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Abstract We design a sublinear Fourier sampling algorithm for a case of sparse off-
grid frequency recovery. These are signals with the form f (t) = ∑k

j=1 a jeiω j t +
∫

ν(ω)eiωt dμ(ω); i.e., exponential polynomials with a noise term. The frequencies
{ω j } satisfy ω j ∈ [η, 2π − η] and mini �= j |ωi − ω j | ≥ η for some η > 0. We
design a sublinear time randomized algorithm which, for any ε ∈ (0, η/k], which
takes O(k log k log(1/ε)(log k + log(‖a‖1/‖ν‖1)) samples of f (t) and runs in time
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proportional to number of samples, recovering ω′
j ≈ ω j and a′

j ≈ a j such that, with
probability Ω(1), the approximation error satisfies |ω′

j − ω j | ≤ ε and |a j − a′
j | ≤

‖ν‖1/k for all j with |a j | ≥ ‖ν‖1/k. We apply our model and algorithm to bearing
estimation or source localization and discuss their implications for receiver array
processing.

Keywords Sparse signal recovery · Fourier sampling · Sublinear algorithms

Mathematics Subject Classification 94A20 · 68W20

1 Introduction

Many natural and man-made signals can be described as having a few degrees of free-
dom relative to their size as a result of their natural parameterization or constraints.
For example, AM, FM, and other communication signals and per-flow traffic mea-
surements of the Internet are signals with few degrees of freedom. Sparse models
capture the inherent structure of such signals via concise linear representations: A
signal y ∈ R

N has a sparse representation as y = �x in a basis � ∈ R
N×N when

k 	 N coefficients x can exactly represent the signal y. Sparse models guide the way
we acquire signals (e.g., sampling or sketching) and how we efficiently recover them
from limited observations (e.g., sublinear recovery algorithms).

There has been considerable effort to develop sublinear algorithms within the the-
oretical computer science community for recovering signals with a few significant
discrete Fourier components (signals that are sparse in the discrete Fourier basis),
beginning with Kushilevitz and Mansour [14], including [6,7,13], and continuing
through in the recent work of Hassanieh, et al. [8,9]. All of these algorithms are pred-
icated upon treating the vector y as periodic and the discrete Fourier transform of a
vector x being approximately k-sparse [1,4].

Unfortunately, these assumptions are too strong for many practical applications
where the discrete Fourier transformcoefficients are only approximation of an underly-
ing continuous Fourier transform. For example, if wewant tomeasure the approaching
speed (the “doppler”) of an object via the Doppler effect, we transmit a sinusoid wave
eiω0t (where t is time in this example) and receive a sinusoidwavewhose frequency off-
set fromω0 depends on the unknown doppler, v. Since v can be essentially any contin-
uous value, so can be the received frequency. If there are two or more speeding objects
in view, the received signal is of the form f (t) = a1eiω1t +a2eiω2t , whereω1/ω2 is not
necessarily a rational number, so that f (t) is not periodic. This practical and common
example does not directly fit the discrete Fourier transform setting of [6–9,13,14].

A natural discretization approach, which takes a large number of samples at equidis-
tant time points and reduces the signal to this finite discrete signal of samples, is com-
plicated because there are inconveniences such as interpreting the result of the discrete
version in the continuous setting and locating a real-valued frequency from a cluster
of components in the discretized signal. Therefore, instead of developing a discretiza-
tion reduction in this paper, we take a more direct approach of extending the existing
techniques for the discrete setting, such as isolation by hashing and estimation, to the
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continuous setting, despite the fact that this approach introduces an additional log k
factor into sampling duration.

A concrete application of our approach is the bearing (or angular direction) estima-
tion of sources transmitting at fixed frequencies, a canonical array signal processing
problem with applications to radar, sonar, and remote sensing. Other applications also
include the finite rate of innovation problems [17].

Paper organization In the rest of present section, we shall define our problem and
discuss the difference from the traditional models. At the end of the current section
we shall detail our results. In Sect. 2, we define the notations and give a high-level
overview of our approach. In Sect. 3, we present our algorithm and its analysis. In
Sect. 4 we give an application of this result to bearing estimation problems. In Sect. 5,
we conclude with a discussion of a simple discretization approach and compare its
consequences with our result.

1.1 Our Model

We define a spectrally sparse function f with off-grid frequencies as a function f :
R → C with k frequencies ω1, . . . , ωk ∈ S

1 (hereinafter S
1 is identified with (−π, π ]

and the arithmetic is to be modular), and we allow for noise ν in the spectrum that is
supported on a measurable set Iν ⊂ S

1. We fix a minimum frequency resolution η > 0
and assume that {[ω j − η/2, ω j + η/2)}kj=1 and Iν + [−η/2, η/2) are all mutually

disjoint on S
1. That is, the frequencies are not on a fixed, discrete grid but they are

separated from each other and from the noise by a minimum frequency resolution. In
our analysis below, we assume that |ω j | ≥ η without loss of generality.

Formally, we assume that f is of the form

f (t) =
k∑

j=1

a je
iω j t +

∫

Iν
ν(ω)eiωt dω, t ∈ R, a j ∈ C, (1)

where Iν is a measurable set on S
1 and ν ∈ L1(Iν). Without loss of generality, we can

assume that a j �= 0 for all j .
Fix ε1, ε2 ∈ (0, 1]. Our goal is to find all (a j , ω j ) with

|a j | ≥ ε1

k
‖a‖1 + ε2

k

∫

Iν
|ν(ω)|dω (2)

making as few samples on Z as possible (and with the smallest support) from f and
for the shortest duration and to produce such a list in time comparable to the number of
samples. The number of samples and the size of the support set of the samples should
be proportional to a polynomial in k and log(1/η), the number of desired frequencies
and precision. We call the frequencies ω j whose associated amplitude a j meet the
threshold condition (2) significant.1

1 To connect this formulation with the notion of ‘spectrum’, one can view f as a tempered distribution,
whose Fourier transform f̂ is also a tempered distribution. The spectrum of f̂ is the support of f̂ , which
captures {ω j }. An alternative way to define the spectrum of a bounded function can be found in [11].
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We observe that if we dilate the frequency domain S
1 by a factor 1/d ∈ R (i.e.,

map ω to ω/d), we produce an equivalent sequence of samples f (t), at regularly
spaced real-valued points t = nd, n ∈ Z. While the points are indexed by the integers,
the values themselves t = nd are in R. The dilation factor d determines the “rate”
at which we sample the underlying signal and the total number of samples times the
sampling rate is the duration over which we sample. Both the rate and the total number
of samples are resources for our algorithm.

1.2 Prony’s Method and Associated Model Problem

There is a substantial body of work (several hundred years’ worth) on a closely related
problem, that of fitting a linear combination of exponentially decaying but oscillatory
functions to data. The problem and several well-known solution methods are conflated
and generally referred to as Prony’s method. The signal model is defined as follows: let
k ≥ 1 be an integer, ω j ∈ (−∞, 0] + i[−π, π) for j = 1, . . . , k be distinct complex
numbers, and we assume that the coefficients a j ∈ C \ {0} have magnitude greater
than ε, |a j | > ε for some 0 < ε 	 1. The signal is a linear combination of such
decaying exponential functions

f (t) =
k∑

j=1

a je
ω j t for t ≥ 0.

In almost all formulations of the problem, the signal is sampled at positions t1, . . . , tN ,
uniformly spaced, with N ≥ 2k. There are a number of different algorithms for
estimating the parameters a j , k, and ω j .

We summarize the main approaches:

Traditional Prony’s Method:

1. Given the N signal samples, write the signal f (tm) as a linear combination of the
previous k time steps f (tm−1), f (tm−2), . . . , f (tm−k),

f (tm) = b1 f (tm−1) + b2 f (tm−2) + . . . bk f (tm−k),

and solve a linear prediction problem for the coefficients bk . Note that the linear
prediction system is an over-determined Toeplitz system (assuming one orders the
columns accordingly).

2. Solve for the complex exponentials z j = eω j as the roots of the characteristic
polynomial formed by the linear prediction coefficients.

3. Solve the Vandermonde system generated by powers of the exponentials z j for the
coefficients a j .

While the accuracyof this algorithm is acceptable in exact arithmetic andwith noiseless
samples, the algorithm fails to remain accurate with noisy samples or finite precision
arithmetic as the last two steps are ill-conditioned.
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SVD:

1. Compute the SVDof theHankelmatrix formed as in the traditionalmethod (except
with the column order reversed):

⎡

⎢
⎢
⎢
⎣

f (t1) f (t2) f (t3) . . . f (tJ )
f (t2) f (t3) f (t4) . . . f (tJ+1)

...
...

...
. . .

...

f (tN−J ) f (tK−J+1) f (tK−J+2) . . . f (tN )

⎤

⎥
⎥
⎥
⎦

, J = k + 1.

Let that decomposition be of the form U	V . Alternatively, factor the matrix into
its QR decomposition and use the R matrix in the next step.

2. Form the truncated version Ṽ of the unitary matrix V by selecting the first k rows
only and form the matrix F = (W ∗

0 )†(W ∗
1 ), where W0 is the first k columns of Ṽ ,

W1 the last k columns of Ṽ , and † denotes the pseudo-inverse of the matrix. Solve
for the complex exponentials zt2−t1

j as the eigenvalues of F .
3. Solve the Vandermonde system generated by powers of the exponentials z j for the

coefficients a j .

There is a substantial body of literature on the analysis of the stability of per-
turbed Prony methods, in which the signal samples are perturbed by an unknown but
bounded amount [16]. There has also been some recent work [10] on choosing sample
points according to a pseudo-random distribution (rather than deterministically and
uniformly). The sample points are on random arithmetic progressions, thus effectively
hashing large frequency components randomly into different signals, which can then
be more easily analyzed. Also, the notion of a matrix pencil (a generalized version
of Prony’s method) [2,12] has been re-introduced by Demanet and Chiu for a sparse
FFT algorithm [3].

Clearly, our signal model is different from that of the traditional Prony’s model;
we do not assume that the oscillatory pieces of the signal decay exponentially which
places fewer restrictions on our sampling scheme.We do not, for instance, assume that
samples are drawn for t ≥ 0. Furthermore, we assume that there is noise present in
the signal from the outset, although there are restrictions on this noise (its 
1 norm is
bounded and its support is bounded away from the significant spectral components).
One major difference between our algorithm and all of those referred to as Prony’s
method is that we determine the frequencies present one frequency at a time. Further-
more, we do not set up the estimation and identification of the frequencies as a linear
system (solved one equation at a time or simultaneously).

1.3 Main Result

Theorem 1 There exist a probability distributionD on a set of sampling points t ∈ R

and an algorithm A such that for each perturbed exponential polynomial f (t) as
in (1), with probability ≥ 1 − δ, the algorithm returns a list � = {(a′

j , ω
′
j )}kj=1 of

coefficients and frequencies such that
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1. For each a j that satisfies (2) there exists ω′
j ∈ � such that

|ω j − ω′
j | ≤ ε2

k
η.

2. Let �0 = {ω′
j ∈ � : ∃ω j0 such that

∣
∣
∣ω j0 − ω′

j

∣
∣
∣ ≤ ε2η

k and |a j0 | satisfies (2)}.
Then for each ω′

j ∈ �0 it holds that

|a′
j − a j | ≤ ε1

k
‖a‖1 + ε2

k
‖ν‖1.

3. For each ω′
j ∈ � \ �0, it holds that

|a′
j | ≤ ε1

k
‖a‖1 + ε2

k
‖ν‖1.

The algorithm takes

O

(
k

ε2
log

k

δ
log

1

ε2η
log

k

min{ε1, ε2}
)

samples and runs in time

O

(
k

ε2
log

k

δ

(

log
1

ε2η
log

k

min{ε1, ε2} + log
1

δ

))

.

Furthermore, the size of the support of D, i.e., the total duration of sampling, is

O

(
k

ε2η
log

k

min{ε1, ε2}
)

.

This result gives 
∞ bounds on both frequency estimates and coefficient estimates. In
comparison with the discrete setting, the form of the frequency estimates is new, while
the coefficient estimates are of the same type as in [9]. We also note a distinction in
the accuracy or resolution of the output frequencies in any algorithm on a discrete grid
and our continuous setting. The signal model on a discrete grid of size N assumes that
frequencies are separated by a resolution 1 and the algorithms return frequencies with
integer values in 1, . . . , N . In otherwords, there is nodistinction between the frequency
resolution of the input signal model and the output. Our algorithm, by comparison,
assumes that the input signal frequencies are separated by a resolution of η and returns
frequency values that are accurate up to a smaller resolution of η/k. We argue in 3.2.1
that this “super-resolution” is a necessary consequence of the algorithmic approach.
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2 Preliminaries

In this section, we define the notation we use throughout the paper and we review
typical sublinear-time approaches for sparse Fourier sampling algorithms.

2.1 Kernels

Let Ω be a domain (which can be either continuous or discrete). Roughly speaking,
we call a function K : Ω → R a filter if K is or approximates the characteristic
function χE of some set E ⊂ Ω , which will be called the pass region of K . The
signal resulting from applying filter K to signal f (viewed as a function on Ω) is the
pointwise product K · f .

Let Km,ε,α (often abbreviated as Km,ε or Km when there is no ambiguity on the
parameters) be a kernel defined on S

1 that satisfies the following properties:

– it is continuous on S
1,

– it approximates χ[− π
m , π

m ] (so Km is a filter):
1. |Km,ε(x)| ≤ ε for |x | ≥ π

m ;
2. |Km,ε(x) − 1| ≤ ε for |x | ≤ (1 − α) π

m ;
3. Km,ε(x) ∈ [−ε, 1 + ε] elsewhere;

– its Fourier transform K̂m,ε : Z → C has finite support: | supp K̂m,ε | =
O(m

α
log 1

ε
).

A Dolph-Chebyshev filter convolved with the characteristic function of an interval
meets these criteria. See Fig. 1 for a plot of Km . We call the region [−(1− α) π

m , (1−
α) π

m ] the plateau of Km . The pass region of Km is [− π
m , π

m ] andwe define the transition
region to be the complement of plateau in the pass region. A similar kernel was used
in [9] and [8] on a discrete domain with the only difference that their kernel was
constructed by a Gaussian kernel convolved with the characteristic function of an
interval. In this paper, we use a kernel with a finite Fourier expansion for an efficient
algorithm.

2.2 Sampling with Respect to a Kernel

In our algorithm, we shall repeatedly query the input signal to obtain values of the
form

gK (x, θ) =
k∑

j=1

a j K (ω j x − θ) +
∫

Iν
ν(ω)K (ωx − θ)dω (3)

for somekernel function K (in particular, for two different kernels in one computation).
While we cannot obtain g(x, θ) directly, we can compute it from appropriate samples
of f (t). Assume that K has a finite Fourier expansion

K (x) =
N∑

n=−N

κne
inx.
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m mmm

Fig. 1 Plot of Km with m = 15 and α = 0.476

Then

gK (x) =
k∑

j=1

N∑

n=−N

κna j e
inω j x−inθ +

∫

Iν

N∑

n=−N

κnν(ω)einω j x−inθdμ

=
N∑

n=−N

κne
−inθ

⎛

⎝
k∑

j=1

a j e
inω j x +

∫

Iν
ν(ω)einω j x dμ

⎞

⎠

=
N∑

n=−N

e−inθ κn f (nx),

whichmeans that g(x) is a weighted sum of samples { f (nx)}Nn=−N , where the weights
are the Fourier coefficients of the kernel K (x). Remark 1 explains how, with appro-
priate signal sample positions, we can compute this quantity efficiently via a short
FFT.

2.3 Sublinear Time Algorithms: Overview

The sparse recovery problem under the Fourier basis asks to recover the discrete
Fourier transform f̂ of some input vector f under the assumption that f̂ is sparse, i.e.,
f̂ has very few coordinates of large magnitude. Almost all sublinear-time algorithms
perform the the following: (1) randomly hash frequencies into buckets via filters and
identify the frequencies whose Fourier coefficients are large inmagnitude; (2) estimate
the Fourier coefficients of the frequencies identified in the previous step. Since the
representation is sparse, it is likely that each bucket contains exactly one coefficient
and a small amount of noise so that its position can be found and its value estimated. If
not all frequencies with large Fourier coefficients have been recovered, the algorithm
will then subtract the partial Fourier representation that has been identified and repeat
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the two steps above (called one iteration). Generally, each iteration is guaranteed to
recover a substantial part of f̂ , usually by recovering either a constant fraction of the
large coefficients in f̂ or a constant fraction of the energy of f̂ . In either case, the
sparsity of f̂ keeps improving from one iteration to the next, and a small number of
repetitions will suffice for an accurate approximation to f̂ .

Our algorithm also follows this recipe of hash-and-estimate. However, it is not
iterative. We hash the range of the frequencies into buckets and repeat sufficiently
many times so that all frequencies are isolated, then we locate the frequency and
estimate its amplitude. We do not need to iterate in the estimation procedure, because
we use good kernel for hashing, as in [9].

In fact, for the continuous case, it is difficult to devise an iterative algorithm. Amain
difference between the discrete and continuous case is that, in the continuous case,
it is impossible to recover a frequency exactly (from finite samples) so that one can
subtract off recovered signals at exact positions. In the case where the loop invariant
is on the number of large coefficients (as in [5,8]), the number of buckets decreases
per round as the number of remaining heavy hitters decreases. In the continuous case,
however, the accuracy of the frequency estimates produced by location procedure are
dependent on the width the pass region of the filter: the wider the pass region, the
more inaccurate the frequency estimate is. Unless the estimation procedure not only
estimates the coefficient at given frequency but also improves the frequency estimate,
we would have to increase the distance d between samples from O(k/η) to O(k2/η)

in order to the achieve the same accuracy for the final frequency estimate, (i.e., we
must increase the duration over which samples are collected.)

In the other case (as in [7]) where the number of buckets is kept the same at each
round while the energy of the residual signal drops, and there are typically log ‖a‖
rounds. In hashing, we need to bound the inaccuracy |K (h(ω)) − K (h(ω′))|, where
ω′ is the recovered estimate of some real frequency ω, h the hash function and K the
kernel. We can achieve this with a kernel that does not have a significant portion of
its total energy outside of its pass region (i.e., a “non-leaking” kernel), but it is not
obvious how to achieve such an accurate estimate using a Dirichlet or Fejér kernel
which was used in [7]. Besides, using a “non-leaking” kernel like the one used in [8,9]
or the one used in this paper unfortunately introduces a factor log ‖a‖ into the number
of samples in order to decrease the noise in a bucket.

3 Algorithm and Analysis

3.1 Recovery Algorithm

We give detailed pseudocode for our algorithm in Algorithm 1. Before we analyze
the algorithm, we provide some intuition about the overall architecture. First, this
algorithm, unlike many of the other sublinear time signal recovery algorithms, is
not an iterative one. It is similar to other sublinear time algorithms in that there are
two separate sets of samples, one for identifying the frequencies ω and a second
for estimating the coefficients aω. In the pseudocode in Algorithm 1, we sample the
function as needed in each function for ease of exposition (to avoid a large number of
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Algorithm 1 The overall recovery algorithm
1: function Main
2: y ← signal samples from f
3: L ← Identify(y)
4: Λ ← Estimate(L)

5: return
∑

ω∈Λ aωeiωt

1: function Identify(y)
2: L ← ∅
3: for t ← 1 to Θ(log k

δ ) do
4: Choose a random d uniformly from [D, 2D]
5: bi ← 0 for all i = 0, . . . ,m − 1
6: for r ← 1 to �log2(1/η)� do

7: Collect samples z p,q = f (qd + pd
2r ) for p = −N , . . . , N and |q| = −M, . . . , M ,

where M = max supp K̂m and N = max supp K̂n .
8: Compute {u
}m−1


=0 and {v
}m−1

=0 using a short FFT (according to Remark 1 )

where u
 = ∑
j a j Km

(
ω j d − 2π


m

)
Kn

(
ω j d
2r − 2π

2r m 
 − 2b
π
2r

)

and v
 = ∑
j a j Km

(
ω j d − 2π


m

)
Kn

(
ω j d
2r − 2π

2r m 
 − 2b
π
2r − π

)

9: for 
 ← 0 to m − 1 do
10: if |v
| > |u
| then
11: b
 ← b
 + 2r−1

12: for 
 ← 0 to m − 1 do
13: L ← L ∪ { 2π


md + 2b
π
d }

14: return L

1: function Estimate(L)
2: Choose hash families H1 and H2 as described in Equation (6).
3: for r ← 1 to Θ(log m

δ ) do
4: for each ω ∈ L do
5: a(r)

ω ← measurement w.r.t. H1

6: b(r)
ω ← measurement w.r.t. H2

7: for each ω ∈ L do
8: aω ← mediant a

(r)
ω

9: bω ← mediant b
(r)
ω

10: L ′ ← {x ∈ L : |bω| ≥ |aω|/2}.
11: Λ ← {(ω, aω) : ω ∈ L ′}.
12: Cluster Λ = {(ω, aω)} by ω and retain only one element in the cluster.
13: Retain top k ones (w.r.t. aω) in Λ

14: return Λ

parameters in the pseudocode) but we emphasize that the algorithm is non-adaptive;
we can simply pass in these samples to the Identify and Estimate functions.

In Identify, we generate a list L of candidate frequencies by repeatedly sampling
from a filtered version of the input signal. The filtering includes both a random hashing
into O(k) buckets and a bit-testing procedure in parallel (hence, the two kernels Km

and Kn in Line 8 of the pseudo-code). The bit-testing procedure tests in Line 10
whether the 
th bit (from least significant to most significant) is 0 or 1. Once we have
determined the identify of the frequency, it is added to the list.

Remark 1 describes how to compute an efficient sampling of the input signal with
respect to the two kernels Km and Kn in Line 8 via a short Fourier transform using
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equally spaced points instead of a direct multiplication. The method described is
similar to that in [7].

In Estimate, we estimate the coefficient of each frequency in the list L by sampling
(again) from two different filtered or hashed versions of the input signal (Lines 5–6).
We use the two different coefficient estimates from the two filters to detect which
estimates are accurate and we retain those and their associated frequencies (Lines
10–11). We then cluster the list of frequencies by the output resolution (Line 12) and
prune the list, keeping only the frequencies and coefficients corresponding to the k
largest coefficients.

3.2 Analysis of Algorithm

Our analysis of the algorithm follows a modular characterization, starting with show-
ing that the algorithm is correct and satisfies the announced failure probability—it
isolates significant frequencies and then identifies those that are isolated, after which
the algorithm estimates the coefficients with the desired accuracy and failure probabil-
ity. We show that the number of samples total is as announced. We end with analyzing
the run-time of the algorithm, the duration of the sampling procedure (not only how
many samples but what their extent is), and the error metric we use to assess the output.

3.2.1 Isolation

This portion of the analysis is similar to that of [8] in that we use similar kernels
for filtering or hashing the signal into buckets but in our analysis, we emphasize the
continuous frequency setting.

Let Km be the kernel as described in Sect. 2 and set D = 2π/η. Define

H = {Km(ωd) =: hd(ω)|d ∈ [D, 2D]}

to be a family of hash functions. We choose hd randomly fromH by drawing d from
the interval [D, 2D] uniformly at random. Observe that the map ω �→ ωd is a random
dilation of S

1. Similar to [8] and [7], we shall consider m-translations of Km , denoted

by {K ( j)
m }m−1

j=0 , where K ( j)
m (x) = Km

(
x − 2π j

m

)
(x ∈ S

1), so that their pass regions

cover S
1. The pass regions will be referred to as buckets and the pass region of K ( j)

m

as j-th bucket. For convenience we shall also call the plateau of K ( j)
m the plateau of

the j-th bucket. It is clear that each frequency ω, under the random dilation ω �→ ωd,
will land in some bucket with index b(ω, d).

In the discrete setting, we hash N elements into m buckets so that each bucket
contains N/m elements. Here we hash (−π, π ] into m buckets so that each bucket
has measure 2π/m. Since there are k frequencies to isolate, we would need to hash
them into Ω(k) buckets so that each frequency is isolated with probability O(1/k)
such that we can afford to take a union bound over all k frequencies in the end to
conclude that all of them are isolated with constant probability. We shall see later that
we pick m = Θ(k). Furthermore, to separate two frequencies which are η apart, we
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have to dilate S
1 by a factor of Ω(1/η), so the collision probability remains O(1/k),

small enough for a union bound. This effectively splits a bucket of length O(1/k)
into Ω(1/η) pieces, each of length O(η/k). Thus we obtain a precision of O(η/k)
for frequency estimation, at the cost of a sampling duration of O(k/η). The sampling
duration cannot be shortened following our approach, nor can we reduce the resolution
of the frequency estimate to Θ(η).

The idea above will be elaborated though the rest of this section. Similar to [8] and
[7], the next lemmata show that this hashing is effective, immitating Claim 3.1, Claim
3.2 of [8] and Lemma 3.1 of [7].

The first lemma tells us that the probability of collision of two well-separated
frequencies under a random hash function hd ∈ H is small.

Lemma 1 Suppose that |ω′ − ω| ≥ η. Then

Pr{b(ω, d) = b(ω′, d)} ≤ 1

m

(

2 + 1

m

)

,

where c > 0 is a universal constant.

Proof Without loss of generality, assume that �ω = ω′ − ω > 0. Write ωd = x + ξ

with |ξ | < π/m. Then the probability is equal to

Pr
{
(�ω)d ∈

[
2sπ − ξ − π

m
, 2sπ − ξ + π

m

]}
≤ 1

D
· 2π

mΔω
· |I |,

where I is the set of possible s’s,

I =
{⌊ (Δω)D + ξ − π

m

2π

⌋
+ 1, . . . ,

⌊2(Δω)D + ξ + π
m

2π

⌋}

.

The desired upper bound of the probability follows immediately from that

|I | ≤ (Δω)D

2π
+ 1 + 1

m
.

��
While Lemma 1 guarantees that well-separated frequencies do not collide under our

hash function, because we are in the continuous setting, there is some probability that
a frequency is hashed into the transition region of the kernel Km . The following lemma
shows that with high probability, a frequency bounded away from zero is mapped to
the region of the kernel that is very close to 1.

Lemma 2 Assume that ω ≥ η and let 0 < α < 1/2 be as given in the definition of
the kernel Km. Then

Pr

{

ωd ∈
[
2sπ

m
− (1 − α)

π

m
,
2sπ

m
+ (1 − α)

π

m

]

for some s ∈ Z

}

≥ (1 − α)

(

1 − 1

m

)

.
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Proof It is clear that the probability is at least

1

D
· (1 − α)

2π

ωm
· |I |,

where I is the set of possible s’s,

I =
{⌊

ωD
m

2π
− 1 − α

2

⌋
+ 1, . . . ,

⌊
2ωD

m

2π
+ 1 − α

2

⌋}

.

Then

|I | ≥ ωDm

2π
− 1.

and the result follows immediately. ��
The next lemma will allow us to estimate the coefficient of an isolated frequency

and to bound the inaccuracy of its estimate in terms of the noise ‖ν‖1.
Lemma 3 Suppose that ξ is a random variable such that |ξ | ≤ π/m almost surely
and the parameter ε of Km,ε satisfies ε ≤ c/m for some constant c. Let ω ≥ η. Then

Ed [|Km(ωd + ξ)|] ≤ 2(c + 2)

m
.

Proof Define

K̃m(x) = sup
|y−x |≤π/m

|Km(y)|,

it is not difficult to see that

‖K̃m‖1 ≤ 2πε + 4π

m
≤ 2πC

m

where C = c + 2. Let d be uniformly chosen from some interval I . Then

Ed [|Km(ωd + ξ)|] ≤ Ed [|K̃m(ωd)|] = 1

|I |
∫

I
|K̃m(ωt)|dt = 1

ω|I |
∫

ωI
|K̃m(x)|dx .

From
∫

ωI
|K̃m(x)|dx ≤ 2Cπ

m

⌈
ω|I |
2π

⌉

it follows that

Ed [K̃m(ωd + ξ)] ≤ C

m
· �ω|I |

2π �
ω|I |
2π

.
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For I = [D, 2D],

Ed [|K̃m(ωd)|] ≤ C

m

(

1 + 1

[ωD
2π ]

)

.

Let D = 2π/η, since ω ≥ η, it holds that [ωD/(2π)] ≥ 1 and the desired result
follows. ��

Now we are ready to show our algorithm isolates frequencies. Fix j0 and choose
m = Ω(k). The hashing guarantees that ω j0 is well-isolated with probability Ω(1) by
taking a union bound. Also, it follows immediately from Lemma 3 that the expected
contribution of ν to the bucket is at most c‖ν‖1/m for some constant c > 0. Therefore
we conclude by Markov’s inequality that

Lemma 4 Conditioned on ω j0 being well-isolated under hd ∈ H, w.p. Ω(1),

∣
∣
∣
∣
∣
∣

∑

j �= j0

a j hd(ω j ) +
∫

Iν
ν(ω)hd(ω)dμ

∣
∣
∣
∣
∣
∣
≤ C1ε‖a‖1 + C2

m
‖ν‖1

for some constants C1,C2 > 0 that depend on the failure probability.

Proof Note that hd(ω) = Km((ω − ω j0)d + ξd), where ξd is piecewise continuous
on [D, 2D]. By Lemma 3 and Fubini’s Theorem,

E

[∣
∣
∣
∣

∫

Iν
ν(ω)hd(ω)dμ

∣
∣
∣
∣

]

≤ E

[∫

Iν
|ν(ω)| |hd(ω)|dμ

]

=
∫

Iν
ν(ω)E |hd(ω)| dω

≤ c

m

∫

Iν
|ν(ω)|dμ,

Since ω j ( j �= j0) land in different bucket from ω j0 ,

|hd(ω j )| ≤ ε, j �= j0

thus

E

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

j �= j0

a j hd(ω j ) +
∫

Iν
ν(ω)hd(ω)dμ

∣
∣
∣
∣
∣
∣

⎤

⎦ ≤ ε‖a‖1 + c

m
‖ν‖1

The result follows from Markov’s inequality. ��
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3.2.2 Bit Testing

The isolation procedure above reduces the problem to the following: The parameter d
is known, and exactly one of {ω j d}kj=1, sayω j0d, belongs to

⋃N−1
n=0 [2nπ −ζ, 2nπ +ζ ]

for some small ζ = π/m and (large) N . Suppose that ω j0d ∈ [2sπ − ζ, 2sπ + ζ ].
Note that s is the integer closest to (ω j0d)/(2π). We shall find this integer s (to be
referred to as chunk index), and thus recover ω j0 . Assume that ω j0 is significant; i.e.,
a j0 satisfies (2).

We recover s from the least significant bit to the most significant bit, as in [7].
Assume we have already recovered the lowest r bits of s, and by translation, the
lowest r bits of s are 0s. We shall now find the (r + 1)-st lowest bit.

Let Kn (n is a constant, possibly n = 3) be another kernel with parameter ε′ (a
small constant). The following lemma shows that Line 6–14 of Identify gives the
correct s.

Lemma 5 Suppose that the lowest r bits of s are 0, let

G1(x) = Km(x)Kn

( x

2r

)
, G2(x) = Km(x)Kn

( x

2r
− π

)

and u be the sample taken using G1 and v using G2. Then |u| > |v| if s ≡ 0
(mod 2r+1) and |u| < |v| if s ≡ 2r (mod 2r+1), provided that

m ≥ C

ε2
k and ε ≤ C · min

{ε1

k
,
ε2

k

}

for some C > 0.

Proof It is straightforward from the isolation discussion. When s ≡ 0 (mod 2r ),

|u| ≥ (1 − ε)(1 − ε′)|a j0 | − (1 + ε′)
(

C1ε‖a‖1 − C2

m
‖ν‖1

)

. (4)

and when s ≡ 2r−1 (mod 2r ),

|u| ≤ (1 + ε)ε′|a j0 | + (1 + ε′)
(

C1ε‖a‖1 + C2

m
‖ν‖1

)

. (5)

Similar bounds hold for |v|. Thus it suffices to choose

m ≥ 2(1 + ε′)C2

1 − ε − 2ε′ · k

ε2
.

��
Repeat this process until r = log2(πD) = O(log(π/η)) to recover all bits of s.

At each iteration step the number of samples needed is O
(| supp Ĝ1| + | supp Ĝ2|

) =
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O
(| supp K̂m | · | supp K̂n|

) = O
(

k
ε2
log 1

ε

)
, so the total number of samples used in a

single execution of Line 7 of Identify is O( k
ε2
log 1

ε
log 1

η
).

The precision of ω j0d will be ζ = π/m, and thus the precision of ω j0 will be
π/(md) ≤ π/(mD) = η/m.

In summary, the hashing process guarantees that

Lemma 6 With probability at least 1− O(δ), Identify returns a list L such that for
each ω j with a j satisfying (2), there exists ω′ ∈ L such that |ω′ − ω j | ≤ η/m.

Remark 1 Notice that the number of non-zero Fourier coefficients of the filter Km is
2M + 1 for some integer M > 0. We shall show that, similar to [7], despite Line 8
of Identify (for m translations altogether) requires mr numbers, each of which is a
sum of 2M + 1 terms, this process can be done in O((M + m logm)r) time instead
of O(Mmr) time.

Suppose that at some step, in the j-th translation bucket (0 ≤ j ≤ m − 1) lies a
hashed frequency with chunk index s j . Let b j be the integer such that the lowest bits
of s j − b j are 0. By Sect. 2.2, we shall take Θ(Mn) samples, corresponding to the the
spectrum of KmKn , so we index the samples by (p, q)with |p| ≤ Θ(n) and |q| ≤ M .
We need the numbers

Θ(n)∑

p=−Θ(n)

e−2π i(b j+ j
m )

p
2r

M∑

q=−M

e−2π i jq
m wp,q z p,q , j = 0, . . . ,m − 1,

where z p,q is the sample with index (p, q) and wp,q are the Fourier coefficients of
KmKn . Notice that the inner sum can be rewritten as

m∑


=0

e−2π i j

m

∑

q∈(mZ+
)∩[−M,M]
wpq z pq ,

which can be done in O(M + m logm) time using FFT. The outer sum has only
constantly many terms. Hence to compute m numbers, each is a double sum as above,
takes only O(M + m logm) times. There are r steps, so the total time complexity is
O((M + m logm)r).

3.2.3 Coefficient Estimation

The isolation procedure generates a list L of candidate frequencies. Like [8], we
estimate the coefficient at each position in L by hashing the frequencies into buckets
using the same kernel but with possibly different parameters. We shall show how to
extract good estimates and eliminate unreliable estimates among |L| estimates.

The following lemma states that if a frequency candidate is near a true frequency
then they fall in the same bucket with a good probability and if a frequency candidate
is adequately away from a true frequency then they fall in different buckets with a
good probability.
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Lemma 7 Let D = Θ(1/η) and δ > 0. Choose d uniformly at random from
[θ1D, θ2D].
1. if |ω − ω′| ≤ β1δ/D ≤ η then

Pr
{
b(ω′, d) = b(ω, d)

} ≥ 1 − β1θ2.

2. if |ω − ω′| ≥ β2δ/D then

Pr
{
b(ω′, d) = b(ω, d)

} ≤ 1

β2(θ2 − θ1)
+ cδ

D

for some universal constant c > 0.

Proof Without loss of generality assume ω′ > ω. Then the probability in case (1) can
be rewritten as

∑

s∈Z
Pr

{[
ω′d
2δ

+ 1

2

]

=
[
ωd

2δ
+ 1

2

]

= s

}

=
∑

possibles

1

(θ2 − θ1)D
· m

([
2sδ − δ

ω
,
2sδ + δ

ω′

])

,

where m(E) denotes the Lebesgue measure of set E . Note that

m

([
2sδ − δ

ω
,
2sδ + δ

ω′

])

= δ · ω + ω′ − 2s(ω′ − ω)

ω′ω

≥ δ · ω + ω′ − ωθ2β1 − β1δ
D

ω′ω

≥ δ · 1 − θ2β1

ω′

Thus the sum of probabilities can be bounded from below by

1

(θ2 − θ1)D
· δ · 1 − θ2β1

ω′

([
ω′θ2D
2δ

+ 1

2

]

−
[
ω′θ1D
2δ

+ 1

2

]

+ 1

)

≥ 1 − θ2β1.

The other case can be proved similarly as Lemma 1. ��
Now consider a fixed significant frequency, say,ω1. Assume thatω1 is isolated from

other frequencies under hashing ω �→ ωd. If ω1 lands in the plateau of the kernel Km ,
that is, Km(ω1d) ≈ 1, then the bucket value

∫

Km(xd) f (x)dx ≈ a1Km(ω1d) ≈ a1,

is a good estimate to the coefficient. Similarly if it lands outside the pass region, the
bucket value would be close 0. The only challenging situation is when it lands in the
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Fig. 2 K and K̃

transition of Km , in which case we may have a significant bucket value but much
smaller than the desired a1. Our plan is to detect the estimates from the transition
region and remove them. To this end, consider two kernels K and K̃ such that the
pass region of K falls within the plateau of K̃ (see Fig. 2). Observe that the set
{x : K (x) ≥ K̃ (x)/2} consists of two parts: one part falls completely within the
plateau of K̃ , the other outside the pass region of K . With respect to the two kernels,
we obtain two bucket values

a =
∫

K (xd) f (x)dx ≈ a1K (ω1d)

and

a′ =
∫

K̃ (xd) f (x)dx ≈ a1 K̃ (ω1d)

If |a| > |a′|/2, we know that either ω1d falls in the plateau of K̃ , which indicates that
a′ is a reliable estimate, or ω1d falls outside the pass region of K , which indicates
that a is small (and thus is a′). Hence we can drop the estimates with |a| < |a′|/2 and
retain reliable estimates (either in the plateau of K̃ or outside the pass region of K ).
We always take a′ as our final estimate, which would be either significant or small.
Furthermore, the plateau of K is contained in the set {x : K (x) ≥ K̃ (x)/2}, so we
will always obtain a good estimate to a1 if we can guarantee that ω1d will land in the
plateau of K at least once.

This idea, together with the frequency estimate guarantee, is formalized in the next
few lemmata.

Choose parameters 0 < β1 < β2, 0 < θ1 < θ2 such that β1θ2 + α < 1/3 and
1/(β2(θ2 − θ1)) < 1/3. Let D = Cπ/η. Define a hash family

H = {Km(ωd) = hd(ω)|d ∈ [θ1D, θ2D]}.
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Let ω ∈ S
1 and h ∈ H. Suppose that ω ∈ [ (2
−1)π

m ,
(2
+1)π

m ] and h = hd(ω). We
call aω = gKm (d, 2
π

m ) (see (3)) a measurement with respect to h. When h is randomly
chosen (meaning that d is a random number), we simply say aω is a measurement with
respect toH.

It then holds that

Lemma 8 Let ω′ ≥ η and j0 = argmin j |ω′ − ω j |. Obtain a measurement aω′ w.r.t.
hd ∈ H.

1. If |ω′ − ω j0 | ≤ β1Cη/m, with probability Ω(1), it holds that |aω′ − a j0 | ≤
ε‖a‖1 + c′‖ν‖1/m for some c′ > 0 dependent on the failure probability;

2. If |ω′ − ω j0 | ≥ β2Cη/m, with probability Ω(1), it holds that |aω′ | ≤ ε‖a‖1 +
c′‖ν‖1/m for some c′ > 0 dependent on the failure probability.

Proof As in hashing,ω′ is separated from all otherω j ( j �= j0) with probabilityΩ(1),
so ω j does not land in the bucket for all j �= j0. It follows from Lemma 7 that

1. If |ω′ − ω j0 | ≤ β1Cη/m then ω j0 falls in the plateau of the same bucket as ω′
except with probability β1θ2 + α.

2. If |ω′ − ω j0 | ≥ β2Cη/m then ω j0 falls in a different bucket from ω′ except with
probability 1/(β2(θ2 − θ1)) + cC/m.

Upon the success of either case, the noise in the bucket is at most ε‖a‖1 + C‖ν‖1/m
(by the argument in isolation the section) and the conclusion follows. ��

Let Δ = ε‖a‖1 + c′‖ν‖1/m, where c′ is a constant dependent on the failure prob-
ability guaranteed in the preceding lemma and ε satisfies the condition in Lemma 5.
Take C1 > C2 (and thus D1 > D2) such that β1C2 ≥ 1 and C2β2 ≤ C1β1. Define
hash familiesHi (i = 1, 2) as

Hi = {Km(ωd) = hd(ω)|d ∈ [θ1Di , θ2Di ]}, i = 1, 2. (6)

It then follows that

Lemma 9 Upon termination of execution of line 10 in Estimate, with probability
≥ 1 − O(δ), for each ω′ ∈ L ′ let j0 = argmin j |ω′ − ω j | it holds that
1. If |ω′ − ω j0 | ≤ β1C1η/m, then |aω′ − a j0 | ≤ Δ;
2. If |ω′ − ω j0 | ≥ β2C1η/m, then |aω′ | ≤ Δ

3. If β1C1η/m ≤ |ω′ − ω j0 | ≤ β2C1η/m, then |aω′ | ≤ 2Δ.

Proof Case (1) and (2) follow from the previous lemma. For ω′ in case (3) it holds
that aω′ ≤ 2bω′ and bω′ ≤ Δ since |ω′ − ω j0 | ≥ β2C2η/m. ��

Loosely speaking, Lemma 9 guarantees a multiplicative gap between the coeffi-
cient estimates for the “good” estimates of significant frequencies and the coefficient
estimates for all other frequency estimates. Next, we merge estimates of the same true
source. In increasing order, for each ω′ ∈ L ′ with coefficient estimate aω′ , find

I (ω′) =
{

ω ∈ L ′ : ω′ ≤ ω ≤ ω′ + C1β1η

m
and

2

γ − 1
|aω′ | < |aω| <

γ − 1

2
|aω′ |

}

,
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where γ > 3 is a constant to be determined later.
Choose any element from I as representative of all elements in I and add it to Λ.

Continue this process from the next ω′ ∈ L that is larger than I . Retain the top k items
of �.

Lemma 10 Suppose that Estimate is called with argument L. With probability ≥
1 − O(δ), it produces a list Λ such that

1. For each j with |a j | ≥ γΔ for some γ > 2+ √
5, if there exists ω′ ∈ L such that

|ω′ − ω j | ≤ π/m, then there exists (ω′′, aω′′) ∈ Λ (we say that ω′′ ∈ Λ is paired)
such that

|ω′′ − ω j | ≤ C1β1η

m
, |aω′′ − a j | ≤ Δ.

2. For each unpaired ω ∈ Λ it holds that

|aω| ≤ 2Δ.

Proof In case (1), for all ω ∈ L ′ such that |ω − ω j | ≤ C1β1η/m it holds that
|aω| ≥ (γ − 1)Δ while for other ω it holds that |aω| ≤ 2Δ. There is a multiplicative
gap so the merging process does not mix frequencies that are close and far away from a
true source. It is easy to verify thatω ∈ L ′ upon termination of line 13 sinceC2β1 ≥ 1.
The rest is obvious. ��

Now we are ready to prove our main result.

Proof (Proof of Theorem 1) It suffices to show that Main returns a desirable
result with probability ≥ 1 − δ. Choose ε in the estimation procedure to be ε =
min{ε1, ε2}/(γ k) and m ≥ γ c′k, then Δ ≤ ‖ν‖1/(γ k) and thus whenever |a j | satis-
fies (2) it holds that |a j | ≥ γΔ. Combining Lemmas 6 and 10 shows the correctness
of the recovery guarantees.

Next we bound number of samples, runtime and duration of sampling.

Number of Samples. There are O(log k
δ
) repetitions in isolation and each takes

O( k
ε2
log 1

ε
log 1

η
) samples, hence the isolation procedure takesO( k

ε2
log k

δ
log 1

ε
log 1

η
)

samples in total.
The input of Estimate is a list L of size |L| = O(m log k

δ
). Use the same trick as in

isolation, it takes O(M) = O( k
ε2
log 1

ε
) samples for each of O(log |L|

δ
) = O(log m

δ
) =

O(log k
δε2

) repetitions. Hence the estimation takes O( k
ε2
log k

δε2
log 1

ε
) samples.

The total number of samples is therefore

O

(
k

ε2
log

1

ε

(

log
k

δ
log

1

η
+ log

k

δε2

))

= O

(
k

ε2
log

k

δ
log

1

ε2η
log

k

min{ε1, ε2}
)

.

Runtime. It follows from Remark 1 that each isolation repetition takes O((M +
m logm)r) = O( k

ε2
log k

εε2
log 1

η
) = O( k

ε2
log 1

ε
log 1

η
) time. There are O(log k

δ
) rep-

etitions so the total time for isolation is O( k
ε2
log k

δ
log 1

ε
log 1

η
).
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The input of Estimate is a list L of size |L| = O(m log k
δ
). Use the same trick in

Remark 1, it stakes O(M + m logm + |L|) time to obtain values for all buckets and
compute a(s)

ω and b(s)
ω for allω ∈ L and each s. Hence line 3–6 of Estimate takes time

O((M+m logm+|L|) log m
δ
) = O( k

ε2
log 1

ε
log k

δε2
) time. Thus estimation takes time

O( k
ε2
log 1

ε
log k

δε2
+ |L| log m

δ
+ |L| log |L|) = O( k

ε2
log k

δ
(log 1

ε
log 1

ε2
+ log 1

δ
)).

The total running time is therefore

O

(
k

ε2
log

k

δ

(

log
1

ε
log

1

η
+ log

1

ε
log

1

ε2
+ log

1

δ

))

= O

(
k

ε2
log

k

δ

(

log
1

ε2η
log

k

min{ε1, ε2} + log
1

δ

))

.

Sample Duration It is clear that the sample duration is

O(Md) = O

(
M

η

)

= O

(
k

ε2η
log

k

min{ε1, ε2}
)

.

The proof of the main theorem is now complete. ��

4 Application to Bearing Estimation

A source on the plane emits a sine wave at a single frequency ω and this wave travels
at speed c isotropically in this medium. If we ignore the decay of the amplitude of
the wave as it travels, the source is localized by a single bearing parameter θ ∈ S

1,
if we were to express its position in polar coordinates. Formally, a source at angle θ

produces a wave field

Fθ (x, t) = aθ exp

(

iω

(

t + 〈x, nθ 〉
c

))

, x ∈ R
2, t ∈ R,

where nθ = (cos θ, sin θ) is the unit vector in the direction θ . Restricting the wave
field to x ∈ R, the horizontal axis, we have

Fθ (x, t) = aθ exp

(

iω

(

t + x cos θ

c

))

, x ∈ R, t ∈ R,

or, writing ωθ = ω cos θ and assuming without loss of generality c = 1,

Fθ (x, t) = aθe
iωt+iωθ x = aθe

iωteiωθ x .

On the horizontal axis, the wavefield oscillates in both time t and in position x ∈ R,
separately.

Suppose that there are k sources, each transmitting sinewaves at the same frequency
ω and at angles θ1, . . . , θk ∈ S

1, and there is background noise at frequency ω sup-
ported on Iν ⊂ S

1. We assume that {[θ j −η/2, θ j +η/2)}kj=1 and [Iν −η/2, Iν +η/2)
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Fig. 3 Receiver array and
source configuration. The black
nodes are receivers and the grey
ones sources

aperture

η

are all mutually disjoint. That is, the sources are not on a fixed, discrete grid but they
are separated from each other and from the noise by a minimum resolution angle η.

To simplify notation, we denote ωθ j by ω j and observe that |ω j | ≤ ω. A single
receiver at position x on the horizontal axis observes the wavefield as

f (x, t) =
k∑

j=1

a je
iωteiω j x + eiωt

{∫

Iν
a(θ)eiω cos θ ·xdμ

}

, x, t ∈ R,

where μ is a measure on S
1 that satisfies the assumptions prescribed in Sect. 1.1.

The goal of the bearing estimation problem is to construct a (distribution over)
placements xm of M receivers and, from observations y(xm, t0) at a fixed time t0,
find the amplitudes {a j } and positions or angles {ω j } of the sources. This problem
has the form of an off-grid Fourier sampling problem where we seek the identity of
the unknown k “frequencies” ω j from M samples of a sparse signal plus background
noise. Figure 3 shows the configuration of sources and receivers.

Choose 0 < β < π/2 and consider θ ∈ J = [−(π −β),−β]∪[β, π −β], whence
| sin θ | ≥ sin β. Furthermore, we have

|ω cos θ1 − ω cos θ2| ≥ ω(sin β)|θ1 − θ2|

for θ1, θ2 ∈ J . Thus, it follows for θ j ∈ J that ω j is separated from the other
frequencies and the noise by at least ωη sin β. Because there is nothing special about
placing the receivers on the horizontal axis, we can also consider receivers distributed
on a line that is rotated a constant number of times with respect to the horizontal
axes so that the translations of J cover S

1 altogether, it suffices to find ω j (and the
associated a j ) with θ j ∈ J for a fixed β. We also re-define the angular resolution η to
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be η sin β. We might hope that, in this way, we can reduce the problem to recovery of
{ω j }, or, {cos θ j }; ambiguity, however, arises in the position of sources since cos θ =
cos(−θ), that is, sources symmetric around the horizontal line cannot be distinguished.
Also a source that is close to the symmetric image of the other source may ruin
the minimum separation in the reduced problem. Therefore, we make the following
additional assumption: there exists an integer q > 4 such that for each pair of

Ep =
{

θ j : θ j ∈
[
π

4
+ (2p − 1)

π

q
− 2η,

π

4
+ (2p + 1)

π

q
+ 2η

]}

and

E ′
p =

{

θ j : θ j ∈
[

−π

4
+ (2p − 1)

π

q
− 2η,−π

4
+ (2p + 1)

π

q
+ 2η

]}

,

it holds that d
(
−Ep + { 2pπq }, E ′

p − { 2pπq }
)

≥ η and that d
(
−Ep + { 2pπq }, Iν

)
≥ η,

where d(·, ·) is the metric on S
1 and p = 0, . . . , q − 1.

Consider a filter K on S
1 with a finite Fourier transform K̂ , supported on I ⊂ Z.

Then, placing receivers down on a line at positions {nx}n∈I associated with weights
{K̂ (n)}n∈I , we find that the wavefield these receivers observe is

∑

n∈I
K̂ (n)y(nx) =

k∑

j=1

a j

∑

n∈I
K̂ (n) exp(iω j nx)

+
∫

Iν
a(θ)

∑

n∈I
K̂ (n) exp (iω(cos θ)nx) dμ

=
k∑

j=1

a j K (ω j x) +
∫

Iν
a(θ)K (ω(cos θ)x)dμ.

It is clear that any translation K (u + ·) can be achieved by the same receiver array
with associated weights {K̂ (n)eiun}n∈I } and that scaling K (αx) can be achieved by
scaling the receiver array by the same factorα. Thus, we can perform all of the required
measurement techniques for sampling in a receiver array.

The following result is an immediate application of our main result.

Theorem 2 There is a distribution D on uniform receiver arrays and an algorithm
A such that for each wavefield emanating from k sources f (s) = ∑k

j=1 a jeiω j s +
∫
Iν
a(θ)eiωsdμ, with constant probability, given observations from the receiver arrays,

the algorithm returns a list Λ of amplitudes and bearings Λ = {(a′
j , ω

′
j )}kj=1 such

that

1. For each a j that satisfies (2) there exists ω′
j ∈ Λ such that

|ω j − ω′
j | ≤ ε2

k
η.
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2. Let Λ0 = {ω′
j ∈ Λ : ∃ω j0 such that

∣
∣
∣ω j0 − ω′

j

∣
∣
∣ ≤ ε2η

k and |a j0 | satisfies (2)}, then
for each ω′

j ∈ Λ0 it holds that

|a′
j − a j | ≤ ε1‖a‖1 + ε2

k
‖ν‖1.

3. For each ω′
j ∈ Λ \ Λ0, it holds that

|a′
j | ≤ ε1‖a‖1 + ε2

k
‖ν‖1.

The algorithm places

O

(
k

ε2
log k log

1

ε2η
log

1

min{ε1, ε2}
)

receivers and runs in time proportional to number of samples. Furthermore, the
receiver aperture size is

O

(
k

ε2η
max

{

log
1

ε1
, log

k

ε2

})

.

Proof By our assumption on Ep and E ′
p, we can recover the sources in

[
π

4
+ (2p − 1)

π

q
,
π

4
+ (2p + 1)

π

q

]

∪
[

−π

4
+ (2p − 1)

π

q
,−π

4
+ (2p + 1)

π

q

]

with symmetry ambiguity.With rotations of the receiver arrays, the only ambiguity left
will be to distinguish a source at θ from θ +π . Suppose that θ ∈ Ep0 . This ambiguity
can be resolved by rotating the receiver array for Ep0 by η, the correctness of which is
guaranteed by our assumption on Ep and E ′

p again, noting the 2η brim on each side
of each interval. ��

We remark that it is possible to handle more configurations of sources, such as
sources at the vertices of a regular polygon, by starting with a random direction instead
of x-axis.

5 Conclusion and Open Problems

In this paper, we define a mathematically rigorous and practical signal model for
sampling sparse Fourier signals with continuously placed frequencies and devise a
sublinear time algorithm for recovering such signals. There are a number of technical
difficulties in this model and as-yet unanswered questions with directly applying the
discrete sublinear Fourier sampling techniques, both algorithmic and mathematical
which we summarize first and then discuss open problems and conjectures that stem
from our continuous approach.
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5.1 Discretization

Asmentioned in the introduction, onemay be tempted to reduce the continuous setting
to the discrete setting, assuming

f (t) =
k∑

i= j

a je
iω j t , a j ∈ C,

by simply taking samples of f (t)w(t) for somewindow functionW (t) at N equidistant
points t = 0, Δt , 2Δt , . . . , (N − 1)Δt . The discrete Fourier transform (DFT) of the
samples are approximately

1

Δt

k∑

j=1

a j Ŵ

(

ω j − 


NΔt

)

, 
 = 0, 1, . . . , N − 1

by observing that

N−1∑

k=0

eiωkΔtW (kΔt)e−i k
N ≈ 1

Δt

∫ T

0
eiωxW (x)e−i
 x

NΔt dt ≈ 1

Δt
Ŵ

(

ω − 


NΔt

)

provided thatΔt � 1/π (so the Riemann sum is a good approximation to the integral)
and W (t) is supported on, or negligible outside, [0, NΔt]. A typical choice of Ŵ
is also a window function. Suppose that the pass region of Ŵ has width σ � η to
avoid the interference of two different frequencies. The pass region of W is typically
1/σ � NΔt , hence 1/η � 1/σ � NΔt . Take Ŵ (ξ) = sin2(ξ/σ )/(ξ/σ )2 (See
Fig. 4). Consider ω1 and let 
 be the nearest integer to NΔt · ω1. Then the 
-th
coefficient in the DFT is

1

Δt

⎛

⎝a1Ŵ

(

ω1 − 


NΔt

)

+
∑

j �=1

a j Ŵ

(

ω j − 


NΔt

)
⎞

⎠ .

The first term in the bracket is close to a1 because |ω1 − 
/(NΔt)| ≤ 1/(2NΔt) � σ

and thus Ŵ is close to 1. To bound the second term, notice that for j �= 1,

∣
∣
∣
∣ω j − 


NΔt

∣
∣
∣
∣ ≥ |ω j − ω1| − 1

2NΔt
≥ |ω j − ω1| − η

C

for some absolute constant C1 > 0. Thus the second term is bounded by (after rear-
ranging the indices)

|a2| + |a3|
(
1 − 1

C

)2 ( η
σ

)2 + |a4| + |a5|
(
2 − 1

C

)2 ( η
σ

)2 + |a6| + |a7|
(
3 − 1

C

)2 ( η
σ

)2 + · · · �
(

σ

η

)2

· max
i≥2

|ai |
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Fig. 4 Ŵ (ξ) = sin2(ξ/σ )/(ξ/σ )2

This means that the 
-th coefficient in the DFT is proportional to the coefficient associ-
ated with ω1 corrupted by contributions from other coefficients associated with other
frequencies. It is therefore conceivable that there exists a constant c > 0 (depending on
W ) such that the top ck coefficients of the N DFT coefficients include constant approx-
imations to those {ai }’s which are at least a constant fraction of ‖a‖1 with the choice of
σ � η. The sample durationwill thus beΘ(1/η).Using existing sparse recovery results
for discrete setting, it seems probable to recover the frequencies with coefficients at
least a constant fraction of ‖a‖1 with sample duration of NΔt � 1/η. Improving the
guarantee to recovering frequencies with coefficients at least 1/k fraction of ‖a‖1 will
increase the sample duration to Θ(k/η) with σ shrunk from Θ(η) to Θ(η/k).

This approach looks promising yet there are some inconveniences compared with
the preceding direct approach. For instance, typical discrete case results give an 
2/
2
error bound, that is, ‖x − x ′‖2 ≤ (1 + ε)‖x − xk‖, where x ′ is the approximation
of x and xk the best k-term approximation. It is not obvious how to interpret such
result in the continuous setting. On the other hand, under the discretization scenario,
a real-valued frequency spreads around so one may encounter a cluster of significant
components in the discretized signal and thus an additional step of locating the fre-
quency from a cluster of them is needed. This is not obvious either provided only the

2 error guarantee. An 
∞ error guarantee is more desirable, however, it increases the
complexity of the algorithms for the discrete case.

5.2 Open Problems

First we ask a question about output evaluation metric. Since we do not expect to
recover the frequencies exactly, the typical approximation error of the form

∥
∥
∥
∥
∥
∥

∑

j

(
a je

iω j x − a′
je

iω′
j x
)

+ ν(x)

∥
∥
∥
∥
∥
∥
p

for p = 1, 2

contains both the coefficient approximation error ‖a − a′‖ and a term of the form∑ |a j ||ω j −ω′
j |, rather than the more usual bound in terms of the noise alone ‖ν‖p in
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the discrete case. Given bounds on both the coefficients |a j − a′
j | and the frequencies

|ω j − ω′
j |, it is possible to compute the two terms in the error. This is standard in the

literature of polynomial-time algorithms to recover real frequencies (e.g., [15]), with
which our result is comparable.

An alternative method to express the output error is to treat the exponential sum∑
aieiωx as a distribution and consider

sup
g∈F

|〈 f1, g〉 − 〈 f2, g〉|,

where f1 and f2 are two exponential sums and F some class of test functions. For
instance, when f1 and f2 are probability measures, it gives total variation distance
whenF is the set of functions bounded by 1 andWasserstein distance (or earth-mover
distance) when F consists of all 1-Lipschitz functions. But our algorithm has no
guarantee that ‖a‖ = ‖a′‖ so it is generally not a metric. Obviously this bound can
be expressed in terms of |ai − a′

i | and |ωi − ω′
i | (for example, with F being the set of

1-Lipschitz function we obtain the L1 norm) and can thus be bounded if the estimates
of individual source are bounded. It remains unclear what class of test functions would
give a less common but interesting bound for this problem.

Besides, we leave the following problems open and make conjectures.

– Several direct techniques incur the penalty of extrameasurements.We do not know
if these additional measurements are necessary, if they are inherent in the model.

– Unlike the discrete case, the “duration” of the sampling or the extent of the sam-
ples is a resource for which we have no lower bounds. We think Θ(k/η) is the
tight bound with k logO(1)(1/η) samples while our algorithm takes O((k/η) log k)
samples for ε1 = Θ(1/k) and ε2 = Θ(1). It remains future work to devise a sub-
linear time algorithm with smaller sample duration, for which a good reduction to
discrete case looks a promising approach.

– If we do not reduce to discrete case, a better algorithm would be an iterative one
so the runtime can be lowered by an O(log k) factor. Notice that the number of
samples is always bounded by the runtime from above.
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