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Abstract

We show an Ω((n1−2/p logM)/ε2) bits of space lower bound for (1 + ε)-approximating the p-th fre-
quency moment Fp = ‖x‖pp =

∑n
i=1 |xi|p of a vector x ∈ {−M,−M+1, . . . ,M}n with constant probabil-

ity in the turnstile model for data streams, for any p > 2 and ε ≥ 1/n1/p (we require ε ≥ 1/n1/p since there
is a trivial O(n logM) upper bound). This lower bound matches the space complexity of an upper bound of
Ganguly for any ε < 1/ logO(1) n, and is the first of any bound in the long sequence of work on estimating
Fp to be shown to be optimal up to a constant factor for any setting of parameters. Moreover, our technique
improves the dependence on ε in known lower bounds for cascaded moments, also known as mixed norms.
We also continue the study of tight bounds on the dimension of linear sketches (drawn from some distri-
bution) required for estimating Fp over the reals. We show a dimension lower bound of Ω(n1−2/p/ε2) for
sketches providing a (1+ε)-approximation to ‖x‖pp with constant probability, for any p > 2 and ε ≥ 1/n1/p.
This is again optimal for ε < 1/ logO(1) n.



1 Introduction

In the standard turnstile model of data streams [29, 38], there is an underlying n-dimensional vector x, which
we sometimes refer to as the frequency vector, which is initialized to the zero vector and which evolves through
a sequence of additive updates to its coordinates. These updates are fed into a streaming algorithm, and have
the form xi ← xi + δ, changing the i-th coordinate by the value δ. Here δ is an arbitrary positive or negative
integer, and x is guaranteed to satisfy the promise that at all times x ∈ {−M,−M + 1, . . . ,M}n. The goal of
the streaming algorithm is to make a small number of passes over the data and to use limited memory to compute
statistics of x, such as the frequency moments [1], the number of distinct elements [21], the empirical entropy
[12], and the heavy hitters [15, 18]. Since computing these statistics exactly or deterministically requires a
prohibitive Ω(n) bits of space [1], these algorithms are both randomized and approximate. For most of these
problems in the turnstile model, they are quite often studied in the model in which the data stream algorithm
can only make a single pass over the data. This is critical in many online applications, such as network traffic
monitoring, and when most of the data resides on an external disk, for which multiple passes over it is too costly.
In this paper we focus on one-pass streaming algorithms.

We show new lower bounds for approximating the p-th frequency moment Fp, p > 2, in a data stream.
In this problem the goal is to estimate

∑n
i=1 |xi|p up to a factor of 1 + ε with constant probability, where

x ∈ {−M,−M + 1, . . . ,M}n and we make the standard assumption that log(Mn) = Θ(logM) and p > 2 is
a constant. We summarize the sequence of work on this problem in Table 1.

Fp Algorithm Space Complexity
[31] O(n1−2/pε−O(1) logO(1) n log(M))

[8] O(n1−2/pε−2−4/p log n log2(M))

[37] O(n1−2/pε−O(1) logO(1) n log(M))

[3] O(n1−2/pε−2−6/p log n log(M))

[9] O(n1−2/pε−2−4/p log n · g(p, n) log(M))

[2] O(n1−2/p log n log(M)ε−O(1))

[26], Best upper bound O(n1−2/pε−2 log n · log(M)/min(log n, ε4/p−2)))

[1] Ω(n1−5/p)
[41] Ω(ε−2)

[6] Ω(n1−2/p−γε−2/p), any constant γ > 0

[13] Ω(n1−2/pε−2/p)

[42] Ω(n1−2/pε−4/p/ logO(1) n)

[27] Ω(n1−2/pε−2/ log n)

This paper Ω(n1−2/pε−2 log(M))

Table 1: Results are in terms of bits and for constant p > 2. Here, g(p, n) = minc constant gc(n), where
g1(n) = log n, gc(n) = log(gc−1(n))/(1 − 2/p). For brevity, we only list those results which work in the
general turnstile model, and for which bounds for general ε have been derived. For other recent interesting
work, we refer the reader to [10], which requires the insertion-only model and does not have bounds for general
ε > 0. We also start the upper bound timeline with [31], since that is the first work which achieved an exponent
of 1− 2/p for n. For earlier works which achieved worse exponents for n, see [1, 17, 22, 23]. We note that [1]
initiated the problem and obtained an O(n1−1/pε−2 log(M)) bound in the insertion-only model. We also omit
from the table previous lower bounds which hold for linear sketches rather than for the turnstile model [4, 40],
though these are discussed in the Introduction.

The previous best upper bound is due to Ganguly [26], and isO(n1−2/pε−2 log n logM/min(log n, ε4/p−2)).
Notice that for ε < 1/ logO(1) n, this bound simplifies to O(n1−2/pε−2 logM). The previous best lower
bound is due to [13, 27], and is Ω(n1−2/pε−2/ log n + n1−2/pε−2/p). We improve the space complexity lower
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bound, in bits, to Ω(n1−2/pε−2 logM) for any ε > 1/n1/p (we require ε > 1/n1/p since there is a triv-
ial O(n logM) upper bound). In light of the upper bound given above, our lower bound is optimal for any
ε < 1/ logO(1) n and constant p > 2. This is an important range of parameters; even in applications with 1%
error, i.e., ε = .01, we have that for, e.g., n = 232, ε < 1/ log n. Understanding the limitations of stream-
ing algorithms in terms of ε is also the focus of a body of work in the streaming literature, see, for example,
[7, 11, 16, 24, 25, 28, 30, 34, 39, 41]. Our lower bound gives the first asymptotically optimal bound for any
setting of parameters in the long line of work on estimating Fp in a data stream.

A few recent works [4, 40] also study the “sketching model” of Fp-estimation in which the underlying vec-
tor x is in Rn, rather than in the discrete set {−M,−M + 1, . . . ,M}n. One seeks a distribution over linear
maps A : Rn → Rs, for some s � n, so that for any fixed vector x ∈ Rn, one can (1 + ε)-approximate ‖x‖pp
with constant probability by applying an estimation procedure E : Rs → R to Ax. One seeks the smallest
possible s for a given ε and n. Lower bounds in the turnstile model do not imply lower bounds in the sketching
model. Indeed, if the input vector x ∈ {−M,−M + 1, . . . ,M}n, then the inner product of x with the single
vector (1, 1/(M + 1), 1/(M + 1)2, . . . , 1/(M + 1)n−1) is enough to recover x, so a sketching dimension of
s = 1 suffices. Previously, it was known that s = Ω(n1−2/p) [40], which for constant p > 2 and constant
ε > 0 was recently improved to s = Ω(n1−2/p log n) [4]. We note that the upper bound of [26] is a linear
sketch with s = O(n1−2/pε−2) dimensions for any ε < 1/ logO(1) n. We improve the lower bound on s for
general ε, obtaining an s = Ω(n1−2/pε−2) lower bound. Our lower bound matches the upper bound of [26] for
ε < 1/ logO(1) n up to a constant factor, and improves the lower bound of [4] for ε < 1/ logO(1) n.

Our Approach: To prove our lower bound in the turnstile model, we define a variant of the `k∞ communi-
cation problem [6]. In this problem there are two parties, Alice and Bob, holding vectors x, y ∈ {−M,−M +
1, . . . ,M}n respectively, and their goal is to decide if ‖x − y‖∞ = maxi∈[n] |(x − y)i| ≤ 1 or there exists a
unique i ∈ [n] for which |(x − y)i| ≥ k and for all j 6= i, |(x − y)j | ≤ 1. The standard reduction to fre-
quency moments is to set k = ε1/pn1/p, from which one can show that any streaming algorithm for outputting a
(1+ε)-approximation to Fp can be used to build a communication protocol for solving `k∞ with communication
proportional to the algorithm’s space complexity. Using the communication lower bound of Ω(n/k2) for the
`k∞ problem, this gives the bound Ω(n1−2/pε−2/p).

Our first modification is to instead set k = εn1/p, which gives a communication lower bound of Ω(n1−2/pε−2).
However, the reduction from approximating Fp no longer works. To remedy this, we introduce a third player
Charlie whose input is z ∈ {0n, n1/pe1, . . . , n

1/pen}, where ei denotes the i-th standard unit vector, and we
seek a (1 + ε)-approximation to ‖x− y+ z‖∞. The main point is that if |xi − yi| = εn1/p, then ‖x− y+ z‖∞
differs by a factor of 1 + ε depending on whether or not Charlie’s input is n1/pei, 0n, or n1/pej for some j 6= i.
Note that Charlie has no information as to whether |xi− yi| = k or |xi− yi| ≤ 1, which is determined by Alice
and Bob’s inputs. One can think of this as an extension to the classical indexing problem, which involves two
players, in which the first player has a string x ∈ {0, 1}n, the second player an index i ∈ [n], and the second
player needs to output xi. Now, we have Alice and Bob solving multiple single-coordinate problems and Charlie
is indexing into one of these problems.

This modification allows us to strengthen the problem for use in applications. We choose the legal inputs
x, y, z to the three-player problem to have the following promise: (1) ‖x − y + z‖∞ ≤ 1, (2) there is a unique
i for which |(x− y + z)i| = εn1/p and all other j 6= i satisfy |(x− y + z)j | ≤ 1, or (3) there is a unique i for
which |(x− y + z)i| is either (1 + ε)n1/p or (1− ε)n1/p and all other j 6= i satisfy |(x− y + z)j | ≤ 1. Using
the 1-way property of a communication protocol, we can adapt the argument in [6] for the `k∞ problem to show
an Ω(n1−2/pε−2) lower bound for this 3-player problem. Here we use the intuitive fact that Alice and Bob need
to solve the `k∞ problem with k = εn1/p because if Charlie has the input z = n1/pei, then ‖x− y+ z‖∞ differs
by a factor of (1 + ε) depending on whether |(x − y)i| = εn1/p or |(x − y)i| ≤ 1. Moreover, Alice and Bob
have no information about z since the protocol is 1-way.

We show that a streaming algorithm providing a (1 + ε)-approximation to Fp can decide which of the three
cases the input is in by invoking it twice in the reduction to the communication problem. Here, Alice, Bob, and
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Charlie create local streams σA, σB, and σC , Alice sends the state of the algorithm on σA to Bob, who computes
the state of the algorithm on σA◦σB who sends it to Charlie. Charlie then queries a (1+ε)-approximate Fp value
of σA ◦ σB , together with a (1 + ε)-approximate Fp value of σA ◦ σB ◦ σC . Assuming both query responses are
correct, we can solve this new communication problem, yielding an Ω(n1−2/pε−2) bits of space lower bound.

To improve the space further, we define an augmented version of this 3-player problem, in which Alice,
Bob, and Charlie have r = Θ(logM) independent instances of this problem, denoted xi, yi, zi, for i ∈ [r].
Charlie additionally has an index I ∈ [r] together with (xi, yi) for all i > I . His goal is to solve the I-th
instance of the communication problem. This problem can be seen as an extension to the classical augmented
indexing problem, which involves two players, in which the first player has a string x ∈ {0, 1}n, the second
player an index i ∈ [n] together with xi+1, . . . , xn, and the second player needs to output xi. We now have a
“functional” version of augmented indexing, in which Alice and Bob solve multiple instances of a problem, and
Charlie’s input indexes one of these problems. Via a direct sum argument [6, 14], we show our problem has
randomized communication complexity Ω(n1−2/pε−2 logM). Finally, we show how a streaming algorithm for
(1 + ε)-approximating Fp can be used to solve this augmented problem.

We believe our technique will improve the dependence on ε in space lower bounds for other problems
in the data stream literature. For example, we can improve the dependence on ε in known lower bounds for
estimating cascaded moments, also known as mixed norms [3, 19, 33]. Here there is an underlying n × d
matrix A, and the goal is to estimate `p(`q)(A) = (

∑n
i=1 ‖Ai‖

p
q)1/p, where Ai is the i-th row of A. In

[33] (beginning of Section 2) a lower bound of Ω(n1−2/pd1−2/q) is shown for constant ε and p, q ≥ 2 via
a reduction to the so-called t-player set disjointness problem for t = 2n1/pd1/q. Straightforwardly setting
t = Θ(ε1/kn1/pd1/q), their proof establishes a lower bound of Ω(n1−2/pd1−2/qε−2/p) for general ε. Our tech-
nique also applies to the t-player set disjointness problem, by introducing a (t + 1)-st player Charlie with an
input z ∈ {0nd, n1/pd1/qeie

T
j for i ∈ [n], j ∈ [d]}, and applying analogous ideas to those given above. This

results in a new lower bound of Ω(n1−2/pd1−2/qε−2). The same ideas apply to improving the Ω(n1/2) lower
bound for `2(`0)(A) given in [33] (here ‖Ai‖0 denotes the number of non-zero entries ofAi). A straightforward
adaptation of the arguments in [33] for general ε gives a lower bound of Ω(n1/2ε−1/2), while our technique
strengthens this to Ω(n1/2ε−1). We sketch these improvements in Appendix D.

Our lower bound in the sketching model is simpler and perhaps surprising. We consider two cases: the input
x ∈ Rn is equal to g + n1/pei for a vector g of i.i.d. standard normal random variables and a random standard
unit vector ei, or the input x is equal to g′ + n1/p(1 + ε)ei for a vector g′ of i.i.d. standard normal random
variables. By Yao’s minimax principle, there exists a fixed s × n sketching matrix A for which the variation
distance between distributions A(g+n1/pei) and A(g′+n1/p(1 + ε)ei) is large. Since we can, w.l.o.g., assume
the rows of A are orthonormal (given Ax, one can always compute LAx for any change of basis matrix L for
the rowspace of A), this implies the variation distance between h + n1/pAi and h′ + n1/p(1 + ε)Ai is large,
where h, h′ are s-dimensional vectors of i.i.d. standard normal random variables and Ai is the i-th column of
A. However, for a random i, since the rows of A are orthonormal, ‖Ai‖2 is only about O(

√
s/n). For such i,

this contradicts a standard variation distance upper bound between two shifted s-dimensional Gaussian vectors
unless s = Ω(n1−2/p/ε2).

2 Preliminaries

Notations. We denote the canonical basis of Rn by {e1, . . . , en}. Let [n] denote the set {1, . . . , n}. For a
vector v ∈ Rn and an index set K ⊂ [n], define a vector in Rn, denoted by v|K , such that (v|K)i = vi for all
i ∈ K and (v|K)i = 0 for all i 6∈ K.
Probability. For a random variable X and a probability distribution D, we write X ∼ D for X being subject
to the distribution D. We denote the multivariate Gaussian with mean µ and covariance matrix Σ by N(µ,Σ).
Let In denote the identity matrix of size n× n.

We shall need the following lemma regarding concentration of Gaussian measure, see Chapter 1 of [36].
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Lemma 1. Suppose that X ∼ N(0, In) and the function f : Rn → R is 1-Lipschitz, i.e., |f(x) − f(y)| ≤
‖x− y‖2 for all x, y ∈ Rn. Then for any t > 0 it holds that Prx{|f(x)− Ef(x)| > t} ≤ 2e−t

2/2.

Definition 1. Suppose µ and ν are two probability measures over some Borel algebra B on Rn. Then the total
variation distance between µ and ν is defined as

dTV (µ, ν) = sup
B∈B
|µ(B)− ν(B)|

(
=

1

2

∫
x
|f(x)− g(x)|dx

)
,

where the second equality holds when µ and ν have probability density functions f(x) and g(x) respectively.

The following is a result ([20]) that bounds the total variation distance between two multivariate Gaussian
distributions.

Proposition 1. dTV (N(µ1, In), N(µ2, In)) ≤ ‖µ1 − µ2‖2/
√

2.

Communication Model. We briefly summarize the notions from communication complexity that we will
need. For more background on communication complexity, we refer the reader to [35]. In this paper we
consider a one-way communication model. There are three players Alice, Bob and Charlie with private random
coins. Alice is given an input x, Bob y and Charlie z, and their goal is to compute a function f(x, y, z). Alice
sends exactly one message to Bob and Bob sends exactly one message to Charlie, according to a protocol Π,
and then Charlie outputs an answer. We say the protocol Π is δ-error if for every legal triple (x, y, z) of inputs,
the answer equals f(x, y, z) with probability at least 1− δ, where the probability is taken over the random coins
of the players. The concatenation of the message sent from Alice to Bob with the message from Bob to Charlie,
as well as Charlie’s output, is called the transcript of Π. The maximum length of the transcript (in bits) is called
the communication cost of Π. The communication complexity of f is the minimal communication cost of a
δ-error protocol for f , and is denoted Rδ(f).
Mutual Information. Let (X,Y ) be a pair of discrete random variables with joint distribution p(x, y). The
mutual information I(X;Y ) is defined as I(X;Y ) =

∑
x,y p(x, y) log p(x,y)

p(x)p(y) , where p(x) and p(y) are
marginal distributions. The following are basic properties regarding mutual information.

Proposition 2. Let X,Y, Z be discrete random variables defined on ΩX ,ΩY ,ΩZ , respectively, and let f be a
function defined on Ω. Then

1. I(X;Y ) ≥ 0 and the equality is attained iff X and Y are independent;
2. Chain rule for mutual information: I(X,Y ;Z) = I(X;Z) + I(X;Y |Z);
3. Data processing inequality: I(f(X);Y ) ≤ I(X;Y ).

2.1 Direct-sum Technique

The following definitions and results are from [6]. See also Section 6 of [5].

Definition 2. Let Π be a randomized protocol with inputs belonging to a set K. We shall abuse notation and
also use Π(X,Y, Z) to denote the transcript of protocol Π, which is a random variable which also depends on
the private coins of the players. When X,Y, Z are understood from context, we sometimes further abbreviate
Π(X,Y, Z) as Π. Let µ be a distribution on K and suppose that (X,Y, Z) ∼ µ. The information cost of Π with
respect to µ is defined to be I(X,Y, Z; Π(X,Y, Z)).

Definition 3. The δ-error information complexity of f with respect to a distribution µ, denoted by ICµ,δ(f), is
defined to be the minimum information cost of a δ-error protocol for f with respect to µ.

Using this definition, it follows immediately that (see [6]):
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Proposition 3. Rδ(f) ≥ ICµ,δ(f) for any distribution µ and δ > 0.

Definition 4 (Conditional information cost). Let Π be a randomized protocol whose inputs belong to some set
K of valid inputs and that ζ is a mixture of product distributions on K ×W . Suppose that ((X,Y, Z),W ) ∼ ζ.
The conditional information cost of Π with respect to ζ is defined as I(X,Y, Z; Π(X,Y, Z)|W ).

Definition 5 (Conditional information complexity). The δ-error conditional information complexity of f with
respect to ζ, denotedCICζ,δ(f), is defined to be the minimum conditional information cost of a δ-error protocol
for f with respect to ζ.

Definition 6 (Decomposable functions). Suppose that f is a function defined on Ln. We say that f is g-
decomposable with primitive h if it can be written as f(x,y, z) = g(h(x1,y1, z1), . . . , h(xn,yn, zn)) for some
function h defined on L → Q and g on Qn. Sometimes we simply say that f is decomposable with primitive h.

Definition 7 (Embedding). For a vector w ∈ Ln, j ∈ [n] and u ∈ L, we define embed(w, j, u) to be the
n-dimensional vector over L whose i-th component is defined as follows: embed(w, j, u)i = wi if i 6= j; and
embed(w, j, u)i = u if i = j.

Definition 8 (Collapsing distribution). Suppose f is g-decomposable with primitive h. We call (x, y, z) ∈ Ln a
collapsing input for f , if for every j and (u, v, w) ∈ L, it holds that

f(embed(x, j, u), embed(y, j, v), embed(z, j, w)) = h(u, v, w).

We call a distribution µ on Ln collapsing for f if every (x, y, z) in the support of µ is a collapsing input.

Lemma 2 (Information cost decomposition). Let Π be a protocol whose inputs belong to Ln for some set
L. Let ζ be a mixture of product distributions on L × D and suppose that ((X,Y, Z), D) ∼ ζn. Then,
I(X,Y, Z; Π(X,Y, Z)|D) ≥

∑
i I(Xi, Yi, Zi; Π(X,Y, Z)|D).

Lemma 3 (Reduction lemma). Let Π be a δ-error protocol for a decomposable function f defined on Ln
with primitive h. Let ζ be a mixture of product distributions on L × D, let η = ζn, and suppose that
((X,Y, Z), D) ∼ η. If the distribution of (X,Y, Z) is a collapsing distribution for f , then for all j ∈ [n],
it holds that I((Xj , Yj , Zj); Π(X,Y, Z)|D) ≥ CICζ,δ(h).

2.2 Hellinger Distance

Definition 9. The Hellinger distance h(P,Q) between probability distributions P and Q on a domain Ω is
defined by

h2(P,Q) = 1−
∑
ω∈Ω

√
P (ω)Q(ω) =

1

2

∑
ω∈Ω

(
√
P (ω)−

√
Q(ω))2.

One can verify that the Hellinger distance is a metric satisfying the triangle inequality, see, e.g., [6]. The
following proposition connects the Hellinger distance and the total variation distance.

Proposition 4. (see, e.g., [5]) h2(P,Q) ≤ dTV (P,Q) ≤
√

2h(P,Q).

In connection with mutual information, we have that

Lemma 4 ([6]). Let Fz1 and Fz2 be two random variables. Let Z denote a random variable with uniform distri-
bution in {z1, z2} Suppose F (z) is independent of Z for each z ∈ {z1, z2}. Then, I(Z;F (Z)) ≥ h2(Fz1 , Fz2).

In [5], it is shown that a randomized private-coin three-party protocol exhibits the rectangle property in the
following sense: there exist functions q1, q2, q3 such that for all legal inputs (x, y, z) and transcripts τ , it holds
that

Πx,y,z(τ) = q1(x, τ)q2(y, τ)q3(z, τ).

The following is a variant of the inverse triangle inequality in [6] that we need to accommodate our setting of
three players. The proof is similar to that for two players and thus we postpone it to Appendix A.
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Lemma 5 (Inverse triangle inequality). For any randomized protocol Π and for any inputs x, y, z and x′, y′, z
it holds that

h2(Πx,y,z,Πx′,y,z) + h2(Πx,y′,z,Πx′,y′,z) ≤ 2h2(Πx,y,z,Πx′,y′,z).

3 Augmented L∞ Promise Problem

In this section we define the Augmented L∞ Promise Problem. First, though, we consider a slightly different
gap problem than that considered in [6] for a problem which we refer to as the L∞ Promise problem.

Definition 10 (L∞(k, ε)). Assume that εk ≥ 1. There are three players Alice, Bob and Charlie in the one-
way communication model with private coins. Alice receives a vector a ∈ {0, . . . , εk}n, Bob a vector b ∈
{0, . . . , εk}n and Charlie both an index j ∈ [n] and a bit c ∈ {0, 1}. The input is guaranteed to satisfy
|ai−bi| ≤ 1 for all j 6= i. Charlie is asked to decide which three of the following cases happen, provided we are
promised that the input is indeed in one of these three cases: (1) (a−b)j+ck ≤ 1; (2) (a−b)j+ck = (1−ε)k;
(3) (a− b)j + ck ≥ k. Charlie’s output must be correct with probability ≥ 9/10.

In the definition above, the index j is referred to as the spike position.
We consider the following distribution µ on the input. Let c = 0. Define the random variable ((X,Y ), D)

as follows. The random variable is uniform on {0, . . . , k} × {0, 1} \ {(0, 1), (k, 0)}. If D = (d, 0) then X = d
and Y is uniform on {d, d+ 1}; if D = (d, 1) then Y = d and X is uniformly distributed on {d− 1, d}.

Theorem 1. R(L∞(k, ε)) = Ω(n/(k2ε2)).

Proof. Making c = 0 in Charlie’s input, we see that µn is a collapsing distribution for L∞(k, ε) so we can apply
the direct sum technique. Letting xi = (ai,bi), it follows that

R(L∞(k, ε)) ≥
n∑
i=1

I(x1, . . . ,xn; Π(x1, . . . ,xn)|D1, . . . , Dn) ≥ nCICµ(L1
∞(k, ε)),

where L1
∞(k, ε) is the single coordinate problem of L∞(k, ε), that is, the L∞(k, ε) problem with n = 1.

Therefore, it suffices to show that

CICµ(L1
∞(k, ε)) = Ω

(
1

k2ε2

)
. (1)

This is a single-coordinate problem, and we shall drop the index i henceforth in the proof. Let Ud denote a
random variable with uniform distribution on {d, d+ 1}.

CICµ(L1
∞(k, ε)) = I(x; Π(x)|D) =

1

2εk

(
εk−1∑
d=0

I(Ud; Π(d, Ud)) +

εk∑
d=1

I(Ud−1; Π(Ud−1, d))

)

≥ 1

2εk

(
εk−1∑
d=0

h2(Πd,d,0,Πd,d+1,0) +

εk−1∑
d=0

h2(Πd−1,d,0,Πd,d,0)

)
(2)

≥ 1

4ε2k2

(
εk−1∑
d=0

h(Πd,d,0,Πd,d+1,0) +
εk−1∑
d=0

h(Πd−1,d,0,Πd,d,0)

)2

(3)

≥ 1

4ε2k2
h2(Π0,0,0,Πεk,εk,0) (4)

where we used Lemma 4 for (2), the Cauchy-Schwarz inequality for (3) and the triangle inequality for (4), By
the three-player version of the inverse triangle inequality (Lemma 5),

h2(Π0,0,0,Πεk,εk,0) ≥ 1

2
(h2(Π0,0,0,Πεk,0,0) + h2(Π0,εk,0,Πεk,εk,0))
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≥ 1

2
h2(Π0,εk,0,Πεk,εk,0)

≥ 1

4
d2
TV (Π0,εk,0,Πεk,εk,0), (5)

where we used Proposition 4 for the last inequality. We now claim that

dTV (Π0,εk,0,Πεk,εk,0) = Ω(1). (6)

Consider the message sent from Alice to Bob, together with the message sent from Bob to Charlie. Let us denote
the concatenation of these two messages by T = T (x, y). Notice that the messages do not depend on Charlie’s
input. We in fact claim a stronger statement than (6), namely that dTV (T (0, εk), T (εk, εk)) = Ω(1).

To see this, suppose that Charlie’s input bit equals 1. Then he needs to decide if the players inputs are in
case (2) or in case (3). Let T be the set of messages from Alice and Bob and from Bob to Charlie that make
Charlie output “case (2)” with probability≥ 3/4, over his private coins. Then by the correctness of the protocol,
Pr{T (0, εk) ∈ T } ≥ 3

5 and Pr{T (εk, εk) ∈ T } ≤ 2
15 . Indeed, otherwise if Pr{T (0, εk) ∈ T } < 3/5 then

Charlie outputs “case (2)” with probability < 3/5 + 3/4 · 2/5 = 9/10, contradicting the correctness of the
protocol, while if Pr{T (εk, εk) ∈ T } > 2/15 then Charlie outputs “case (2)” with probability > 2/15 · 3/4 =
1/10, again contradicting the correctness of the protocol. Therefore

dTV (T (0, εk), T (εk, εk)) ≥ |Pr(T (0, εk) ∈ T )− Pr(T (εk, εk) ∈ T )| ≥ 3

5
− 2

15
= Ω(1),

whence (6) follows since dTV (Π0,εk,0,Πεk,εk,0) ≥ dTV (T (0, εk), T (εk, εk)).
Plugging (6) into (5) and then (5) into (4), we have that (1) follows immediately.

Now we define a stronger problem called the AugmentedL∞ Promise problem, and denoted by AUG-L∞(r, k, ε).
We further abbreviate this by AUG-L∞(r, k) when ε is clear from the context.

Definition 11 (AUG-L∞(r, k, ε)). Consider r instances ofL∞(k, ε), denoted (a1,b1, j1, c1), . . . , (ar,br, jr, cr).
In addition to these inputs, Charlie has an index I ∈ [r], together with aj and bj for all j > I . The goal is to
decide for the I-th L∞(k) instance, which of the three cases the input is in, with probability ≥ 5/8. The input
is guaranteed to satisfy ci = 0 for all i 6= I .

Now we define a distribution ν on the inputs to the AUG-L∞(r, k) problem: the r instances of L∞(k) are
independent hard instances (i.e., drawn from µ) of L∞(k). The index I is uniformly random on the set [r].

Theorem 2. R(L∞(r, k, ε)) = Ω(nr/(k2ε2)).

Proof. Write xi = (ai,bi). It suffices to show that I(x1, . . . ,xr; Π|Z1, . . . ,Zr) = Ω
(
nr
k2ε2

)
, where Zi =

(Di, ji, 0) (letting ci = 0 for all i). We claim that I(xt; Π|Zt,Z−t,x>t) ≥ CICµn(L∞(k, ε)). Indeed, the
players can hardwire x>t into the protocol, and Charlie can set I = t. Conditioned on Z−t, the inputs to the
instances x<t are independent, and so the players can generate these inputs using their private randomness.
Then, for the input of L∞(k, ε), the players can embed it as the t-th input to the protocol for the AUG-L∞(k)
problem. It follows that the output of AUG-L∞(k) agrees with the output of L∞(k). Moreover, since the
distribution on the t-th input instance is µ, we have that

I(xt; Π|Zt,Z−t,x>t) ≥ CICµn(L∞(k, ε)) = Ω
( n

ε2k2

)
by Theorem 1. It follows that

I(x1, . . . ,xr; Π|Z1, . . . ,Zr) =
∑
t

I(xt; Π|Z1, . . . ,Zr,xi+1, . . . ,xr)

7



=
∑
t

∑
z,x

I(xt; Π|Zt,Z−t = z,x>t = x) Pr{Z−t = z,x>t = x}

≥
∑
t

∑
z,x

Ω
( n

ε2k2

)
Pr{Z−t = z,x>t = x}

= Ω
( nr

ε2k2

)
as desired.

4 Frequency Moments

Suppose that x ∈ Rn. We say that a data stream algorithm solves the (ε, p)-NORM problem if its output X
satisfies (1− ε)‖x‖pp ≤ X ≤ (1 + ε)‖x‖pp with probability ≥ 1− δ. Our main result is the following.

Theorem 3. For any p > 2, there exist absolute constants c > 0, α > 1 and a constant ε0 = ε0(p) which
depends only on p such that for any ε ∈ [c/n1/p, ε0], any randomized streaming algorithm that solves the (ε, p)-
NORM problem for x ∈ {−M,−M + 1, . . . ,M}n with probability ≥ 19/20, where M = Ω(nα/p), requires
Ω(n1−2/p(logM)/ε2) bits of space.

Proof. Suppose that a randomized streaming algorithm A solves the (ε, p)-NORM problem with probability
≥ 19/20. Let k = Θ(n1/p) and r = (1 − 1/α) log10M . We shall reduce the (ε, p)-NORM problem to
AUG-L∞(r, k, ε). Note that with our choice of parameters, εk = Ω(1).

Alice generates a stream σ1 with underlying frequency vector−
∑

j 10j−1Aj and sends the state ofA on σ1

to Bob. Then Bob generates a stream σ2 with underlying frequency vector
∑

j 10j−1Bj and continues running
A on σ2, starting from the state sent by Alice. The streaming algorithm then reaches a state corresponding to
an underlying frequency vector

∑
j 10j−1(Bj − Aj). Bob sends this state to Charlie. Charlie, given I and

(Aj , Bj) for all j > I , generates a stream σ3 with underlying frequency vector
∑

j>I 10j−1(Aj − Bj) and
continues running A on σ3 to obtain an output V for the execution of A on a stream with underlying frequency
vector v =

∑I
j=1 10j−1(Bj − Aj). Finally, Charlie generates a stream σ4 with underlying frequency vector

10I−1cIkejI , where jI ∈ [n] and cI ∈ {0, 1} are the inputs to Charlie in the I-th instance of the L∞(k) Promise
problem, and continues running A on σ4 to obtain an output W for a stream with underlying frequency vector
equal to w = v + 10I−1cIkejI .

For notational convenience, let Xj = Bj − Aj . We have that ‖Xj‖∞ ≤ 1 at non-spike positions by the
promise of the input to the L∞ Promise problem. Notice that ‖v‖∞ ≤

∑I
j=1 10j−1 ≤ 10I/9 ≤ 10r/9 ≤

M1−1/α ≤ M and ‖w‖∞ ≤ ‖v‖∞ + k10I−1 ≤ (k + 1)10r/9 ≤ M by our assumption of M and choice of
k and r. This implies that A outputs a correct approximation to ‖w‖∞ with probability ≥ 19/20 and a correct
approximation to ‖v‖∞ with probability ≥ 19/20. Define the event

E1 =
{∣∣W − ‖w‖pp∣∣ ≤ ε‖w‖pp and

∣∣V − ‖v‖pp∣∣ ≤ ε‖v‖pp} .
By a union bound, Pr{E1} ≥ 9/10. We show next how to use V and W to solve AUG-L∞(k, r, ε), conditioned

on the event E1. Let L =
(∑I

j=1 10j−1
)p

, then L =
(

10I−1
9

)p
≤
(

10
9

)p
10(I−1)p.

Case 1. cI = 0 so wjI = vjI . In this case, W − V ≤ 2ε‖v‖pp ≤ 2εnL =: UB1,
Case 2. cI = 1 and wjI = 10I−1(1− ε)k. In this case, vjI = −10I−1εk, so

W − V ≤ (1 + ε)‖w‖pp − (1− ε)‖v‖pp = (1 + ε)(‖v|[n]\{jI}‖
p
p + ‖wjI‖

p
p)− (1− ε)‖v‖pp

= 2ε‖v|[n]\{jI}‖
p
p + (1 + ε)‖w|jI‖

p
p − (1− ε)‖v|jI‖

p
p

≤ 2ε(n− 1)L+ (1 + ε)10(I−1)p(1− ε)pkp − (1− ε)εpkp10(I−1)p =: UB2
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and

W − V ≥ (1− ε)‖w‖pp − (1 + ε)‖v‖pp = (1− ε)(‖v|[n]\{jI}‖
p
p + ‖w|jI‖

p
p)− (1 + ε)‖v‖pp

≥ (1− ε)10(I−1)p(1− ε)pkp − 2ε(n− 1)L− (1 + ε)εp10(I−1)pkp := LB2

Case 3. cI = 1 and wjI ≥ 10I−1k. In this case, 0 ≤ vjI ≤ 10I−1εk, so

W − V ≥ (1− ε)10(I−1)pkp − 2ε(n− 1)L− (1 + ε)εp10(I−1)pkp := LB3

Therefore, Charlie can solve AUG-L∞(r, k, ε) provided that LB2 > UB1,and LB3 > UB2. It suffices to have
(see the derivations in Appendix B)

(1− ε)p+1 − (1 + ε)εp > 4ε
n

kp

(
10

9

)p
ε

(
p− 2

2
− 2εp−1

)
> 4ε

n

kp

(
10

9

)p
,

which are satisfied when ε is small enough, k = Cn1/p for a large enough constant C, and p > 2 is a constant.
Hence, Charlie can solve the AUG-L∞(r, k, ε) problem with probability ≥ 9/10. The lower bound for the
(ε, p)-NORM problem follows from Theorem 2.

5 Lower Bound for Linear Sketches

Given η ≥ 0, define a distribution Dk,η on Rn as follows. Consider x ∼ N(0, In). Let j be uniformly random
in {1, . . . , n}. The distribution Dk,η is defined to be L(x + (1 + η)kej). Suppose that A is an m × n matrix
of orthonormal rows. When operated on vectors x ∼ Dk,η, the product Ax induces a distribution, denoted by
FA,k,η.

Lemma 6. Let ε > 0. It holds that dTV (FA,k,0,FA,k,ε) ≤ εk
√
m/n.

Proof. Let y1 ∼ FA,k,0 and y2 ∼ FA,k,ε. By rotational invariance of the Gaussian distribution and the fact that
A has orthonormal rows, y1 is distributed as x+ kAj and y2 as x+ (1 + ε)kAj , where x ∼ N(0, Im), Aj is the
j-th column of A, and j is uniform on {1, . . . , n}.

Suppose the density functions of y1 and y2 are p1(x) and p2(x) respectively, then

p1(x) =
1

n

∑
i

p(x− kAi), p2(x) =
1

n

∑
i

p(x− (1 + ε)kAi),

where p(x) is the density function of N(0, Im). It follows that

dTV (FA,k,0,FA,k,ε) =
1

2

∫
x∈Rm

|p1(x)− p2(x)|dx =
1

2

∫
x∈Rm

∣∣∣∣∣ 1n∑
i

p(x− kAi)−
1

n

∑
i

p(x− (1 + ε)kAi)

∣∣∣∣∣ dx
≤ 1

2

∫
x∈Rm

(
1

n

∑
i

|p(x− kAi)− p(x− (1 + ε)kAi|

)
dx

=
1

n

∑
i

1

2

∫
x∈Rm

|p(x− kAi)− p(x− (1 + ε)kAi)|dx

=
1

n

∑
i

dTV (N(kAi, In)−N((1 + ε)kAi, In))
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≤ 1

n

∑
i

‖kAi − (1 + ε)kAi‖2 (by Proposition 1)

=
εk

n

∑
i

‖Ai‖2 = εkEj‖Aj‖2,

Since
∑

j ‖Aj‖22 = m, Ej‖Aj‖22 = m/n and thus E‖Aj‖2 ≤ (E‖Aj‖22)1/2 =
√
m/n. It follows that

dTV (FA,k,0,FA,k,η) ≤ εk
√

m
n .

Theorem 4. Let p > 2 be a constant. Consider a distribution over m × n matrices A for which for every
x ∈ Rn, from Ax one can solve the (ε, p)-NORM problem, on input x with probability ≥ 3/4 over the choice of
A, where ε = Ω(1/n1/p) is small enough. Then m = Ω(n1−2/p/ε−2).

Proof. W.l.o.g., A has orthonormal rows, since we can apply a change of basis to the vector space spanned by
the rows of A in post-processing. Let k = C

1/p
p n1/p, where Cp is the constant in

E‖z‖pp = Cpn, z ∼ N(0, In).

Consider the input x drawn from D0 := Dk,0 and D1 := Dk,2ε. Let b ∈ {0, 1} indicate that x ∼ Db. We have
that Ax ∼ FA,k,0 when b = 0 and Ax ∼ FA,k,2ε when b = 1. Suppose the algorithm outputs W .

Now we compute ‖x‖pp in each case. When b = 0, ‖x‖pp = ‖x′‖pp + |g + k|p, where x′ ∼ N(0, In−1) and
g ∼ N(0, 1) are independent. Since ‖x‖p is a 1-Lipschitz function, by concentration of measure (Lemma 1),

Pr{
∣∣‖x′‖p − E‖x′‖p

∣∣ ≥ 5} ≤ 0.001.

Also, |g| ≤ 5 with probability ≥ 1 − 0.001. Note that E‖x′‖pp = Cp(n − 1). It follows that with probability
≥ 1− 0.002, we have

‖x‖pp ≤ 2(1 + o(1))Cpn. (7)

Similarly, when b = 1, with probability ≥ 1− 0.002, it holds that

‖x‖pp ≥ ((1 + 2ε)p + 1)(1− o(1))Cpn. (8)

The o(1) in (7) and (8) are of the form cp/n
1/p for some (small) constant cp > 0 that depends only on p. We

condition on the event that (7) and (8) hold. With probability ≥ 3/4, we have

W ≤ (1 + ε)‖x‖pp, b = 0

W ≥ (1− ε)‖x‖pp, b = 1

and thus

W ≤ 2(1 + ε)(1 + o(1))Cpn, b = 0

W ≥ (1− ε)((1 + 2ε)p + 1)(1− o(1))Cpn, b = 1

So we can recover b fromW with probability≥ 3/4−0.002 provided that (see the full derivation in Appendix C)

2(1 + ε)(1 + o(1)) < (1− ε)((1 + 2ε)p + 1)(1− o(1))

⇐=

(
2 +

p+ 2

4

)
cp

n1/p
<
p− 2

2
ε (recall that o(1) is actually cp/n1/p)

which holds for ε small enough while satisfying that ε = Ω(1/n1/p). Consider the event E that the algorithm’s
output indicates b = 1. Then Pr(E|x ∼ D0) ≤ 1/4 + 0.002 while Pr(E|x ∼ D1) ≥ 3/4− 0.002. By definition
of total variation distance,

dTV (FA,k,0,FA,k,2ε) ≥ |Pr(E|x ∼ D1)− Pr(E|x ∼ D0)| ≥ 1

2
+ 0.004.

On the other hand, by the preceding lemma, dTV (FA,k,0,FA,k,2ε) ≤ 2εk
√

m
n . Therefore it must hold that

m = Ω
(

n
k2ε2

)
= Ω

(
n1−2/p

ε2

)
.
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A Proof of Lemma 5

Proof. Using the rectangle property and the arithmetic-geometric mean inequality, we have that

h2(Πx,y,z,Πx′,y,z) + h2(Πx,y′,z,Πx′,y′,z) = 2−
∑
τ

√
Πx,y,z(τ)Πx′,y,z(τ)−

∑
τ

√
Πx,y′,z(τ)Πx′,y′,z(τ)

= 2−
∑
τ

√
q1(x, τ)q2(y, τ)q3(z, τ)q1(x′, τ)q2(y, τ)q3(z, τ)

−
∑
τ

√
q1(x, τ)q2(y′, τ)q3(z, τ)q1(x′, τ)q2(y′, τ)q3(z, τ)

= 2−
∑
τ

√
q1(x, τ)q1(x′, τ)q3(z, τ)(q2(y, τ) + q2(y′, τ))

≤ 2− 2
∑
τ

√
q1(x, τ)q1(x′, τ)q3(z, τ)

√
q2(y, τ)q2(y′, τ)

= 2− 2
∑
τ

√
Πx,y,z(τ)Πx′,y′,z(τ)

= h2(Πx,y,z,Πx′,y′,z).

B Omitted details in the proof of Theorem 3

Writing the inequalities in full,

LB2 > UB1

⇐⇒ (1− ε)10(I−1)p(1− ε)pkp − 2ε(n− 1)L− (1 + ε)εp10(I−1)pkp > 2εnL

⇐⇒ (1− ε)10(I−1)p(1− ε)pkp − (1 + ε)εp10(I−1)pkp > 2εnL+ 2ε(n− 1)L

⇐= ((1− ε)(1− ε)p − (1 + ε)εp) 10(I−1)pkp > 4εnL

⇐⇒ (1− ε)p+1 − (1 + ε)εp > 4ε
n

kp

(
10

9

)p
⇐= (1− ε)p+1 − (1 + ε)εp > 4ε

n

kp

(
10

9

)p
.

Let p′ = p/2 + 1, then 2 < p′ < p. Note that (1− x)p = 1− px+ o(x2) as x→ 0+, we see that

(1− ε)p ≤ 1− p′ε (9)

for ε small enough. Now,

LB3 > UB2

⇐⇒ (1− ε)10(I−1)pkp − 2ε(n− 1)L− (1 + ε)εp10(I−1)pkp

> 2ε(n− 1)L+ (1 + ε)10(I−1)p(1− ε)pkp + (1− ε)εpkp10(I−1)p

⇐⇒ (1− ε− (1 + ε)(1− ε)p − (1 + ε)εp − (1− ε)εp) 10(I−1)pkp

> 4ε(n− 1)L

⇐= 1− ε− (1 + ε)(1− ε)p − 2εp > 4ε
n

kp

(
10

9

)p
⇐= 1− ε− (1 + ε)(1− p′ε)− 2εp > 4ε

n

kp

(
10

9

)p
(invoking (9))
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⇐⇒ (p′ − 2)ε+ pε2 − 2εp > 4ε
n

kp

(
10

9

)p
⇐= ε(p′ − 2− 2εp−1) > 4ε

n

kp

(
10

9

)p
⇐⇒ ε

(
p− 2

2
− 2εp−1

)
> 4ε

n

kp

(
10

9

)p
Therefore, Charlie can solve AUG-L∞(r, k, ε) provided that

(1− ε)p+1 − (1 + ε)εp > 4ε
n

kp

(
10

9

)p
ε

(
p− 2

2
− 2εp−1

)
> 4ε

n

kp

(
10

9

)p
.

C Omitted details in the proof of Theorem 4

2(1 + ε)(1 + o(1)) < (1− ε)((1 + 2ε)p + 1)(1− o(1))

⇐= 2(1 + ε)(1 + o(1)) < (1− ε)(1 + 2pε+ 1)(1− o(1)) (since (1 + x)p ≥ 1 + px)

⇐⇒ 2(1 + ε)(1 + o(1)) < 2(1− ε)(1 + pε)(1− o(1))

⇐= (1 + ε)(1 + o(1)) <
(

1 +
p

2
ε
)

(1− o(1))

(
pε2 ≤

(p
2
− 1
)
ε when ε ≤ 1

2
− 1

p

)
⇐=

(
2 +

p+ 2

2
ε

)
o(1) <

p− 2

2
ε

⇐=

(
2 +

p+ 2

4

)
cp

n1/p
<
p− 2

2
ε (recall that o(1) is actually cp/n1/p and ε ≤ 1/2)

D Application to Cascaded Moments

We sketch our improvement to estimating `p(`q)(A) for p, q ≥ 2, as outlined in the Introduction. In the t-player
set disjointness problem, there are t players, holding subsets S1, . . . , St ⊆ [N ] respectively. They are promised
that either: (1) for all i ∈ [N ], there is at most one j ∈ [t] for which i ∈ Sj , or (2) there is a unique i ∈ [N ] for
which i ∈ Sj for all j ∈ [t], and for all i′ 6= i, there is at most one j ∈ [t] for which i′ ∈ Sj . In a 1-way protocol
the k-th player needs to output which of the two cases the input is in. If we define the N -dimensional vector x
so that xi is the number of j ∈ [t] for which i ∈ Sj , then in case (1) we have ‖x‖∞ ≤ 1, while in case (2) we
have that there is a unique i ∈ [N ] for which xi = t and for all j 6= i we have xj ∈ {0, 1}.

Let µN be the input distribution which for each i ∈ [N ], chooses a random player Di ∈ [t], and with
probability 1/2 we have i ∈ SDi while with probability 1/2 we have i /∈ SDi . For all j 6= Di, it holds that
i /∈ Sj . Then µN is a collapsing distribution.

It is known [?, 13] that for any δ-error 1-way randomized protocol Π, and inputs distributed according to
µN , that

I(S1, . . . , St; Π(S1, . . . , St)|D1, . . . , DN ) ≥ N · CICµ(ANDt),

where ANDt is a single-coordinate problem in which the t players each have a single bit, they are promised
that either all of their bits equal 1, or there is at most a single bit which is equal to 1, and they need to decide
which case they are in.

As in Section 3, we introduce a (t + 1)-st player Charlie who holds a bit c ∈ {0, 1} and an index j ∈
[N ] = [n] × [d]. In the distribution µN , Charlie’s input c is always set to 0, so that µN is collapsing. For our
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application to cascaded moments of n × d matrices A, we fix N = nd and t = 2εn1/pd1/q. The problem
is to decide whether (1) xj + c2n1/pd1/q ≤ 1, (2) xj + c2n1/pd1/q ∈ {2n1/pd1/q, 2n1/pd1/q + 1}, or (3)
xj + c2n1/pd1/q ≥ 2(1 + ε)n1/pd1/q.

We can use the same derivation as in equation (3) of [32] to lower bound mutual information by Hellinger
distance, provided we fix Charlie’s input bit c to 0 throughout the derivation. This results in the derivation:

CICµ(ANDt) ≥
1

t
h2(Π0t+1 ,Π1t0) ≥ 1

2t
d2
TV (Π0t+1 ,Π1t0).

Now, as in (6), we claim that dTV (Π0t+1 ,Π1t0) = Ω(1). This follows from the 1-way property of the protocol
and the same derivation after (6), by considering T to be the concatenation of the first k player messages, and
using the correctness of the protocol when Charlie’s input c = 1, to show that dTV (T (0t), T (1t)) = Ω(1). We
thus arrive at the lower bound of Ω(N/t) = Ω(n1−1/kd1−1/pε−1) for our (t + 1)-player modification to the
t-player disjointness problem.

Finally, it suffices to show that a streaming algorithm providing a (1 + Θ(ε))-approximation to `p(`q)(A)
can decide whcih of the three cases above we are in. We again invoke it twice, once on the stream before the
insertion of 2cn1/pd1/q into the j-th position of the n × d matrix, and once after the insertion of this item. In
case (1) we have that c = 0, and so `p(`q)(A) ≤ n1/pd1/q. In cases (2) and (3) we have that c = 1. If indeed
xj = 2εn1/pd1/q, then when adding it to 2n1/pd1/q, one can verify as in Section 4 that `p(`q)(A) will increase
by a (1 + ε)-factor, that is, we will be in case (3). Otherwise, we will be in case (2). If the streaming algorithm
provides a (1 + Θ(ε))-approximation, it can distinguish these two cases. Since the state of the streaming
algorithm is passed t times, its state must be of size at least Ω(N/t2) = Ω(n1−2/kd1−2/pε−2), as desired.

Finally, we briefly sketch our improvement to the lower bound for the `2(`0)(A) problem, see, Section 3
of [33] for an Ω(n1/2) lower bound. The authors use a 2-player lower communication problem to achieve this
lower bound: Alice gets as input n strings x1, . . . , xn ∈ {0, 1}d, while Bob gets as input n strings y1, . . . , yn ∈
{0, 1}n. The players are promised that either for all i ∈ [n], ‖xi − yi‖1 ≤ 1, where ‖ · ‖1 denotes the 1-norm,
or there is a unique i ∈ [n] for which ‖xi − yi‖1 = d and for all j 6= i, ‖xj − yj‖1 ≤ 1. The authors use
the direct sum theorem with a collapsing distribution µn, and show a lower bound of Ω(n/d). For d = n1/2,
they show that a streaming algorithm obtaining a constant factor approximation to `2(`0)(A) can decide which
case the players are in, thereby establishing an Ω(n1/2) lower bound for the streaming algorithm. By instead
setting d = (εn)1/2, the same analysis shows that a streaming algorithm providing a (1 + ε)-approximation to
`2(`0)(A) can decide which case the players are in, establishing the stronger Ω(n1/2/ε1/2) lower bound.

We can instead set d = εn1/2, and introduce a third player Charlie. Charlie holds a bit c ∈ {0, 1} together
with an identity of a row ofA, that is, an index j ∈ [n]. We append each row of the matrixAwith n1/2 additional
zeros, so A is now n × (1 + ε)n1/2. If Charlie’s input bit c = 0, then the output is `2(`0)(A), where A is the
matrix determined by Alice and Bob’s input padded by zeros. If the bit c = 1, Charlie inserts n1/2 ones on the
last n1/2 entries in the j-th row. One can verify that a streaming algorithm providing a (1 + ε)-approximation
to `2(`0)(A) applied before Charlie inserts his ones (in the case that his input bit c = 1) together with a
(1+ε)-approximation to `2(`0)(A) applied after Charlie inserts his ones, can solve the 2-player communication
problem between Alice and Bob with d = εn1/2. Using similar arguments to those in [33] for the 2-player game
in conjunction with our arguments above for modifying the information-theoretic arguments to account for the
new player Charlie, this 3-player game results in the stronger Ω(n/d) = Ω(n1/2/ε) lower bound. As this proof
is quite similar to the proofs already given for Fp and `p(`q), we omit further details.
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