1 Basics of Algebras

1.1 Let ϕ be a non-zero linear functional on an algebra \mathscr{A} over complex numbers, satisfying $\langle\phi, a b\rangle=\langle\phi, a\rangle\langle\phi, b\rangle$. Such a linear functional ϕ is also called a complex homomorphism. Show that
(1) if \mathscr{A} has identity e then $\phi(e)=1$;
(2) for any invertible $a \in \mathscr{A}$, it holds that $\phi(a) \neq 0$.

Proof. (1) Since ϕ is nonzero, there exists a such that $\phi(a) \neq 0$. Then $\phi(a)=\phi(a e)=\phi(a) \phi(e)$, and thus $\phi(e)=1$.
(2) $1=\phi(e)=\phi\left(a a^{-1}\right)=\phi(a) \phi\left(a^{-1}\right)$.
1.2 Let J be an ideal of algebra \mathscr{A}. Show that J is maximal iff \mathscr{A} / J does not contain a non-zero ideal.

Proof. 'Only if': Let J be a maximal ideal of \mathscr{A}. Suppose that $\mathscr{B}=\mathscr{A} / J$ contains a non-zero ideal J_{B}. Consider the natural maps $\phi: \mathscr{A} \rightarrow \mathscr{B}$ and $\psi: \mathscr{B} \rightarrow \mathscr{B} / J_{B}$. It is clear that both ϕ and ψ are non-trivial homomorphisms, and thus $\operatorname{ker}(\psi \circ \phi)$ is an ideal of \mathscr{A} containing J. Since J_{B} is non-zero, there exists $a \in \mathscr{A}$ such that $[a] \in J_{B}$ and $[a] \neq[0]$. Therefore $a \in \operatorname{ker}(\psi \cdot \phi)$ but $a \notin J$, which contradicts with the maximality of J.
$`$ If': Suppose $\mathscr{B}=\mathscr{A} / J$ does not contain a non-zero ideal but $J^{\prime} \supset J$ is a bigger ideal of \mathscr{A}. Consider $J_{B}=$ $\left\{[x] \in \mathscr{B}: x \in J^{\prime} \backslash J\right\}$. Since $J^{\prime} \backslash J \neq \emptyset$, we know that $J_{B} \neq \emptyset$. From $J^{\prime} \neq \mathscr{A}$ we also know that $J_{B} \neq \mathscr{B}$. Lastly, for all $[a] \in \mathscr{B}$ and $[j] \in J_{B}$, it holds that $[a][j]=[a j]=[j]$ and $[j][a]=[j a]=[j]$ because $j a \in J^{\prime}$ and $a j \in J^{\prime}$ as J^{\prime} is an ideal. We have found that J_{B} is a non-zero ideal of \mathscr{B}. Contradiction.

2 Banach Algebra

2.1 Let \mathscr{A} be a Banach algebra with identity and $G(\mathscr{A})$ be the set of all invertible elements in \mathscr{A}. Show that $G(\mathscr{A})$ is open and $a \mapsto a^{-1}$ is continuous.

Proof. We shall use the next problem in the proof. Let $a \in G(\mathscr{A})$. Then for all $b \in B\left(a, \frac{1}{\left\|a^{-1}\right\|}\right)$, we have that $\left\|a^{-1}(b-a)\right\|<1$. Hence $e+a^{-1}(b-a)$ is invertible and $b=a\left(e+a^{-1}(b-a)\right)$ is invertible.
To show the continuity of inverse map, we first observe that for $a, b \in G(\mathscr{A})$ it holds that

$$
\begin{aligned}
\left\|b^{-1}-a^{-1}\right\| & =\left\|(a+\eta)^{-1}-a^{-1}\right\| \\
& =\left\|\left(a\left(e+a^{-1} \eta\right)\right)^{-1}-a^{-1}\right\| \\
& =\left\|\left(\left(e+a^{-1} \eta\right)^{-1}-e\right) a^{-1}\right\| \\
& \leq\left\|\left(e+a^{-1} \eta\right)^{-1}-e\right\|\left\|a^{-1}\right\| \\
& \leq \frac{\left\|a^{-1} \eta\right\|}{1-\left\|a^{-1} \eta\right\|}\left\|a^{-1}\right\| \\
& \leq \frac{\left\|a^{-1}\right\|\|\eta\|}{1-\left\|a^{-1}\right\|\|\eta\|}\left\|a^{-1}\right\|
\end{aligned}
$$

For a given $\epsilon>0$ we can choose δ such that

$$
\frac{\delta\left\|a^{-1}\right\|^{2}}{1-\delta\left\|a^{-1}\right\|}<\epsilon
$$

then $\left\|b^{-1}-a^{-1}\right\|<\epsilon$ whenever $\|b-a\|<\delta$.
2.2 Let \mathscr{A} be a Banach algebra with identity and $a \in \mathscr{A}$ with $\|a\|<1$. Show that $e-a \in G(\mathscr{A})$ and

$$
(e-a)^{-1}=\sum_{n=0}^{\infty} a^{n}
$$

Proof. Let $y_{N}=\sum_{n=0}^{N} a^{n}$. Since $\|a\|<1$, it is easy to show that $\left\{y_{N}\right\}$ is Cauchy and hence y_{N} converges to some $y \in \mathscr{A}$. Observe that $(e-a) y_{N}=y_{N}(e-a)=e-a^{N+1} \rightarrow e$ as $N \rightarrow \infty$. Since multiplication is continuous, we have that $(e-a) y=y(e-a)=e$, which shows that $e-a \in G(\mathscr{A})$ and $(e-a)^{-1}=y$.
2.3 Let \mathscr{A} be a Banach algebra with identity and $a \in \partial(G(\mathscr{A}))$. Prove that
(1) If $a_{n} \in G(\mathscr{A}), a_{n} \rightarrow a$, then $\lim _{n \rightarrow \infty}\left\|a_{n}^{-1}\right\|=\infty$.
(2) There exists $b_{n} \in \mathscr{A},\left\|b_{n}\right\|=1$, such that $\lim _{n \rightarrow \infty} a b_{n}=\lim _{n \rightarrow \infty} b_{n} a=0$.

Proof. (1) If $\left\|a_{n}^{-1}\right\| \leq L$ for all n, then $\left\|a_{n}^{-1}\left(a-a_{n}\right)\right\|<1$ for n sufficiently large, which means that $e+a_{n}^{-1}(a-$ $\left.a_{n}\right) \in G(\mathscr{A})$ and $a=a_{n}\left(e+a_{n}^{-1}\left(a-a_{n}\right)\right) \in G(\mathscr{A})$. Contradiction.
(2) Suppose that $a_{n} \rightarrow a$ with $a_{n} \in G(\mathscr{A})$. Let $b_{n}=a_{n}^{-1} /\left\|a_{n}^{-1}\right\|$, then

$$
\begin{aligned}
\left\|a b_{n}\right\| & =\frac{\left\|a a_{n}^{-1}\right\|}{\left\|a_{n}^{-1}\right\|} \\
& =\frac{\left\|\left(a-a_{n}+a_{n}\right) a_{n}^{-1}\right\|}{\left\|a_{n}^{-1}\right\|} \\
& =\frac{\left\|\left(a-a_{n}\right) a_{n}^{-1}+e\right\|}{\left\|a_{n}^{-1}\right\|} \\
& \leq \frac{\left\|\left(a-a_{n}\right) a_{n}^{-1}\right\|+\|e\|}{\left\|a_{n}^{-1}\right\|} \\
& \leq\left\|a-a_{n}\right\|+\frac{\|e\|}{\left\|a_{n}^{-1}\right\|} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Hence $a b_{n} \rightarrow 0$. Similarly we can show that $b_{n} a \rightarrow 0$.
2.4 Let

$$
\mathscr{A}=\left\{\left(\begin{array}{ll}
\alpha & \beta \\
0 & \alpha
\end{array}\right): \alpha, \beta \in \mathbb{C}\right\}
$$

be an algebra under the usual addition and multiplication of matrices. Show that \mathscr{A} is a Banach algebra under the norm

$$
\left\|\left(\begin{array}{cc}
\alpha & \beta \\
0 & \alpha
\end{array}\right)\right\|=|\alpha|+|\beta| .
$$

Proof. The only less trivial part is to show the completeness. Suppose that $\left\{A_{n}\right\} \subseteq \mathscr{A}$ is a Cauchy sequence. Since $\left\|A_{n}-A_{m}\right\|=\left|\alpha_{n}-\alpha_{m}\right|+\left|\beta_{n}-\beta_{m}\right|$, we know that $\left\{\alpha_{n}\right\}$ and $\left\{\alpha_{m}\right\}$ are Cauchy sequences, hence $\alpha_{n} \rightarrow \alpha$ and $\beta_{n} \rightarrow \beta$ for some α and β. It is then straightforward to see that $A_{n} \rightarrow\left(\begin{array}{cc}\alpha & \beta \\ 0 & \alpha\end{array}\right)$.
2.5 Let \mathscr{A} be a Banach algebra with identity and $\phi: \mathscr{A} \rightarrow \mathbb{C}$ a homomorphism. Then $|\phi(a)| \leq\|a\|$ for all $a \in \mathscr{A}$.

Proof. Suppose that $|\phi(a)|>\|a\|$ for some a. Let $b=a /|\phi(a)|$, then $|\phi(b)|=1>\|b\|$, and $e-b$ is invertible. Thus $1=\phi(e)=\phi(e-b) \phi\left((e-b)^{-1}\right)$. Note that $\phi(e-b)=\phi(e)-\phi(b)=0$. Contradiction.
2.6 Let \mathscr{A} be a commutative Banach algebra with identity. Show that $a \in \mathscr{A}$ is invertible if and only if $\phi(a) \neq 0$ for all non-trivial continuous homomorphism $\phi: \mathscr{A} \rightarrow \mathbb{C}$.

Proof. `Only if': Trivial, as $1=\phi(e)=\phi(a) \phi\left(a^{-1}\right)$.
'If': Suppose that a is not invertible. Let J be a maximal ideal containing a (J exists because $a \mathscr{A}$ is an ideal). Then by Gelfand-Mazur Theorem, \mathscr{A} / J is isomorphic to \mathbb{C}, and there exists a natural continuous homomorphism from $\phi_{J}: \mathscr{A} \rightarrow \mathbb{C}$ such that $\phi_{J}(a)=0$. Contradiction.
2.7 Let \mathscr{A} be a Banach algebra with identity and $a \in \mathscr{A}$. Show that
(1) $\sigma(a)$ is compact;
(2) $\sigma(a)$ is not empty.

Proof. (1) Let $\lambda \in \sigma(s)$. It is clear that $|\lambda| \geq\|a\|$, otherwise $\lambda e-a=\lambda(e-a / \lambda)$ would be invertible as $\|a / \lambda\|<1$. Hence $\sigma(a)$ is bounded.
Now we show that $\rho(a)$ is open. Suppose that $\lambda \in \rho(a)$, then $\lambda e-a \in G(\mathscr{A})$. Recall that $G(\mathscr{A})$ is open, hence there exists ϵ such that $\lambda e-a+\eta \in G(A)$ whenever $\|\eta\|<\epsilon$. In particular, choose $\eta=\delta e$, where $|\delta|<\epsilon /\|e\|$, it follows that $(\lambda+\delta) e-a$ is invertible.
(2) Suppose that $\sigma(a)=\emptyset$, then $\lambda e-a$ is invertible for all λ. Define $r(\lambda)=(\lambda e-a)^{-1}$. The rest of the proof goes as in the proof of Gelfand-Mazur Theorem. Finally we arrive at $r(\lambda)=0$ for all λ. Contradiction.
2.8 Let \mathscr{A} be a Banach algebra with identity and $a, b \in \mathscr{A}$. Show that
(1) If $e-a b$ is invertible then $e-b a$ is invertible, too;
(2) If $\lambda \in \sigma(a b), \lambda \neq 0$, then $\lambda \in \sigma(b a)$;
(3) If a is invertible then $\sigma(a b)=\sigma(b a)$.

Proof. (1) $(e-b a)^{-1}=e+b(e-a b)^{-1} a$.
(2) $\lambda e-b a$ is invertible $\Longrightarrow e-\lambda^{-1} b a$ is invertible \Longrightarrow (by the first part) $e-\lambda^{-1} a b$ is invertible $\Longrightarrow \lambda e-a b$ is invertible. Contradiction.
(3) $\lambda e-a b$ is invertible $\Longleftrightarrow \lambda a^{-1}-b$ is invertible $\Longleftrightarrow \lambda e-b a$ is invertible.
2.9 Let \mathscr{A} and \mathscr{B} be commutative Banach algebras with identity and \mathscr{B} semi-simple. Let $\phi: \mathscr{A} \rightarrow \mathscr{B}$ be a homomorphism, show that ϕ is continuous.

Proof. We shall show that ϕ is closed, whence the continuity follows from Closed Graph Theorem. Suppose that $a_{n} \rightarrow 0$ in \mathscr{A} and $\phi\left(a_{n}\right) \rightarrow b$ in \mathscr{B}. We want to show that $b=0$. If not, since \mathscr{B} is semi-simple, there exists a maximal ideal J such that $b \notin J$. By Gelfand-Mazur Theorem, there exists an isomorphism $i: \mathscr{B} / J \rightarrow \mathbb{C}$, and $i([b]) \neq 0$. Note that $i \circ \psi \circ \phi: \mathscr{A} \rightarrow \mathbb{C}$ is a homomorphism, where ψ is the natural homomorphism from \mathscr{B} to \mathscr{B} / J. By Problem 2.4, $\left|i \circ \psi \circ \phi\left(a_{n}\right)\right| \leq\left\|a_{n}\right\|$ for all n. Let $n \rightarrow \infty$, we find that $|i \circ \psi(b)| \leq 0$, thus $i \circ \psi(b)=0$ and $\psi(b)=0$. Contradiction.
2.10 Let \mathscr{A} be a Banach algebra with identity. Let

$$
r(a)=\sup \{|\lambda|: \lambda \in \sigma(a)\},
$$

which is called the spectral radius of a. Show that for all $a, b \in \mathscr{A}$,
(1) $r(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}$;
(2) $r(a b)=r(b a)$;
(3) if $a b=b a$ then $r(a+b) \leq r(a)+r(b)$ and $r(a b) \leq r(a) r(b)$.

Proof. (1) According to Cauchy-Hadamard test, when $\lambda>\lim \sup _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}$, it holds that

$$
(\lambda e-a)^{-1}=\sum_{n=0}^{\infty} \frac{a^{n}}{\lambda^{n+1}}
$$

Therefore $r(a) \leq \lim \sup _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}$. Next we show that $\limsup _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}} \leq r(a)$. For all $\phi \in \mathscr{A}^{*}$, the function $\lambda \mapsto\left\langle\phi,(\lambda e-a)^{-1}\right\rangle$ is analytic in the region $|\lambda|>r(a)$. Hence

$$
\left\langle\phi,(\lambda e-a)^{-1}\right\rangle=\sum_{n=0}^{\infty} \frac{\left\langle\phi, a^{n}\right\rangle}{\lambda^{n+1}}
$$

and

$$
\left\langle\phi, a^{n}\right\rangle=\frac{1}{2 \pi i} \oint_{|\lambda|=r(a)+\epsilon}\left\langle\phi,(\lambda e-a)^{-1}\right\rangle \lambda^{n} d \lambda
$$

Let $M=\max _{|\lambda|=r(a)+\epsilon}\left\|(\lambda e-a)^{-1}\right\|$, then $M<\infty$ because $(\lambda e-a)^{-1}$ is continuous w.r.t. λ. Thus

$$
\left|\left\langle\phi, a^{n}\right\rangle\right| \leq\|\phi\| M(r(a)+\epsilon)^{n+1}
$$

for all $\phi \in \mathscr{A}^{*}$. Hence by Hahn-Banach Theorem,

$$
\left\|a_{n}\right\| \leq M(r(a)+\epsilon)^{n+1}
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left\|a_{n}\right\|^{\frac{1}{n}} \leq r(a)+\epsilon
$$

Let $\epsilon \rightarrow 0$ and we conclude that $\lim \sup _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}=r(a)$.
Now we show that $r(a) \leq \liminf _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}$. Note that

$$
\lambda^{n} e-a^{n}=(\lambda e-a) P(a)=P(a)(\lambda e-a),
$$

where

$$
P(a)=\lambda^{n-1} e+\lambda^{n-2} a+\cdots+a^{n-1}
$$

whence we see that $\lambda \in \sigma(a)$ implies that $\lambda^{n} \in \sigma\left(a^{n}\right)$. It follows that $\left|\lambda^{n}\right| \leq\left\|a^{n}\right\|$, and $|\lambda| \leq \liminf _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}$.
(2) By Exercise 2.8(2), $\sigma(a b)$ and $\sigma(b a)$ differ by 0 only at most. If both $\sigma(a b)$ and $\sigma(b a)$ contain a non-zero number, we would have $r(a b)=r(b a)$. Now suppose that $\sigma(a b)=\{0\}$, then $\lambda e-a b$ is invertible for any $\lambda \neq 0$. By Exercise 2.8(2), $\lambda e-b a$ is invertible, too, and thus $\sigma(b a)=\{0\}$ since $\sigma(b a) \neq \emptyset$.
(3) Since $a b=b a$, it holds that $\left\|(a b)^{n}\right\|^{\frac{1}{n}}=\left\|a^{n} b^{n}\right\|^{\frac{1}{n}} \leq\left\|a^{n}\right\|^{\frac{1}{n}}\left\|b^{n}\right\|^{\frac{1}{n}}$. It follows immediately from part (1) that $r(a b) \leq r(a) r(b)$.
Pick $\alpha>r(a)$ and $\beta>r(b)$, let $x=a / \alpha$ and $y=b / \beta$. Then

$$
\left\|(a+b)^{n}\right\|^{\frac{1}{n}}=\left\|\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}\right\|^{\frac{1}{n}} \leq\left(\sum_{k=0}^{n}\binom{n}{k} \alpha^{k} \beta^{n-k}\left\|x^{k}\right\|\left\|y^{n-k}\right\|\right)^{\frac{1}{n}}
$$

Let

$$
k_{n}=\underset{k}{\arg \max }\left\|x^{k}\right\|\left\|y^{n-k}\right\|
$$

so

$$
\left\|(a+b)^{n}\right\|^{\frac{1}{n}} \leq\left\|x^{k_{n}}\right\|^{\frac{1}{n}}\left\|y^{n-k_{n}}\right\|^{\frac{1}{n}}(\alpha+\beta)
$$

for all n. Since $0 \leq k_{n} / n \leq 1$ we can choose a subsequence such that $k_{n_{i}} / n_{i} \rightarrow \delta$ for some δ as i tends to infinity. Denote this subsequence by k_{n}. If $\delta=0$ then

$$
\limsup _{n \rightarrow \infty}\left\|x^{k_{n}}\right\|^{\frac{1}{n}} \leq \limsup _{n \rightarrow \infty}\|x\|^{\frac{k_{n}}{n}} \leq 1
$$

otherwise $k_{n_{i}} \neq 0$ for i big enough and thus

$$
\limsup _{n \rightarrow \infty}\left\|x^{k_{n}}\right\|^{\frac{1}{n}}=\limsup _{n \rightarrow \infty}\left(\left\|x^{k_{n}}\right\|^{\frac{1}{k_{n}}}\right)^{\frac{k_{n}}{n}}=r(x)^{\delta} \leq 1
$$

because $r(x) \leq\|x\|<1$. Therefore $r(a+b) \leq \alpha+\beta$ and the conclusion follows by letting $\alpha \rightarrow r(a)^{+}$and $\beta \rightarrow r(b)^{+}$.
2.11 Let $\mathscr{A}=\left\{f \in C^{1}[0,1]\right\}$ with norm

$$
\|f\|_{C^{1}}=\|f\|+\left\|f^{\prime}\right\| .
$$

Show that \mathscr{A} is a semi-simple commutative Banach algebra.
Proof. It is clear that \mathscr{A} is a commutative Banach algebra with identity. We shall show the semi-simpleness by showing

$$
\lim _{n \rightarrow \infty}\left\|f^{n}\right\|^{\frac{1}{n}}=0 \Longrightarrow f=0
$$

In fact, $r(f)=0$ means that $\lambda e-f$ is invertible for all $\lambda \neq 0$. If $f\left(x_{0}\right)=\lambda \neq 0$ for some x_{0} then $\lambda e-f$ would not be invertible. Hence $f(x)=0$ for all $x \in[0,1]$.
2.12 Let \mathscr{A} be a commutative Banach algebra and $r=\inf _{a \neq 0} \frac{\left\|a^{2}\right\|}{\|a\|^{2}}$ and $s=\inf _{a \neq 0} \frac{\|\hat{a}\|_{\infty}}{\|a\|}$. Show that $s^{2} \leq r \leq s$.

Proof. Note that $\|\Gamma a\|^{2}=\left\|\Gamma a^{2}\right\| \leq\left\|a^{2}\right\|$, it follows that $s^{2} \leq r$. Now we show the second half. Starting from $\left\|a^{2}\right\| \geq r\|a\|^{2}$, then $\left\|a^{4}\right\| \geq r\left\|a^{2}\right\|^{2} \geq r^{3}\|a\|^{4}$. By induction one can show that $\left\|a^{2^{k}}\right\| \geq r^{2^{k}-1}\|a\|^{2^{k}}$, hence

$$
\left\|a^{2^{k}}\right\| \frac{1}{2^{k}} \geq r^{1-\frac{1}{2^{k}}}\|a\|
$$

Letting $k \rightarrow \infty$, we obtain that $\|\hat{a}\|_{\infty} \geq r\|a\|$. It follows immediately that $s \geq r$.

3 Examples and Applications

3.1 Let

$$
\mathscr{A}=\left\{f: \mathbb{Z} \rightarrow \mathbb{C}:\|f\|=\sum_{n=-\infty}^{\infty}|f(n)| 2^{|n|}<\infty\right\}
$$

under the usual addition of scalar multiplication and the following multiplication

$$
f * g(n)=\sum_{k=-\infty}^{\infty} f(n-k) g(k)
$$

Show that
(1) \mathscr{A} is a commutative Banach algebra;
(2) Let $K=\left\{z \in \mathbb{C}: \frac{1}{2} \leq|z| \leq 2\right\}$ then K is one-to-one correspondent with \mathfrak{M} and the Gelfand representation of \mathscr{A} is the Laurent series that are absolutely convergent on K.

Proof. (1) It is easy to verify that \mathscr{A} is a commutative algebra, and

$$
\|f * g\|=\sum_{n=-\infty}^{\infty}\left|\sum_{k=-\infty}^{\infty} f(n-k) g(k)\right| 2^{|n|}
$$

$$
\begin{aligned}
& \leq \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty}|f(n-k)||g(k)| 2^{|n|} \\
& =\sum_{k=-\infty}^{\infty}\left(\sum_{n=-\infty}^{\infty}|f(n-k)| 2^{|n|}\right)|g(k)| \\
& \leq \sum_{k=-\infty}^{\infty}\left(\|f\| 2^{|k|}\right)|g(k)| \\
& =\|f\|\|g\| .
\end{aligned}
$$

The only thing left is to show that \mathscr{A} is complete. Suppose that $\left\{f_{n}\right\}$ is a Cauchy sequence, i.e., for given ϵ there exists N such that for all $m>n \geq N$ it holds that $\sum_{k \in \mathbb{Z}}\left|f_{m}(k)-f_{n}(k)\right| 2^{|k|}<\epsilon$. This implies that $\left\{f_{n}(k)\right\}$ is Cauchy and thus $f_{n}(k) \rightarrow f(k)$ for some f. Note that $\sum_{k \in \mathbb{Z}}\left|f_{m}(k)-f(k)\right| 2^{|k|} \leq \epsilon$, i.e., $f_{m}-f \in \mathscr{A}$, and therefore $f \in \mathscr{A}$.
(2) For $f \in \mathscr{A}$ define $g_{f}(z)=\sum_{n \in Z} f(n) z^{n}$, which is well-defined on K. Given $z_{0} \in K$, consider homomorphism $\phi_{z_{0}}: f \mapsto g_{f}\left(z_{0}\right)$, then $J_{z_{0}}=\operatorname{ker} \phi_{z_{0}}$ is a maximal ideal, since $g_{f}(z)$ is continuous. Obviously $z_{0} \mapsto J_{z_{0}}$ is injective, and we shall show that this mapping is surjective also. Let $J \in \mathfrak{M}$, we want to find $z_{0} \in K$ such that $\phi_{J}=\phi_{z_{0}}$, i.e., $\left\langle\phi_{J}, f\right\rangle=g_{f}\left(z_{0}\right)$ for all $f \in \mathscr{A}$. Let $h \in A$ such that $g_{h}(z)=z$, then $g_{h^{n}}(z)=z^{n}$. Since $\left|\left\langle\phi_{J}, h\right\rangle^{n}\right|=\left|\left\langle\phi_{J}, h^{n}\right\rangle\right| \leq\left\|h^{n}\right\|=2^{|n|}$ for all n, it follows that $\left\langle\phi_{J}, h\right\rangle \in K$, say z_{0}, then by continuity of $\phi_{J},\left\langle\phi_{J}, f\right\rangle=g_{f}\left(z_{0}\right)$ for all $f \in \mathscr{A}$. Actually $f \mapsto g_{f}$ is the Gelfand representation of \mathscr{A}.
3.2 Let \mathscr{A} be the semi-simple commutative Banach algebra in Problem 2.11. Find its maximal ideal space \mathfrak{M}. For $x \in[0,1]$ define

$$
J=\left\{f \in \mathscr{A}: f(x)=f^{\prime}(x)=0\right\}
$$

show that J is a closed ideal of \mathscr{A} and \mathscr{A} / J is a two-dimensional algebra with one-dimensional radical.
Proof. Similarly to Theorem 5.3.1, we have that \mathfrak{M} is homeomorphic and isomorphic to $[0,1]$. For a given $x \in[0,1]$, it is obvious that J is a closed ideal. It is easy to verify that $\phi: \mathscr{A} / J \rightarrow \mathbb{C}^{2}$ as $\phi(f)=\left(f(x), f^{\prime}(x)\right)$ is an isomorphism, where the multiplication of \mathbb{C}^{2} is defined as

$$
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
$$

It is then easy to see that the identity element of \mathbb{C}^{2} is $(1,0)$ and all the non-invertible elements have the form $(0, z)$. In fact, those non-invertible elements constitute the only maximal ideal in \mathscr{A}. Hence the radical is onedimensional.
3.3 Let \mathfrak{M} be a compact T_{2} space. Show that there exists a one-to-one correspondence between the set of all closed subsets of M and the set of closed ideals of $C(M)$.

Proof. Suppose X is a closed subset of M. Define $J_{X}=\{f \in C(M): f(x)=0$ for all $x \in X\}$, which is clearly a closed ideal of $C(M)$. The map $X \mapsto J_{X}$ is clearly injective by Urysohn's Lemma. Now we prove the converse. Suppose that J is a closed ideal of $C(M)$, let $X=\bigcap_{f \in J}\{x: f(x)=0\}$, which is the intersection of closed sets, and thus closed. From Theorem 5.3 .1 we know that X is non-empty and thus $J \subseteq J_{X}$. Let $f \in J_{X}$. Given any positive ϵ let $F_{\epsilon}=\{x \in M:|f(x)| \geq \epsilon\}$ then F_{ϵ} is compact and disjoint from X. If there exists $g_{\epsilon} \in J$ such that $g_{\epsilon}=1$ on F_{ϵ} and $\left|g_{\epsilon}\right| \leq 1$ on M, then $f g_{\epsilon} \in J$ and $\left\|f-f g_{\epsilon}\right\| \leq \epsilon$, which implies that $f \in I$ since J is closed. Therefore $J=J_{X}$.
Now we shall construct such g_{ϵ}. For any $x \notin F_{\epsilon}$ there exists $f_{x} \in J$ such that $f_{x}(x) \neq 0$ and thus $f_{x}(x)$ is non-zero on a neighbhourhood of x. Since F_{ϵ} is compact, we can choose a finite cover of the neighbourhoods corresponding to x_{1}, \ldots, x_{n}. Then

$$
h_{\epsilon}(x)=\sum_{i=1}^{n} f_{x_{i}}(x) \overline{f_{x_{i}}(x)}=\sum_{i=1}^{n}\left|f_{x_{i}}(x)\right|^{2}
$$

is contained in J and positive on F_{ϵ}. Since F_{ϵ} is continuous, h_{ϵ} attains minimum c at some x_{0}. Now let $k_{\epsilon}(x)=$ $\max \left\{h_{\epsilon}(x), c\right\}$, then $k_{\epsilon} \in C(M), k_{\epsilon}>0$ everywhere and $k_{\epsilon}=h_{\epsilon}$ on F_{ϵ}. Finally let $g_{\epsilon}=k_{\epsilon}^{-1} h_{\epsilon}$.
3.4 Let $\mathscr{A}=C^{n}[0,1]$ with norm

$$
\|f\|=\sup _{0 \leq t \leq 1} \sum_{k=0}^{n} \frac{\left|f^{(k)}(t)\right|}{k!}
$$

Show that, under the usual addition, multiplication and scalar multiplication of functions, \mathscr{A} is a Banach algebra. How to characterise its maximal ideals?

Proof. It is easy to verify that \mathscr{A} is an algebra and $\|f g\| \leq\|f\|\|g\|$. To show the completeness of \mathscr{A} recall that if $u_{n} \rightarrow u$ and $u_{n}^{\prime} \rightarrow v$ uniformly, where $u_{n}, u, u_{n}^{\prime}, v$ are continuous, then $u^{\prime}=v$. It is then straightforward to see that \mathscr{A} is complete, and thus a Banach algebra. Similar to the case of $C^{1}[0,1]$, the maximal ideals are homomorphic and isomorphic to $[0,1]$.
3.5 Define positionwise multiplication on ℓ^{1}. Show that ℓ^{1} is a commutative Banach algebra without identity. Furthermore, show that
(1) There exists a one-to-one correspondence between \mathfrak{M} and \mathbb{Z};
(2) Gelfand topology is discrete topology;
(3) There exists a one-to-one correspondence between the set of closed ideals of ℓ^{1} and the set of subsets of \mathbb{Z}.

Proof. It is clear that ℓ^{1} is commutative. If it has identity e, then $e=(1,1,1, \ldots)$, which is not in ℓ^{1}. Hence ℓ^{1} has no identity. It is also clear that $\|x y\| \leq\|x\|\|y\|$. Therefore ℓ^{1} is a Banach algebra. For the next problems, we can replace \mathbb{Z} by \mathbb{Z}^{+}, the set of non-negative integers.
(1) Let $n \in \mathbb{Z}^{+}$. Consider $J_{n}=\left\{x \in \ell^{1}: x_{n}=0\right\}$, which is clearly an ideal. It is also easy to see that J_{n} is maximal, and the map $n \mapsto J_{n}$ is injective.
For $n=0$, consider $J_{0}=\left\{x \in \ell^{1}: \exists N_{x} \forall n \geq N_{x}, x_{n}=0\right\}$, which is also clearly a maximal ideal.
Now we prove the converse. Let J be a maximal ideal. If for any k there exists $x_{k} \in J$ such that $x_{k, k} \neq 0$, then $x_{k, k} e_{k} \in J$ and thus $e_{k} \in J$. For any $x \in \ell^{1}$, all finite truncations of x are in J. We conclude that $J_{0} \subseteq J$ and by maximality of J, we have that $J=J_{0}$. Otherwise, there exists n such that $x_{n}=0$ for all $x \in J$, so that $J \subseteq J_{n}$ and thus $J=J_{n}$ by maximality of J.
(2) From part (1) it is clear that $\hat{x}(n)=x_{n}$ for all $x \in \ell^{1}$. There exists $x \in \ell^{1}$ such that $x_{i} \neq x_{j}$ for all pair $i \neq j$. Since \hat{x} is continuous under Gelfand topology, it must be discrete.
(3) For any non-empty subset $I \subseteq \mathbb{Z}^{+}$, consider $J_{I}=\left\{x \in \ell^{1}: x_{n}=0\right.$ for all $\left.n \in I\right\}$. It is clear that J_{I} is a closed ideal, and the map $I \mapsto J_{I}$ is injective. We shall show the converse. Let J be a closed ideal. Consider $I=\bigcap_{x \in J} Z(x)$ where $Z(x)=\left\{n \in \mathbb{Z}^{+}: x_{n}=0\right\}$. We claim that $I \neq \emptyset$.
If for any k there exists $x_{k} \in J$ such that $x_{k, k} \neq 0$, then $x_{k, k} e_{k} \in J$ and thus $e_{k} \in J$. As a consequence, for any $x \in \ell^{1}$, all finite truncations of x are in J. Since J is closed, we conclude that $J=\ell^{1}$. Contradiction. Hence $I \neq \emptyset$.
We have seen that $J \subseteq J_{I}$. Now we shall show that $J=J_{I}$. From a similar argument to the above, we have $e_{k} \in J$ for all $k \notin I$, hence any $x \in J_{I}$ can be approximated by its finite truncations, and $\bar{J}=J_{I}$. The conclusion follows from the closedness of J.
3.6 Let \mathscr{A} be a semi-simple commutative Banach algebra. Prove that $\Gamma(\mathscr{A})$ is closed in $C(\mathfrak{M})$ if and only if there exists a constant K such that $\|a\|^{2} \leq K\left\|a^{2}\right\|$ for all $a \in \mathscr{A}$.

Proof. We use the notations of Problem 5.2.12.
'If': The assumptions implies that $r \geq \frac{1}{K}>0$, thus $s>r>0$, i.e., $s\|a\| \leq\|\hat{a}\|$ for all $a \in \mathscr{A}$. Suppose that $\left\{\widehat{a_{n}}\right\}$ is a Cauchy sequence in $C(\mathfrak{M})$, then $\left\|a_{n}\right\|$ is a Cauchy sequence in \mathscr{A}. Hence there exists $a \in \mathscr{A}$ such that $a_{n} \rightarrow a$. By continuity of Γ, it holds that $\widehat{a_{n}} \rightarrow \widehat{a}$, whence it follows that $\Gamma(\mathscr{A})$ is closed.
`Only if': It suffices to show that $s \neq 0$ then $r \geq s^{2}>0$. The Gelfand transform $a \mapsto \hat{a}$ is a continuous isomorphism between two Banach spaces, \mathscr{A} and $C(\mathfrak{M})$, as $\Gamma(\mathscr{A})$ is closed and \mathscr{A} is semisimple. By Open Mapping Theorem, Γ^{-1} exists and is continuous, that is, there exists c such that $\left\|\Gamma^{-1} \hat{a}\right\| \leq c\|\hat{a}\|$ for all $\hat{a} \in C(\mathscr{A})$, i.e., $\|a\| \leq c\|\hat{a}\|$ for all $a \in \mathscr{A}$.

$4 C^{*}$-algebra

4.1 Let \mathscr{A} be a commutative Banach algebra. Suppose that \mathscr{A} is semi-simple, then every involution on \mathscr{A} is continuous.

Proof. By Closed Graph Theorem it suffices to show that involution is closed, that is, suppose that $a_{m} \rightarrow 0$ and $a_{m}^{*} \rightarrow a$, we need to show that $a=0$. Since \mathscr{A} is semi-simple, we need only to show that $r(a)=0$. In factm $r(a) \leq r\left(a-a_{m}^{*}\right)+r\left(a_{m}^{*}\right) \leq\left\|a-a_{m}^{*}\right\|+\left\|a_{m}^{*}\right\| \rightarrow 0$.
4.2 Verify that $L^{1}(\mathbb{R})$ is a Banach algebra under the multiplication of convolution

$$
(x * y)(t)=\int_{\mathbb{R}} x(s) y(t-s) d s
$$

and involution

$$
x^{*}(t)=\overline{x(-t)}
$$

Is it a C^{*}-algebra?
Proof. We have that

$$
\begin{aligned}
(x * y)^{*}(t)=\overline{(x * y)(-t)}=\overline{\int_{\mathbb{R}} x(s) y(-t-s) d s} & =\int_{\mathbb{R}} \overline{x(s) y(t-s)} d s \\
& =\int_{\mathbb{R}} \overline{x(-s) y(-t+s)} d s=\int_{\mathbb{R}} x^{*}(s) y^{*}(t-s) d s=x^{*} y^{*}=y^{*} x^{*}
\end{aligned}
$$

since convolution is commutative. The rest assumptions are easy to verify. Hence $L^{1}(\mathbb{R})$ is a Banach algebra with involution as defined. It is not a C^{*}-algebra. Take $f(x)=(\operatorname{sgn} x) \chi_{[-1,1]}(x)$, then

$$
\left(f^{*} f\right)(x)= \begin{cases}2-3|s|, & |s| \leq 1 \\ -2+|s|, & 1<|s| \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

and $\left\|f^{*} f\right\|=\frac{8}{3}$ while $\|f\|=2$, so $\left\|f^{*} f\right\| \neq\|f\|^{2}$.
4.3 Consider the algebra of analytic functions $A_{0}(\mathbb{D})$. Show that conjugation $f \mapsto \bar{f}$ is an involution on $A_{0}(\mathbb{D})$ and under which $\Lambda_{0}(\mathbb{D})$ is a C^{*}-algebra. Show the map $*: f \mapsto f^{*}(z)=\overline{f(\bar{z})}$ is an involution, too. Is $A_{0}(\mathbb{D})$ a C^{*}-algebra with this involution?

Proof. The statement crossed out does not hold, as \bar{f} is not necessarily analytic when f is analytic.
It is obvious that $*$ is an involution. Let $f(z)=i z+1$, then $f^{*}(z)=-i z+1$, so $\left\|f^{*} f\right\|=\sup _{|z| \leq 1}\left|1+z^{2}\right|=3$ while $\|f\|^{2}=4$. Hence $A_{0}(\mathbb{D})$ with $*$ as involution is not a C^{*}-algebra.
4.4 Let \mathscr{A} be a Banach algebra with involution $*$ and S be a subset of A. We say that S is regular if
(1) S is commutative, i.e., $a b=b a$ for any $a, b \in S$;
(2) S is closed under involution, i.e., whenever $a \in S$ it holds that $a^{*} \in S$.

Obviously for any $a \in S$ we have $a a^{*}=a^{*} a$. A regular subset is said to be maximal if it is not a proper subset of any normal subset. Let \mathscr{B} be a maximal regular subset of \mathscr{A}, show that
(1) \mathscr{B} is a closed commutative subalgebra of \mathscr{A};
(2) $\forall a \in \mathscr{B}$, it holds that $\sigma_{\mathscr{B}}(a)=\sigma_{\mathscr{A}}(a)$.

Proof. (1) Let $a, b \in \mathscr{B}$. It is clear that $a+b$ commutes with \mathscr{B} because each of a and b commutes with \mathscr{B}. Hence \mathscr{B} is closed under addition since \mathscr{B} is maximal. Similarly it can be shown that S is closed under multiplication and scalar multiplication. The laws of associativity and distributivity are inherited from \mathscr{A}. Therefore \mathscr{B} is a commutative subalgebra.
Now we shall show that \mathscr{B} is closed. Suppose $a_{n} \rightarrow a$ and $\left\{a_{n}\right\} \subseteq \mathscr{B}$. From the continuity of multiplication, we have that a commutes with \mathscr{B}. Since \mathscr{B} is maximal, it must hold that $a \in \mathscr{B}$. Therefore \mathscr{B} is closed.
(2) Clearly $\sigma_{\mathscr{A}}(a) \subseteq \sigma_{\mathscr{B}}(a)$. If $\lambda \notin \sigma_{\mathscr{A}} a$ then $(\lambda e-a)^{-1}$ exists. Since $(\lambda e-a)^{-1}$ commutes with \mathscr{B} and \mathscr{B} is maximal, we have $(\lambda e-a)^{-1} \in \mathscr{B}$ and therefore $\lambda \notin \sigma_{\mathscr{B}}(a)$. Hence $\sigma_{\mathscr{B}}(a)=\sigma_{\mathscr{A}}(a)$.
4.5 Let \mathscr{A} be a C^{*}-algebra, show that
(1) Let a be an hermitian element, then $\sigma(a) \subset \mathbb{R}^{1}$;
(2) If a is normal $\left(a a^{*}=a^{*} a\right)$ then $\|a\|=r(a)$;
(3) $\|a\|^{2}=r\left(a a^{*}\right)$.

Proof. Let \mathscr{B} be the closure of the subalgebra generated by e, a, elements of form $(\lambda e-a)^{-1}$ for $\lambda \in \rho(a)$. Then \mathscr{B} is commutative and $\sigma_{\mathscr{B}}(a)=\sigma_{\mathscr{A}}(a)$. We consider Gelfand transform on \mathscr{B} for part (1) and (2).
(1) It follows immediately from Arens' Lemma.
(2) In fact, normality of a means that a and a^{*} is commutative. Hence the proof of Theorem 5.4.8 (3) holds, and $\|a\|=\|\Gamma a\|=r(a)$.
(3) It is clear that $a a^{*}$ is normal, hence by part (2), $r\left(a a^{*}\right)=\left\|a a^{*}\right\|=\left\|a^{*}\right\|^{2}=\|a\|^{2}$.
4.6 Let \mathscr{A} be a C^{*}-algebra and $a \in \mathscr{A}$. We say a is positive, denoted by $a \geq 0$, if a is hermitian and $\sigma(a) \subseteq[0,+\infty]$. Show that
(1) $\forall a \in \mathscr{A}, a a^{*} \geq 0$;
(2) If $a, b \in \mathscr{A}, a \geq 0, b \geq 0$ then $a+b \geq 0$;
(3) For all $a \in \mathscr{A}, e+a a^{*}$ is invertible in \mathscr{A}.

Proof. (1) It is trivial that $a a^{*}$ is hermitian. As in the previous problem, we consider Gelfand transform in $C^{*}(a)$, which is commutative since $a=a^{*}$. Thus $\Gamma a a^{*}=\Gamma a \Gamma a^{*}=|\Gamma a|^{2} \geq 0$, therefore $a a^{*} \geq 0$.
(2) First consider $C^{*}(a)$, which is commutative. We claim that $\|\lambda e-a\| \leq \lambda$ for all $\lambda \geq\|a\|$. In fact, $\Gamma(\lambda e-a)=$ $\lambda-\Gamma(a)$. Since $a \geq 0, \Gamma(a)(J) \in[0, \lambda]$, we have that $\Gamma(\lambda e-a)(J) \in[0, \lambda]$ and thus $\|\lambda e-a\|=$ $\|\Gamma(\lambda e-a)\| \leq \lambda$. Similarly for $b \geq 0$, we can find μ such that $\|\mu e-b\| \leq \mu$. Hence $\|(\lambda+\mu) e-(a+b)\| \leq$ $\|\lambda e-a\|+\|\mu e-b\| \leq \lambda+\mu$. Now in $C^{*}(a+b)$,
$\lambda+\mu \geq \| \lambda+\mu) e-(a+b)\|=\| \Gamma((\lambda+\mu) e-(a+b)) \| \geq|(\lambda+\mu)-\Gamma(a+b)(J)| \geq(\lambda+\mu)-\Gamma(a+b)(J)$
for all J, whence it follows that $\Gamma(a+b)(J) \geq 0$ for all J, that is, $a+b \geq 0$.
Similarly, by choosing an appropriate subalgebra, we may, without loss of generality, assume that \mathscr{A} is commutative. Then $\Gamma(a+b)=\Gamma a+\Gamma b \geq 0$. Hence $a+b \geq 0$.
(3) This is a direct corollary of part (1).
4.7 Let \mathscr{X} be a Hilbert space and \mathscr{A} a C^{*}-algebra of $L(\mathscr{X})$. Define

$$
\mathscr{A}^{c}=\{T \in L(\mathscr{X}): T A=A T, \forall A \in \mathscr{A}\},
$$

which is called the centre of \mathscr{A}. Show that \mathscr{A}^{c} is a C^{*}-algebra and closed under weak topology.
Proof. It is easy to see that \mathscr{A}^{c} is closed under addition, multiplication, scalar multiplication and involution, whence it follows that \mathscr{A}^{c} is a C^{*}-algebra. Now we shall show it is closed under weak topology. Suppose that $T_{n} \rightharpoonup T$, $\left\{T_{n}\right\} \subseteq \mathscr{A}^{c}$. Note that \mathscr{X} is a Hilbert space and thus reflexive, we have $T_{n} x \rightarrow T x$ for all $x \in H$. Hence $A T_{n} x \rightarrow A T x$, that is, $T_{n} A x \rightarrow A T x$ for all $A \in \mathscr{A}$ and $x \in H$. Recall that multiplication is continuous, $T_{n} A \rightarrow T A$, hence $T A x=A T x$ for all $x \in H$, that is exactly $T A=A T$ for all $A \in \mathscr{A}$. Therefore $T \in \mathscr{A}^{c}$ and \mathscr{A}^{c} is closed under weak topology.

5 Normal Operators in Hilbert spaces

5.1 Let N be a normal operator in a Hilbert space. Show that
(1) If $\phi \in C(\sigma(N))$ then $\sigma(\phi(N))=\phi(\sigma(N))$;
(2) If $\phi \in C(\sigma(N)), \psi \in C(\sigma(\phi(N)))$, then $(\psi \circ \phi)(N)=\psi(\phi(N))$.

Proof. (1) Since $\lambda I-\phi(N)=(\lambda-\phi)(N)$, we have that $\lambda I-\phi(N)$ is invertible $\Leftrightarrow \phi(z) \neq \lambda$ for all $z \in \sigma(N)$ $\Leftrightarrow \lambda \notin \phi(\sigma(N))$.
(2) By part (1), $\psi(\phi(N))$ is well-defined. It is clear that the conclusion holds when ψ is a polynomial of z and \bar{z}. For a general ψ, pick a sequence of polynomials $\psi_{n} \rightarrow \psi$, then $\psi_{n} \circ \phi \rightarrow \psi \circ \phi$, the conclusion follows from the continuity of the isomorphism between \mathscr{A}_{N} and $C(\sigma(N))$.
5.2 Show that N is normal iff $\|N x\|=\left\|N^{*} x\right\|$ for all x.

Proof. $N^{*} N=N N^{*} \Leftrightarrow\left\langle N^{*} N x, x\right\rangle=\left\langle N N^{*} x, x\right\rangle \Leftrightarrow\langle N x, N x\rangle=\left\langle N^{*} x, N^{*} x\right\rangle \Leftrightarrow\|N x\|^{2}=\left\|N^{*} x\right\|^{2}$.
5.3 Let N be a normal operator. Show that
(1) $\|N\|=\sup \{|\lambda|: \lambda \in \sigma(N)\}$, and if P is a polynomial then

$$
\|P(N)\|=\sup \{|P(\lambda)|: \lambda \in \sigma(N)\}
$$

(2) for $A \in L(\mathscr{X})$ it holds that $\|A\|^{2}=r\left(A A^{*}\right)$.

Proof. (1) When N is normal, $P(N)$ is normal, too. The conclusion follows from Problem 5.4.5(2).
(2) Problem 5.4.5(3).
5.4 Show that the product of two positive operators is positive.

Proof. Notice that $\Gamma(a b)=\Gamma a \Gamma b$.
5.5 Let $A, B \in L(\mathscr{X}), 0 \leq A \leq B$. Suppose that A and B are commutative, then $A^{2} \leq B^{2}$. However, this is not necessarily true when A and B are not commutative.

Proof. Note that $B^{2}-A^{2}=(B+A)(B-A)$ because A and B are commutative. The conclusion then follows from the previous problem and Problem 5.4.6.
Take $\mathscr{X}=\mathbb{R}^{2}$. Let $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 4 \\ 2 & 10\end{array}\right)$, then $B \geq A \geq 0$ but $A B \neq B A$. Then $B^{2}-A^{2}=$ $\left(\begin{array}{cc}4 & 32 \\ 10 & 79\end{array}\right)$, which is not positive.
5.6 Let N be a normal operator, then there exists $P, Q \in L(\mathscr{X}), P$ is positive and unique, Q is unitary, such that

$$
N=P Q=Q P
$$

This is called polar decomposition of N.
Proof. Put $p(z)=|z|$ and $q(z)=z /|z|$ if $z \neq 0, q(0)=1$. Then p and q are continuous functions on $\sigma(N)$. Put $P=\tilde{\Gamma}^{-1} p$ and $Q=\tilde{\Gamma}^{-1} q$. Since $p \geq 0$, we know that $P \geq 0$. Since $q \bar{q}=1, Q Q^{*}=Q^{*} Q=I$. Since $z=p(z) q(z)$, the relation $N=P Q=Q P$ follows from the symbolic calculus.
Now we prove that uniqueness of P. If $N=Q P, P$ positive and Q unitary, then $N^{*} N=P^{*} Q^{*} Q P=P^{*} P=P^{2}$. The uniquesness of P follows from the uniqueness of $\left(N^{*} N\right)^{\frac{1}{2}}$.
5.7 Let \mathscr{X} be a locally compact topological space and \mathscr{H} a Hilbert space. Definition 5.5 .13 gives a spectral family ($\mathscr{X}, \mathscr{B}, E$), show that if $\Delta_{1}, \Delta_{2} \in \mathscr{B}$ then

$$
E\left(\Delta_{1} \cap \Delta_{2}\right)=E\left(\Delta_{1}\right) E\left(\Delta_{2}\right)
$$

Proof. First we show that if $\Delta_{1} \cap \Delta_{2}=$ then $E\left(\Delta_{1}\right) E\left(\Delta_{2}\right)=0$. Note that $E\left(\Delta_{1} \cup \Delta_{2}\right)=E\left(\Delta_{1}\right)+E\left(\Delta_{2}\right)$ is a projector, hence $\left(E\left(\Delta_{1}\right)+E\left(\Delta_{2}\right)\right)^{2}=E\left(\Delta_{1}\right)+E\left(\Delta_{2}\right)$, whence it follows that $E\left(\Delta_{1}\right) E\left(\Delta_{2}\right)=0$.
In the general case, $E\left(\Delta_{1}\right)=E\left(\Delta_{1} \backslash \Delta_{2}\right)+E\left(\Delta_{1} \cap \Delta_{2}\right)$ and $E\left(\Delta_{2}\right)=E\left(\Delta_{1} \backslash \Delta_{1}\right)+E\left(\Delta_{1} \cap \Delta_{2}\right)$. Hence

$$
E\left(\Delta_{1}\right) E\left(\Delta_{2}\right)=\left(E\left(\Delta_{1} \backslash \Delta_{2}\right)+E\left(\Delta_{1} \cap \Delta_{2}\right)\right)\left(E\left(\Delta_{1} \backslash \Delta_{1}\right)+E\left(\Delta_{1} \cap \Delta_{2}\right)\right)
$$

Notice that $\Delta_{1} \backslash \Delta_{2}, \Delta_{2} \backslash \Delta_{1}$ and $\Delta_{1} \cap \Delta_{2}$ are mutually disjoint, the conclusion follows from the expansion of the right-hand side.
5.8 Let N be a normal operator and E is the associated spectral family. Then for any Borel set $\Delta \subseteq \mathbb{C}, E(\Delta)$ is contained in the weak closure of the C^{*} algebra generated by N and N^{*}. Let $S \in L(\mathscr{X}), S N=N S$, show that $S E(\Delta)=E(\Delta) S$.
Lemma i The unit ball of a Banach space X is weak*-dense in the unit ball of $X^{* *}$.
Proof of Lemma i Suppose there exists $x^{* *} \in X^{* *},\|x\|_{X^{* *}} \leq 1, x$ is not in the weak*-closure of $B(X) \subseteq X^{* *}$. Hence there exists a functional $f \in X^{*}$ and a real number c, by Hahn-Banach Theorem, such that $\Re\langle x, f\rangle<c<$ $\Re\left\langle x^{* *}, f\right\rangle$ for all x in the unit ball of X. Since 0 is contained in the unit ball of $X, c>0$. We can then divide by c and replace f by $c^{-1} f$, and assume that there exists $f \in X^{*}$ such that $\Re\langle x, f\rangle<1<\Re\left\langle x^{* *}, f\right\rangle$. Since $-i x$ is in the unit ball of X whenever x is in it, this implies that $\Im\langle x, f\rangle<1$ and thus $|\langle x, f\rangle| \leq 1$ for all $\|x\| \leq 1$. Hence $\|f\|_{X^{*}} \leq 1$, then $1<\left|\left\langle x^{* *}, f\right\rangle\right| \leq\left\|x^{* *}\right\|\|f\| \leq 1$. Contradiction.
Lemma 2 Let X be a compact space and $\phi \in B(X)$. Then there exists a sequence of continuous functions $\left\{u_{n}\right\}$ on X such that $\left\|u_{n}\right\| \leq\|\phi\|$ for all n and $\int u_{n} d m \rightarrow \int \phi d m$ for all $m \in M(X)$.
Proof of Lemma 2 Note that $C(X)$ is a Banach space. The previous lemma tells us that the unit ball of $C(X)$ is weak*-dense in the unit ball of $C(X)^{* *}=M(X)^{*}$. Identify $B(X)$ with a subspace of $M(X)^{*}$, and we are done.

Proof. By Lemma 2 and Theorem 5.5.14, there exist $\left\{f_{n}\right\} \subseteq C(\sigma(N))$ such that

$$
\left(f_{n}(N) x, y\right)=\int f_{n}(z) d(E(z) x, y) \rightarrow \int \chi_{\Delta}(z) d(E(z) x, y)=\left(\chi_{\Delta}(N) x, y\right)
$$

for all x and y. Since $f_{n}(N) \in \mathscr{A}_{N}$, the result above shows that χ_{Δ} is in the weak closure of \mathscr{A}_{N}. Finally note that $\chi_{\Delta}(N)=E(\Delta \cap \sigma(N))=E(\Delta)$. Also we have $\left\|f_{n}\right\| \leq\left\|\chi_{\Delta}\right\|=1$, thus by Theorem 5.5.12(4), $S E(\Delta)=$ $E(\Delta) S$.
5.9 Let N be a normal operator. Prove that
(1) N is unitary $\Leftrightarrow \sigma(N) \subset S^{1}$;
(2) N is self-adjoint $\Leftrightarrow \sigma(N) \subset \mathbb{R}^{1}$;
(3) N is positive $\Leftrightarrow \sigma(N) \subset \mathbb{R}_{+}^{1}$;

Proof. (1) N is unitary $\Rightarrow 1=\Gamma\left(N N^{*}\right)=(\Gamma N)\left(\Gamma N^{*}\right)=\Gamma N \overline{\Gamma N}=|\Gamma N|^{2} \Rightarrow \sigma(N) \subseteq S^{1}$. Reversing the procedure above, $\sigma(N) \subseteq S^{1} \Rightarrow \Gamma\left(N N^{*}\right)=1$ and similarly $\sigma(N) \subseteq S^{1} \Rightarrow \Gamma\left(N^{*} N\right)=1$. It follows from the injectivity of Γ that $N N^{*}=N^{*} N=I$, i.e., N is unitary.
(2) N is self-adjoint $\Leftrightarrow \Gamma N=\Gamma N^{*}=\overline{\Gamma N} \Leftrightarrow \Gamma N \in \mathbb{R} \Leftrightarrow \sigma(N) \subseteq \mathbb{R}^{1}$.
(3) See Theorem 5.5.5.
5.10 Suppose that N is a normal operator and $\sigma(N)$ is countable. Then there is an orthonormal basis $B=\{y\} \subseteq \mathscr{X}$, where y 's are eigenvectors of N, and Fourier expansion

$$
x=\sum_{y \in B}(x, y) y, \forall x \in \mathscr{X},
$$

where the Fourier coefficients $(x, y)=0$ except for countably many ones.
Proof. We claim that if x and y belong to different eigenvalues, say λ and μ, then $\langle x, y\rangle=0$. In fact, $E(\{\lambda\}) \mathscr{X}=$ $\operatorname{ker}(\lambda I-N)$ and $E(\{\lambda\}) \mathscr{X}$ is orthogonal to $E(\{\mu\}) \mathscr{X}$.
Since $\operatorname{ker}(\lambda I-T)$ is closed, so we can choose an orthonormal basis. Combining those bases of each $\lambda \in \sigma(N)$, we obtain an orthonormal set in \mathscr{H}. We shall show that it is complete, i.e., $x \perp\{y\}$, or, $x \perp \operatorname{ker}(\lambda I-T)$ for all λ implies that $x=0$.
Let $P_{\lambda}=E(\{\lambda\})$. Suppose that $x \perp \operatorname{ker}(\lambda I-T)=\operatorname{im} P_{\lambda}$, then $x \in \operatorname{im} P_{\lambda}^{\perp}=\operatorname{ker} P_{\lambda}$, that is, $P_{\lambda} x=0$. Suppose that $\sigma(N)=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$, then

$$
x=I x=E\left(\sigma(N) x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} P_{\lambda_{k}} x=0\right.
$$

as desired. Fourier expansion follows from Theorem 1.6.23 and 1.6.25.
5.11 Let N be a normal operator on \mathscr{H}. Show that N is compact if and only if all following three conditions hold:
(1) $\sigma(N)$ is countable;
(2) If $\sigma(N)$ has a limit point, it must be 0 ;
(3) If $\lambda \in \sigma(N), \lambda \neq 0$, then $\operatorname{dim} E(\{\lambda\}) \mathscr{H}<+\infty$.

Proof. `Only if': This is rather straightforward. Since \(N\) is compact, we have that \(\sigma(N) \backslash\{0\}=\sigma_{p}(N) \backslash\{0\}\) and \(\sigma_{p}(N)\) has at most one limit point 0 (Theorem 4.3.1). Hence (1) and (2) hold, while (3) is just Fredholm Theorem (Theorem 4.2.10(3)), i.e., dim \(\operatorname{ker}(\lambda I-N)<+\infty\). \({ }^{`}\) If': Suppose that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots$. Denote $P_{n}=E\left(\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right)$ and P_{0} be the projector along ker N. Let $N_{n}=N P_{n}$. Then $\operatorname{dim} N_{n} \mathscr{H} \leq \sum E\left(\lambda_{i}\right) \mathscr{H}<+\infty$, which implies that N_{n} is finite-rank and thus compact. If $\sigma(N)$ is finite then $N_{n}=N$ for some n and N is therefore compact. Now assume that $\sigma(N)$ is infinite and thus $\lambda_{n} \rightarrow 0$. We want to show that $N_{n} \rightarrow N$.
Construct an orthonormal basis as in the previous problem, we have that $x=\sum\left(x, e_{i}\right) e_{i}$ for all x and $N x=$ $\sum \lambda_{i}\left(x, e_{i}\right) e_{i}$. Note that $N_{n} x$ is just a partial sum of $N x$, containing all terms up to λ_{n} (inclusive). Then the argument in Remark 1 after Theorem 4.4.7 is valid, and we see that $N_{n} \rightarrow N$ and N is therefore compact.
5.12 Let N be a compact normal operator, show that
(1) There exists λ, an eigenvalue of N, such that $\|N\|=|\lambda|$;
(2) If $\phi \in C(\sigma(N))$ and $\phi(0)=0$, then $\phi(N)$ is compact.

Proof. (1) Suppose that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots$. We claim that $\|N\|=\left|\lambda_{1}\right|$. Problem 5.5.10 and Problem 5.5 .11 tells us that N is diagonalisable, $N x=\sum \lambda_{i}\left(x, e_{i}\right) e_{i}$. Hence

$$
\|N x\|=\left\|\sum \lambda_{i}\left(x, e_{i}\right) e_{i}\right\|=\left(\sum\left|\lambda_{i}\right|^{2}\left|\left(x, e_{i}\right)\right|^{2}\right)^{\frac{1}{2}} \leq\left|\lambda_{1}\right|\left(\sum\left|\left(x, e_{i}\right)\right|^{2}\right)^{\frac{1}{2}} \leq\left|\lambda_{1}\right|\|x\|
$$

hence $\|N\| \leq\left|\lambda_{1}\right|$. For $x \in \operatorname{ker}\left(\lambda_{1} I-N\right)$, it holds that $\|N x\|=\left\|\lambda_{1}\right\|,\|x\|$. Therefore $\|N\|=\left|\lambda_{1}\right|$.
(2) It is clear that $\phi(N)$ is normal. Then we shall verify the three conditions in the previous problem are satisfied. Firstly, $\sigma(\phi(N))=\phi(\sigma(N))$ is countable because $\sigma(N)$ is countable. Secondly, suppose y_{0} is a limit point of $\sigma(\phi(N))=\phi(\sigma(N))$, then there exists $\left\{x_{n}\right\} \subseteq \sigma(N)\left(x_{n}\right.$ mutually different) such that $\phi\left(x_{n}\right) \rightarrow y_{0}$. Since $\sigma(N)$ is compact, we can find a subsequence of x_{n}, still denoted by x_{n}, such that $x_{n} \rightarrow x_{0}$ for some $x_{0} \in \sigma(N)$. We know that $x_{0}=0$, and thus $y_{0}=\phi\left(x_{0}\right)=\phi(0)=0$. Thirdly, note that $E_{\phi(N)}(\lambda)=E_{N}\left(\phi^{-1}(\lambda)\right)$ and $\phi^{-1}(\lambda)$ is finite when $\lambda \neq 0$. It follows immediately that $\operatorname{dim} E_{\phi(N)}(\lambda) \mathscr{H}<\infty$ when $\lambda \neq 0$.
5.13 Let N be a normal operator and E the spectral family corresponding to N. Let $\phi \in C(\sigma(N))$ and $\omega=\operatorname{ker} \phi$. Show that

$$
\operatorname{ker} \phi(N)=\operatorname{im} E(\omega)
$$

Proof. $\operatorname{ker} \phi(N)=\operatorname{im} E_{\phi(N)}(\{0\})=\operatorname{im} E_{N}\left(\phi^{-1}(\{0\})\right)=\operatorname{im} E_{N}(\omega)$, as it is not difficult to show that $E_{\phi(N)}(\Omega)=$ $E_{N}\left(\phi^{-1}(\Omega)\right)$ using Problem 5.5.1.
5.14 Let N be a normal operator, O an open set containing $\sigma(N)$ with a Jordan boundary. Suppose that ϕ is analytic on a neighbourhood of $\sigma(N)$ and O is contained in the analytic domain of ϕ. Show that

$$
\phi(N)=\frac{1}{2 \pi i} \int_{\partial O} \phi(z)(z I-N)^{-1} d z
$$

Proof. It is known in Theorem 2.6.9 that $(z I-N)^{-1}$ is analytic on its domain. Next, we show that if F is an operatorvalued analytic function over a domain Ω then $\int_{\partial \Omega} F d z=0$. In fact, let ϕ be any continuous functional, $\phi \circ F$ is analytic. It follows from continuity that $\phi\left(\int_{\partial \Omega} F d z\right)=\int_{\partial \Omega} \phi \circ F d z$, which equals to 0 by Cauchy's Theorem. Note that it holds for any continuous functional ϕ, by Hahn-Banach Theorem, it must hold that $\int_{\partial \Omega} F d z=0$. Hence for polynomial ϕ, we can replace ∂O by a possibly larger circle outside $|z| \leq\|N\|$. It is therefore easy to verify the desired equation, using expansion $(z I-N)^{-1}=z^{-1} \sum_{i=0}^{\infty} z^{-i} A^{i}$. Having established the equation for polynomial ϕ, we can approximate a general ϕ by polynomials, completing the proof.
5.15 Let N be a normal operator and C a connected component of $\sigma(N)$. Suppose that $\Gamma \subseteq \rho(N)$ is a Jordan curve, Γ encloses C and contains no other spectrum inside itself besides C. Show that

$$
E(C)=\frac{1}{2 \pi i} \oint_{\Gamma}(z I-N)^{-1} d z
$$

Proof. Let $P=\frac{1}{2 \pi i} \oint_{\Gamma}(z I-N)^{-1} d z$. First we shall show that $P^{2}=P$. Choose Γ_{1} inside Γ such that Γ_{1} encloses C also. Similar to the argument in the previous problem, we have that $\oint_{\Gamma_{1}}(z I-N)^{-1} d z=\oint_{\Gamma}(z I-N)^{-1} d z$.

$$
\begin{aligned}
P^{2} & =\frac{1}{2 \pi i} \oint_{\Gamma}(z I-N)^{-1} d z \frac{1}{2 \pi i} \oint_{\Gamma_{1}}(w I-N)^{-1} d w \\
& =-\frac{1}{4 \pi^{2}} \oint_{\Gamma} \int_{\Gamma_{1}}(z I-N)^{-1}(w I-N)^{-1} d w d z \\
& =-\frac{1}{4 \pi^{2}} \oint_{\Gamma^{1}} \int_{\Gamma_{1}} \frac{(z I-N)^{-1}-(w I-N)^{-1}}{w-z} d w d z \\
& =-\frac{1}{4 \pi^{2}} \oint_{\Gamma}(z I-N)^{-1} \int_{\Gamma_{1}} \frac{d w}{w-z} d z-\frac{1}{4 \pi^{2}} \oint_{\Gamma_{1}}(w I-N)^{-1} \oint_{\Gamma} \frac{d z}{z-w} d w \\
& =0+\frac{1}{4 \pi^{2}} \int_{\Gamma_{1}} 2 \pi i(w I-N)^{-1} d w \\
& =\frac{1}{2 \pi i} \oint_{\Gamma_{1}}(w I-N)^{-1} d w=P .
\end{aligned}
$$

It is clear from the definition that P commutes with any bounded operator that commutes with N. Now we shall show that the spectrum of N restricted to $\operatorname{im} P$ is contained in C, that is, $\lambda I-N$ is invertible on $\operatorname{im} P$ for $\lambda \in \sigma(N) \backslash C$. Consider

$$
Q=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{1}{\lambda-z}(z I-N)^{-1} d z
$$

It is clear that $Q N=N Q$ and thus $Q P=P Q$. In fact,

$$
\begin{aligned}
Q(\lambda I-N)=(\lambda I-N) Q & =\frac{1}{2 \pi i} \oint_{\Gamma} \frac{(\lambda-z) I+(z I-N)}{\lambda-z}(z I-N)^{-1} d z \\
& =\frac{1}{2 \pi i} \oint_{\Gamma}(z I-N)^{-1} d z+\frac{I}{2 \pi i} \oint_{\Gamma} \frac{d z}{\lambda-z} \\
& =P+0=P .
\end{aligned}
$$

Note that P is the identity map on $\operatorname{im} P$, hence Q is the the inverse of $(\lambda I-N)$ on im P. Also, the spectrum of N restricted to ker P is contained in $\sigma(N) \backslash C$, which can be shown similarly by replacing C by $\sigma(N) \backslash C$ (the connectedness of C is not essential, separation of two compact sets is).
Now we look at $E(C)$, which satisfies all the properties that we have proved for P. As a consequence, it is easy to prove that $P E(C)=P$ and $E(C) P=E(C)$. Therefore $P=E(C)$.

6 Applications to Singular Integral Operators

No Exercises.

