
1 Infinitesimal Generators
1.1 Let {T (t) : t ≥ 0} is a semi-group of bounded operators in Banach space X , i.e., it satisfies that T (t)T (s) =

T (t+ s) for all s, t > 0 and T (0) = I . Let f(t) = ln ∥T (t)∥. Suppose that f(t) is bounded on [0, a], show that
(1) f(t) is sub-additive, i.e., f(t+ s) ≤ f(t) + f(s) for all t, s > 0.
(2) limt→∞

1
t f(t) = inft>0

1
t f(t).

Proof. (1) f(t+ s) = ln ∥T (t+ s)∥ = ln ∥T (t)T (s)∥ ≤ ln(∥T (t)∥ ∥T (s)∥) = ln ∥T (t)∥+ ln ∥T (s)∥ = f(t) +
f(s);

(2) It is not difficult to see that f(t) is bounded on any finite interval [0, s]. Suppose that f(t) is bounded by Ms

on [0, s]. Fix s. Any t can be written as t = ns+ r, where n is an integer and 0 ≤ r < a. Then we have from
subadditivity of f that

f(t) ≤ nf(s) + f(r) ≤ nf(s) +Ms.

Divide it by t,
f(t)

t
≤ n

ns+ r
f(s) +

Ms

t
≤ f(s)

s
+

Ms

t

Let t → ∞,
lim sup
t→∞

f(t)

t
≤ f(s)

s
.

Take infimum on the right-hand side,

lim sup
t→∞

f(t)

t
≤ inf

s>0

f(s)

s
.

Notice that it holds trivially

lim inf
t→∞

f(t)

t
≥ inf

s>0

f(s)

s
.

The proof is now complete.

1.2 Let {T (t) : t ≥ 0} is a semigroup of bounded operators, such that T (0) = I and strong continuity at t = 0, i.e.,
s- limt→0+ T (t) = I . Show that the semi-group is strongly continuous.

Proof. We shall show that t 7→ T (t)x is continuous for all x ∈ X . It is easy to show right strong continuity.

lim
t→t+0

∥T (t)x− T (t0)x∥ = lim
t→t+0

∥T (t0)T (t− t0)x− x∥ ≤ ∥T (t0)∥ lim
t→t+0

∥T (t− t0)x− x∥ = 0.

To prove the left strong continuity, it suffices to show that ∥T (t)∥ to be uniformly bounded when t is near t0. In
fact, it holds that ∥T (t)∥ ≤ Meωt for some M and ω. Refer to the text before Lemma 7.1.6.

1.3 Let {T (t) : t ≥ 0} is a semigroup of bounded operators on Hilbert space H and satisfies T (0) = I and weak
continuity at t = 0. Show that the semigroup is strongly continuous.

Proof. Since T (t)x ⇀ x, the uniform boundedness theorem tells us that ∥T (t)x∥ is uniformly bounded in a neigh-
bourhood of t = 0. Again by the uniform boundedness principle, it holds that ∥T (t)∥ is uniformly bounded near
t = 0. It is then easy to see that for a fixed x0 ∈ X , x(t) = T (t)x0 is bounded on any compact interval of t.

Suppose that 0 ≤ a < t < b < ξ−ϵ < ξ, where ϵ > 0. Since x(ξ) = T (ξ)x0 = T (t)T (ξ−t)x0 = T (t)x(ξ−t),
we have that

(b− a)x(ξ) =

∫ b

a

x(ξ)dt =

∫ b

a

T (t)x(ξ − t)dη

and so, by supa≤t≤b ∥T (t)∥ < ∞, we obtain

(b− a)∥x(ξ ± ϵ)− x(ξ)∥ =

∥∥∥∥∥
∫ b

a

T (t)(x(ξ ± ϵ− t)− x(ξ − t))dt

∥∥∥∥∥
1



≤ sup
a≤t≤b

∥T (t)∥ ·
∫ ξ−a

ξ−b

∥x(t± ϵ)− x(t)∥dt

The right hand side tends to zero as ϵ → 0+, as may be seen by approximating x(t) by finite-valued functions.
So far we have proved that x(t) is strongly continuous at t > 0. Now we prove the strong continuity at t = 0. For

any positive rational number r we have T (t)x(r) = x(t+ r), and thus s- limt→0+ T (t)x(r) = x(r). Let M denote
the set consisting of all finite linear combinations with rational coeffcients of x(r)’s, then s- limt→0+ T (t)x = x for
all x ∈ M . On the other hand, for any t ∈ [0, 1]

∥x(t)− x0∥ ≤ ∥T (t)x− x∥+ ∥x− x0∥+ ∥T (t)(x0 − x)∥ ≤ ∥T (t)x− x∥+

(
sup

t∈[0,1]

∥T (t)∥+ 1

)
∥x0 − x∥

and thus

lim sup
t→0+

∥x(t)− x0∥ ≤

(
sup

t∈[0,1]

∥T (t)∥+ 1

)
∥x0 − x∥ (1)

for any x ∈ M . It is clear that {x(t) : t ≥ 0} ⊂ M from the weak closedness of M and weak right-continuity of
{x(t)}. Therefore the right side of (1) can be made arbitrarily close to 0, concluding that x(t) → x0 strongly as
t → 0+.

1.4 Let {T (t) : t ≥ 0} be a strongly continuous semi-group of operators on X and A its infinitesimal generator. Show
that the following three conditions are equivalent:
(1) D(A) = X ;
(2) limt→0+ ∥T (t)− I∥ = 0;
(3) A ∈ L(X ) and T (t) = exp(tA).

Proof. (3)⇒(1): It follows easily from series manipulation that Atx → Ax for all x as t → 0.
(1)⇒(2): Since Atx → x as t → 0, by uniform boundedness principle, At is uniformly bounded, say by M , in

a small neighbourhood of t = 0. Then ∥T (t)− I∥ ≤ Mt → 0 as t → 0.
(2)⇒(3): It is easy to verify that

lim
s→0

1

s

∫ s+r

r

T (t)dt = T (r)

In particular, there exists δ such that ∥∥∥∥1t
∫ t

0

T (s)ds− I

∥∥∥∥ < 1

for all 0 < t < δ, then 1
t

∫ t

0
T (s)ds is invertible for t ∈ (0, δ). Now,

1

s

∫ r+s

r

T (t)dt− 1

s

∫ s

0

T (t)dt =
1

s
(T (s)− I)

∫ r

0

T (t)dt (2)

(because
∫ r+s

r
−
∫ s

0
=
∫ r+s

s
−
∫ r

0
). It follows that for t ∈ (0, δ),

1

s
(T (s)− I) =

(
1

s

∫ r+s

r

T (t)dt− 1

s

∫ s

0

T (t)dt

)(∫ r

0

T (t)dt

)−1

The right-hand side tends to (T (r)− I)(
∫ r

0
T (t)dt)−1, so the left-hand side As converges to some bounded linear

operator when s → 0. It is obvious that this limit operator must be A. Taking limit s → 0 in (2), we obtain that

T (r)− I = A

∫ r

0

T (s)ds
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Iterated substitution gives

T (r) = I +A+
A2

2
+ · · ·+ An

n!
+

An+1

n!

∫ r

0

(r − t)nT (t)dt

Let n → ∞, we see that T (r) = exp(rA) for all r ≥ 0.

1.5 Let X = C0[0,∞) = {f ∈ C[0,∞) : limx→+∞ f(x) = 0}, ∥f∥ = sup |f(s)|. Define on X a linear operator

T (t) : a(·) 7→ a(t+ ·).

Show that {T (t) : t ≥ 0} is a strongly contraction semigroup on X .

Proof. It is obvious that T (t+ s) = T (t) + T (s) and T (0) = I . Now we show that ∥T (t)a− T (t0)a∥ → 0. This
is because ∥T (t)a−T (t0)a∥ = sups |a(t+ s)− a(t0 + s)| and a is uniformly continuous. Finally, it is obvious that
∥T (t)∥ ≤ 1 for all t ≥ 0.

1.6 Let X = L2(R), for x ∈ R and y ∈ R+, define

((T (y)f)(x) =
1

π

∫ ∞

−∞

y

(x− ξ)2 + y2
f(ξ)dξ, y > 0,

T (0)f = f.

Show that {T (y) : y ≥ 0} is a strongly continuous semigroup on X and ∥T (y)∥ = 1. (Remark. The integral gives
a harmonic function on the upper plane with boundary value f )

Proof. First we show that T (y)f ∈ L2(R). Indeed, by Cauchy-Schwarz inequality,∫ ∞

−∞

∣∣∣∣ 1π
∫ ∞

−∞

y

(x− ξ)2 + y2
f(ξ)dξ

∣∣∣∣2 dx
≤ 1

π2

∫ ∞

−∞

(∫ ∞

−∞

y

(x− ξ)2 + y2
dξ

)(∫ ∞

−∞

y

(x− ξ)2 + y2
|f(ξ)|2dξ

)
dx

=
1

π

∫ ∞

−∞

∫ ∞

−∞

y

(x− ξ)2 + y2
|f(ξ)|2dxdξ

=∥f∥22

Hence ∥T (y)∥ ≤ 1. On the other hand,

(
T (y)χ[−R,R]

)
(x) =

1

π

(
arctan

(
R− x

y

)
+ arctan

(
R+ x

y

))
and thus

∥T (y)χ[−R,R]∥22
χ[−R,R]∥22

≥ 1

R

∫ R/2

−R/2

1

π2

(
arctan

(
R− x

y

)
+ arctan

(
R+ x

y

))2

dx

≥ 1

R

∫ R/2

−R/2

(
2

π
arctan R

2y

)2

dx

=

(
2

π
arctan R

2y

)2

→ 1

as R → ∞, which implies that ∥T (y)∥ = 1 for y > 0. It is trivial that T (0) = I and ∥T (0)∥ = 1.
When f ∈ S (R), Notice that T (y)f is exactly u(·, y) that satisfies

∆u = 0, y > 0
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u(x, 0) = f(x, 0)

It is then obvious that T (t + s) = T (t) + T (s) for f ∈ S (R), which can be extended to the entire L2(R) easily
because S (R) is dense in L2(R) and ∥T (y)∥ ≤ 1.

Now we show ∥T (y)f−f∥ → 0 as y → 0+. It suffices to show this for f ∈ C∞
0 (R) and density of test functions

allows us to extend this result to L2(R). First we show that T (y)f → f uniformly pointwise as y → 0+. Let ϵ > 0
be given. Since f is uniformly continuous, there exists δ such that |f(x)− f(y)| < ϵ whenever |x− y| < δ. Then

|(T (y)f)(x)− f(x)| =
∣∣∣∣∫

R

y

(x− ξ)2 + y2
(f(ξ)− f(x))dξ

∣∣∣∣
≤
∫
|x−ξ|<δ

y|f(ξ)− f(x)|
(x− ξ)2 + y2

dξ +

∫
|x−ξ|>δ

y|f(ξ)− f(x)|
(x− ξ)2 + y2

dξ

=: I + J,

where
I ≤ ϵ

∫
R

y

(x− ξ)2 + y2
dξ = ϵ

and

J ≤ 2∥f∥∞
∫
|x−ξ|>δ

y

(x− ξ)2 + y2
dξ

= 2∥f∥∞
(
π − 2 arctan δ

y

)
→ 0

uniformly w.r.t. x as y → 0. Hence T (y)f → f uniformly w.r.t. x. Suppose that supp f ∈ [−K,K]. Now,

∥T (y)f − f∥2 ≤
∫
|x|≤K

|(T (y)f)(x)− f(x)|2dx+

∫
|x|≥K

|(T (y)f)(x)|2dx

≤ ∥(T (y))f − f∥∞ · 2K +

∫
|x|≥K

|(T (y)f)(x)|2dx

The first term goes to 0 as y → 0+. For the second term, we have∫
|x|≥K

|(T (y)f)(x)|2dx ≤ 1

π

∫
|ξ|≤K

|f(ξ)|2
∫
|x|≥K

y

(x− ξ)2 + y2
dxdξ

≤
∫
|ξ|≤K

|f(ξ)|2
(
π − arctan K − ξ

y
− arctan K + ξ

y

)
dξ

→ 0 as y → 0+ by Dominated Convergence Theorem.

Therefore we conclude that (T (y) − I)f → 0 as y → 0+, whence the strong continuity condition is satisfied by
Problem 1.2.

1.7 Let {T (t) : t ≥ 0} be a strongly continuous semi-group on X . Suppose that x ∈ X ,w- limt→0+
1
t (T (t)−I)x = y,

show that x ∈ D(A) and y = Ax.

Proof. Let f ∈ X∗ and λ > 0 large enough. It is easy to see that e−λtf(T (t)x) has right derivative, which equals
to e−λtf(T (t)(y − λx)). The derivative is continuous in t, we have on integration

f(x) = −
∫ ∞

0

e−λtf(T (t)(y − λx))dt,

for all f ∈ X∗. Therefore,

x = −
∫ ∞

0

e−λtT (t)(y − λx) = −(λI −A)−1(y − λx)

The conclusion follows immediately by multiplying (λI −A) on both sides.
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1.8 Let {T (t) : t ≥ 0} be a strongly continuous semi-group on a Hilbert space H . Suppose that A is its generator and
T (t) is a normal operator for all t ≥ 0. Show that A is normal using Gelfand transform.

1.9 ProveHille-Yosida-PhillipsTheorem (Theorem 7.1.7): A densely-defined closed linear operatorA is an infinitesimal
generator of some strongly continuous semigroup {T (t) : t ≥ 0} if and only if
(1) ∃ω0 > 0 such that (ω0,∞) ⊂ ρ(A);
(2) ∃M > 0 such that

∥(λ−A)−n∥ ≤ M

(λ− ω)n
, n = 1, 2, . . .

whenever λ > ω > ω0.

Proof. The necessity has been proved in Lemma 7.1.6. The proof of sufficiency follows the same outline as in
Theorem 7.1.5 by defining

Bλ = λ2(ω0 + λ−A)−1 − λI

for λ > 0.

1.10 Let {T (t) : t ≥ 0} be a strongly continuous semi-group and A its infinitesimal generator. Suppose that ω0 ∈ R
satisfies {λ : ℜλ > ω0} ⊂ ρ(A)}. Show that
(1) The set {Rλ(A)x : x ∈ D(A)} is dense in D(A), where ℜλ > ω0;
(2) The range of Rλ(A)n is dense for all n ≥ 1, where ℜλ > ω0;
(3) D(An) is dense for all n ≥ 1.

Proof. (1) Let x ∈ D(A2). It follows from Rλ(A)(λ − A)x = x that x ∈ R(Rλ(A)|D(A)). Hence D(A2) ⊆
R(Rλ(A)|D(A)). The conclusion follows immediately from the density of D(A2).

(2) It follows from Rλ(A)(λ − A)x = x (x ∈ D(A)) that x ∈ R(Rλ(A)), that is, D(A) ⊂ R(Rλ(A)) and
R(Rλ(A)) is therefore dense. Now, it Rλ(A)n(λ − A)nx = x for all x ∈ D(An), whence it follows that
D(An) ⊂ R(Rλ(A)n). Part (3) shows that D(An) is dense, and hence R(Rλ(A)n) is dense.

(3) This statement actually hold for any strongly continuous semi-group with no further assumptions. To see this,
let ϕ be any function in C∞

0 [0, 1] and define for any x

xϕ =

∫ 1

0

ϕ(t)T (t)xdt.

Then

T (h)− 1

h
xϕ =

1

h

∫ 1

0

(∫ t

0

ϕ′(s)ds

)
(T (t+ h)− T (t))xdt

=
1

h

∫ 1

0

ϕ′(s)

(∫ 1

s

(T (t+ h)x− T (t)x)dt

)
ds

=
1

h

∫ 1

0

ϕ′(s)

(∫ 1+h

1

T (t)xdt−
∫ s+h

s

T (t)xdt

)
ds

=
1

h

∫ 1

0

ϕ′(s)ds

∫ 1+h

1

T (t)xdt− 1

h

∫ 1

0

ϕ′(s)

∫ s+h

s

T (t)xdtds

= − 1

h

∫ 1

0

ϕ′(s)

∫ s+h

s

T (t)xdtds

Since 1
h

∫ s+h

s
T (t)xds → T (s)x as h → 0+ and ϕ′ is bounded, the limit of the right-hand side exists as

h → 0+ and equals to

−
∫ 1

0

ϕ′(s)T (s)xds.
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Hence xϕ ∈ D(A) and

Axϕ = −
∫ 1

0

ϕ′(s)T (s)xds.

Now it is clear that xϕ ∈ D(An) for all n. We can choose a sequence {ϕj} ⊂ C∞
0 [0, 1] such that ϕj ≥ 0,∫ 1

0
ϕj = 1 and suppϕj tends to 0. It is not difficult to see that xϕj → x. Hence D(An) is dense.

1.11 Let {T (t) : t ≥ 0} be a strongly continuous semi-group and A its infinitesimal generator. Suppose that f ∈
C1([0,∞);X ). Show that the differential equation of operators

dx(t)

dt
= Ax(t) + f(t), (3)

x(0) = x0 ∈ D(A) (4)

has a unique solution in C(R1
+;D(A)) ∩ C1(R1

+,X ), which is given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s)ds. (5)

Proof. The first term T (t)x0 on the right of (5) satisfies the homogeneous differential equation and the initial
condition, it suffices to show that the second term satisfies 3 with initial value 0.∫ t

0

T (t− s)f(s)ds =

∫ t

0

T (t− s)

(
f(0) +

∫ s

0

f ′(r)dr

)
ds

=

(∫ t

0

T (t− s)ds

)
f(0) +

∫ t

0

f ′(r)

(∫ t

r

T (t− s)ds

)
dr

Note that
T (t)− T (r) =

∫ t

r

AT (s)ds,

it follows that
A

∫ t

r

T (t− s)ds = T (t− r)− I,

and then

A

∫ t

0

T (t− s)f(s)ds = (T (t)− I)f(0) +

∫ t

0

f ′(r)(T (t− r)− I)dr

= T (t)f(0)− f(t) +

∫ t

0

f ′(r)T (t− r)dr (6)

On the other hand,
d

dt

∫ t

0

T (t− s)f(s)ds = T (t)f(0) +

∫ t

0

T (s)f ′(t− s)ds. (7)

Comparing (6) and (7), we see that

d

dt

∫ t

0

T (t− s)f(s)ds = A

∫ t

0

T (t− s)f(s)ds+ f(t).

It is clear that the initial value of the second term of (5) is 0. Hence x(t) given in (5) is a solution to the differential
equation indeed. The continuity of x′(t) can be easily concluded from (7) using the continuity of f ′. It is clear that
x(t) ∈ D(A).
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In fact, if x(t) ∈ C(R1
+;D(A)) ∩ C1(R1

+,X ) is a solution to (3) and (4), then

d

ds
T (t− s)x(s) = −T ′(t− s)x(s) + T (t− s)x′(s) = −T (t− s)Ax(s) + T (t− s)x′(s) = T (t− s)f(s).

Integrate on both sides, we obtain that

x(t)− T (t)x(0) =

∫ t

0

T (t− s)f(s)ds,

which is exactly (5). The uniqueness of the solution is proved.

2 Examples of Infinitesimal Generators
2.1 Let X = {f : D → C : f(z) =

∑∞
n=0 cnz

n, ∥f∥2 =
∑

|cn|2 < ∞}, where D is the open disc in the complex
plane. Define on X

(T (t)f)(z) =

∞∑
n=0

(n+ 1)−tcnz
n.

Show that {T (t) : t ≥ 0} is a strongly continuous semi-group of positive self-adjoint operators. Find its infinitesimal
generator A and show that ln 1

n+1 (n ≥ 1) are eigenvalues of A.

Proof. It is obvious that ∥T (t)∥ ≤ 1, T (t+ s) = T (t)T (s) and T (0) = I . Now we show that T (t)f → f strongly
for all f ∈ X . Given ϵ > 0 and f =

∑∞
n=0 cnz

n, choose N big enough such that
∑

n>N |cn|2 < ϵ2

2 . Choose t
small enough such that 1− ( 1

N+1 )
t < ϵ√

2∥f∥ . Then

∥f − T (t)f∥2 =

N∑
n=0

(
1− 1

(n+ 1)t

)2

|cn|2 +
∞∑

n=N+1

(
1− 1

(n+ 1)t

)2

|cn|2

≤ ϵ2

2∥f∥2
· ∥f∥2 +

∞∑
n=N+1

|cn|2

≤ ϵ2

2
+

ϵ2

2
= ϵ2,

that is, ∥f −T (t)f∥ ≤ ϵ when t is sufficiently small. Therefore {T (t) : t ≥ 0} is a strongly continuous semi-group.
It is straightforward to verify that T (t) is positive and self-adjoint (note that the inner product (

∑
cnz

n,
∑

dnz
n) =∑

cndn).
Define a linear operator A as

Af =

∞∑
n=0

cn ln 1

n+ 1
· zn

on
D(A) =

{
f =

∑
cnz

n ∈ X :
∑

|cn|2 ln2(n+ 1) < ∞
}
.

It is clear that D(A) is dense because xn ∈ D(A) for all n. We claim that A is closed. Suppose that fn → f ,
Afn → g, fn =

∑
cnkz

k, f =
∑

cnz
n and g =

∑
dnz

n. Since Afn → g,
∞∑
k=0

∣∣∣∣cnk ln 1

k + 1
− dk

∣∣∣∣2 → 0,

or,
∞∑
k=1

∣∣∣∣∣cnk − dk

ln 1
k+1

∣∣∣∣∣
2

ln2 1

k + 1
→ 0,
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(because d0 must be 0) which implies that

∞∑
k=1

∣∣∣∣∣cnk − dk

ln 1
k+1

∣∣∣∣∣
2

→ 0.

Comparing with fn → f , or, equivalently,

∞∑
k=0

|cnk − ck|2 → 0.

we obtain that
dn = cn ln 1

n+ 1

for all n ≥ 0, that is, f ∈ D(A) and g = Af . Therefore A is a densely-defined closed operator.
Next we show that A generates a contraction semigroup. For λ > 0, it is easy to verify that λI −A is injective,

and ∥λf − Af∥ ≥ λ∥f∥, thus λI − A is invertible and ∥Rλ(A)∥ ≤ λ−1. By Hille-Yosida Theorem we know that
A generates a contraction semigroup.

Now, to show that A is the infinitesimal generator of {T (t)}, it suffices to show that Atf → Af on D(A). Let
f ∈ D(A), f =

∑
cnz

n, then

∥Atf −Af∥2 =
∑

|cn|2
∣∣∣∣ (n+ 1)−t − 1

t
− ln 1

n+ 1

∣∣∣∣2
=
∑

|cn|2
∣∣∣∣∣et ln 1

n+1 − 1

t
− ln 1

n+ 1

∣∣∣∣∣
2

≤ t
∑

|cn|2 ln2 1

n+ 1
→ 0

as t → 0+, where we used ex − 1 ≤ x+ x2 for all x ≤ 1.

2.2 Let X = L2(−π, π). Define

(T (t)f)(θ) =
1

2π

∫ π

−π

G(θ − ξ, t)f(ξ)dξ, t > 0

T (0)f = f,

where the integral kernel G(θ, t) = 1 + 2
∑∞

n=1 e
−n2t cosnθ. Show that {T (t) : t ≥ 0} is a strongly continuous

semi-group. Is it a contraction semi-group?

Proof. The procedure is similar to Exercise 7.1.6, based on the following properties of G(θ, t):
(1) G(θ, t) is continuous;
(2) G(θ, t) ≥ 0 for all t;
(3) For every δ, K(x, t) → 0 uniformly on δ < |x| < π.

We shall prove the properties later. For now let us assume their correctness. For simplicity let the kernel G(θ, t)
absorb the normalisation coefficient 1

2π . Using the same trick as in 7.1.6, we obtain that ∥T (t)∥ ≤ 1 for all t > 0.
It is easy to verify that T (t+ s) = T (t)T (s) (because e−n2(t+s) = e−n2te−n2

s) and T (0) = I . To show the right
strong convergence at t = 0, we can assume that f ∈ C∞

0 (−π, π). Using uniform continuity of f and Property (3)
of the kernel G(θ, t), it is easy to show that ∥T (y)f − f∥ → 0. We therefore conclude that {T (t)} is a contraction
semi-group.

8



To see Property (1), just notice that the sum of continuous functions is uniformly convergent. To see (2) and
(3), apply Poisson’s Summation formula

∞∑
k=−∞

g(x+ 2kπ) =
1

2π

∞∑
n=−∞

ĝ(n)einx

to
g(x) =

1√
4πt

e−
x2

4t

(note that ĝ(ξ) = e−ξ2t), we obtain that

G(x, t) =
1√
4πt

∞∑
k=−∞

e−
(x+2πk)2

4t ,

whence Property (2) becomes obvious. Property (3) follows from integral approximation of G(x, t),

G(δ, t) ≤ 1√
πt

∫ ∞

δ

e
−x2

4t dx = 1− Φ
( δ

2
√
t

)
→ 0.

Remark. In fact, T (t)f gives the solution u(·, t) to the heat equation on a circle S1

∂u

∂t
=

∂2u

∂θ2
, t > 0, θ ∈ (−π, π)

u(π, t) = u(−π, t)

u(θ, 0) = f(θ), θ ∈ (−π, π)

when f ∈ H2(S1) such that f(−π) = f(π).
2.3 Let X = C(−∞,∞), the space of bounded uniformly continuous functions on (−∞,∞). Define the linear

operator T (t) by

(T (t)u)(s) =

{
u(s), t = 0;

e−λt
∑∞

n=0
(λt)n

n! u(s− nµ), t > 0.
,

where λ, µ > 0. Show that {T (t) : t ≥ 0} is a strongly continuous contraction semi-group, and its infinitesimal
generator is the difference operator A:

(Au)(s) = λ(u(s− µ)− u(s)).

Proof. It is easy to see that T (t)u is uniformly continuous (using the uniform continuity of f ) and ∥T (t)∥ ≤ 1. We
have

Tw(Tt(u))(s) = e−λw
∞∑

n=0

(λw)n

n!

(
e−λt

∞∑
m=0

(λt)m

m!
u(s−mµ− nµ)

)

= e−λ(w+t)
∞∑
k=0

k∑
l=0

(λw)l

l!

(λt)k−l

(k − l)!
u(s− kµ)

= e−λ(w+t)
∞∑
k=0

1

k!
λk(w + t)ku(s− kµ)

= Tt+w(u)(s)

It is trivial that T (0) = I . Now we verify that ∥T (t)u− u∥∞ → 0 strongly as t → 0+. Write

(T (t)u− u)(x) = e−λt
∞∑

n=1

(λt)n

n!
u(x− nµ) + (e−λt − 1)u(x)

9



The second term goes to 0 uniformly because u is bounded. So does the first term, since∣∣∣∣∣e−λt
∞∑

n=1

(λt)n

n!
u(x− nµ)

∣∣∣∣∣ ≤ ∥s∥∞e−λt(e−λt − 1) = ∥u∥∞(1− e−λt).

Therefore {T (t)} is a strongly continuous contraction semi-group. Now,

(Atu)(x) = e−λt
∞∑

n=2

λntn−1

n!
u(x− nµ) + λe−λtu(x− µ) +

eλt − 1

t
u(x).

The second term goes to λs(x − µ) and the third term λu(x), and both convergences are uniform. The first term
goes to 0 uniformly, as∣∣∣∣∣e−λt

∞∑
n=2

λntn−1

n!
u(x− nµ)

∣∣∣∣∣ ≤ ∥s∥∞e−λt

(
eλt − 1

t
− λ

)
= ∥u∥∞

(
1− e−λt

t
− λe−λt

)
→ 0.

We conclude that
s− lim

t→0+
(Atu)(s) = λ(u(s− µ)− u(s))

for all u ∈ C(−∞,∞). The limit function is in C(−∞,∞), too. The proof is now complete.

2.4 Let X = C(Rn,R) and b ∈ C1(Rn,Rn). Consider the following system of ODEs

dx(t)

dt
= b(x(t)), x(0) = ξ,

which is an autonomous system. For every ξ ∈ Rn there exists a solution x(t, ξ), t ∈ R such that x(t) ∈ C1(R,Rn).
Define the linear operator T (t) on X as

[T (t)f ](ξ) = f(x(t, ξ)), t ≥ 0.

Show that {T (t) : t ≥ 0} is a strongly continuous semi-group. Let A be its generator, then C1
0 (Rn;R) ∈ D(A)

and whenever f ∈ C1
0 (Rn;R) it holds that

(Af)(x) =

n∑
i=1

bi(x)
∂f(x)

∂xi
. (8)

Proof. It is clear that each T (t) is a continuous linear operator. It follows from the properties of the linear system that
T (t+ s) = T (t)T (s) and that x(t, ξ) → x(0, ξ) uniformly as t → 0+, the latter of which implies that T (t)f → f
as t → 0+. It is also trivial that T (0) = I . Hence {T (t) : t ≥ 0} is a strongly continuous semigroup.

Note that by the chain rule,

df(x(t))

dt
= ⟨f ′(x(t)), x′(t)⟩ = ⟨f ′(x(t)), b(x(t))⟩ =

n∑
i=1

bi(x(t))
∂f(x(t))

∂xi
.

It is clear that C1(Rn,R) ⊂ D(A) for the infinitesimal generator A and that Af takes the form (8).

2.5 Let A be the infinitesimal generator of a contraction semi-group. Suppose that B is a dissipative operator, with
D(B) ⊃ D(A), and

∥Bu∥ ≤ a∥Au∥+ b∥u∥,

for some 0 < a < 1/2, b > 0, and all u ∈ D(A). Show that A + B is a closed dissipative operator (defined on
D(A)) and generates a contraction semi-group.
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Proof. Since A is the generator of a contraction semi-group, according to Hille-Yosida Theorem, (λ− A)−1 exists
for all λ > 0 and ∥(λ−A)−1∥ ≤ 1/λ. Thus ∥A(λ−A)−1∥ = ∥λ(λ−A)−1 − I∥ ≤ 2. For u ∈ D(A),

∥B(λ−A)−1u∥ ≤ a∥A(λ−A)−1u∥+ b∥(λ−A)−1u∥ ≤
(
2a+

b

λ

)
∥u∥.

Thus for λ sufficiently large, ∥B(λ−A)−1∥ < 1 and I −B(λ−A)−1 is invertible. Since R(λ−A) = X and

λ−A−B = (I −B(λ−A)−1)(λ−A),

we see that R(λ−A−B) = X . It is easy to verify that A+B is closed (Corollary 6.5.3) and dissipative (both A
and B are dissipative). Hence A+B generates a contraction semigroup.

Remark. The conclusion still holds if we know that A + B is closed and dissipative, without assuming that B is
dissipative. This observation will be used in the proof of the next problem.

2.6 Let A and C be dissipative operators on Banach space X . Suppose that there is a dense set D, D ⊂ D(A),
D ⊂ D(C) so that

∥(A− C)u∥ ≤ a(∥Au∥+ ∥Cu∥) + b∥u∥

for some 0 < a < 1, b > 0 and all u ∈ D. Show that
(1) Ā generates a contraction semigroup if and only if C̄ does.
(2) D(A|D) = D(C|D).

Proof. (1) It suffices to show that R(λ − A) is dense for some λ > 0 if and only if R(µ − C) is dense for some
µ > 0. The proof is similar to Exercise 6.5.7. Let B = C − A with D(B) = D and define Tλ = A + λB.
Then T0 = A, T1 = C, Au = Tλu − λBu and Cu = Tλu + (1 − λ)Bu. The inequality in the problem
implies that

∥Bu∥ ≤ a(∥Tλu− λBu∥+ ∥Tλu+ (1− λ)Bu∥) + b∥u∥ ≤ 2a∥Tλu∥+ a∥Bu∥+ b∥u∥,

or
∥Bu∥ ≤ 2a

1− a
∥Tλu∥+

b

1− a
∥u∥ (9)

Let 0 ≤ λ′ ≤ 1. If 2aλ′

1−a < 1
2 , the preceding problem implies that R(λ−Tλ+λ′) = R(λ−Tλ −λ′B) is dense

for some λ > 0 if and only if R(µ − Tλ) is dense for some µ > 0. Thus starting from T0 = Ā and applying
this result finitely many times, we obtain the conclusion.

(2) It can be proved similarly by propagating the property from T0 to T1 in finitely many steps. Note that the
inequality (9) implies the equivalence of the graph norms with respect to Tλ and Tλ+λ′ .

3 One-Parameter Unitary Groups and Stone’sTheorem
3.1 Let {U(t) : t ∈ R} is a strongly continuous unitary group and D a dense set in X such that U(t)D ⊂ D for all

t ∈ R. Suppose that U(t) is strongly differentiable on D, i.e., U(t)x is differentiable with respect to t for all x ∈ D.
Show that −idU(t)

dt |t=0 is essentially self-adjoint on D, and its closure is the infinitesimal generator of the unitary
group.

Proof. Let B = −idU(t)
dt |t=0. Then for x, y ∈ D,

(Bx, y) = lim
t→0

−i

(
U(t)− I

t
x, y

)
= lim

t→0
−i

(
x,

U(−t)− I

t
y

)
= lim

t→0

(
x,−i

U(−t)− I

−t
y

)
= (x,By),

which implies that B is symmetric. We can also establish that dU
dt (t)x = iAU(t)x = iU(t)Ax. The rest follows

similarly to part (3) and (4) of the next problem.
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3.2 (Another proof of Stone’s Theorem) Let {U(t) : t ∈ R} is a strongly continuous unitary group.
(1) ∀f ∈ C∞

0 (R), ∀x ∈ X , define

xf =

∫ ∞

−∞
f(t)U(t)xdt,

under Riemann sense. Let D be the set of all possible bounded linear combinations of xf ’s. Show that D is
dense.

(2) For x ∈ D, U(t)x is differentiable. Find
dU(t)x

dt

∣∣∣
t=0

(3) Define the operator A on D as
Ax = −iU ′(0)x,

show that A is essentially self-adjoint.
(4) Let V (t) = eitĀ, show that V (t) = U(t).

Proof. (1) The integral exists because ∥f(t)U(t)x∥ ≤ ∥f∥∞∥x∥, and the integral is over a compact set. Choose
g ∈ C∞

0 (R) with support in [−1, 1] such that
∫
g = 1 and let gϵ(x) = ϵ−1g(x/ϵ), then

∥x− xgϵ∥ ≤
∫
R
gϵ(t)∥(U(t)− I)x∥ ≤ sup

|t|≤ϵ

∥(U(t)− I)x∥ → 0

as t → 0+ by strong continuity of {U(t)}. Therefore D is dense.
(2) Let f ∈ C∞

0 (R), we have

U(t)xf − U(t0)xf

t− t0
=

1

t− t0

(∫ ∞

−∞
f(s)U(t+ s)xds−

∫ ∞

−∞
U(t0 + s)xds

)
=

1

t− t0

(∫ ∞

−∞
f(r − t)U(r)xdr −

∫ ∞

−∞
f(r − t0)U(r)xdr

)
=

∫ ∞

−∞

f(r − t)− f(r − t0)

t− t0
U(r)xdr

for all t0 ̸= t. Since f ′ ∈ C∞
0 (R), the norm of the integrand on the right-hand side is dominated by

∥f ′∥∞χsupp f ′∥x∥ (using Lagrange’s Mean-value Theorem), so we can apply Dominated Convergence The-
orem, which yields that

lim
t→t0

U(t)− U(t0)

t− t0
xf = −

∫ ∞

−∞
f ′(r − t0)U(r)xdr,

which is contained in D because f ′(· − t0) ∈ C∞
0 (R). In particular, U ′(0)xf = x−f ′ .

(3) First, it is easy to check that AU(t)x = U(t)Ax = −idUdt (t)x. For x, y ∈ H and f, g ∈ C∞
0 (R),

(Axf , yg) = lim
t→0

((
U(t)− I

it

)
xf , yg

)
= lim

t→0

(
xf ,

(
I − U(−t)

t

)
yg

)
=

(
xf ,

1

i
y−g′

)
= (x,Ayg)

Hence A is symmetric. Now suppose x ∈ D(A∗) such that A∗x = ix, then

d

dt
(x,U(t)y) =

(
x,

dU

dt
(t)y

)
= (x, iAU(t)y) = −i(A∗x,U(t)y) = (x,U(t)y), ∀y ∈ D.
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This differential equation with initial condition U(0) = I is solved by (x,U(t)y) = (x, y)et. Notice that
|(x,U(t)y)| ≤ ∥x∥ ∥U(t)y∥ = ∥x∥ ∥y∥ for all t, we must have x ∈ D⊥, thus x = 0 since D is dense. We
have proved that ker(A∗ − iI) = {0}. Similarly it can be shown that ker(A∗ + iI) = {0}. Therefore A is
essentially self-adjoint.

(4) It suffices to show thatU(t)x−V (t)x = 0 for x ∈ D. Let y(t) = U(t)x−V (t)x. This is well-defined, because
V (t)x ∈ D(Ā). Differentiate with respect to t, y′(t) = U ′(t)x− V ′(t)x = iAU(t)x− iĀV (t)x = iĀy(t),
hence d

dt∥y(t)∥
2 = −i(Āy(t), y(t)) + i(y(t), Āy(t)) = 0. Finally y(0) = 0 and thus y(t) = 0 for all t.

3.3 Let An be a sequence of self-adjoint operators on H . Suppose that for EACH x ∈ H and each t ∈ R, eitAn

converges strongly in H . Show that there exists a self-adjoint operator A such that An → A s.r.s.

Proof. Define T (t) = s- limn→∞ eitAn . We want to show that {T (t) : t ∈ R} is a unitary group.
First, it is easy to see that T (t) ≤ 1 and T (0) = I . Then it is easy to verify that T (s + t) = T (s)T (t). Using

functional calculus, it is easy to see that T (t) is unitary. Hence {T (t) : t ∈ R} is a one-parameter group of unitary
operators. For each x and y ∈ H , (T (t)x, y) is the limit of a sequence of continuous functions and thus measurable.
Hence {U(t)} is strongly continuous (see Remark 2 after Philips Theorem). Now, by Stone’s Theorem, there exists
a self-adjoint operator A such that T (t) = exp(itA). The conclusion follows immediately from Example 6.6.7
(Trotter’s Theorem).

3.4 Let U be an unitary operator on H then the limit

lim
N→∞

1

N

N−1∑
n=0

Unx = x̄

exists and Ux̄ = x̄.

Proof. Consider the spectrum decomposition of U ,

U =

∫ 2π

0

eiθdFθ,

then
1

N

N−1∑
n=0

Un =

∫ 2π

0

(
1

N

N−1∑
n=0

einθ

)
dFθ.

Note that

lim
N→∞

1

N

N−1∑
n=0

einθ =

{
1, θ = 0;
0, 0 < θ < 2π.

Denote the right-hand side by f(θ). It is easy to see that

E({1})x =

∫ 2π

0

f(θ)dFθx.

In fact, E({1}) is the orthogonal projection of U onto the eigenvalue associated with eigenvalue 1. By Dominated
Convergence Theorem,∥∥∥∥∥ 1

N

N−1∑
n=0

Unx− E({1})x

∥∥∥∥∥
2

=

∫ 2π

0

∣∣∣∣∣ 1N
N−1∑
n=0

einθ − f(θ)

∣∣∣∣∣
2

d∥Fθx∥2 → 0

as N → ∞. Therefore

lim
N→∞

1

N

N−1∑
n=0

Unx = E({1})x.

It follows immediately from functional calculus that UE({1})x = E({1})x.
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3.5 Let (Ω,B, σ) be a measure space of finite measure. Suppose that {Γt : t ∈ R} is an ergodic group of measure-
preserving transformations, show that
(1) ∀f, g ∈ L2(Ω,B, σ),

lim
T→∞

1

T

∫ T

0

(f(Γtx), g)dt =
1

σ(Ω)

∫
Ω

fdσ

∫
Ω

gdσ

(2) Let A,B ∈ B, then

lim
T→∞

1

T

∫ T

0

σ(ΓtA ∩B)dt =
1

σ(Ω)
σ(A)σ(B)

Proof. (1) Since {Γt} is ergodic and σ(Ω) < +∞,

lim
T→∞

∫ T

0

f(Γtx)dx =
1

σ(Ω)

∫
Ω

fdσ.

It follows immediately from continuity of inner product that

lim
T→∞

1

T

∫ T

0

(f(Γtx), g)dt = lim
T→∞

(∫ T

0

f(Γtx)dx, g

)
=

1

σ(Ω)

∫
Ω

fdσ

∫
Ω

gdσ

(2) In the previous part, let f = χA and g = χB and note that

(χA(Γtx), χB) =

∫
Ω

χA(Γtx)χB(x)dx = σ(Γ−1
t A ∩ ΓB) = σ(Γ−tA ∩ ΓB)

and (with substitution t′ = −t

1

T

∫ T

0

σ(ΓtA ∩B)dt =
1

−T

∫ −T

0

σ(Γ−t′A ∩B)dt′.

3.6 Let A and B be positive self-adjoint operators. Suppose that A+B is self-adjoint on D(A)∩D(B), −A, −B and
−(A+B) can generate strongly continuous contraction semigroup, denoted by {TA(t) : t ≥ 0}, {TB(t) : t ≥ 0}
and {TA+B(t) : t ≥ 0}, respectively. Show that

TA+B(t) = s- lim
n→∞

(
TA
( t

n

)
TB
( t

n

))n

Proof. The proof follows the same outline as that of Trotter’s Product Formula (Theorem 7.3.14). Let x ∈ D :=
D(A) ∩D(B), then

s- lim
s→0+

1

s
(TA(s)TB(s)x− x) = s- lim

s→0+

1

s
(TA(s)− x) + s- lim

s→0+

1

s
TA(s)(TB(s)x− x) = −Ax−Bx

and
s- lim

s→0+

1

s
(TA+B(s)x− x) = −(A+B)x.

Let Ts =
1
s (T

A(s)TB(s)− TA+B(s)), then Tsx → 0 as s → 0+ and Ts → 0 as s → +∞. Hence for any x ∈ D,
∥Tsx∥ is bounded and thus ∥Ts∥ is uniformly bounded by uniform boundedness principle. It follows that Tsx → 0
uniformly on any compact set K ⊂ D.

Choose K = {TA+B(r)x : r ∈ [−1, 1]} (a continuous map maps a compact set to a compact set). We have

s- lim
s→0+

1

s
(TA(s)TB(s)− TA+B(s))TA+B(r)x = 0

uniformly on s ∈ [−1, 1].
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From the interpolation

(TA(s)TB(s))nx− (TA+B(s))nx =

n−1∑
k=0

(TA(s)TB(s))k(TA(s)TB(s)− TA+B(s))(TA+B(s))n−1−kx

it follows that ∥∥∥∥(TA
( t

n

)
TB
( t

n

))n
x−

(
TA+B

( t

n

))n
x

∥∥∥∥
≤ n max

|s|<t

∥∥∥∥(TA
( t

n

)
TB
( t

n

)
− TA+B

( t

n

))
TA+B(s)x

∥∥∥∥
≤ |t| max

|s|<t

∥∥∥∥nt (TA
( t

n

)
TB
( t

n

)
− TA+B

( t

n

))
TA+B(s)x

∥∥∥∥
= |t| max

|s|<t

∥∥∥T t
n
TA+B(s)x

∥∥∥→ 0

as n → ∞. Therefore we have established

s- lim
n→∞

(
TA
( t

n

)
TB
( t

n

))n

x = TA+B(t)x

for all x ∈ D. Since D is dense and the semi-groups are contractions, the limits holds for all x ∈ H .

4 Markov Processes
No exercises.

5 ScatteringTheory
No exercises.

6 Evolution Equations
No exercises.
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