1 Infinitesimal Generators

1.1 Let $\{T(t) : t \ge 0\}$ is a semi-group of bounded operators in Banach space \mathscr{X} , i.e., it satisfies that T(t)T(s) = T(t+s) for all s, t > 0 and T(0) = I. Let $f(t) = \ln ||T(t)||$. Suppose that f(t) is bounded on [0, a], show that

- (1) f(t) is sub-additive, i.e., $f(t+s) \le f(t) + f(s)$ for all t, s > 0.
- (2) $\lim_{t \to \infty} \frac{1}{t} f(t) = \inf_{t > 0} \frac{1}{t} f(t).$
- $\begin{array}{l} \textit{Proof.} \quad (1) \ \ f(t+s) = \ln \|T(t+s)\| = \ln \|T(t)T(s)\| \leq \ln(\|T(t)\| \ \|T(s)\|) = \ln \|T(t)\| + \ln \|T(s)\| = f(t) + \ln \|T(s)\| = f(t) + \ln \|T(s)\| = 1 \\ f(s); \end{array}$
- (2) It is not difficult to see that f(t) is bounded on any finite interval [0, s]. Suppose that f(t) is bounded by M_s on [0, s]. Fix s. Any t can be written as t = ns + r, where n is an integer and $0 \le r < a$. Then we have from subadditivity of f that

$$f(t) \le nf(s) + f(r) \le nf(s) + M_s$$

Divide it by *t*,

Let $t \to \infty$,

$$\frac{f(t)}{t} \le \frac{n}{ns+r}f(s) + \frac{M_s}{t} \le \frac{f(s)}{s} + \frac{M_s}{t}$$

$$\limsup_{t \to \infty} \frac{f(t)}{t} \le \frac{f(s)}{s}$$

Take infimum on the right-hand side,

 $\limsup_{t\to\infty}\frac{f(t)}{t}\leq \inf_{s>0}\frac{f(s)}{s}.$

Notice that it holds trivially

$$\liminf_{t \to \infty} \frac{f(t)}{t} \ge \inf_{s > 0} \frac{f(s)}{s}.$$

The proof is now complete.

1.2 Let $\{T(t) : t \ge 0\}$ is a semigroup of bounded operators, such that T(0) = I and strong continuity at t = 0, i.e., $s - \lim_{t \to 0^+} T(t) = I$. Show that the semi-group is strongly continuous.

Proof. We shall show that $t \mapsto T(t)x$ is continuous for all $x \in \mathscr{X}$. It is easy to show right strong continuity.

$$\lim_{t \to t_0^+} \|T(t)x - T(t_0)x\| = \lim_{t \to t_0^+} \|T(t_0)T(t - t_0)x - x\| \le \|T(t_0)\| \lim_{t \to t_0^+} \|T(t - t_0)x - x\| = 0.$$

To prove the left strong continuity, it suffices to show that ||T(t)|| to be uniformly bounded when t is near t_0 . In fact, it holds that $||T(t)|| \le M e^{\omega t}$ for some M and ω . Refer to the text before Lemma 7.1.6.

1.3 Let $\{T(t) : t \ge 0\}$ is a semigroup of bounded operators on Hilbert space \mathscr{H} and satisfies T(0) = I and weak continuity at t = 0. Show that the semigroup is strongly continuous.

Proof. Since $T(t)x \to x$, the uniform boundedness theorem tells us that ||T(t)x|| is uniformly bounded in a neighbourhood of t = 0. Again by the uniform boundedness principle, it holds that ||T(t)|| is uniformly bounded near t = 0. It is then easy to see that for a fixed $x_0 \in \mathscr{X}$, $x(t) = T(t)x_0$ is bounded on any compact interval of t.

Suppose that $0 \le a < t < b < \xi - \epsilon < \xi$, where $\epsilon > 0$. Since $x(\xi) = T(\xi)x_0 = T(t)T(\xi - t)x_0 = T(t)x(\xi - t)$, we have that

$$(b-a)x(\xi) = \int_a^b x(\xi)dt = \int_a^b T(t)x(\xi-t)d\eta$$

and so, by $\sup_{a < t < b} \|T(t)\| < \infty$, we obtain

$$(b-a)\|x(\xi\pm\epsilon) - x(\xi)\| = \left\|\int_a^b T(t)(x(\xi\pm\epsilon-t) - x(\xi-t))dt\right\|$$

$$\leq \sup_{a\leq t\leq b} \|T(t)\|\cdot \int_{\xi-b}^{\xi-a} \|x(t\pm\epsilon)-x(t)\|dt$$

The right hand side tends to zero as $\epsilon \to 0^+$, as may be seen by approximating x(t) by finite-valued functions.

So far we have proved that x(t) is strongly continuous at t > 0. Now we prove the strong continuity at t = 0. For any positive rational number r we have T(t)x(r) = x(t+r), and thus $s - \lim_{t\to 0^+} T(t)x(r) = x(r)$. Let M denote the set consisting of all finite linear combinations with rational coefficients of x(r)'s, then $s - \lim_{t\to 0^+} T(t)x = x$ for all $x \in M$. On the other hand, for any $t \in [0, 1]$

$$||x(t) - x_0|| \le ||T(t)x - x|| + ||x - x_0|| + ||T(t)(x_0 - x)|| \le ||T(t)x - x|| + \left(\sup_{t \in [0,1]} ||T(t)|| + 1\right) ||x_0 - x||$$

and thus

$$\limsup_{t \to 0^+} \|x(t) - x_0\| \le \left(\sup_{t \in [0,1]} \|T(t)\| + 1 \right) \|x_0 - x\|$$
(1)

for any $x \in M$. It is clear that $\{x(t) : t \ge 0\} \subset \overline{M}$ from the weak closedness of \overline{M} and weak right-continuity of $\{x(t)\}$. Therefore the right side of (1) can be made arbitrarily close to 0, concluding that $x(t) \to x_0$ strongly as $t \to 0^+$.

- 1.4 Let $\{T(t) : t \ge 0\}$ be a strongly continuous semi-group of operators on \mathscr{X} and A its infinitesimal generator. Show that the following three conditions are equivalent:
 - (1) $D(A) = \mathscr{X};$
 - (2) $\lim_{t\to 0^+} ||T(t) I|| = 0;$
 - (3) $A \in L(\mathscr{X})$ and $T(t) = \exp(tA)$.

Proof. (3) \Rightarrow (1): It follows easily from series manipulation that $A_t x \rightarrow A x$ for all x as $t \rightarrow 0$.

(1) \Rightarrow (2): Since $A_t x \to x$ as $t \to 0$, by uniform boundedness principle, A_t is uniformly bounded, say by M, in a small neighbourhood of t = 0. Then $||T(t) - I|| \le Mt \to 0$ as $t \to 0$.

(2) \Rightarrow (3): It is easy to verify that

$$\lim_{s \to 0} \frac{1}{s} \int_{r}^{s+r} T(t) dt = T(r)$$

In particular, there exists δ such that

$$\left\|\frac{1}{t}\int_0^t T(s)ds - I\right\| < 1$$

for all $0 < t < \delta$, then $\frac{1}{t} \int_0^t T(s) ds$ is invertible for $t \in (0, \delta)$. Now,

$$\frac{1}{s} \int_{r}^{r+s} T(t)dt - \frac{1}{s} \int_{0}^{s} T(t)dt = \frac{1}{s} (T(s) - I) \int_{0}^{r} T(t)dt$$
(2)

(because $\int_r^{r+s} - \int_0^s = \int_s^{r+s} - \int_0^r$). It follows that for $t \in (0, \delta)$,

$$\frac{1}{s}(T(s) - I) = \left(\frac{1}{s}\int_{r}^{r+s} T(t)dt - \frac{1}{s}\int_{0}^{s} T(t)dt\right)\left(\int_{0}^{r} T(t)dt\right)^{-1}$$

The right-hand side tends to $(T(r) - I)(\int_0^r T(t)dt)^{-1}$, so the left-hand side A_s converges to some bounded linear operator when $s \to 0$. It is obvious that this limit operator must be A. Taking limit $s \to 0$ in (2), we obtain that

$$T(r) - I = A \int_0^r T(s) ds$$

Iterated substitution gives

$$T(r) = I + A + \frac{A^2}{2} + \dots + \frac{A^n}{n!} + \frac{A^{n+1}}{n!} \int_0^r (r-t)^n T(t) dt$$

Let $n \to \infty$, we see that $T(r) = \exp(rA)$ for all $r \ge 0$.

1.5 Let $\mathscr{X} = C_0[0,\infty) = \{f \in C[0,\infty) : \lim_{x \to +\infty} f(x) = 0\}, ||f|| = \sup |f(s)|$. Define on \mathscr{X} a linear operator

$$T(t): a(\cdot) \mapsto a(t+\cdot)$$

Show that $\{T(t) : t \ge 0\}$ is a strongly contraction semigroup on \mathscr{X} .

Proof. It is obvious that T(t+s) = T(t) + T(s) and T(0) = I. Now we show that $||T(t)a - T(t_0)a|| \to 0$. This is because $||T(t)a - T(t_0)a|| = \sup_s |a(t+s) - a(t_0+s)|$ and a is uniformly continuous. Finally, it is obvious that $||T(t)|| \le 1$ for all $t \ge 0$.

1.6 Let $\mathscr{X} = L^2(\mathbb{R})$, for $x \in \mathbb{R}$ and $y \in \mathbb{R}_+$, define

$$((T(y)f)(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-\xi)^2 + y^2} f(\xi) d\xi, \quad y > 0,$$

$$T(0)f = f.$$

Show that $\{T(y) : y \ge 0\}$ is a strongly continuous semigroup on \mathscr{X} and ||T(y)|| = 1. (*Remark*. The integral gives a harmonic function on the upper plane with boundary value f)

Proof. First we show that $T(y)f \in L^2(\mathbb{R})$. Indeed, by Cauchy-Schwarz inequality,

$$\begin{split} & \int_{-\infty}^{\infty} \left| \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-\xi)^2 + y^2} f(\xi) d\xi \right|^2 dx \\ \leq & \frac{1}{\pi^2} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \frac{y}{(x-\xi)^2 + y^2} d\xi \right) \left(\int_{-\infty}^{\infty} \frac{y}{(x-\xi)^2 + y^2} |f(\xi)|^2 d\xi \right) dx \\ = & \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{y}{(x-\xi)^2 + y^2} |f(\xi)|^2 dx d\xi \\ = & \|f\|_2^2 \end{split}$$

Hence $||T(y)|| \leq 1$. On the other hand,

$$(T(y)\chi_{[-R,R]})(x) = \frac{1}{\pi}\left(\arctan\left(\frac{R-x}{y}\right) + \arctan\left(\frac{R+x}{y}\right)\right)$$

and thus

$$\begin{split} \frac{\|T(y)\chi_{[-R,R]}\|_2^2}{\chi_{[-R,R]}\|_2^2} &\geq \frac{1}{R} \int_{-R/2}^{R/2} \frac{1}{\pi^2} \left(\arctan\left(\frac{R-x}{y}\right) + \arctan\left(\frac{R+x}{y}\right) \right)^2 dx \\ &\geq \frac{1}{R} \int_{-R/2}^{R/2} \left(\frac{2}{\pi} \arctan\frac{R}{2y}\right)^2 dx \\ &= \left(\frac{2}{\pi} \arctan\frac{R}{2y}\right)^2 \to 1 \end{split}$$

as $R \to \infty$, which implies that ||T(y)|| = 1 for y > 0. It is trivial that T(0) = I and ||T(0)|| = 1. When $f \in \mathscr{S}(\mathbb{R})$, Notice that T(y)f is exactly $u(\cdot, y)$ that satisfies

$$\Delta u = 0, \quad y >$$

0

$$u(x,0) = f(x,0)$$

It is then obvious that T(t+s) = T(t) + T(s) for $f \in \mathscr{S}(\mathbb{R})$, which can be extended to the entire $L^2(\mathbb{R})$ easily

because $\mathscr{S}(\mathbb{R})$ is dense in $L^2(\mathbb{R})$ and $||T(y)|| \le 1$. Now we show $||T(y)f - f|| \to 0$ as $y \to 0^+$. It suffices to show this for $f \in C_0^{\infty}(\mathbb{R})$ and density of test functions allows us to extend this result to $L^2(\mathbb{R})$. First we show that $T(y)f \to f$ uniformly pointwise as $y \to 0^+$. Let $\epsilon > 0$ be given. Since f is uniformly continuous, there exists δ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$. Then

$$\begin{aligned} |(T(y)f)(x) - f(x)| &= \left| \int_{\mathbb{R}} \frac{y}{(x-\xi)^2 + y^2} (f(\xi) - f(x)) d\xi \right| \\ &\leq \int_{|x-\xi| < \delta} \frac{y|f(\xi) - f(x)|}{(x-\xi)^2 + y^2} d\xi + \int_{|x-\xi| > \delta} \frac{y|f(\xi) - f(x)|}{(x-\xi)^2 + y^2} d\xi \\ &=: I + J, \end{aligned}$$

where

$$I \le \epsilon \int_{\mathbb{R}} \frac{y}{(x-\xi)^2 + y^2} d\xi = \epsilon$$

and

$$J \le 2 \|f\|_{\infty} \int_{|x-\xi| > \delta} \frac{y}{(x-\xi)^2 + y^2} d\xi$$
$$= 2 \|f\|_{\infty} \left(\pi - 2\arctan\frac{\delta}{y}\right) \to 0$$

uniformly w.r.t. x as $y \to 0$. Hence $T(y)f \to f$ uniformly w.r.t. x. Suppose that supp $f \in [-K, K]$. Now,

$$\begin{aligned} \|T(y)f - f\|^2 &\leq \int_{|x| \leq K} |(T(y)f)(x) - f(x)|^2 dx + \int_{|x| \geq K} |(T(y)f)(x)|^2 dx \\ &\leq \|(T(y))f - f\|_{\infty} \cdot 2K + \int_{|x| \geq K} |(T(y)f)(x)|^2 dx \end{aligned}$$

The first term goes to 0 as $y \to 0^+$. For the second term, we have

$$\begin{split} \int_{|x|\ge K} |(T(y)f)(x)|^2 dx &\leq \frac{1}{\pi} \int_{|\xi|\le K} |f(\xi)|^2 \int_{|x|\ge K} \frac{y}{(x-\xi)^2 + y^2} dx d\xi \\ &\leq \int_{|\xi|\le K} |f(\xi)|^2 \left(\pi - \arctan\frac{K-\xi}{y} - \arctan\frac{K+\xi}{y}\right) d\xi \\ &\to 0 \text{ as } y \to 0^+ \text{ by Dominated Convergence Theorem.} \end{split}$$

Therefore we conclude that $(T(y) - I)f \to 0$ as $y \to 0^+$, whence the strong continuity condition is satisfied by Problem 1.2. \square

1.7 Let $\{T(t) : t \ge 0\}$ be a strongly continuous semi-group on \mathscr{X} . Suppose that $x \in X$, $w - \lim_{t \to 0^+} \frac{1}{t} (T(t) - I) x = y$, show that $x \in D(A)$ and y = Ax.

Proof. Let $f \in X^*$ and $\lambda > 0$ large enough. It is easy to see that $e^{-\lambda t} f(T(t)x)$ has right derivative, which equals to $e^{-\lambda t} f(T(t)(y - \lambda x))$. The derivative is continuous in t, we have on integration

$$f(x) = -\int_0^\infty e^{-\lambda t} f(T(t)(y - \lambda x)) dt$$

for all $f \in X^*$. Therefore,

$$x = -\int_0^\infty e^{-\lambda t} T(t)(y - \lambda x) = -(\lambda I - A)^{-1}(y - \lambda x)$$

The conclusion follows immediately by multiplying $(\lambda I - A)$ on both sides.

- 1.8 Let $\{T(t) : t \ge 0\}$ be a strongly continuous semi-group on a Hilbert space \mathscr{H} . Suppose that A is its generator and T(t) is a normal operator for all $t \ge 0$. Show that A is normal using Gelfand transform.
- 1.9 Prove Hille-Yosida-Phillips Theorem (Theorem 7.1.7): A densely-defined closed linear operator A is an infinitesimal generator of some strongly continuous semigroup $\{T(t) : t \ge 0\}$ if and only if
 - (1) $\exists \omega_0 > 0$ such that $(\omega_0, \infty) \subset \rho(A)$;
 - (2) $\exists M > 0$ such that

$$\|(\lambda - A)^{-n}\| \le \frac{M}{(\lambda - \omega)^n}, \quad n = 1, 2, \dots$$

whenever $\lambda > \omega > \omega_0$.

Proof. The necessity has been proved in Lemma 7.1.6. The proof of sufficiency follows the same outline as in Theorem 7.1.5 by defining

$$B_{\lambda} = \lambda^2 (\omega_0 + \lambda - A)^{-1} - \lambda I$$

for $\lambda > 0$.

- 1.10 Let $\{T(t) : t \ge 0\}$ be a strongly continuous semi-group and A its infinitesimal generator. Suppose that $\omega_0 \in \mathbb{R}$ satisfies $\{\lambda : \Re \lambda > \omega_0\} \subset \rho(A)\}$. Show that
 - (1) The set $\{R_{\lambda}(A)x : x \in D(A)\}$ is dense in D(A), where $\Re \lambda > \omega_0$;
 - (2) The range of $R_{\lambda}(A)^n$ is dense for all $n \ge 1$, where $\Re \lambda > \omega_0$;
 - (3) $D(A^n)$ is dense for all $n \ge 1$.
 - *Proof.* (1) Let $x \in D(A^2)$. It follows from $R_{\lambda}(A)(\lambda A)x = x$ that $x \in R(R_{\lambda}(A)|_{D(A)})$. Hence $D(A^2) \subseteq R(R_{\lambda}(A)|_{D(A)})$. The conclusion follows immediately from the density of $D(A^2)$.
 - (2) It follows from $R_{\lambda}(A)(\lambda A)x = x$ ($x \in D(A)$) that $x \in R(R_{\lambda}(A))$, that is, $D(A) \subset R(R_{\lambda}(A))$ and $R(R_{\lambda}(A))$ is therefore dense. Now, it $R_{\lambda}(A)^{n}(\lambda A)^{n}x = x$ for all $x \in D(A^{n})$, whence it follows that $D(A^{n}) \subset R(R_{\lambda}(A)^{n})$. Part (3) shows that $D(A^{n})$ is dense, and hence $R(R_{\lambda}(A)^{n})$ is dense.
 - (3) This statement actually hold for *any* strongly continuous semi-group with no further assumptions. To see this, let ϕ be any function in $C_0^{\infty}[0, 1]$ and define for any x

$$x_{\phi} = \int_0^1 \phi(t) T(t) x dt.$$

Then

$$\frac{T(h)-1}{h}x_{\phi} = \frac{1}{h}\int_{0}^{1} \left(\int_{0}^{t} \phi'(s)ds\right) (T(t+h) - T(t))xdt
= \frac{1}{h}\int_{0}^{1} \phi'(s) \left(\int_{s}^{1} (T(t+h)x - T(t)x)dt\right)ds
= \frac{1}{h}\int_{0}^{1} \phi'(s) \left(\int_{1}^{1+h} T(t)xdt - \int_{s}^{s+h} T(t)xdt\right)ds
= \frac{1}{h}\int_{0}^{1} \phi'(s)ds\int_{1}^{1+h} T(t)xdt - \frac{1}{h}\int_{0}^{1} \phi'(s)\int_{s}^{s+h} T(t)xdtds
= -\frac{1}{h}\int_{0}^{1} \phi'(s)\int_{s}^{s+h} T(t)xdtds$$

Since $\frac{1}{h} \int_{s}^{s+h} T(t) x ds \to T(s) x$ as $h \to 0^+$ and ϕ' is bounded, the limit of the right-hand side exists as $h \to 0^+$ and equals to

$$-\int_0^1 \phi'(s)T(s)xds.$$

Hence $x_{\phi} \in D(A)$ and

$$Ax_{\phi} = -\int_0^1 \phi'(s)T(s)xds.$$

Now it is clear that $x_{\phi} \in D(A^n)$ for all n. We can choose a sequence $\{\phi_j\} \subset C_0^{\infty}[0,1]$ such that $\phi_j \ge 0$, $\int_0^1 \phi_j = 1$ and $\sup \phi_j$ tends to 0. It is not difficult to see that $x_{\phi_j} \to x$. Hence $D(A^n)$ is dense. \Box

1.11 Let $\{T(t) : t \ge 0\}$ be a strongly continuous semi-group and A its infinitesimal generator. Suppose that $f \in C^1([0,\infty); \mathscr{X})$. Show that the differential equation of operators

$$\frac{dx(t)}{dt} = Ax(t) + f(t), \tag{3}$$

$$x(0) = x_0 \in D(A) \tag{4}$$

has a unique solution in $C(\mathbb{R}^1_+; D(A)) \cap C^1(\mathbb{R}^1_+, \mathscr{X})$, which is given by

$$x(t) = T(t)x_0 + \int_0^t T(t-s)f(s)ds.$$
 (5)

Proof. The first term $T(t)x_0$ on the right of (5) satisfies the homogeneous differential equation and the initial condition, it suffices to show that the second term satisfies 3 with initial value 0.

$$\int_{0}^{t} T(t-s)f(s)ds = \int_{0}^{t} T(t-s)\left(f(0) + \int_{0}^{s} f'(r)dr\right)ds$$
$$= \left(\int_{0}^{t} T(t-s)ds\right)f(0) + \int_{0}^{t} f'(r)\left(\int_{r}^{t} T(t-s)ds\right)dr$$

Note that

$$T(t) - T(r) = \int_{r}^{t} AT(s)ds,$$

it follows that

$$A\int_{r}^{t} T(t-s)ds = T(t-r) - I,$$

and then

$$A\int_{0}^{t} T(t-s)f(s)ds = (T(t)-I)f(0) + \int_{0}^{t} f'(r)(T(t-r)-I)dr$$
$$= T(t)f(0) - f(t) + \int_{0}^{t} f'(r)T(t-r)dr \quad (6)$$

On the other hand,

$$\frac{d}{dt} \int_0^t T(t-s)f(s)ds = T(t)f(0) + \int_0^t T(s)f'(t-s)ds.$$
(7)

Comparing (6) and (7), we see that

$$\frac{d}{dt}\int_0^t T(t-s)f(s)ds = A\int_0^t T(t-s)f(s)ds + f(t).$$

It is clear that the initial value of the second term of (5) is 0. Hence x(t) given in (5) is a solution to the differential equation indeed. The continuity of x'(t) can be easily concluded from (7) using the continuity of f'. It is clear that $x(t) \in D(A)$.

In fact, if $x(t) \in C(\mathbb{R}^1_+; D(A)) \cap C^1(\mathbb{R}^1_+, \mathscr{X})$ is a solution to (3) and (4), then

$$\frac{d}{ds}T(t-s)x(s) = -T'(t-s)x(s) + T(t-s)x'(s) = -T(t-s)Ax(s) + T(t-s)x'(s) = T(t-s)f(s).$$

Integrate on both sides, we obtain that

$$x(t) - T(t)x(0) = \int_0^t T(t-s)f(s)ds,$$

which is exactly (5). The uniqueness of the solution is proved.

2 Examples of Infinitesimal Generators

2.1 Let $\mathscr{X} = \{f : \mathbb{D} \to \mathbb{C} : f(z) = \sum_{n=0}^{\infty} c_n z^n, \|f\|^2 = \sum |c_n|^2 < \infty\}$, where \mathbb{D} is the open disc in the complex plane. Define on \mathscr{X}

$$(T(t)f)(z) = \sum_{n=0}^{\infty} (n+1)^{-t} c_n z^n.$$

Show that $\{T(t) : t \ge 0\}$ is a strongly continuous semi-group of positive self-adjoint operators. Find its infinitesimal generator A and show that $\ln \frac{1}{n+1}$ $(n \ge 1)$ are eigenvalues of A.

Proof. It is obvious that $||T(t)|| \leq 1$, T(t+s) = T(t)T(s) and T(0) = I. Now we show that $T(t)f \to f$ strongly for all $f \in \mathscr{X}$. Given $\epsilon > 0$ and $f = \sum_{n=0}^{\infty} c_n z^n$, choose N big enough such that $\sum_{n>N} |c_n|^2 < \frac{\epsilon^2}{2}$. Choose t small enough such that $1 - (\frac{1}{N+1})^t < \frac{\epsilon}{\sqrt{2}||f||}$. Then

$$\begin{split} \|f - T(t)f\|^2 &= \sum_{n=0}^N \left(1 - \frac{1}{(n+1)^t}\right)^2 |c_n|^2 + \sum_{n=N+1}^\infty \left(1 - \frac{1}{(n+1)^t}\right)^2 |c_n|^2 \\ &\leq \frac{\epsilon^2}{2\|f\|^2} \cdot \|f\|^2 + \sum_{n=N+1}^\infty |c_n|^2 \\ &\leq \frac{\epsilon^2}{2} + \frac{\epsilon^2}{2} = \epsilon^2, \end{split}$$

that is, $||f - T(t)f|| \le \epsilon$ when t is sufficiently small. Therefore $\{T(t) : t \ge 0\}$ is a strongly continuous semi-group. It is straightforward to verify that T(t) is positive and self-adjoint (note that the inner product $(\sum c_n z^n, \sum d_n z^n) = \sum c_n \overline{d_n}$).

Define a linear operator A as

$$Af = \sum_{n=0}^{\infty} c_n \ln \frac{1}{n+1} \cdot z^n$$

on

$$D(A) = \left\{ f = \sum c_n z^n \in \mathscr{X} : \sum |c_n|^2 \ln^2(n+1) < \infty \right\}.$$

It is clear that D(A) is dense because $x^n \in D(A)$ for all n. We claim that A is closed. Suppose that $f_n \to f$, $Af_n \to g$, $f_n = \sum c_{nk} z^k$, $f = \sum c_n z^n$ and $g = \sum d_n z^n$. Since $Af_n \to g$,

$$\sum_{k=0}^{\infty} \left| c_{nk} \ln \frac{1}{k+1} - d_k \right|^2 \to 0,$$

or,

$$\sum_{k=1}^{\infty} \left| c_{nk} - \frac{d_k}{\ln \frac{1}{k+1}} \right|^2 \ln^2 \frac{1}{k+1} \to 0,$$

(because d_0 must be 0) which implies that

$$\sum_{k=1}^{\infty} \left| c_{nk} - \frac{d_k}{\ln \frac{1}{k+1}} \right|^2 \to 0.$$

Comparing with $f_n \to f$, or, equivalently,

$$\sum_{k=0}^{\infty} |c_{nk} - c_k|^2 \to 0.$$

we obtain that

$$d_n = c_n \ln \frac{1}{n+1}$$

for all $n \ge 0$, that is, $f \in D(A)$ and g = Af. Therefore A is a densely-defined closed operator.

Next we show that A generates a contraction semigroup. For $\lambda > 0$, it is easy to verify that $\lambda I - A$ is injective, and $\|\lambda f - Af\| \ge \lambda \|f\|$, thus $\lambda I - A$ is invertible and $\|R_{\lambda}(A)\| \le \lambda^{-1}$. By Hille-Yosida Theorem we know that A generates a contraction semigroup.

Now, to show that A is the infinitesimal generator of $\{T(t)\}$, it suffices to show that $A_t f \to Af$ on D(A). Let $f \in D(A), f = \sum c_n z^n$, then

2

$$\begin{split} \|A_t f - Af\|^2 &= \sum |c_n|^2 \left| \frac{(n+1)^{-t} - 1}{t} - \ln \frac{1}{n+1} \right| \\ &= \sum |c_n|^2 \left| \frac{e^{t \ln \frac{1}{n+1}} - 1}{t} - \ln \frac{1}{n+1} \right|^2 \\ &\leq t \sum |c_n|^2 \ln^2 \frac{1}{n+1} \to 0 \end{split}$$

as $t \to 0^+$, where we used $e^x - 1 \le x + x^2$ for all $x \le 1$.

2.2 Let $\mathscr{X} = L^2(-\pi,\pi)$. Define

$$(T(t)f)(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(\theta - \xi, t) f(\xi) d\xi, \quad t > 0$$

$$T(0)f = f,$$

where the integral kernel $G(\theta, t) = 1 + 2 \sum_{n=1}^{\infty} e^{-n^2 t} \cos n\theta$. Show that $\{T(t) : t \ge 0\}$ is a strongly continuous semi-group. Is it a contraction semi-group?

Proof. The procedure is similar to Exercise 7.1.6, based on the following properties of $G(\theta, t)$:

- (1) $G(\theta, t)$ is continuous;
- (2) $G(\theta, t) \ge 0$ for all t;
- (3) For every δ , $K(x,t) \to 0$ uniformly on $\delta < |x| < \pi$.

We shall prove the properties later. For now let us assume their correctness. For simplicity let the kernel $G(\theta, t)$ absorb the normalisation coefficient $\frac{1}{2\pi}$. Using the same trick as in 7.1.6, we obtain that $||T(t)|| \leq 1$ for all t > 0. It is easy to verify that T(t + s) = T(t)T(s) (because $e^{-n^2(t+s)} = e^{-n^2t}e^{-n^2}s$) and T(0) = I. To show the right strong convergence at t = 0, we can assume that $f \in C_0^{\infty}(-\pi, \pi)$. Using uniform continuity of f and Property (3) of the kernel $G(\theta, t)$, it is easy to show that $||T(y)f - f|| \to 0$. We therefore conclude that $\{T(t)\}$ is a contraction semi-group.

To see Property (1), just notice that the sum of continuous functions is uniformly convergent. To see (2) and (3), apply Poisson's Summation formula

$$\sum_{k=-\infty}^{\infty} g(x+2k\pi) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \hat{g}(n)e^{inx}$$
$$g(x) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}$$

(note that $\hat{g}(\xi) = e^{-\xi^2 t}$), we obtain that

to

$$G(x,t) = \frac{1}{\sqrt{4\pi t}} \sum_{k=-\infty}^{\infty} e^{-\frac{(x+2\pi k)^2}{4t}},$$

whence Property (2) becomes obvious. Property (3) follows from integral approximation of G(x, t),

$$G(\delta,t) \le \frac{1}{\sqrt{\pi t}} \int_{\delta}^{\infty} e^{\frac{-x^2}{4t}} dx = 1 - \Phi\left(\frac{\delta}{2\sqrt{t}}\right) \to 0.$$

Remark. In fact, T(t)f gives the solution $u(\cdot, t)$ to the heat equation on a circle S^1

$$\begin{aligned} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial \theta^2}, \quad t > 0, \, \theta \in (-\pi, \pi) \\ u(\pi, t) &= u(-\pi, t) \\ u(\theta, 0) &= f(\theta), \quad \theta \in (-\pi, \pi) \end{aligned}$$

when $f \in H^2(S^1)$ such that $f(-\pi) = f(\pi)$.

2.3 Let $\mathscr{X} = C(-\infty, \infty)$, the space of bounded uniformly continuous functions on $(-\infty, \infty)$. Define the linear operator T(t) by

$$(T(t)u)(s) = \begin{cases} u(s), & t = 0; \\ e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} u(s - n\mu), & t > 0. \end{cases},$$

where $\lambda, \mu > 0$. Show that $\{T(t) : t \ge 0\}$ is a strongly continuous contraction semi-group, and its infinitesimal generator is the *difference operator* A:

$$(Au)(s) = \lambda(u(s - \mu) - u(s))$$

Proof. It is easy to see that T(t)u is uniformly continuous (using the uniform continuity of f) and $||T(t)|| \le 1$. We have

$$T_w(T_t(u))(s) = e^{-\lambda w} \sum_{n=0}^{\infty} \frac{(\lambda w)^n}{n!} \left(e^{-\lambda t} \sum_{m=0}^{\infty} \frac{(\lambda t)^m}{m!} u(s - m\mu - n\mu) \right)$$
$$= e^{-\lambda(w+t)} \sum_{k=0}^{\infty} \sum_{l=0}^k \frac{(\lambda w)^l}{l!} \frac{(\lambda t)^{k-l}}{(k-l)!} u(s - k\mu)$$
$$= e^{-\lambda(w+t)} \sum_{k=0}^{\infty} \frac{1}{k!} \lambda^k (w + t)^k u(s - k\mu)$$
$$= T_{t+w}(u)(s)$$

It is trivial that T(0) = I. Now we verify that $||T(t)u - u||_{\infty} \to 0$ strongly as $t \to 0^+$. Write

$$(T(t)u - u)(x) = e^{-\lambda t} \sum_{n=1}^{\infty} \frac{(\lambda t)^n}{n!} u(x - n\mu) + (e^{-\lambda t} - 1)u(x)$$

The second term goes to 0 uniformly because u is bounded. So does the first term, since

$$\left| e^{-\lambda t} \sum_{n=1}^{\infty} \frac{(\lambda t)^n}{n!} u(x - n\mu) \right| \le \|s\|_{\infty} e^{-\lambda t} (e^{-\lambda t} - 1) = \|u\|_{\infty} (1 - e^{-\lambda t}).$$

Therefore $\{T(t)\}\$ is a strongly continuous contraction semi-group. Now,

$$(A_t u)(x) = e^{-\lambda t} \sum_{n=2}^{\infty} \frac{\lambda^n t^{n-1}}{n!} u(x - n\mu) + \lambda e^{-\lambda t} u(x - \mu) + \frac{e^{\lambda t} - 1}{t} u(x).$$

The second term goes to $\lambda s(x - \mu)$ and the third term $\lambda u(x)$, and both convergences are uniform. The first term goes to 0 uniformly, as

$$\left| e^{-\lambda t} \sum_{n=2}^{\infty} \frac{\lambda^n t^{n-1}}{n!} u(x - n\mu) \right| \le \|s\|_{\infty} e^{-\lambda t} \left(\frac{e^{\lambda t} - 1}{t} - \lambda \right) = \|u\|_{\infty} \left(\frac{1 - e^{-\lambda t}}{t} - \lambda e^{-\lambda t} \right) \to 0.$$

We conclude that

$$s - \lim_{t \to 0^+} (A_t u)(s) = \lambda(u(s - \mu) - u(s))$$

for all $u \in C(-\infty, \infty)$. The limit function is in $C(-\infty, \infty)$, too. The proof is now complete.

2.4 Let $\mathscr{X} = C(\mathbb{R}^n, \mathbb{R})$ and $b \in C^1(\mathbb{R}^n, \mathbb{R}^n)$. Consider the following system of ODEs

$$\frac{dx(t)}{dt} = b(x(t)), \quad x(0) = \xi,$$

which is an autonomous system. For every $\xi \in \mathbb{R}^n$ there exists a solution $x(t,\xi), t \in \mathbb{R}$ such that $x(t) \in C^1(\mathbb{R}, \mathbb{R}^n)$. Define the linear operator T(t) on \mathscr{X} as

$$[T(t)f](\xi) = f(x(t,\xi)), \quad t \ge 0.$$

Show that $\{T(t) : t \ge 0\}$ is a strongly continuous semi-group. Let A be its generator, then $C_0^1(\mathbb{R}^n;\mathbb{R}) \in D(A)$ and whenever $f \in C_0^1(\mathbb{R}^n; \mathbb{R})$ it holds that

$$(Af)(x) = \sum_{i=1}^{n} b^{i}(x) \frac{\partial f(x)}{\partial x_{i}}.$$
(8)

Proof. It is clear that each T(t) is a continuous linear operator. It follows from the properties of the linear system that T(t+s) = T(t)T(s) and that $x(t,\xi) \to x(0,\xi)$ uniformly as $t \to 0^+$, the latter of which implies that $T(t)f \to f$ as $t \to 0^+$. It is also trivial that T(0) = I. Hence $\{T(t) : t \ge 0\}$ is a strongly continuous semigroup. Note that by the chain rule,

$$\frac{df(x(t))}{dt} = \langle f'(x(t)), x'(t) \rangle = \langle f'(x(t)), b(x(t)) \rangle = \sum_{i=1}^{n} b^{i}(x(t)) \frac{\partial f(x(t))}{\partial x_{i}}.$$

It is clear that $C^1(\mathbb{R}^n, \mathbb{R}) \subset D(A)$ for the infinitesimal generator A and that Af takes the form (8).

2.5 Let A be the infinitesimal generator of a contraction semi-group. Suppose that B is a dissipative operator, with $D(B) \supset D(A)$, and

$$||Bu|| \le a||Au|| + b||u||$$

for some 0 < a < 1/2, b > 0, and all $u \in D(A)$. Show that A + B is a closed dissipative operator (defined on D(A)) and generates a contraction semi-group.

Proof. Since A is the generator of a contraction semi-group, according to Hille-Yosida Theorem, $(\lambda - A)^{-1}$ exists for all $\lambda > 0$ and $\|(\lambda - A)^{-1}\| \le 1/\lambda$. Thus $\|A(\lambda - A)^{-1}\| = \|\lambda(\lambda - A)^{-1} - I\| \le 2$. For $u \in D(A)$,

$$||B(\lambda - A)^{-1}u|| \le a||A(\lambda - A)^{-1}u|| + b||(\lambda - A)^{-1}u|| \le \left(2a + \frac{b}{\lambda}\right)||u||.$$

Thus for λ sufficiently large, $||B(\lambda - A)^{-1}|| < 1$ and $I - B(\lambda - A)^{-1}$ is invertible. Since $R(\lambda - A) = \mathscr{X}$ and

$$\lambda - A - B = (I - B(\lambda - A)^{-1})(\lambda - A),$$

we see that $R(\lambda - A - B) = \mathscr{X}$. It is easy to verify that A + B is closed (Corollary 6.5.3) and dissipative (both A and B are dissipative). Hence A + B generates a contraction semigroup.

Remark. The conclusion still holds if we know that A + B is closed and dissipative, without assuming that B is dissipative. This observation will be used in the proof of the next problem.

2.6 Let A and C be dissipative operators on Banach space \mathscr{X} . Suppose that there is a dense set $D, D \subset D(A)$, $D \subset D(C)$ so that

$$||(A - C)u|| \le a(||Au|| + ||Cu||) + b||u||$$

for some 0 < a < 1, b > 0 and all $u \in D$. Show that

(1) \overline{A} generates a contraction semigroup if and only if \overline{C} does.

(2)
$$D(A|_D) = D(C|_D).$$

Proof. (1) It suffices to show that $R(\lambda - A)$ is dense for some $\lambda > 0$ if and only if $R(\mu - C)$ is dense for some $\mu > 0$. The proof is similar to Exercise 6.5.7. Let B = C - A with D(B) = D and define $T_{\lambda} = A + \lambda B$. Then $T_0 = A$, $T_1 = C$, $Au = T_{\lambda}u - \lambda Bu$ and $Cu = T_{\lambda}u + (1 - \lambda)Bu$. The inequality in the problem implies that

$$||Bu|| \le a(||T_{\lambda}u - \lambda Bu|| + ||T_{\lambda}u + (1 - \lambda)Bu||) + b||u|| \le 2a||T_{\lambda}u|| + a||Bu|| + b||u||,$$

or

$$|Bu|| \le \frac{2a}{1-a} ||T_{\lambda}u|| + \frac{b}{1-a} ||u||$$
(9)

Let $0 \le \lambda' \le 1$. If $\frac{2a\lambda'}{1-a} < \frac{1}{2}$, the preceding problem implies that $R(\lambda - T_{\lambda+\lambda'}) = R(\lambda - T_{\lambda} - \lambda'B)$ is dense for some $\lambda > 0$ if and only if $R(\mu - T_{\lambda})$ is dense for some $\mu > 0$. Thus starting from $\overline{T_0} = \overline{A}$ and applying this result finitely many times, we obtain the conclusion.

(2) It can be proved similarly by propagating the property from T₀ to T₁ in finitely many steps. Note that the inequality (9) implies the equivalence of the graph norms with respect to T_λ and T_{λ+λ'}.

3 One-Parameter Unitary Groups and Stone's Theorem

3.1 Let $\{U(t) : t \in \mathbb{R}\}$ is a strongly continuous unitary group and D a dense set in \mathscr{X} such that $U(t)D \subset D$ for all $t \in \mathbb{R}$. Suppose that U(t) is strongly differentiable on D, i.e., U(t)x is differentiable with respect to t for all $x \in D$. Show that $-i\frac{dU(t)}{dt}|_{t=0}$ is essentially self-adjoint on D, and its closure is the infinitesimal generator of the unitary group.

Proof. Let $B = -i \frac{dU(t)}{dt}|_{t=0}$. Then for $x, y \in D$,

$$(Bx,y) = \lim_{t \to 0} -i\left(\frac{U(t) - I}{t}x, y\right) = \lim_{t \to 0} -i\left(x, \frac{U(-t) - I}{t}y\right) = \lim_{t \to 0} \left(x, -i\frac{U(-t) - I}{-t}y\right) = (x, By),$$

which implies that B is symmetric. We can also establish that $\frac{dU}{dt}(t)x = iAU(t)x = iU(t)Ax$. The rest follows similarly to part (3) and (4) of the next problem.

3.2 (Another proof of Stone's Theorem) Let $\{U(t) : t \in \mathbb{R}\}$ is a strongly continuous unitary group.

(1) $\forall f \in C_0^{\infty}(\mathbb{R}), \forall x \in X$, define

$$x_f = \int_{-\infty}^{\infty} f(t)U(t)xdt,$$

under Riemann sense. Let D be the set of all possible bounded linear combinations of x_f 's. Show that D is dense.

- (2) For $x \in D$, U(t)x is differentiable. Find
- (3) Define the operator A on D as

$$Ax = -iU'(0)x,$$

 $\frac{dU(t)x}{dt}\Big|_{t=0}$

show that A is essentially self-adjoint.

- (4) Let $V(t) = e^{it\overline{A}}$, show that V(t) = U(t).
- *Proof.* (1) The integral exists because $||f(t)U(t)x|| \le ||f||_{\infty}||x||$, and the integral is over a compact set. Choose $g \in C_0^{\infty}(\mathbb{R})$ with support in [-1, 1] such that $\int g = 1$ and let $g_{\epsilon}(x) = \epsilon^{-1}g(x/\epsilon)$, then

$$\|x - x_{g_{\epsilon}}\| \le \int_{\mathbb{R}} g_{\epsilon}(t) \| (U(t) - I)x\| \le \sup_{|t| \le \epsilon} \| (U(t) - I)x\| \to 0$$

as $t \to 0^+$ by strong continuity of $\{U(t)\}$. Therefore D is dense. (2) Let $f \in C_0^{\infty}(\mathbb{R})$, we have

$$\frac{U(t)x_f - U(t_0)x_f}{t - t_0} = \frac{1}{t - t_0} \left(\int_{-\infty}^{\infty} f(s)U(t + s)xds - \int_{-\infty}^{\infty} U(t_0 + s)xds \right)$$
$$= \frac{1}{t - t_0} \left(\int_{-\infty}^{\infty} f(r - t)U(r)xdr - \int_{-\infty}^{\infty} f(r - t_0)U(r)xdr \right)$$
$$= \int_{-\infty}^{\infty} \frac{f(r - t) - f(r - t_0)}{t - t_0} U(r)xdr$$

for all $t_0 \neq t$. Since $f' \in C_0^{\infty}(\mathbb{R})$, the norm of the integrand on the right-hand side is dominated by $||f'||_{\infty}\chi_{\text{supp }f'}||x||$ (using Lagrange's Mean-value Theorem), so we can apply Dominated Convergence Theorem, which yields that

$$\lim_{t \to t_0} \frac{U(t) - U(t_0)}{t - t_0} x_f = -\int_{-\infty}^{\infty} f'(r - t_0) U(r) x dr$$

which is contained in D because $f'(\cdot - t_0) \in C_0^{\infty}(\mathbb{R})$. In particular, $U'(0)x_f = x_{-f'}$. (3) First, it is easy to check that $AU(t)x = U(t)Ax = -i\frac{dU}{dt}(t)x$. For $x, y \in \mathscr{H}$ and $f, g \in C_0^{\infty}(\mathbb{R})$,

$$(Ax_f, y_g) = \lim_{t \to 0} \left(\left(\frac{U(t) - I}{it} \right) x_f, y_g \right)$$
$$= \lim_{t \to 0} \left(x_f, \left(\frac{I - U(-t)}{t} \right) y_g \right)$$
$$= \left(x_f, \frac{1}{i} y_{-g'} \right)$$
$$= (x, Ay_g)$$

Hence A is symmetric. Now suppose $x \in D(A^*)$ such that $A^*x = ix$, then

$$\frac{d}{dt}(x,U(t)y) = \left(x,\frac{dU}{dt}(t)y\right) = (x,iAU(t)y) = -i(A^*x,U(t)y) = (x,U(t)y), \quad \forall y \in D.$$

This differential equation with initial condition U(0) = I is solved by $(x, U(t)y) = (x, y)e^t$. Notice that $|(x, U(t)y)| \le ||x|| ||U(t)y|| = ||x|| ||y||$ for all t, we must have $x \in D^{\perp}$, thus x = 0 since D is dense. We have proved that ker $(A^* - iI) = \{0\}$. Similarly it can be shown that ker $(A^* + iI) = \{0\}$. Therefore A is essentially self-adjoint.

- (4) It suffices to show that U(t)x V(t)x = 0 for $x \in D$. Let y(t) = U(t)x V(t)x. This is well-defined, because $V(t)x \in D(\bar{A})$. Differentiate with respect to $t, y'(t) = U'(t)x V'(t)x = iAU(t)x i\bar{A}V(t)x = i\bar{A}y(t)$, hence $\frac{d}{dt}||y(t)||^2 = -i(\bar{A}y(t), y(t)) + i(y(t), \bar{A}y(t)) = 0$. Finally y(0) = 0 and thus y(t) = 0 for all t. \Box
- 3.3 Let A_n be a sequence of self-adjoint operators on \mathscr{H} . Suppose that for EACH $x \in \mathscr{H}$ and each $t \in \mathbb{R}$, e^{itA_n} converges strongly in \mathscr{H} . Show that there exists a self-adjoint operator A such that $A_n \to A$ s.r.s.

Proof. Define $T(t) = s - \lim_{n \to \infty} e^{itA_n}$. We want to show that $\{T(t) : t \in \mathbb{R}\}$ is a unitary group.

First, it is easy to see that $T(t) \leq 1$ and T(0) = I. Then it is easy to verify that T(s+t) = T(s)T(t). Using functional calculus, it is easy to see that T(t) is unitary. Hence $\{T(t) : t \in \mathbb{R}\}$ is a one-parameter group of unitary operators. For each x and $y \in \mathscr{H}$, (T(t)x, y) is the limit of a sequence of continuous functions and thus measurable. Hence $\{U(t)\}$ is strongly continuous (see Remark 2 after Philips Theorem). Now, by Stone's Theorem, there exists a self-adjoint operator A such that $T(t) = \exp(itA)$. The conclusion follows immediately from Example 6.6.7 (Trotter's Theorem).

3.4 Let U be an unitary operator on \mathscr{H} then the limit

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} U^n x = \bar{x}$$

exists and $U\bar{x} = \bar{x}$.

Proof. Consider the spectrum decomposition of U,

$$U = \int_0^{2\pi} e^{i\theta} dF_\theta,$$

then

$$\frac{1}{N}\sum_{n=0}^{N-1}U^n = \int_0^{2\pi} \left(\frac{1}{N}\sum_{n=0}^{N-1}e^{in\theta}\right) dF_{\theta}.$$

Note that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} e^{in\theta} = \begin{cases} 1, & \theta = 0; \\ 0, & 0 < \theta < 2\pi. \end{cases}$$

Denote the right-hand side by $f(\theta)$. It is easy to see that

$$E(\{1\})x = \int_0^{2\pi} f(\theta)dF_\theta x.$$

In fact, $E(\{1\})$ is the orthogonal projection of U onto the eigenvalue associated with eigenvalue 1. By Dominated Convergence Theorem,

$$\left\|\frac{1}{N}\sum_{n=0}^{N-1}U^n x - E(\{1\})x\right\|^2 = \int_0^{2\pi} \left|\frac{1}{N}\sum_{n=0}^{N-1}e^{in\theta} - f(\theta)\right|^2 d\|F_\theta x\|^2 \to 0$$

as $N \to \infty$. Therefore

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} U^n x = E(\{1\})x$$

It follows immediately from functional calculus that $UE(\{1\})x = E(\{1\})x$.

- 3.5 Let $(\Omega, \mathscr{B}, \sigma)$ be a measure space of finite measure. Suppose that $\{\Gamma_t : t \in \mathbb{R}\}$ is an ergodic group of measurepreserving transformations, show that
 - (1) $\forall f, g \in L^2(\Omega, \mathscr{B}, \sigma),$

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T (f(\Gamma_t x), g) dt = \frac{1}{\sigma(\Omega)} \int_\Omega f d\sigma \int_\Omega g d\sigma$$

(2) Let $A, B \in \mathcal{B}$, then

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \sigma(\Gamma_t A \cap B) dt = \frac{1}{\sigma(\Omega)} \sigma(A) \sigma(B)$$

Proof. (1) Since $\{\Gamma_t\}$ is ergodic and $\sigma(\Omega) < +\infty$,

$$\lim_{T \to \infty} \int_0^T f(\Gamma_t x) dx = \frac{1}{\sigma(\Omega)} \int_\Omega f d\sigma.$$

It follows immediately from continuity of inner product that

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T (f(\Gamma_t x), g) dt = \lim_{T \to \infty} \left(\int_0^T f(\Gamma_t x) dx, g \right) = \frac{1}{\sigma(\Omega)} \int_\Omega f d\sigma \int_\Omega g d\sigma$$

(2) In the previous part, let $f = \chi_A$ and $g = \chi_B$ and note that

$$(\chi_A(\Gamma_t x), \chi_B) = \int_{\Omega} \chi_A(\Gamma_t x) \chi_B(x) dx = \sigma(\Gamma_t^{-1} A \cap \Gamma_B) = \sigma(\Gamma_{-t} A \cap \Gamma_B)$$

and (with substitution t' = -t

$$\frac{1}{T}\int_0^T \sigma(\Gamma_t A \cap B)dt = \frac{1}{-T}\int_0^{-T} \sigma(\Gamma_{-t'} A \cap B)dt'.$$

3.6 Let A and B be positive self-adjoint operators. Suppose that A + B is self-adjoint on $D(A) \cap D(B)$, -A, -B and -(A+B) can generate strongly continuous contraction semigroup, denoted by $\{T^A(t) : t \ge 0\}, \{T^B(t) : t \ge 0\}$ and $\{T^{A+B}(t) : t \ge 0\}$, respectively. Show that

$$T^{A+B}(t) = s - \lim_{n \to \infty} \left(T^A \left(\frac{t}{n} \right) T^B \left(\frac{t}{n} \right) \right)^n$$

Proof. The proof follows the same outline as that of Trotter's Product Formula (Theorem 7.3.14). Let $x \in D :=$ $D(A) \cap D(B)$, then

$$s - \lim_{s \to 0^+} \frac{1}{s} (T^A(s)T^B(s)x - x) = s - \lim_{s \to 0^+} \frac{1}{s} (T^A(s) - x) + s - \lim_{s \to 0^+} \frac{1}{s} T^A(s)(T^B(s)x - x) = -Ax - Bx$$

and

$$s - \lim_{s \to 0^+} \frac{1}{s} (T^{A+B}(s)x - x) = -(A+B)x.$$

Let $T_s = \frac{1}{s}(T^A(s)T^B(s) - T^{A+B}(s))$, then $T_s x \to 0$ as $s \to 0^+$ and $T_s \to 0$ as $s \to +\infty$. Hence for any $x \in D$, $||T_s x||$ is bounded and thus $||T_s||$ is uniformly bounded by uniform boundedness principle. It follows that $T_s x \to 0$ uniformly on any compact set $K \subset D$. Choose $K = \{T^{A+B}(r)x : r \in [-1, 1]\}$ (a continuous map maps a compact set to a compact set). We have

$$s - \lim_{s \to 0^+} \frac{1}{s} (T^A(s)T^B(s) - T^{A+B}(s))T^{A+B}(r)x = 0$$

uniformly on $s \in [-1, 1]$.

From the interpolation

$$(T^{A}(s)T^{B}(s))^{n}x - (T^{A+B}(s))^{n}x = \sum_{k=0}^{n-1} (T^{A}(s)T^{B}(s))^{k} (T^{A}(s)T^{B}(s) - T^{A+B}(s))(T^{A+B}(s))^{n-1-k}x$$

it follows that

$$\begin{split} & \left\| \left(T^A \left(\frac{t}{n} \right) T^B \left(\frac{t}{n} \right) \right)^n x - \left(T^{A+B} \left(\frac{t}{n} \right) \right)^n x \right\| \\ & \leq n \max_{|s| < t} \left\| \left(T^A \left(\frac{t}{n} \right) T^B \left(\frac{t}{n} \right) - T^{A+B} \left(\frac{t}{n} \right) \right) T^{A+B}(s) x \right\| \\ & \leq |t| \max_{|s| < t} \left\| \frac{n}{t} \left(T^A \left(\frac{t}{n} \right) T^B \left(\frac{t}{n} \right) - T^{A+B} \left(\frac{t}{n} \right) \right) T^{A+B}(s) x \right\| \\ & = |t| \max_{|s| < t} \left\| T_{\frac{t}{n}} T^{A+B}(s) x \right\| \to 0 \end{split}$$

as $n \to \infty.$ Therefore we have established

$$s-\lim_{n\to\infty}\left(T^A\left(\frac{t}{n}\right)T^B\left(\frac{t}{n}\right)\right)^n x = T^{A+B}(t)x$$

for all $x \in D$. Since D is dense and the semi-groups are contractions, the limits holds for all $x \in \mathscr{H}$.

4 Markov Processes

No exercises.

5 Scattering Theory

No exercises.

6 Evolution Equations

No exercises.