1 Infinitesimal Generators

1.1 Let {T'(t) : t > 0} is a semi-group of bounded operators in Banach space 2, i.e., it satisfies that T'(¢t)T'(s) =
T(t+s)foralls,t >0and T(0) = I. Let f(¢) = In||T'(¢)||. Suppose that f(t) is bounded on [0, a], show that
(1) f(t) is sub-additive, i.e., f(t +s) < f(t) + f(s) forall t,s > 0.
(2) limesoo 7 f(t) = infiso 7 f(1).
Progf. (()1) ft+s) =Tt +s)| =TT <In([TOT(s)]) = Wn[[T@] +In[[T(s)]| = f(t) +
f(s);
(2) Itis not difficult to see that f(¢) is bounded on any finite interval [0, s]. Suppose that f(t) is bounded by M,

on [0, s]. Fix s. Any ¢ can be written as t = ns + r, where n is an integer and 0 < r < a. Then we have from

subadditivity of f that
&) <nf(s)+ f(r) < nf(s) + M.

Divide it by ¢,

f) n M (s) M

TSmO s
Lett — oo,

lim sup Ei0} < /()
t— oo S

Take infimum on the right-hand side,

lim sup @ < inf &
t—o0 t s>0 s
Notice that it holds trivially
lim infM > inf @
t—00 t s>0 s
'The proof is now complete. O

1.2 Let {T'(¢) : t > 0} is a semigroup of bounded operators, such that T'(0) = I and §trong continuity at t = 0, i.e.,
s-limy ,o+ T'(t) = I. Show that the semi-group is §trongly continuous.

Proof. We shall show that ¢t — T'(t)x is continuous for all x € 2. It is easy to show right §trong continuity.

lim | T(t)x — T(to)z|| = Iim+ IT(to)T(t — to)x — z|| < ||T(to)]] 1'1m+ |T(t —to)xr — z|| = 0.
t—std t—t]

t—td

To prove the left §trong continuity, it suffices to show that ||T'(¢)]|| to be uniformly bounded when ¢ is near ¢9. In
fadt, it holds that || T'(¢)|| < Me*! for some M and w. Refer to the text before Lemma 7.1.6. O

1.3 Let {T'(t) : t > 0} is a semigroup of bounded operators on Hilbert space .7 and satisfies 7'(0) = I and weak

continuity at ¢ = 0. Show that the semigroup is §trongly continuous.

Proof. Since T'(t)x — x, the uniform boundedness theorem tells us that ||7°(¢)x|| is uniformly bounded in a neigh-
bourhood of ¢ = 0. Again by the uniform boundedness principle, it holds that ||7°(¢)|| is uniformly bounded near
t = 0. It is then easy to see that for a fixed xy € 27, x(t) = T'(t)xo is bounded on any compact interval of ¢.

Suppose that0 < a <t < b < {—e < &, wheree > 0. Since z(§) = T(§)xo = T(H)T(E—t)zo = T(t)x(E—1),
we have that

(b— a)e(e) = / w(€)dt = / T(t)e(€ — 1)y

and so, by sup, ., ;, [|[7'(¢)| < oo, we obtain

b
| T e~ 0 - ol - )

(b—a)lz(€+e)—z(@)] = |




1.4

E—a
< sup IIT(t)II'/ . [t + €) — x(t)]|dt

a<t<b

The right hand side tends to zero as € — 0T, as may be seen by approximating z(¢) by finite-valued funcions.

So far we have proved that z(t) is Strongly continuous at t > 0. Now we prove the §trong continuity att = 0. For
any positive rational number 7 we have T'(¢)x(r) = x(t +r), and thus s-lim; ,o+ T(¢)x(r) = x(r). Let M denote
the set consigting of all finite linear combinations with rational coeffcients of z:(r)’s, then s-lim;_,o+ T'(t)x = « for
all z € M. On the other hand, for any ¢ € [0, 1]

|2(t) — 2ol < | T(#)x — 2l + ||z — zol| + |T'(t) (0 — 2)[| < | T () — || + ( S?p] 1T+ 1) |20 — |l
tefo,1

and thus

limsup ||z () — zo|| < < sup [ T(8)[| + 1> [0 — ] 1)
t—0+ t€[0,1]

for any z € M. It is clear that {z(t) : t > 0} C M from the weak closedness of M and weak right-continuity of
{z(t)}. Therefore the right side of (1) can be made arbitrarily close to 0, concluding that x(t) — z¢ §trongly as
t—0F. O

Let {T'(t) : t > 0} be a §trongly continuous semi-group of operators on 2" and A its infinitesimal generator. Show
that the following three conditions are equivalent:

(1) D(A) = 2

(2) Timyo+ [T(2) — 1]l = 0;

(3) Ae L(Z)and T'(t) = exp(tA).

Proof. (3)=(1): It follows easily from series manipulation that A;x — Az forall z ast — 0.
(1)=(2): Since Ay — x as t — 0, by uniform boundedness principle, A; is uniformly bounded, say by M, in
a small neighbourhood of t = 0. Then ||T'(t) — I|| < Mt — Oast — 0.

(2)=(3): It s easy to verify that
s+
lim 1 T(t)dt =T(r)

s—0 8 r

1 t
H/ T(s)ds—IH <1
tJo

forall 0 < ¢ < 4, then ¢ fot T(s)ds is invertible for ¢ € (0, ). Now,

In particular, there exi$ts 6 such that

r+s S r
1 / T(t)dt -+ /0 T(t)dt = L(T(s) - 1) /0 T(t)dt ©)

S S

(because fTH_S — f; = fSH_S - for). It follows that for ¢ € (0, d),

0= (3 [ rea ] [row) ([ roa)

The right-hand side tends to (T'(r) — I)( for T(t)dt)~!, so the left-hand side A, converges to some bounded linear
operator when s — 0. It is obvious that this limit operator muét be A. Taking limit s — 0 in (2), we obtain that

T(r)—1I= A/OT T(s)ds



Iterated substitution gives

A2 A™ Ant1 T "
T(T):I+A+?+"'+H+ o /O(Tft) T(t)dt
Let n — oo, we see that T'(r) = exp(rA) for all r > 0. O

1.5 Let 27 = Cp[0,00) = {f € C[0,00) : limy 100 f(x) = 0}, || f]| = sup | f(s)|. Define on 2" a linear operator
T(t):a(-) = alt+-).
Show that {T'(¢) : t > 0} is a &trongly contraction semigroup on 2.

Proof- It is obvious that T'(t + s) = T'(t) + T'(s) and T'(0) = I. Now we show that || T'(t)a — T'(t9)a|| — 0. This
is because || T'(t)a —T'(to)a|| = sup, |a(t + s) — a(to + s)| and a is uniformly continuous. Finally, it is obvious that
IT(t)| <1forallt > 0. O

1.6 Let 2 = L*(R), forz € Rand y € R, define

O B e (O
1(0)f = 7.

Show that {T'(y) : y > 0} is a §trongly continuous semigroup on £ and ||T'(y)|| = 1. (Remark. The integral gives
a harmonic fun&ion on the upper plane with boundary value f)

2

Proof. Fir§t we show that T'(y) f € L?(R). Indeed, by Cauchy-Schwarz inequality,
1
dz

| G et
=7 (/ ) (é‘g)/+yd£) </_Z<x§2+zﬁ|f<g>|2d§) o
/ | g ali@ s

S
Hence || T(y)|| < 1. On the other hand,

(s (7)o (7))
arctan | —— | + arctan
Y Y

T B 2 R/2 1 o 2
—” (y)X[ R’I;]HQ > */ — (arctan (R ac) + arctan <R+x>) dzx
X[—R,R]Hz R/2 T Y Y
/R/2 < R>2
> = —arctan — | dx
R/2 2y

= |- arctan — —1
s 2y

as R — oo, which implies that ||T'(y)|| = 1 for y > 0. It is trivial that 7(0) = I and ||T°(0)|| = 1.
When f € Z(R), Notice that T'(y) f is exaltly u(-, y) that satisfies

3|

(T(y)X[fR,R]) (z) =

and thus

Au=0, y>0



1.7

u(z,0) = f(z,0)

It is then obvious that T'(t + s) = T'(t) + T'(s) for f € .(R), which can be extended to the entire L?(R) easily
because . (R) is dense in L2(R) and || T'(y)|| < 1.

Now we show || T'(y) f — f|| = 0asy — 0. Itsuffices to show this for f € C§°(R) and density of test funtions
allows us to extend this result to L?(R). First we show that T'(y) f — f uniformly pointwise asy — 0. Lete > 0
be given. Since f is uniformly continuous, there exists § such that | f(z) — f(y)| < € whenever |z — y| < §. Then

TWNE - @)= | | = - f(x))df]

ylf(€) — f(@)] ylf(€) — f(@)]
= /;c—§<a (x — &) +y? et /|x—5|>5 (x = &) +y? at

=14 J,

Yy _
r<e | G

where

and

)
171 lo—g|>s (T — &)+ 12 ¢
= 2| flloo <7r — 2arctan j) —0

uniformly w.r.t.  as y — 0. Hence T'(y) f — f uniformly w.r.t. z. Suppose that supp f € [—K, K]. Now,

1w -1 < [ 1@ - f@Pdet [ (@@

lz| <K lz|2 K

< TW)f — flloo - 2K +/ (T (y) f)(x)|?dx

x> K

The firét term goes to 0 as y — 0T For the second term, we have

2 1 2 y
[ Jo@pwras [ @ [ o
2 —ar nK_g—r nK+£>
§/§§K|f(£)| (ﬂ' arcta " arcta " d¢

— 0asy — 07 by Dominated Convergence Theorem.

Therefore we conclude that (T'(y) — I)f — 0 as y — 01, whence the §trong continuity condition is satisfied by
Problem 1.2. O

Let {T'(t) : t > 0} be a §trongly continuous semi-group on 2". Suppose that z € X, w-lim;_,o+ +(T'(t)—1)z =y,
show that z € D(A) and y = Ax.

Proof Let f € X* and A > 0 large enough. It is easy to see that e f(T(¢)x) has right derivative, which equals

to e M f(T(t)(y — Ax)). The derivative is continuous in t, we have on integration
fa) == [T e - s
forall f € X*. Therefore,
r=— /OOO e MT(t)(y — M) = —(M — A) "L (y — \a)

'The conclusion follows immediately by multiplying (A — A) on both sides. O



1.8 Let {T'(t) : t > 0} be a §trongly continuous semi-group on a Hilbert space .7°. Suppose that A is its generator and
T'(t) is a normal operator for all ¢ > 0. Show that A is normal using Gelfand transform.

1.9 Prove Hille-Yosida-Phillips Theorem (Theorem 7.1.7): A densely-defined closed linear operator A is an infinitesimal
generator of some §trongly continuous semigroup {1'(t) : ¢ > 0} if and only if
(1) 3w > 0 such that (wg, 00) C p(A4);
(2) 3M > 0 such that o
[(A=A4)7" < m, n=12...
whenever A > w > wy.

Proof. 'The necessity has been proved in Lemma 7.1.6. The proof of sufficiency follows the same outline as in

Theorem 7.1.5 by defining
By = )\2(000 + A - A)il — A

for A > 0. O

1.10 Let {T'(¢) : t > 0} be a §trongly continuous semi-group and A its infinitesimal generator. Suppose that wy € R
satisfies {A : RA > wo} C p(A)}. Show that

(1) Theset {Rx(A)x : x € D(A)} is dense in D(A), where R\ > wo;
(2) The range of Rx(A)™ is dense for all n > 1, where A > wo;
(3) D(A™)is dense foralln > 1.

Proof. (1) Let z € D(A?). It follows from Ry(A)(A — A)z = x that 2 € R(R\(A)|p(a)). Hence D(A?) C
R(Rx(A)|p(a))- The conclusion follows immediately from the density of D(A?).

(2) It follows from Ryx(A)(A — A)z = z (x € D(A)) that z € R(Rx(A)), thatis, D(A) C R(Rx(A)) and
R(R»(A)) is therefore dense. Now, it Ry(A)"(A — A)"x = z for all z € D(A™), whence it follows that
D(A™) C R(Rx(A)™). Part (3) shows that D(A™) is dense, and hence R(Rx(A)") is dense.

(3) This Statement actually hold for any §trongly continuous semi-group with no further assumptions. To see this,
let ¢ be any funétion in C§°[0, 1] and define for any =

x¢—/ ()T (t)xdt.

] 1 / s ) (Ta-+ )~ T ()
=1 [Loo ([ @ me-rwma) o
-1 [60) ( [ e [ SMT(t)xdt) ds
- ' (s)ds / " reyede - L / ) / " ) wduas

:7% /0 Co(s) / ) wdtds

Since %f:-i_h T(t)xzds — T(s)z as h — 01 and ¢’ is bounded, the limit of the right-hand side exists as
h — 07 and equals to

Then

1
f/ @' (s)T(s)xds.
0

5



Hence z4 € D(A) and
1
Azy = —/ @' ()T (s)xds.
0

Now it is clear that 4 € D(A"™) for all n. We can choose a sequence {¢;} C C§°[0, 1] such that ¢; > 0,
fol ¢; = 1 and supp ¢; tends to 0. It is not difficult to see that x4, — 2. Hence D(A") is dense. O

1.11 Let {T'(¢t) : t > 0} be a §trongly continuous semi-group and A its infinitesimal generator. Suppose that f €
C1([0,00); Z7). Show that the differential equation of operators

da(t) _
S = e+ 1), ©

x(0) = o € D(A) 4)

has a unique solution in C(R%; D(A4)) N C*(RL, 27), which is given by

(1) = T(H)zo + /0 T(t — 5)f(s)ds. 5)

Proof. 'The fir§t term T'(t)xo on the right of (5) satisfies the homogeneous differential equation and the initial
condition, it suffices to show that the second term satisfies 3 with initial value 0.

/Ot T(t—s)f(s)ds = /OtT(t —5) <f(0) + /0 f’(r)dr> ds

- (/OtT(ts)ds> £(0) +/Ot £(r) (/:T(ts)ds> dr

Tt)—-T(r) = / AT (s)ds,

Note that

it follows that .
A/ Tt—s)ds=Tt—r)—1,

and then

A/O T(t—s)f(s)ds = (T(t)—1I)f(0) —l—/o f () (Tt —r)—TIdr

=T@)f(0) = f&)+ [ f(r)T(t—r)dr (6)

0

On the other hand,
d t
dt Jo
Comparing (6) and (7), we see that

T(t—s)f(s)ds =T(t)f(0) + /0 T(s)f'(t — s)ds. (7)

d t

), T(tfs)f(s)dSZA/O T(t—s)f(s)ds+ f(t).

It is clear that the initial value of the second term of (5) is 0. Hence x(¢) given in (5) is a solution to the differential

equation indeed. The continuity of 2’ (¢) can be easily concluded from (7) using the continuity of f’. Itis clear that
z(t) € D(A).



In fa&, if z(t) € C(RL; D(A)) N CY(RL, 2) is a solution to (3) and (4), then

%T(t —s)x(s) = =T'(t — 8)x(s) + T(t — )2’ (s) = =T(t — s)Az(s) + T(t — s)2'(s) = T(t — s) f(s).

Integrate on both sides, we obtain that

o) = T(0)(0) = [ 7= ) (s)ds.

which is exaétly (5). The uniqueness of the solution is proved. O

2 Examples of Infinitesimal Generators

21 Let Z ={f:D = C: f(z) = >, o cnz™ || fII? = X |en|* < 0o}, where D is the open disc in the complex
plane. Define on 2

T =30+ 1) enam.
n=0

Show that {T'(t) : t > 0} is a trongly continuous semi-group of positive self-adjoint operators. Find its infinitesimal
1

generator A and show that In ) (n > 1) are eigenvalues of A.

Proof. It is obvious that [|T'(¢)|| < 1, T(t+s) = T'(¢)T(s) and T'(0) = I. Now we show that T'(t) f — f §trongly

forall f € 2°. Givene > Oand f = Y7 ¢,2", choose N big enough such that }_, . \ |en|* < % Choose t
small enough such that 1 — (53+)! < —=-—. Then

N+1 V2l fllT
N 1 2 ) 1 2
||f—T(t)f2=Z<1—t) RS (1—t) lonl?

n=0 (TL + 1) n=N+1 (n + 1)

< Y el

< 317 2
62 62

< — 4+ — =€

S5 + 5 €,

thatis, || f —T(t) f|| < € when t is sufficiently small. Therefore {T'(¢) : t > 0} is a §trongly continuous semi-group.
It is §traightforward to verify that T'(#) is positive and self-adjoint (note that the inner product () ¢, 2", ) d,2") =
Z Cndn)-

Define a linear operator A as

oo 1 N
Af:;cnlnn+1 -z
on
D(A) = {f:chz" €2 Y JeafIn’(n + 1) <oo}.

It is clear that D(A) is dense because ™ € D(A) for all n. We claim that A is closed. Suppose that f,, — f,
Afp = gy fo =Y a2, f = cpz"and g = 5 d,,2". Since Af,, — g,

2

= 1
Z CopIn —— —di| — 0,
P k+1
or,
= i | 1
k 2
Z Cnk 1 In — 0,
k=1 In E+1 k+1




2.2

(because dp must be 0) which implies that

0o 2

di

1
In =

Cnk — — 0.

k=1

Comparing with f,, — f, or, equivalently,

oo
Z ‘an — C]€|2 — 0.
k=0

we obtain that )

n+1
foralln > 0, thatis, f € D(A) and g = Af. Therefore A is a densely-defined closed operator.

Next we show that A generates a contraction semigroup. For A > 0, it is easy to verify that AI — A is injective,
and | Af — Af|| > || f]|, thus AI — A is invertible and || Rx(A)|| < A~!. By Hille-Yosida Theorem we know that

A generates a contraction semigroup.
Now, to show that A is the infinitesimal generator of {T'(¢)}, it suffices to show that A; f — Af on D(A). Let
fe€D(A), f=> cpz", then

d, =c¢,ln

+1)7t—1 1P
Af— Af2 =S el | -1
140~ AfI = 3 eaf? [ n
tlninllfl 1 2
= E ‘Cn‘Z € 71[1
t n+1
1
}: 21 2
<t |Cn‘ In m—>0
ast — 01, whereweused e® — 1 < z + 22 forall x < 1. O

Let 2" = L?(—m, 7). Define

T)f=1f

where the integral kernel G(6,1) = 1+23 7 | et cosnf. Show that {T(t) : t > 0} isa §trongly continuous
semi-group. Is it a contraction semi-group?

Proof: The procedure is similar to Exercise 7.1.6, based on the following properties of G (0, 1):

(1) G(6,1) is continuous;

(2) G(0,t) > 0 forallt;

(3) Forevery d, K(x,t) — 0 uniformlyon d < |z| < 7.
WEe shall prove the properties later. For now let us assume their corretness. For simplicity let the kernel G(0, t)
absorb the normalisation coefficient 5-. Using the same trick as in 7.1.6, we obtain that ||T'(¢)|| < 1 for all ¢ > 0.
It is easy to verify that T'(t + s) = T'(t)T'(s) (because e’ (t48) = ¢=n*te=n"g) and T(0) = I. To show the right
§trong convergence at t = 0, we can assume that f € C§°(—m, 7). Using uniform continuity of f and Property (3)

of the kernel G(6, 1), it is easy to show that ||T'(y)f — f|| — 0. We therefore conclude that {T'(t)} is a contraction
semi-group.



To see Property (1), just notice that the sum of continuous functions is uniformly convergent. To see (2) and
(3), apply Poisson’s Summation formula

oo oo

> gt 2hm =5 > g

k=—o0 n=-—oo

to

(note that g(§) = 6’5%), we obtain that

(z+27k)?
It

G(z,t) = \/EZe ,

whence Property (2) becomes obvious. Property (3) follows from integral approximation of G(z, t),

/e4t dr=1- <I>( 6\[>—>0 O

Remark. In fa&, T(t) f gives the solution u(-, t) to the heat equation on a circle S*

ou  0%u
E—w, t>0,9€(—7'(',71')

u(m,t) = u(-m,t)
u(6,0) = f(0), 0 € (~mm)

when f € H?(S) such that f(—m) = f(n).

23 Let ' = C(—o0,0), the space of bounded uniformly continuous functions on (—00,00). Define the linear
operator T'(t) by
’LL(S), t=0;
T = n
00 ={ S e, 150

where A, i > 0. Show that {T'(¢) : ¢ > 0} is a §trongly continuous contraction semi-group, and its infinitesimal
generator is the difference operator A:

(Au)(s) = Auls — p) = uls)).

Proof. It is easy to see that T'(t)u is uniformly continuous (using the uniform continuity of f) and ||T(¢)| < 1. We
have

Ta(Ti(u))(s) = e Z el (e“ A s — nm)

At N L
= e H)ZHA’“(ert)ku(sfkp)
k=0

= Tpr(u)(s)

It is trivial that 7'(0) = I. Now we verify that ||T'(¢t)u — ul|oc — 0 §trongly as t — 0. Write

(T(t)u — u)(z) = e Z (Anﬁu(x —np) + (e7M = 1u(z)
n=1 '



2.4

2.5

The second term goes to 0 uniformly because u is bounded. So does the firét term, since
= (A L B
eSS L = )| £ sllce ™ (e = 1) = [l (1 ).
n=1

Therefore {T'(t)} is a §trongly continuous contraction semi-group. Now,

)\ntn—l At 1
—u(z —np) + e Mu(z — p) + ¢ ;
n!

(A)(z) =e My

n=2

The second term goes to As(z — ) and the third term Au(z), and both convergences are uniform. The fir§t term
goes to 0 uniformly, as

N & Angn—1
e Z " u(z —np)

n=2

t t

At 1 1— —At
< ||s||ooe_)‘t (e — )\) = ||u|lo (e — )\e_)‘t) — 0.

We conclude that
s— lim (Awu)(s) = Mu(s — p) —u(s))

t—0t

for all u € C'(—o0, 00). The limit funtion is in C'(—00, 00), too. The proof is now complete. O

Let 2" = C(R™,R) and b € C'*(R",R™). Consider the following system of ODEs

S = bav), a(0) =&,

which is an autonomous sy§tem. For every £ € R there exits a solution z(¢, £), t € R such that z(t) € C1(R,R™).
Define the linear operator T'(t) on 2" as

[T(®)f1(§) = f(z(t,6)), t=>0.

Show that {T'(t) : t > 0} is a §trongly continuous semi-group. Let A be its generator, then C} (R™;R) € D(A)
and whenever f € C}(R™; R) it holds that

(49)@) = Y- b @) 2. ®

Proof: Itis clear that each T'(t) is a continuous linear operator. It follows from the properties of the linear syStem that
T(t+s)=T(t)T(s) and that z(t,£) — z(0, &) uniformly as t — 0T, the latter of which implies that T'(¢) f — f
as t — 0. Itis also trivial that 7'(0) = I. Hence {T'(¢) : t > 0} is a §trongly continuous semigroup.

Note that by the chain rule,

df(;:t(t)) = (f'(x(t),2'(t)) = (f'(x(t),b(z(t))) = sz(x(t))%xgt))

It is clear that C1(R™,R) C D(A) for the infinitesimal generator A and that Af takes the form (8). O

Let A be the infinitesimal generator of a contraction semi-group. Suppose that B is a dissipative operator, with
D(B) D D(A), and
[Bul| < al|Aul| + blJu],

for some 0 < @ < 1/2,b > 0, and all w € D(A). Show that A + B is a closed dissipative operator (defined on
D(A)) and generates a contraltion semi-group.

10



Proof. Since A is the generator of a contraltion semi-group, according to Hille-Yosida Theorem, (A — A) ™! exits
forall A > 0 and |[|[(A — A)7Y < 1/A. Thus [AN — A) 7| = [AMA— A)~t = I|| < 2. Foru € D(A),

- _ _ b
5= 4l < al A0~ Al + 81— )l < (204 5 ) .

Thus for ) sufficiently large, || B(A — A)7!|| < 1and I — B(A — A)~ ! is invertible. Since R(A — A) = 2" and
A—A—-B=(-BM\-A)"1HN\-A4),
we see that R(A\ — A — B) = 2. Itis easy to verify that A + B is closed (Corollary 6.5.3) and dissipative (both A

and B are dissipative). Hence A + B generates a contraction semigroup. O

Remark. 'The conclusion §ill holds if we know that A + B is closed and dissipative, without assuming that B is
dissipative. This observation will be used in the proof of the next problem.

2.6 Let A and C be dissipative operators on Banach space 2. Suppose that there is a dense set D, D C D(A),
D c D(C) so that
(A = C)u|| < a(f|Aul| + [[Cul]) + bljull
forsome 0 < a < 1,b > 0and all w € D. Show that
(1) A generates a contraction semigroup if and only if C' does.

(2) D(A|p) = D(C|p).

Proof: (1) It suffices to show that R(A — A) is dense for some A > 0 if and only if R(y — C) is dense for some
p > 0. The proof is similar to Exercise 6.5.7. Let B = C' — A with D(B) = D and define T, = A + A\B.
Then Ty = A, Ty = C, Au = Thu — ABu and Cu = Thu + (1 — A)Bu. The inequality in the problem
implies that

[Bull < a(Txu = ABul| + [ Thxu+ (1 = A)Bul|) + bljul| < 2a||Txull + al[Bul| + bllu],

or

2a
|Bull < == Tyl + —— ul ©)

l1—a

Let0 < XN < 1. If 21‘21/ < 1, the preceding problem implies that R(A — Th;.x/) = R(A —T) — X'B) is dense
for some A > 0 if and only if R(y — T} ) is dense for some y > 0. Thus $tarting from Ty = A and applying
this result finitely many times, we obtain the conclusion.

(2) It can be proved similarly by propagating the property from Ty to T3 in finitely many $teps. Note that the
inequality (9) implies the equivalence of the graph norms with respe to T and T4 . O

3 One-Parameter Unitary Groups and Stone’s Theorem

3.1 Let {U(t) : t € R} is a §trongly continuous unitary group and D a dense set in 2" such that U(¢)D C D for all
t € R. Suppose that U (t) is §trongly differentiable on D, i.e., U(t)x is differentiable with respe& to ¢ for all x € D.

Show that —i d%gt) lt=0 is essentially self-adjoint on D, and its closure is the infinitesimal generator of the unitary
group.
Proof: Let B = —idzgt) |t=o. Then for z,y € D,
e SU@) -1 L . Ul-t)y—1 1Y\ . U(=t)—1 1\
(Bw,y) = lim —i (tfv, y) = lim —i <1’ —— ) =lm (2, —i———y) = (=, By),

which implies that B is symmetric. We can also etablish that 27 (t)z = i AU (t)z = iU(t)Az. The rest follows
similarly to part (3) and (4) of the next problem. O
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3.2 (Another proof of Stone’s Theorem) Let {U(t) : t € R} is a §trongly continuous unitary group.
(1) Vf € C§°(R), Vz € X, define
T = / FOU(t)xdt,

under Riemann sense. Let D be the set of all possible bounded linear combinations of x ¢s. Show that D is
dense.

(2) Forxz € D, U(t)x is differentiable. Find

dU (t)x ‘
dt li=o0
(3) Define the operator A on D as
Az = —iU'(0)z,
show that A is essentially self-adjoint.

(4) Let V(t) = ¢4, show that V (t) = U(t).
Proof. (1) The integral exi§ts because || f(¢£)U (¢)x|| < ||f|lool/z||, and the integral is over a compact set. Choose
g € C§°(R) with support in [—1,1] such that [ g = 1 and let g.(z) = e 'g(z /), then
[ = aq.[| < /Rge(f)H(U(t) — Dz < sup U ) =Dzl =0
t|<e

as t — 07 by &rong continuity of {U (¢)}. Therefore D is dense.
(2) Let f € C§°(R), we have

Ut)zy — Ulto)rs t_to </ (s Hs)xdk/m U(t0+s)xd5>

t—to —oo

t—to </ flr=tU )xdr/o:of(Tto)U(r)xdr)

= / flr=t) = f(r=t) U(r)zdr

t—to

for all tg # t. Since f' € C§°(R), the norm of the integrand on the right-hand side is dominated by
|f"l| oo Xsupp #7 ||| (using Lagrange’s Mean-value Theorem), so we can apply Dominated Convergence The-
orem, which yields that

lim Ult) = Ulto)
t—to t— to

/ f(r —to)U(r)xdr,

which is contained in D because f/(- — t9) € C§°(R). In particular, U’ (0)xf = z_ .
(3) Fir&, it is easy to check that AU(t)z = U(t)Az = —i% (t)z. For z,y € J and f, g € C3°(R),

(Azs,y,) = lim ((U(tz)t_l) xf’yg>
=t (o (52 ) )
(o)

= (z, Ayy)

Hence A is symmetric. Now suppose € D(A*) such that A*z = iz, then

G@ 00 = (2.5 0) = @AV O = ~i(4°2.U0) = (. UOw), ¥y € D.

12



3.3

3.4

This differential equation with initial condition U(0) = T is solved by (z,U(t)y) = (x,y)e’. Notice that
l(z, U®)y)| < [|=|| |[U@)y]| = ||=|| ||y|| for all ¢, we must have = € D=, thus x = 0 since D is dense. We
have proved that ker(A* — iI) = {0}. Similarly it can be shown that ker(A* + il) = {0}. Therefore A is
essentially self-adjoint.

(4) Ttsuffices to show that U (t)z—V (t)x = 0forx € D. Lety(t) = U(t)x—V (t)x. This is well-defined, because
V(t)z € D(A). Differentiate with respe& to t, ' (t) = U'(t)x — V'(t)x = iAU (t)x — i AV (t)x = iAy(t),
hence Ly (t)||? = —i(Ay(t), y(t)) +i(y(t), Ay(t)) = 0. Finally y(0) = 0 and thus y(t) = 0 forall t. [

Let A, be a sequence of self-adjoint operators on 7. Suppose that for EACH z € J# and each t € R, eit4n
converges §trongly in 7. Show that there exiSts a self-adjoint operator A such that 4,, — A s.r.s.

Proof. Define T(t) = s-lim,,_,o0 €'4n. We want to show that {T'(t) : ¢ € R} is a unitary group.

Fir§t, it is easy to see that T'(t) < 1 and T'(0) = I. Then it is easy to verify that T'(s + t) = T'(s)T'(t). Using
funétional calculus, it is easy to see that T'(¢) is unitary. Hence {T'(¢) : t € R} is a one-parameter group of unitary
operators. Foreach z andy € 77, (T'(t)x, y) is the limit of a sequence of continuous fun&ions and thus measurable.
Hence {U(t)} is §trongly continuous (see Remark 2 after Philips Theorem). Now, by Stone’s Theorem, there exists
a self-adjoint operator A such that T'(t) = exp(itA). The conclusion follows immediately from Example 6.6.7
(Trotter’s Theorem). O

Let U be an unitary operator on .7 then the limit

1Nfl

o LN s

Jim, 2 Ve =a
n=

exi§ts and UZ = T.

Proof: Consider the spectrum decomposition of U,

then

Note that

N-1
. 1 inf __ ]-7 0:();
im 2 e _{07 0<0<2m

n=0

Denote the right-hand side by f(6). It is easy to see that
27
E({1})z = f(0)dFyzx.
0

In fac&, E({1}) is the orthogonal projettion of U onto the eigenvalue associated with eigenvalue 1. By Dominated
Convergence Theorem,

1 2 or | N=l 2
N ga Utz — E({1})z|| = /0 . go 0 ()| dlFpe]? 0
as N — oo. 'Therefore
| V-1
Jim oy 2 Ut =Bl
It follows immediately from functional calculus that UE({1})z = E({1})z. -
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3.5 Let (2, %, 0) be a measure space of finite measure. Suppose that {I'; : ¢ € R} is an ergodic group of measure-
preserving transformations, show that

(1) ¥f,g € L*(Q, #,0),

1t 1
lim /0 (Pum). )it =~ /Q fdo /Q gdo
(2) Let A, B € 4, then
1T
lim —/ o(l'tAN B)dt = —0o(A)o(B)
0

T—o00
Proof. (1) Since {I';} is ergodic and 0 () < +o0,

(7T 1
Tlinoo/o f(Tix)de = m/gfdo.

It follows immediately from continuity of inner produt that

m L[ —im [ _ L
Tlgnoof/o (f(th),g)dthlgnoo (/0 f(I‘m)dx,g) = U(Q)/Qfda/ﬂgda

(2) In the previous part, let f = x4 and g = x p and note that
(xa(Cea),xe) = [ xa(Uio)xa(a)de = o(T; ' ANTs) = (14N L)
Q
and (with sub$titution ¢’ = —t
1 /7T 1 /T
= / o(l:AN B)dt = — o(T_y AN B)dt'. O
T Jo -T Jo

3.6 Let A and B be positive self-adjoint operators. Suppose that A + B is self-adjoint on D(A) N D(B), —A, —B and
—(A + B) can generate §trongly continuous contration semigroup, denoted by {T4(¢) : t > 0}, {TZ(t) : t > 0}
and {TA+5(t) : t > 0}, respectively. Show that

oot i (1 (D)

Proof. 'The proof follows the same outline as that of Trotter’s Produ¢t Formula (Theorem 7.3.14). Let z € D :=
D(A) N D(B), then

s- lim 1(TA(S)TB(S):C —z) = s- lim 1(TA(.S) —x)+ s- lim ETA(S)(TB(S):ZZ —x)=—Ax — Bz

s—0t S s—0t S s—0t S

and )
s- lim —(TA*B(s)z —z) = —(A + B)z.

s—0t S

Let T, = L(T4(s)T5B(s) — T4 5B(s)), then Tyz — 0as s — 07 and Ty — 0 as s — +o0. Hence for any z € D,
| Tsz|| is bounded and thus ||T§|| is uniformly bounded by uniform boundedness principle. It follows that Tsz — 0
uniformly on any compact set K C D.

Choose K = {T4*B(r)x : v € [~1,1]} (a continuous map maps a compact set to a compact set). We have

LA ()T (s) = T ()T () = 0
uniformly on s € [—1,1].
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From the interpolation

n—1

(TA(s)TB(s)) (TAJrB( N'e = Z(TA( )TB(S))k(TA(S)TB(S) _ TA+B(S))(TA+B(S))H717]€$
k=0

it follows that

[ G () = (ren ()

<nma (14 (1)77 () 10 (1)) T 0
< a5 (1 ()77 ()~ 722 ()7 oo
= I max T:LTA‘*B(s)xH—)O

as n — 0o. Therefore we have eStablished

et () o

forall z € D. Since D is dense and the semi-groups are contractions, the limits holds for all z € JZ.

4 Markov Processes

No exercises.

5 Scattering Theory

No exercises.

6 Evolution Equations

No exercises.
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