off every center in the small solution with its nearest (remaining) center in the

large solution. Then with probability a we choose all the centers in the small solution and with

probability 1−a we choose the paired centers in the large solution. At last, we choose k −k1 centers
at random from the remaining centers in the large solution.

In the current case we also have two solutions and each solution ignores exactly t outliers. Notice
that if a point is labeled outlier in one solution and not in the other, it must be directly connected to

a center (in the language of [18]). If we choose all the centers in the small solution then we cannot

have more than t outliers. If we choose the large solution then we may exceed t outliers if all the
points labeled outliers in the large solution were excluded and some of the points clustered in the

small solution (but not in the large) cannot be accommodated because the corresponding center

was not chosen. In expectation we have at most a · t extra outliers.
Let S1 be the cost of the solution if the first step chooses the small solution and S2 be the cost of

the solution if the first step chooses the paired centers in the large solution. The same argument

in [18] shows that

a E(S1) + (1 − a)E(S2) ≤ 6Copt(Z ,k, t).

Hence E(S1) ≤ (6/a)Copt(Z ,k, t).

• If a ≥ ϵ/2, we choose the small solution and run the derandomized version of the rounding

part, which will give a solution of cost at most E(S1) ≤ (12/ϵ)Copt(Z ,k, t). The derandomized

rounding runs in time Õ(|Z |2) [18] and the claim of the overall runtime follows.

• Otherwise, E(S2) ≤
6

1−aCopt(Z ,k, t) ≤
6

1−ϵ/2Copt(Z ,k, t) ≤ 12Copt(Z ,k, t). By Markov’s

inequality and a union bound, each run of (randomized) rounding fails with probability

≤ 1/2 + 1/3 = 5/6, producing a solution with more than t + ϵt outliers or with cost more

than 36Copt(Z ,k, t). If we run the rounding Θ(log |Z |) times we can, with probability at least
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1/poly(|Z |), find a solution with at most t + ϵt outliers and cost at most 36Copt(Z ,k, t) (by
picking the solution with minimum cost among all solutions with at most t +ϵt outliers). The
randomized rounding runs in time Õ(|Z |) [18] and the claim of the overall runtime follows.

For approximation guarantee (b), when k2 ≤ (1 + ϵ)k we use the large solution, and the cost is

at most 3Copt(Z ,k2, t) ≤ 3Copt(Z ,k, t). When k2 ≥ (1 + ϵ)k , it holds that a ≥ 1 − 1/(1 + ϵ) ≥ ϵ/2,
a case that was discussed above. Note that the algorithm can be derandomized in this case. The

solution is a (12/ϵ)-approximation and the theorem follows.

Note that the above rounding argument uses the triangle inequality. While the triangle inequality

does not hold for squares of distances (as in the k-means objective function), we instead use

2(x2 + y2) ≥ (x + y)2. �

Remark 2. The result generalizes to the weighted k-median/mean problem, since [18] also works
for the weighted variant.

Remark 3. When ϵ = 1, the algorithm for approximation guarantee (a) can be derandomized
because the total number of outliers cannot exceed 2t in rounding, and the derandomization in [18]
applies. This observation will be used in Section 3.4.

Throughout the rest of the section, we denote by t∗i the number of ignored points from Ai in the

global optimum solution opt(A,k, t). We need the following lemmas.

Lemma 3.3. It holds that
∑s

i=1 Copt(Ai ,k, t
∗
i ) ≤ 2Copt(A,k, t). For (k, t)-means the constant changes

from 2 to 4.

Proof. We shall use an argument used in [15]. Let πopt be the center projection function andK be

the set of optimum centers in the optimal solution opt(A,k, t). For each Ai , we construct a solution
sol(Ai ,k, t∗i ) by excluding the points excluded in opt(A,k, t) and choosing

{
argminu ∈Ai d(u,k) : k ∈ K

}
to be the centers. Then by the triangle inequality,

Csol(Ai ,k, t
∗
i ) ≤ 2

∑
x ∈Ai

d(x, πopt(x)).

Summing over i = 1, . . . , s yields
∑s

i=1 Csol(Ai ,k, t
∗
i ) ≤ 2Copt(A,k, t). The result for k-means follows

from applying the triangle inequality with (a + b)2 ≤ 2(a2 + b2). �

Lemma 3.4. The t1, . . . , ts computed in Step 11 of Algorithm 1 minimizes
∑

i fi (ti ) subject to
∑

i ti ≤
ρt and 0 ≤ ti ≤ t .

Proof. Suppose that t ′
1
, . . . , t ′s is a minimizer. Since fi (·) is non-increasing for all i , it must hold

that

∑
i t
′
i = ρt . By the definition of ti , it also holds that

∑
i ti = ρt . If (t ′

1
, . . . , t ′s ) , (t1, . . . , ts ), there

must exist i, j such that t ′i > ti and t
′
j < tj . By the definition of ti and the sorting of {ℓ(i,q)}, we

know that

ℓ(i, ti + 1) ≤ ℓ(i0,q0), ℓ(j, tj ) ≥ ℓ(i0,q0).

From convexity of fi and that t ′i ≥ ti + 1 and t
′
j + 1 ≤ tj , it follows that

fi (t
′
i − 1) − fi (t

′
i ) ≤ ℓ(i0,q0) ≤ fj (t

′
j ) − fj (t

′
j + 1)

which means that increasing t ′j by 1 and decreasing t ′i by 1 will not decrease the sum

G(q′
1
, . . . ,q′s ) :=

∑
i

(fi (0) − fi (t
′
i )).

4Stably means that when ℓ(i1, q1) = ℓ(i2, q2), the sorting algorithm puts ℓ(i1, q1) before ℓ(i2, q2) if (i1, q1) ≺ (i2, q2) as
defined in (4).

4
Element of rank r means the r -th element in a sorted list
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Therefore

∑
i fi (t

′
i ) =

∑
i fi (0) − G(t

′
1
, . . . , t ′s ) will not increase. We can continue this procedure

until (t ′
1
, . . . , t ′s ) = (t1, . . . , ts ). �

Recall that I = {⌊ρr ⌋ : 1 ≤ r ≤ ⌊logρ t⌋, r ∈ Z} ∪ {0, t}, defined in Line 2 of Algorithm 1.

Lemma 3.5. It holds for all i , i0 that ti ∈ I and Csol(Ai , 2k, ti ) = fi (ti ), where i0 is computed in
Step 9 and ti ’s in Step 11 of Algorithm 1.

Proof. Since 0 ∈ I, we need only to consider the i’s with ti , 0. By the selection of (i0,q0) in the

sorted list, it must hold that

ℓ(i, ti ) ≥ ℓ(i0,q0) > ℓ(i, ti + 1) for i < i0

ℓ(i, ti ) > ℓ(i0,q0) ≥ ℓ(i, ti + 1) for i > i0,

which implies that ℓ(i, ti ) > ℓ(i, ti + 1) whenever i , i0, i.e.,

fi (ti − 1) − fi (ti ) > fi (ti ) − fi (ti + 1), i , i0.

Hence (i, fi (ti )) is a vertex of the convex hull for all i , i0, that is, ti ∈ I and fi (ti ) = Csol(Ai , 2k, ti ).
�

Now we are ready to bound the ‘goodness’ of local solutions.

Lemma 3.6. Let ρ = 2. It holds that
∑

i Csol(Ai , 2k, ti ) ≤ C · Copt(A, 2k, t) for some absolute
constant C and

∑
i ti ≤ 3t , where t1, . . . , ts are computed in Step 11 and may be updated in Step 13 of

Algorithm 1.

Proof. Let t̂i = min{q ∈ I : q ≥ t∗i }. It follows from Lemma 3.3 with

∑
i t
∗
i ≤ t that

2Copt(A,k, t) ≥
∑
i

Copt(Ai ,k, t
∗
i ) ≥

∑
i

Copt(Ai ,k, t̂i ) ≥
1

C0

∑
i

Csol(Ai , 2k, t̂i ),

where the last inequality follows from Theorem 3.2 (applied with ϵ = ρ − 1 = 1) and C0 is the

approximation factor therein. Observe that t̂i ≤ 2t∗i and thus

∑
i t̂i ≤ 2

∑
i t
∗
i ≤ 2t , and∑

i

Csol(Ai , 2k, t̂i ) ≥
∑
i

fi (t̂i ) ≥
∑
i

fi (ti ),

where the last equality follows from Lemma 3.4, and ti ’s are computed in Step 11.

Now, by Lemma 3.5, fi (ti ) = Csol(Ai , 2k, ti ) for all except one i . The exceptional ti will be replaced
by a bigger value, which will not increase fi (ti ) by the monotonicity of fi , and the first part follows.
This update will increase

∑
i ti by at most t and thus

∑
i ti ≤ 3t . �

Now, Theorem 3.1 follows straightforwardly from Lemma 3.6 and Theorem 3.2. Note that

|I| = O(log t).

Proof of Theorem 3.1. The communication cost is straightforward. By Lemma 3.6, the coor-

dinator will solve the problem of at most 2sk + 3t points. The claims on approximation ratio and

the runtime then follow from Theorem 3.2, noting that it takes time O(|I| log |I|) = Õ(1) to find the

convex hull. All s sites run deterministic algorithms and only the coordinator runs a randomized

algorithm, and the failure probability follows. �
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3.3 Improvement When Not Outputting Outliers
In this subsection we discuss the scenario where we are only interested in the clustering and not

the list of ignored points. We show that the communication complexity can be improved from

Õ(s(kB + t)) to Õ(skB) at the cost of slightly more ignored points in the bicriteria approximation.

See Theorem 3.8 for a precise statement.

We set ρ = 1 + δ and change line 12 to line 15 of Algorithm 1 to the following. The sites do not

send the ignored nodes but just the number of them, and the exceptional site runs a slightly more

convoluted algorithm.

12: if i , i0 then
13: Send the coordinator ti , the 2k centers built in sol(Ai , 2k, ti ) and the number of points

attached to each center

14: else
15: ti ,1 = max{q ∈ I : q ≤ ti and Csol(Ai , 2k,q) = fi (q)}
16: ti ,2 = min{q ∈ I : q ≥ ti and Csol(Ai , 2k,q) = fi (q)}
17: Combine sol(Ai , 2k, ti ,1) and sol(Ai , 2k, ti ,2) to form a solution sol(Ai , 4k, ti ) by taking the

union of the medians, attaching each point to the closest center among the combined centers,

and ignoring the points with largest ti distances.
18: Send to the coordinator ti , the combined centers and the number of points attached to each

center.

19: end if

Observe that Lemma 3.6 still holds with

∑
i ti ≤ (1 + δ )t , since we are not changing the exceptional

ti . For the exceptional site i , suppose that ti = (1 − θ )ti ,1 + θti ,2 for some θ ∈ (0, 1), we have

(1 − θ )fi (ti ,1) + θ fi (ti ,2) ≤ fi (ti ). We now argue the next critical lemma.

Lemma 3.7. Csol(Ai , 4k, ti ) ≤ (1 − θ )fi (ti ,1) + θ fi (ti ,2).

Proof. We will prove the lemma by carefully designing an assignment of n − ti points to the

4k centers which is bounded above by the right hand side. Since choosing the minimum n − ti
distances will only result in a smaller value, the lemma would follow.

For j = 1, 2, let πj be the center projection function in sol(Ai , 2k, ti , j ) and Pi the set of clustered
points in sol(Ai , 2k, ti , j ). For x ∈ P1 ∩ P2, we attach x to the nearer one between the two centers

π1(x) and π2(x), and the incurred cost is

min{d(x, π1(x)),d(x, π2(x))} ≤ (1 − θ )d(x, π1(x)) + θd(x, π2(x)). (5)

For x ∈ P1△P2, since only one of π1(x) and π2(x) exist, we abbreviate it as π (x) for simplicity.

Define h(x) for each x ∈ P1△P2 as

h(x) =

{
(1 − θ ) · d(x, π (x)), x ∈ P1 \ P2;

θ · d(x, π (x)), x ∈ P2 \ P1.

Let r = |P1 ∩P2 |, r1 = |P1 \P2 | and r2 = |P2 \P1 |. It holds that r + r1 = n − ti ,1 and r + r2 = n − ti ,2,
thus r1 > r2 and

(1 − θ )r1 + θr2 = n − ti − r .

Define Q1 = P1 \ P2 and Q2 = P2 \ P1. Pick x = argminz∈Q1∪Q2

h(z). If x ∈ Q1, pick an arbitrary

u ∈ Q2, otherwise pick u ∈ Q1. Attach x to π (x) in the 4k-center solution we are constructing and

mark u as outlier. Note that this incurs a cost of

d(x, π (x)) ≤

{
(1 − θ )d(x, π (x)) + θd(u, π (u)), x ∈ Q1;

(1 − θ )d(u, π (u)) + θd(x, π (x)), x ∈ Q2,
(6)
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1:12 Sudipto Guha, Yi Li, and Qin Zhang

by our choice of x , because one of the combination terms is exactly h(x) and it is smaller than h(u),
which is exactly the other term. Then we remove x and u from Q1 or Q2 depending on the case.

Now, |Q1 | = r1 − 1 and |Q2 | = r2 − 1, and note that

(1 − θ )(r1 − 1) + θ (r2 − 1) = n − ti − r − 1.

Since r1 > r2, we can continue this process untilQ2 = ∅. At this point we have run the procedure

above r2 times, and it holds that

(1 − θ )r1 = n − ti − r − r2.

Note that r1 ≥ n− ti −r −r2, so we can choose E ⊆ Q1 to be the points with smallest n− ti −r −r2
values of h. Attach points in E to their respective centers and mark the remaining points in Q1 as

outliers. This incurs a cost of∑
x ∈E

d(x, π (x)) ≤
n − ti − r − r2

r1

∑
x ∈Q1

d(x, π (x)) = (1 − θ )
∑
x ∈Q1

d(x, π (x)) (7)

In total we have assigned r + r2 + (n − ti − r − r2) = n − ti points as desired. The desired upper

bound on cost follows from (i) summing both sides of (5) over P1 ∩ P2; (ii) summing both sides of

(6) over x and the corresponding u during the pairing procedure; and (iii) Equation (7). Note that

(ii) covers (P1△P2) \Q1, where Q1 is the post-pairing set. �

As a consequence of Lemma 3.7, Csol(Ai , 4k, ti ) ≤ fi (ti ). Thus the upper bound on the approxi-

mation ratio still holds. Finally, note that |I| = Õ(1/δ ) and we conclude that

Theorem 3.8. For the distributed (k, t)-median problem, with probability at least 1− 1/poly(n), the
modified Algorithm 1 with ρ = 1+δ outputs sol(A,k, (2+ ϵ +δ )t) satisfying Csol(A,k, (2+ ϵ +δ )t) ≤
O(1 + 1/ϵ) · Copt(A,k, t). The sites communicate a total of Õ(sδ−1 + skB) bits of information with
the coordinator over 2 rounds. The runtime on site i is Õ(n2i /δ ) and the runtime on the coordinator is
Õ((sk)2). The same result holds for (k, t)-means with a larger constant in the approximation ratio.

3.4 Subquadratic-time Centralized Algorithm
We now show an unusual application of Theorem 3.1 in speeding up existing constant-factor approx-

imation algorithms for (k, t)-median (or means). Note that the centralized bicriteria approximation

algorithms in [4] have a runtime of Õ(n3) on n points, while the modifications in Theorem 3.2

improve the running time to Õ(n2), this leaves open the important question: Are there algorithms
with provable constant factor approximation guarantees which are subquadratic? Observe that the
question is even more pertinent in the context of unicriterion approximation, for which the only

known result is a Õ(n3k2t2)-time constant-factor approximation of (k, t)-median [6]. In the sequel

we show that the running time can be brought to almost linear time. The improvement arises from

the fact that we can simulate a distributed algorithm sequentially.

Lemma 3.9. Suppose that we are given a Õ(n1+α0k2) time algorithm for bicriteria approximation
which produces 2k centers or 2t outliers with approximation factor γ , where α0 ≤ 1. Then we can

produce a similar algorithm with running time Õ(t2) + Õ
(
n

2+2α
0

2+α
0 k2

)
and approximation c0γ for some

absolute constant c0 > 0.

Proof. We will apply Theorem 3.1 after dividing the data arbitrarily in s pieces of size n/s . The
sequential simulation of the s sites will take time Õ(s (n/s)1+α0 k2) based on the statement of the

lemma. The coordinator will require time Õ((sk + t)2) = Õ(s2k2) + Õ(t2). Observe that we can now

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2019.



Distributed Partial Clustering 1:13

balance n1+α0 = s2+α0
, which provides us the optimum s to use and achieve a running time of

Õ(t2) + Õ(s2k2) = Õ(t2) + Õ
(
n

2+2α
0

2+α
0 k2

)
. �

Theorem 3.10. Let α > 0 and suppose that t ≤
√
n. There exists a centralized algorithm for the

(k, t)-median problem that runs in Õ(n1+αk2) time and outputs a solution sol(A,k, 2t) satisfying
Csol(A,k, 2t) ≤ (1 + 1/α)

O (1)Copt(A,k, t).

Proof. Note that the algorithm in Theorem 3.2 has runtime Õ(n2), so we can take α0 = 1 in

Lemma 3.9 to obtain an algorithm of approximation ratio γ = 6 and runtime Õ(t2 + n4/3k2), which
is Õ(n4/3k2) by our assumption that t ≤

√
n. Repeatedly applying Lemma 3.9 for j times gives

an algorithm of runtime Õ(n1+1/(2
j−1)k2) and approximation ratio (c0γ )

j
. Let j = log(1 + 1/α), the

runtime becomes O(n1+αk2) and the approximation ratio (1 + 1/α)log(c0γ ) = (1 + 1/α)O (1). �

Remark 4. We remark that
(i) the theorem above also holds for sol(A, 2k, t), where the number of centers, instead of the outliers,

is relaxed;
(ii) for the unicriterion approximation, if we use the algorithm of runtime Õ(n3t2k2) from [6] instead

of the result of Theorem 3.2, we need to balance s3 and s(n/s)1+α0 for an analogy of Lemma 3.9,
which will eventually lead to an algorithm of runtime O(n1+α t2k2), provided that t ≤ n1/5.

4 (k, t)-CENTER CLUSTERING
Our algorithm for (k, t)-center clustering is presented in Algorithm 2. It is similar to Algorithm 1

but only simpler, because the preclustering stage admits a simpler algorithm due to Gonzalez [14].

For the k-center problem on a point set Z of n points, Gonzalez’s algorithm outputs a re-ordering

of points in Z , say, p1, . . . ,pn , such that for each 1 ≤ r ≤ n, the solution sol(Z , r ) of choosing
{p1, . . . ,pr } as the r centers is a 2-approximation for the r -center problem on Z , i.e., Csol(Z , r ) ≤
2Copt(Z , r ).

Algorithm 2 Distributed (k, t)-center clustering

1: for each site i do
2: Run Gonzalez’s algorithm and obtain a re-ordering {a1, . . . ,ani } of the points in Ai
3: for each 1 ≤ q ≤ t do
4: Compute ℓ(i,q) ← min{d(aj ,ak+q) : j < k + q}
5: end for
6: end for
7: Sites and coordinator sort {ℓ(i,q)}, and follow the subsequent steps as in Algorithm 1, where

the coordinator in the last step runs the algorithm in [4] for the k-center problem with exactly

t outliers.

The core argument is that the k-center algorithm of Gonzalez can be used to simultaneously

(a) precluster the local data into local solutions and (b) provide a witness that can be compared

globally.

Remark 5. In Algorithm 2, (i) none of the original points is ignored in the preclustering, and (ii) it
is possible that the preclustering aggregated q points but the coordinator’s algorithm chooses less than
q copies to exclude exactly t points. This does not affect the proofs of (k, t)-center clustering.

We now analyze the performance of Algorithm 2. Denote by t∗i the number of points ignored

from Ai in the global optimum solution opt(A,k, t). First we show two structural lemmas.
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Lemma 4.1. 2Copt(Ai ,k, t) ≥ max

i
Copt(Ai ,k, t

∗
i ).

Proof. Use the same argument in the proof of Lemma 3.3. �

Lemma 4.2. max

i
Copt(Ai ,k, t

∗
i ) ≥ min∑

i ti ≤t

(
max

i
Copt(Ai ,k, ti )

)
.

Proof. It follows from the fact that

∑
i t
∗
i = t . �

Theorem 4.3. For the distributed (k, t)-center problem, Algorithm 2 outputs sol(A,k, t) satisfying
Csol(A,k, t) ≤ O(1) · Copt(A,k, t). The sites communicate a total of Õ((sk + t)B) bits of information to
the coordinator over 2 rounds. The runtime on site i is Õ((k + t)ni ) and the runtime on the coordinator
is Õ((sk + t)2).

Proof. The approximation ratio follows from a similar argument to that of Theorem 3.1, using

Lemma 4.1 and 4.2. The coordinator runtime follows from [4, Theorem 3.1] and the site runtime

from [14], noting that we need only the first k + t points of the reordering of each Ai . The
communication cost is clear from Algorithm 2. �

5 CLUSTERING UNCERTAIN INPUT
Recall that in the setting of clustering with uncertainty there is an underlying metric space (P,d).
We are given a set of input nodes j ∈ A which correspond to distributions Dj on P. In this section

we shall use nodes to indicate the input and points to indicate deterministic objects in the metric

space P. We shall denote by σ (j) a realization of node j and by π (j) the center node to which j is
attached. Note that π (j) is a fixed point that is independent of the realization of the nodes. Our

goal in the (k, t)-median problem in this context is to compute

min

K⊆P,O⊆A
|K | ≤k , |O | ≤t


∑
j ∈A\O

(
min

π (j)
E
σ
[d(σ (j), π (j))]

) . (8)

For (k, t)-means we use d2(·, ·) and for (k, t)-center-pp we use maxj instead of

∑
j .

Define d̂ : A × P → R as d̂(j,p) = Eσ [d(σ (j),p)], the objective function (8) is then reduced to

the usual (k, t)-median problem with the new distance function d̂ . However, this definition only

allows the computation of distance between an input node and a point in P. To extend d̂ to a pair of

input nodes, the site holding Ai will need to know the point set

⋃
j ∈Ai′ supp(Dj ) from some other

site i ′. This will blow up the communication cost, and thus naively using this distance function in

combination with the algorithms developed previously will not work well. To circumvent this issue

we combine the notion of 1-median introduced in [8] along with the framework in Theorem 2.1,

and introduce a compression scheme to evaluate distances.

Definition 5.1. For each node j, define its 1-median and 1-mean to be

yj = argmin

y∈P
E
σ
[d(σ (j),y)], y ′j = argmin

y∈P
E
σ
[d2(σ (j),y)],

respectively.

Definition 5.2 (Compressed graph). The compressed graph G(A) is a weighted graph on vertices

P ∪ {pj }j ∈A, where the edges are as follows: (1) each pair (u,v) ∈ P is an edge with weight d(u,v),
and (2) for each j ∈ A, the vertex pj is connected only to yj with weight ℓj = Eσ [d(σ (j),yj )]. Define
the distance dG (u,v) between two vertices u, v inG to be the length of the shortest path between u
and v in G.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2019.



Distributed Partial Clustering 1:15

For the compressed graphG , we can also consider the following (k, t)-median problem, where we

restrict the demand points to {pj } and the possible centers to {yj }, and the distance function is the

length of shortest path onG . We continue to use the notations sol(G,k, t), Csol(G,k, t), etc., to denote
the solution and the corresponding cost of (k, t)-median problem on G. The following two lemmas

show that (k, t)-median problem in Eqn (8) is, up to some constant factor in the approximation

ratio, equivalent to the (k, t)-median problem on the compressed graph.

Lemma 5.3. If there exists a solution sol(A,k, t) of cost Csol(A,k, t) to the objective in Equation (8),
then there exists a solution sol(G(A),k, t) on the compressed graph such that Csol(G(A),k, t) ≤
5Csol(A,k, t).

Proof. Let A′ be the set of clustered nodes in the feasible (k, t)-median solution of the original

problem with the objective in (8). Define the set of center points M = {yj : j ∈ A
′}. For each

j ∈ A′, let yπ (j) = argminy∈M d(π (j),y). Let sol(G(A),k, t) be the solution of connecting each point

pj (j ∈ A
′
) to yπ (j) in the compressed graph G. We try to upper bound the cost Csol(G(A),k, t):

Csol(G(A),k, t) =
∑
j ∈A′

dG (yπ (j),pj ) (definition of Csol)

=
∑
j ∈A′

(
d(yπ (j),yj ) + dG (yj ,pj )

)
(definition of dG )

≤
∑
j ∈A′

d(yπ (j), π (j)) +
∑
j ∈A′

d(π (j),yj ) +
∑
j ∈A′

dG (yj ,pj ) (triangle inequality)

≤ 2

∑
j ∈A′

d(π (j),yj ) +
∑
j ∈A′
ℓj ,

where the last line follows from d(yπ (j), π (j)) ≤ d(π (j),yj ) by the definition (optimality) of yπ (j).
Observe that for any realization σ (j), it holds that

d(yj , π (j)) ≤ d(yj ,σ (j)) + d(σ (j), π (j)).

Taking expectation over σ ,

d(yj , π (j)) ≤ E
σ
d(yj ,σ (j)) + E

σ
d(σ (j), π (j)) = ℓj + E

σ
d(σ (j), π (j)).

Summing over j ∈ A′,∑
j ∈A′

d(yj , π (j)) ≤
∑
j ∈A′
ℓj +

∑
j ∈A′
E
σ
d(σ (j), π (j)) ≤

∑
j ∈A′
ℓj + Copt(A,k, t). (9)

We next bound

∑
j ∈A′ ℓj . This is exactly the cost of connecting each j ∈ A′ to its 1-median, which

is the optimal solution of at most n − t centers for A′. The optimal cost for n − t centers is clearly
less than that for k centers and hence

∑
j ∈A′ ℓj ≤ Copt(A,k, t).

Therefore Csol(G(A),k, t) ≤ 2 · 2Copt(A,k, t) + Copt(A,k, t) = 5Copt(A,k, t) as claimed. �

Lemma 5.4. If there exists a solution sol(G(A),k, t) of cost Csol(G(A),k, t) on the compressed graph,
then there exists a solution sol(A,k, t) for the problem formulated in (8) such that Csol(A,k, t) ≤
2Csol(G(A),k, t).

Proof. Let A′′ be the set of clustered nodes in sol(G(A),k, t). A similar argument of increasing

the number of centers as in Lemma 5.3 yields that

∑
j ∈A′′ ℓj ≤ Csol(G(A),k, t). Suppose that pj is

assigned to π (j) in sol(G(A),k, t) in the compressed graph. Note that π (j) ∈ P. Let sol(A,k, t) be
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Algorithm 3 A Compression Scheme for Distributed Partial Clustering of Uncertain Data

1: for each site i do
2: Compute ℓj = Eσ [d(σ (j),yj )] for all j ∈ Ai
3: Construct the compressed graph of Ai as described in Definition 5.2

4: Run any algorithm corresponding to Section 3 and Section 4 on the compressed graph,

with the following change: whenever the site has to communicate pj , it also sends yj (or y
′
j )

and the values of Eσ [d(σ (j),yj )] (or Eσ [d
2(σ (j),y ′j )]).

5: end for

the solution of attaching j to π (j) in P, and the cost can be bounded as

Csol(A,k, t) =
∑
j ∈A′′
E
σ
(d(σ (j), π (j))) (definition of Csol)

≤
∑
j ∈A′′
E
σ

(
d(σ (j),yj )

)
+

∑
j ∈A′′

d(yj , π (j)) (triangle inequality)

≤
∑
j ∈A′′
ℓj +

∑
j ∈A′′

dG (pj , π (j)) (definition of dG , see below)

≤ 2Csol(G(A),k, t), (definition of Csol)

where the third line follows from dG (pj , π (j)) = d(pj ,yj ) + d(yj , π (j)) ≥ d(yj , π (j)). �

The equivalence between the original problem and the one on the compressed graph also holds

for the (k, t)-center-pp and the (k, t)-means problems.

Lemma 5.5. Lemma 5.3 and Lemma 5.4 both hold
(a) for (k, t)-center-pp with the same constants; and
(b) for (k, t)-means with slightly larger constants.

Proof. (a) Observe that

∑
j is replaced with maxj and Equation (9) rewrites to

max

j ∈A′
d(yj , π (j)) ≤ max

j ∈A′
ℓj + Copt(A,k, t).

The remainder of the equations hold with this transformation.

(b) Note that we used triangle inequality in the proof above. Although the square of the distance

does not obey the triangle inequality, we can nevertheless apply (a + b)2 ≤ 2a2 + 2b2 after the
triangle inequality. The derivations above will go through and the results hold with slightly

larger constants. �

The overall algorithm is summarized in Algorithm 3. Note that we cannot just cluster the {yj };
the graph is necessary. To implement the algorithm, we need to show that each site is able to

compute the distance function individually. Indeed, note that any site that contains pj will also
contain the corresponding yj or y

′
j and the value Eσ [d(σ (j),yj )] or Eσ [d

2(σ (j),y ′j )] respectively.
Therefore the distance oracle on the graph can be implemented by the site in constant time.

Theorem 5.6. For the distributed (k, t)-median problem, with probability at least 1 − 1/poly(n),
Algorithm 3 outputs sol(A,k, (1 + ϵ)t) such that Csol(A,k, (1 + ϵ)t) = O(1 + 1/ϵ) · Copt(A,k, t). The
sites communicate a total of Õ((sk + t)B) bits of information to the coordinator over 2 rounds. The
runtime on site i is Õ(n2i + niT ), where T is the runtime to compute 1-median, and the runtime on the
coordinator is Õ((sk + t)2). The same result holds for the (k, t)-median and center-pp problems with
larger constants.
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Proof. By Lemma 5.4 for the median problem and Lemma 5.5 for the means and center-pp

problems, it suffices to show that we can solve the (k, t)-median problem on the compressed graph.

The result then follows from Theorem 3.1 and Theorem 3.8 with the following amendments: When

a site sends the t or ti potential outliers, it needs to send the yj and the corresponding values

Eσ [d(σ (j),yj )] or Eσ [d
2(σ (j),y ′j )], which at most doubles the communication cost. The runtime is

increased byO(niT ) due to Step 2 since computing ℓj on the compressed graph takesO(T ) time. �

Other results claimed in Table 1 follow from analogous amendments to Theorem 3.8.

The global k-Center case. We now focus on (k, t)-center-g. In this setting we optimize

min

K⊆P,O⊆A
|K | ≤k , |O | ≤t

(
E

σ∼
∏

j Dj

[
max

j ∈A\O
d(σ (j), π (j))

] )
.

Definition 5.7 (Truncated distance [16]). For τ ≥ 0, define Lτ : P × P → R as Lτ (u,v) =
max{d(u,v) − τ , 0} and ρτ : A × P → R as ρτ (j,u) = Eσ [Lτ (σ (j),u)]. Note that Lτ (·, ·) is not a
metric for τ > 0.

Definition 5.8. Given a node setZ ⊆ A, let P(Z ) ⊆ P be the associated point set corresponding to

possible realizations of nodes in Z . Let sol(Z ,k, t, ρτ ) and opt(Z ,k, t, ρτ ) be a solution by algorithm

and the global optimum solution respectively to the (k, t)-median problem on node set Z where

the centers are restricted to P(Z ) and the weighted assignment cost of assigning node j ∈ Z to

centerm ∈ P(Z ) is ρτ (j,m). The costs Csol(Z ,k, t, ρτ ) and Copt(Z ,k, t, ρτ ) are defined analogously.

Let dmin and dmax denote the minimum and the maximum distance, respectively, between two

distinct points in P and let ∆ = dmax/dmin. The algorithm is presented in Algorithm 4.

Algorithm 4 Algorithm for (k, t)-center-g

1: All parties compute dmin and dmax

2: Each party creates T = {2idmin/18 : 0 ≤ i ≤ ⌈log
2
∆⌉ + 2}

3: for each τ ∈ T do
4: All parties run Algorithm 2 with the following changes: when it calls Algorithm 1 as a

subroutine, sol(Ai , 2k,q) in Algorithm 1 is replaced with sol(Ai , 2k,q, ρ6τ ) and the sites obtain

the numbers of local outliers {ti (τ )}
5: end for
6: Coordinator finds τ̂ = max{τ ∈ T :

∑
i Csol(Ai , 2k, ti (τ ), ρ6τ ) ≥ 2C0τ }, where C0 is the approxi-

mation factor for (b) in Lemma 5.9.

7: Coordinator solves (k, t)-center-g on the preclustering solutions sol(Ai , 2k, ti (τ̂ ), ρ6τ ) and out-

puts sol(A,k, (1 + ϵ)t).

Now we try to analyze the performance of Algorithm 4. We first show an analogy of Theorem 3.2

that we can compute a constant approximation to Copt(Z ,k, t, ρτ ).

Lemma 5.9. Let τ ≥ 0. For the (k, t)-center problem on Z , we can compute in Õ((k + t)|Z |) time
sol(Z ,k, (1 + ϵ)t, ρ9τ ) or sol(Z , (1 + ϵ)k, t, ρ3τ ) such that
(a) Csol(Z ,k, (1 + ϵ)t, ρ9τ ) ≤ O(1 + 1/ϵ) · Copt(Z ,k, t, ρτ );
(b) Csol(Z , (1 + ϵ)k, t, ρ3τ ) ≤ O(1 + 1/ϵ) · Copt(Z ,k, t, ρτ ).
The algorithm for approximation guarantee (a) is randomized and succeeds with probability at least
1 − 1/poly(|Z |) while the algorithm for (b) is deterministic.
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Proof. The proof is similar to that of Theorem 3.2. The only different part is the accounting for

the truncation. For the (1 + ϵ)k result we note a pseudo-triangle inequality (see [16, Lemma 4.1])

ρ3τ (j,m) ≤ ρτ (j,m
′) + ρτ (i,m

′) + ρτ (i,m) for anym
′
, since in this case we assign points within

three hops. For the (1 + ϵ)t result we assign within 9 hops—each point has a center in the large and

small solutions within 3 hops. The pairing of the centers in the two solutions show that the pair of

a center in the small solution exists within 6 hops. The whole argument for Theorem 3.2 then goes

through. �

Remark 6. Similar to Remark 3, the algorithm for approximation guarantee (a) in the preceding
lemma (Lemma 5.9) can be made deterministic when ϵ = 1.

We next show that the τ̂ computed in Step 6 is a good choice of τ and will ensure that the preclus-

tering solutions sol(Ai , 2k, ti (τ̂ ), ρ2τ̂ ) can be combined to yield a good global solution. Specifically

we have the following two lemmas.

Lemma 5.10. The τ̂ computed in Step 6 satisfies the following two conditions.
(i)

∑
i Csol(Ai , 2k, ti (2τ̂ ), ρ12τ̂ ) ≤ 4C0τ̂ ;

(ii)
∑

i Copt(Ai ,k, t
′
i , ρ2τ̂ ) ≥ 2τ̂ for all {t ′i } s.t.

∑
i t
′
i ≤ t ,

Proof. Note that τmax = maxT > dmax/6, it always holds that ρ6τmax
= 0. Thus the condition∑

i Csol(Ai , 2k, ti (τmax), ρ6τmax
) < 2C0τmax always holds, and τ̂ exists. Condition (i) follows from the

maximality of τ̂ , which means that 2τ̂ will not satisfy the constraint.

Next we show that condition (ii) holds. Let {t ′i } be an arbitrary sequence satisfying that

∑
i t
′
i ≤ t .

Similarly to the proof of Lemma 3.4, one can show that

∑
i Csol(Ai , 2k, t

′
i , ρ6τ̂ ) ≥

∑
i Csol(Ai , 2k, ti (τ̂ ), ρ6τ̂ ),

using the fact that

∑
i t
′
i ≤ t < ρt =

∑
i ti . Combining with Lemma 5.9 with ϵ = 1, we have that

C0

∑
i

Copt(Ai ,k, t
′
i , ρ2τ̂ ) ≥

∑
i

Csol(Ai , 2k, t
′
i , ρ6τ̂ ) ≥

∑
i

Csol(Ai , 2k, ti (τ̂ ), ρ6τ̂ ) ≥ 2C0τ̂ ,

whence condition (ii) follows. �

Lemma 5.11. Suppose that τ̂ satisfies the condition (i) and (ii) of Lemma 5.10, a γ -approximation of
the weighted center-g problem induced by preclustering sol(Ai , 2k, ti (τ̂ ), ρ6τ̂ ) is anO(γ ) approximation
of Copt(A,k, t).

To prove this lemma, we need the following two auxiliary lemmas.

Lemma 5.12. 2Copt(A,k, t, ρτ ) ≥
∑

i Copt(Ai ,k, t
∗
i , ρ2τ ), where t

∗
i is the number of ignored nodes

from Ai in the global optimum solution opt(A,k, t, ρτ ).

Proof. Fix a realization of the nodes. The proof mimics Lemma 3.3 for each realization. It then

uses the observation that Lτ (u1,u2) + Lτ (u2,u3) ≥ L2τ (u1,u3) and takes the expectation. �

Lemma 5.13. If Copt(Z ,k, t, ρτ ) ≥ τ then Copt(Z ,k, t) ≥ τ/3.

Proof. The case of t = 0 (no outliers) is proved in [16, Lemma 4.4]. For a general t > 0, let

Z ′ ⊆ Z be the set of clustered point in opt(Z ,k, t), then Copt(Z ′,k, 0, ρτ ) = Copt(Z ,k, t, ρτ ) ≥ τ ,
thus Copt(Z ,k, t) = Copt(Z

′,k, 0) ≥ τ/3. �

Proof of Lemma 5.11. It follows from Lemma 5.12 and condition (ii) of Lemma 5.10 that

2Copt(A,k, t, ρτ̂ ) ≥
∑
i

Copt(Ai ,k, t
∗
i , ρ2τ̂ ) ≥ 2τ̂ ,

where t∗i is the number of ignored nodes from Ai in the global optimum solution opt(A,k, t, ρτ̂ ). It
then follows from Lemma 5.13 that Copt(A,k, t) ≥ τ̂/3,
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To simplify the notation, in the rest of the proof we shorthand ti (2τ̂ ) as ti . Let A
∗
i ⊆ Ai be the set

of nodes clustered in the global optimum solution opt(A,k, t). Consider “collapsing” the nodes inA∗i
to their corresponding centers in sol(Ai , 2k, ti , ρ12τ̂ ) while keeping the same centers in sol(A,k, t).
If a node in A∗i is marked as an outlier in sol(Ai , 2k, ti , ρ12τ̂ ) then it is not moved, and it continues

to be excluded from the calculation. This movement increases the expectation of the maximum

assignment by 12τ̂ + Csol(Ai , 2k, ti , ρ12τ̂ ). Now consider the same process where we collapse A∗i for
all i . The total increase across the different i is 12τ̂ +

∑
i Csol(Ai , 2k, ti , ρ12τ̂ ) because the increase in

12τ̂ arises from distance truncation and is common. Thus we achieve a solution of cost at most

γ

(
Copt(A,k, t) + 12τ̂ +

∑
i

Csol(Ai , 2k, ti , ρ12τ̂ )

)
.

Now consider “expanding” the nodes of Ai from the preclustering to the distribution Dj . By

that logic the expected maximum can increase by at most 12τ̂ +
∑

i Csol(Ai , 2k, ti , ρ12τ̂ ), which by

condition (i) of Lemma 5.10 totals to C ′γτ̂ ≤ 3C ′γCopt(A,k, t) for some constant C ′ that depends
only on C0. The lemma follows. �

We state the main theorem for the (k, t)-center-g problem to conclude this section.

Theorem 5.14. For the distributed (k, t)-center-g problem, with probability at least 1 − 1/poly(n),
Algorithm 4 outputs sol(A,k, (1 + ϵ)t) satisfying Csol(A,k, (1 + ϵ)t) = O(1 + 1/ϵ) · Copt(A,k, t). The
sites communicate a total of Õ(skB + s log∆ + tI ) bits of information to the coordinator over 2 rounds,
where I is the bit complexity to encode a node. The runtime at site i is Õ((k + t)ni log∆) and the
runtime at the coordinator is Õ((sk + t)2). The algorithm can be derandomized when ϵ = 1.

Proof. The claim on approximation ratio follows from Lemma 5.11. To determine τ̂ , the commu-

nication cost increases by a factor of log∆; to send the preclustering solutions, the communication

cost for sending the outliers increases by a factor of I . The runtime follows from Lemma 5.9 with

an increase of a factor of log∆. �

We remark that the dependence on log∆ can be removed with another pass where each site

computes a τi using binary search. The discussion is omitted in the interest of simplicity.

Other results claimed in Table 1 follow from analogous amendments to Theorem 3.8.

6 ONE-ROUND ALGORITHMS
We have shown two-rounds results in Table 1. The algorithms can be adapted to be one-round in a

straightforward manner, by setting ti = t for all sites i . The results for (k, t)-median/means that

ignores (2 + δ )t or (2 + ϵ + δ )t points basically follow from Theorem 3.8, where for (k, t)-median

with k centers (unicriterion) we need to apply again the 1-round result, and for (k, t)-median/means

with (1 + ϵ)k centers we simply use the second inequality of Theorem 3.2 instead of the first one at

the final clustering step at the coordinator. The result for (k, t)-center that ignore (2 + δ )t points
is due to the following modifications on Algorithm 4: sites do not send the total (1 + δ )t local
outliers to the coordinator, and thereafter the coordinator performs the second level clustering

with (another) t outliers, we have (2 + δ )t outliers in total.
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