1 Basics of Algebras

- 1.1 Let ϕ be a non-zero linear functional on an algebra \mathscr{A} over complex numbers, satisfying $\langle \phi, ab \rangle = \langle \phi, a \rangle \langle \phi, b \rangle$. Such a linear functional ϕ is also called a complex homomorphism. Show that
 - (1) if \mathscr{A} has identity e then $\phi(e) = 1$;
 - (2) for any invertible $a \in \mathscr{A}$, it holds that $\phi(a) \neq 0$.
 - *Proof.* (1) Since ϕ is nonzero, there exists a such that $\phi(a) \neq 0$. Then $\phi(a) = \phi(ae) = \phi(a)\phi(e)$, and thus $\phi(e) = 1$.
 - (2) $1 = \phi(e) = \phi(aa^{-1}) = \phi(a)\phi(a^{-1}).$

1.2 Let J be an ideal of algebra \mathscr{A} . Show that J is maximal iff \mathscr{A}/J does not contain a non-zero ideal.

Proof. `Only if': Let J be a maximal ideal of \mathscr{A} . Suppose that $\mathscr{B} = \mathscr{A}/J$ contains a non-zero ideal J_B . Consider the natural maps $\phi : \mathscr{A} \to \mathscr{B}$ and $\psi : \mathscr{B} \to \mathscr{B}/J_B$. It is clear that both ϕ and ψ are non-trivial homomorphisms, and thus ker $(\psi \circ \phi)$ is an ideal of \mathscr{A} containing J. Since J_B is non-zero, there exists $a \in \mathscr{A}$ such that $[a] \in J_B$ and $[a] \neq [0]$. Therefore $a \in \text{ker}(\psi \cdot \phi)$ but $a \notin J$, which contradicts with the maximality of J.

If: Suppose $\mathscr{B} = \mathscr{A}/J$ does not contain a non-zero ideal but $J' \supset J$ is a bigger ideal of \mathscr{A} . Consider $J_B = \{[x] \in \mathscr{B} : x \in J' \setminus J\}$. Since $J' \setminus J \neq \emptyset$, we know that $J_B \neq \emptyset$. From $J' \neq \mathscr{A}$ we also know that $J_B \neq \mathscr{B}$. Lastly, for all $[a] \in \mathscr{B}$ and $[j] \in J_B$, it holds that [a][j] = [aj] = [j] and [j][a] = [ja] = [j] because $ja \in J'$ and $aj \in J'$ as J' is an ideal. We have found that J_B is a non-zero ideal of \mathscr{B} . Contradiction.

2 Banach Algebra

2.1 Let \mathscr{A} be a Banach algebra with identity and $G(\mathscr{A})$ be the set of all invertible elements in \mathscr{A} . Show that $G(\mathscr{A})$ is open and $a \mapsto a^{-1}$ is continuous.

Proof. We shall use the next problem in the proof. Let $a \in G(\mathscr{A})$. Then for all $b \in B(a, \frac{1}{\|a^{-1}\|})$, we have that $\|a^{-1}(b-a)\| < 1$. Hence $e + a^{-1}(b-a)$ is invertible and $b = a(e + a^{-1}(b-a))$ is invertible. To show the continuity of inverse map, we first observe that for $a, b \in G(\mathscr{A})$ it holds that

$$\begin{split} |b^{-1} - a^{-1}|| &= \|(a+\eta)^{-1} - a^{-1}\| \\ &= \|(a(e+a^{-1}\eta))^{-1} - a^{-1}\| \\ &= \|((e+a^{-1}\eta)^{-1} - e)a^{-1}\| \\ &\leq \|(e+a^{-1}\eta)^{-1} - e\| \|a^{-1}\| \\ &\leq \frac{\|a^{-1}\eta\|}{1 - \|a^{-1}\eta\|} \|a^{-1}\| \\ &\leq \frac{\|a^{-1}\| \|\eta\|}{1 - \|a^{-1}\| \|\eta\|} \|a^{-1}\| \end{split}$$

For a given $\epsilon>0$ we can choose δ such that

$$\frac{\delta \|a^{-1}\|^2}{1 - \delta \|a^{-1}\|} < \epsilon,$$

then $\|b^{-1} - a^{-1}\| < \epsilon$ whenever $\|b - a\| < \delta$.

2.2 Let \mathscr{A} be a Banach algebra with identity and $a \in \mathscr{A}$ with ||a|| < 1. Show that $e - a \in G(\mathscr{A})$ and

$$(e-a)^{-1} = \sum_{n=0}^{\infty} a^n.$$

Proof. Let $y_N = \sum_{n=0}^N a^n$. Since ||a|| < 1, it is easy to show that $\{y_N\}$ is Cauchy and hence y_N converges to some $y \in \mathscr{A}$. Observe that $(e-a)y_N = y_N(e-a) = e - a^{N+1} \to e$ as $N \to \infty$. Since multiplication is continuous, we have that (e-a)y = y(e-a) = e, which shows that $e - a \in G(\mathscr{A})$ and $(e-a)^{-1} = y$. \Box

- 2.3 Let \mathscr{A} be a Banach algebra with identity and $a \in \partial(G(\mathscr{A}))$. Prove that
 - (1) If $a_n \in G(\mathscr{A})$, $a_n \to a$, then $\lim_{n\to\infty} ||a_n^{-1}|| = \infty$.
 - (2) There exists $b_n \in \mathscr{A}$, $||b_n|| = 1$, such that $\lim_{n \to \infty} ab_n = \lim_{n \to \infty} b_n a = 0$.

||a|

- *Proof.* (1) If $||a_n^{-1}|| \le L$ for all n, then $||a_n^{-1}(a a_n)|| < 1$ for n sufficiently large, which means that $e + a_n^{-1}(a a_n) \in G(\mathscr{A})$ and $a = a_n(e + a_n^{-1}(a a_n)) \in G(\mathscr{A})$. Contradiction.
 - (2) Suppose that $a_n \to a$ with $a_n \in G(\mathscr{A})$. Let $b_n = a_n^{-1}/||a_n^{-1}||$, then

$$b_n \| = \frac{\|aa_n^{-1}\|}{\|a_n^{-1}\|}$$

$$= \frac{\|(a - a_n + a_n)a_n^{-1}\|}{\|a_n^{-1}\|}$$

$$= \frac{\|(a - a_n)a_n^{-1} + e\|}{\|a_n^{-1}\|}$$

$$\leq \frac{\|(a - a_n)a_n^{-1}\| + \|e\|}{\|a_n^{-1}\|}$$

$$\leq \|a - a_n\| + \frac{\|e\|}{\|a_n^{-1}\|} \to 0$$

as $n \to \infty$. Hence $ab_n \to 0$. Similarly we can show that $b_n a \to 0$.

2.4 Let

$$\mathscr{A} = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix} : \alpha, \beta \in \mathbb{C} \right\}$$

be an algebra under the usual addition and multiplication of matrices. Show that \mathscr{A} is a Banach algebra under the norm

$$\left\| \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix} \right\| = |\alpha| + |\beta|$$

Proof. The only less trivial part is to show the completeness. Suppose that $\{A_n\} \subseteq \mathscr{A}$ is a Cauchy sequence. Since $||A_n - A_m|| = |\alpha_n - \alpha_m| + |\beta_n - \beta_m|$, we know that $\{\alpha_n\}$ and $\{\alpha_m\}$ are Cauchy sequences, hence $\alpha_n \to \alpha$ and $\beta_n \to \beta$ for some α and β . It is then straightforward to see that $A_n \to \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$.

2.5 Let \mathscr{A} be a Banach algebra with identity and $\phi : \mathscr{A} \to \mathbb{C}$ a homomorphism. Then $|\phi(a)| \leq ||a||$ for all $a \in \mathscr{A}$.

Proof. Suppose that $|\phi(a)| > ||a||$ for some a. Let $b = a/|\phi(a)|$, then $|\phi(b)| = 1 > ||b||$, and e - b is invertible. Thus $1 = \phi(e) = \phi(e - b)\phi((e - b)^{-1})$. Note that $\phi(e - b) = \phi(e) - \phi(b) = 0$. Contradiction. 2.6 Let \mathscr{A} be a commutative Banach algebra with identity. Show that $a \in \mathscr{A}$ is invertible if and only if $\phi(a) \neq 0$ for all non-trivial continuous homomorphism $\phi : \mathscr{A} \to \mathbb{C}$.

Proof. `Only if': Trivial, as $1 = \phi(e) = \phi(a)\phi(a^{-1})$.

If: Suppose that a is not invertible. Let J be a maximal ideal containing a (J exists because $a\mathscr{A}$ is an ideal). Then by Gelfand-Mazur Theorem, \mathscr{A}/J is isomorphic to \mathbb{C} , and there exists a natural continuous homomorphism from $\phi_J: \mathscr{A} \to \mathbb{C}$ such that $\phi_J(a) = 0$. Contradiction.

- 2.7 Let \mathscr{A} be a Banach algebra with identity and $a \in \mathscr{A}$. Show that
 - (1) $\sigma(a)$ is compact;
 - (2) $\sigma(a)$ is not empty.
 - *Proof.* (1) Let $\lambda \in \sigma(s)$. It is clear that $|\lambda| \ge ||a||$, otherwise $\lambda e a = \lambda(e a/\lambda)$ would be invertible as $||a/\lambda|| < 1$. Hence $\sigma(a)$ is bounded.

Now we show that $\rho(a)$ is open. Suppose that $\lambda \in \rho(a)$, then $\lambda e - a \in G(\mathscr{A})$. Recall that $G(\mathscr{A})$ is open, hence there exists ϵ such that $\lambda e - a + \eta \in G(A)$ whenever $\|\eta\| < \epsilon$. In particular, choose $\eta = \delta e$, where $|\delta| < \epsilon/\|e\|$, it follows that $(\lambda + \delta)e - a$ is invertible.

- (2) Suppose that σ(a) = Ø, then λe − a is invertible for all λ. Define r(λ) = (λe − a)⁻¹. The rest of the proof goes as in the proof of Gelfand-Mazur Theorem. Finally we arrive at r(λ) = 0 for all λ. Contradiction.
- 2.8 Let \mathscr{A} be a Banach algebra with identity and $a, b \in \mathscr{A}$. Show that
 - (1) If e ab is invertible then e ba is invertible, too;
 - (2) If $\lambda \in \sigma(ab)$, $\lambda \neq 0$, then $\lambda \in \sigma(ba)$;
 - (3) If a is invertible then $\sigma(ab) = \sigma(ba)$.

Proof. (1) $(e - ba)^{-1} = e + b(e - ab)^{-1}a$.

- (2) $\lambda e ba$ is invertible $\implies e \lambda^{-1}ba$ is invertible \implies (by the first part) $e \lambda^{-1}ab$ is invertible $\implies \lambda e ab$ is invertible. Contradiction.
- (3) $\lambda e ab$ is invertible $\iff \lambda a^{-1} b$ is invertible $\iff \lambda e ba$ is invertible.

2.9 Let \mathscr{A} and \mathscr{B} be commutative Banach algebras with identity and \mathscr{B} semi-simple. Let $\phi : \mathscr{A} \to \mathscr{B}$ be a homomorphism, show that ϕ is continuous.

Proof. We shall show that ϕ is closed, whence the continuity follows from Closed Graph Theorem. Suppose that $a_n \to 0$ in \mathscr{A} and $\phi(a_n) \to b$ in \mathscr{B} . We want to show that b = 0. If not, since \mathscr{B} is semi-simple, there exists a maximal ideal J such that $b \notin J$. By Gelfand-Mazur Theorem, there exists an isomorphism $i : \mathscr{B}/J \to \mathbb{C}$, and $i([b]) \neq 0$. Note that $i \circ \psi \circ \phi : \mathscr{A} \to \mathbb{C}$ is a homomorphism, where ψ is the natural homomorphism from \mathscr{B} to \mathscr{B}/J . By Problem 2.4, $|i \circ \psi \circ \phi(a_n)| \leq ||a_n||$ for all n. Let $n \to \infty$, we find that $|i \circ \psi(b)| \leq 0$, thus $i \circ \psi(b) = 0$ and $\psi(b) = 0$. Contradiction.

2.10 Let A be a Banach algebra with identity. Let

$$r(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\},\$$

which is called the spectral radius of a. Show that for all $a, b \in \mathscr{A}$,

- (1) $r(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}};$
- (2) r(ab) = r(ba);
- (3) if ab = ba then $r(a+b) \le r(a) + r(b)$ and $r(ab) \le r(a)r(b)$.

Proof. (1) According to Cauchy-Hadamard test, when $\lambda > \limsup_{n \to \infty} \|a^n\|^{\frac{1}{n}}$, it holds that

$$(\lambda e - a)^{-1} = \sum_{n=0}^{\infty} \frac{a^n}{\lambda^{n+1}}.$$

Therefore $r(a) \leq \limsup_{n \to \infty} \|a^n\|^{\frac{1}{n}}$. Next we show that $\limsup_{n \to \infty} \|a^n\|^{\frac{1}{n}} \leq r(a)$. For all $\phi \in \mathscr{A}^*$, the function $\lambda \mapsto \langle \phi, (\lambda e - a)^{-1} \rangle$ is analytic in the region $|\lambda| > r(a)$. Hence

$$\langle \phi, (\lambda e - a)^{-1} \rangle = \sum_{n=0}^{\infty} \frac{\langle \phi, a^n \rangle}{\lambda^{n+1}}.$$

and

$$\langle \phi, a^n \rangle = \frac{1}{2\pi i} \oint_{|\lambda| = r(a) + \epsilon} \langle \phi, (\lambda e - a)^{-1} \rangle \lambda^n d\lambda$$

Let $M = \max_{|\lambda|=r(a)+\epsilon} \|(\lambda e - a)^{-1}\|$, then $M < \infty$ because $(\lambda e - a)^{-1}$ is continuous w.r.t. λ . Thus

$$|\langle \phi, a^n \rangle| \le \|\phi\| M(r(a) + \epsilon)^{n+1}$$

for all $\phi \in \mathscr{A}^*$. Hence by Hahn-Banach Theorem,

$$||a_n|| \le M(r(a) + \epsilon)^{n+1}.$$

Therefore

$$\lim_{n \to \infty} \|a_n\|^{\frac{1}{n}} \le r(a) + \epsilon.$$

Let $\epsilon \to 0$ and we conclude that $\limsup_{n \to \infty} \|a^n\|^{\frac{1}{n}} = r(a)$. Now we show that $r(a) \leq \liminf_{n \to \infty} \|a^n\|^{\frac{1}{n}}$. Note that

$$\lambda^n e - a^n = (\lambda e - a)P(a) = P(a)(\lambda e - a),$$

where

$$P(a) = \lambda^{n-1}e + \lambda^{n-2}a + \dots + a^{n-1}$$

whence we see that $\lambda \in \sigma(a)$ implies that $\lambda^n \in \sigma(a^n)$. It follows that $|\lambda^n| \leq ||a^n||$, and $|\lambda| \leq \liminf_{n \to \infty} ||a^n||^{\frac{1}{n}}$.

- (2) By Exercise 2.8(2), σ(ab) and σ(ba) differ by 0 only at most. If both σ(ab) and σ(ba) contain a non-zero number, we would have r(ab) = r(ba). Now suppose that σ(ab) = {0}, then λe ab is invertible for any λ ≠ 0. By Exercise 2.8(2), λe ba is invertible, too, and thus σ(ba) = {0} since σ(ba) ≠ Ø.
- (3) Since ab = ba, it holds that $||(ab)^n||^{\frac{1}{n}} = ||a^n b^n||^{\frac{1}{n}} \le ||a^n||^{\frac{1}{n}} ||b^n||^{\frac{1}{n}}$. It follows immediately from part (1) that $r(ab) \le r(a)r(b)$.

Pick $\alpha > r(a)$ and $\beta > r(b)$, let $x = a/\alpha$ and $y = b/\beta$. Then

$$\|(a+b)^n\|^{\frac{1}{n}} = \left\|\sum_{k=0}^n \binom{n}{k} a^k b^{n-k}\right\|^{\frac{1}{n}} \le \left(\sum_{k=0}^n \binom{n}{k} \alpha^k \beta^{n-k} \|x^k\| \|y^{n-k}\|\right)^{\frac{1}{n}}.$$

Let

so

$$k_n = \arg\max_k \|x^k\| \|y^{n-k}\|,$$

$$||(a+b)^{n}||^{\frac{1}{n}} \le ||x^{k_{n}}||^{\frac{1}{n}} ||y^{n-k_{n}}||^{\frac{1}{n}} (\alpha + \beta)$$

for all n. Since $0 \le k_n/n \le 1$ we can choose a subsequence such that $k_{n_i}/n_i \to \delta$ for some δ as i tends to infinity. Denote this subsequence by k_n . If $\delta = 0$ then

$$\limsup_{n \to \infty} \|x^{k_n}\|^{\frac{1}{n}} \le \limsup_{n \to \infty} \|x\|^{\frac{k_n}{n}} \le 1,$$

otherwise $k_{n_i} \neq 0$ for *i* big enough and thus

$$\limsup_{n \to \infty} \|x^{k_n}\|^{\frac{1}{n}} = \limsup_{n \to \infty} \left(\|x^{k_n}\|^{\frac{1}{k_n}} \right)^{\frac{k_n}{n}} = r(x)^{\delta} \le 1$$

because $r(x) \leq ||x|| < 1$. Therefore $r(a+b) \leq \alpha + \beta$ and the conclusion follows by letting $\alpha \to r(a)^+$ and $\beta \to r(b)^+$.

2.11 Let $\mathscr{A} = \{f \in C^1[0,1]\}$ with norm

$$||f||_{C^1} = ||f|| + ||f'||.$$

Show that \mathscr{A} is a semi-simple commutative Banach algebra.

Proof. It is clear that \mathscr{A} is a commutative Banach algebra with identity. We shall show the semi-simpleness by showing

$$\lim_{n \to \infty} \|f^n\|^{\frac{1}{n}} = 0 \Longrightarrow f = 0.$$

In fact, r(f) = 0 means that $\lambda e - f$ is invertible for all $\lambda \neq 0$. If $f(x_0) = \lambda \neq 0$ for some x_0 then $\lambda e - f$ would not be invertible. Hence f(x) = 0 for all $x \in [0, 1]$.

2.12 Let \mathscr{A} be a commutative Banach algebra and $r = \inf_{a \neq 0} \frac{\|a^2\|}{\|a\|^2}$ and $s = \inf_{a \neq 0} \frac{\|\hat{a}\|_{\infty}}{\|a\|}$. Show that $s^2 \leq r \leq s$.

Proof. Note that $\|\Gamma a\|^2 = \|\Gamma a^2\| \le \|a^2\|$, it follows that $s^2 \le r$. Now we show the second half. Starting from $\|a^2\| \ge r\|a\|^2$, then $\|a^4\| \ge r\|a^2\|^2 \ge r^3\|a\|^4$. By induction one can show that $\|a^{2^k}\| \ge r^{2^k-1}\|a\|^{2^k}$, hence

$$||a^{2^k}||^{\frac{1}{2^k}} \ge r^{1-\frac{1}{2^k}}||a|$$

Letting $k \to \infty$, we obtain that $\|\hat{a}\|_{\infty} \ge r \|a\|$. It follows immediately that $s \ge r$.

3 Examples and Applications

3.1 Let

$$\mathscr{A} = \left\{ f : \mathbb{Z} \to \mathbb{C} : \|f\| = \sum_{n = -\infty}^{\infty} |f(n)| 2^{|n|} < \infty \right\}$$

under the usual addition of scalar multiplication and the following multiplication

$$f * g(n) = \sum_{k=-\infty}^{\infty} f(n-k)g(k).$$

Show that

- (1) \mathscr{A} is a commutative Banach algebra;
- (2) Let $K = \{z \in \mathbb{C} : \frac{1}{2} \le |z| \le 2\}$ then K is one-to-one correspondent with \mathfrak{M} and the Gelfand representation of \mathscr{A} is the Laurent series that are absolutely convergent on K.

Proof. (1) It is easy to verify that \mathscr{A} is a commutative algebra, and

$$\|f * g\| = \sum_{n=-\infty}^{\infty} \left| \sum_{k=-\infty}^{\infty} f(n-k)g(k) \right| 2^{|n|}$$

$$\leq \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} |f(n-k)| |g(k)| 2^{|n|}$$

$$= \sum_{k=-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} |f(n-k)| 2^{|n|} \right) |g(k)|$$

$$\leq \sum_{k=-\infty}^{\infty} (||f|| 2^{|k|}) |g(k)|$$

$$= ||f|| ||g||.$$

The only thing left is to show that \mathscr{A} is complete. Suppose that $\{f_n\}$ is a Cauchy sequence, i.e., for given ϵ there exists N such that for all $m > n \ge N$ it holds that $\sum_{k \in \mathbb{Z}} |f_m(k) - f_n(k)| 2^{|k|} < \epsilon$. This implies that $\{f_n(k)\}$ is Cauchy and thus $f_n(k) \to f(k)$ for some f. Note that $\sum_{k \in \mathbb{Z}} |f_m(k) - f(k)| 2^{|k|} \le \epsilon$, i.e., $f_m - f \in \mathscr{A}$, and therefore $f \in \mathscr{A}$.

- (2) For f ∈ 𝔄 define g_f(z) = ∑_{n∈Z} f(n)zⁿ, which is well-defined on K. Given z₀ ∈ K, consider homomorphism φ_{z0} : f ↦ g_f(z₀), then J_{z0} = ker φ_{z0} is a maximal ideal, since g_f(z) is continuous. Obviously z₀ ↦ J_{z0} is injective, and we shall show that this mapping is surjective also. Let J ∈ 𝔅, we want to find z₀ ∈ K such that φ_J = φ_{z0}, i.e., ⟨φ_J, f⟩ = g_f(z₀) for all f ∈ 𝔅. Let h ∈ A such that g_h(z) = z, then g_{hⁿ}(z) = zⁿ. Since |⟨φ_J, hⁿ|| = |⟨φ_J, hⁿ⟩| ≤ ||hⁿ|| = 2^{|n|} for all n, it follows that ⟨φ_J, h⟩ ∈ K, say z₀, then by continuity of φ_J, ⟨φ_J, f⟩ = g_f(z₀) for all f ∈ 𝔅. Actually f ↦ g_f is the Gelfand representation of 𝔅.
- 3.2 Let \mathscr{A} be the semi-simple commutative Banach algebra in Problem 2.11. Find its maximal ideal space \mathfrak{M} . For $x \in [0, 1]$ define

$$J = \{ f \in \mathscr{A} : f(x) = f'(x) = 0 \},$$

show that J is a closed ideal of \mathscr{A} and \mathscr{A}/J is a two-dimensional algebra with one-dimensional radical.

Proof. Similarly to Theorem 5.3.1, we have that \mathfrak{M} is homeomorphic and isomorphic to [0, 1]. For a given $x \in [0, 1]$, it is obvious that J is a closed ideal. It is easy to verify that $\phi : \mathscr{A}/J \to \mathbb{C}^2$ as $\phi(f) = (f(x), f'(x))$ is an isomorphism, where the multiplication of \mathbb{C}^2 is defined as

$$(x_1, y_1)(x_2, y_2) = (x_1x_2, x_1y_2 + x_2y_1).$$

It is then easy to see that the identity element of \mathbb{C}^2 is (1,0) and all the non-invertible elements have the form (0,z). In fact, those non-invertible elements constitute the only maximal ideal in \mathscr{A} . Hence the radical is one-dimensional.

3.3 Let \mathfrak{M} be a compact T_2 space. Show that there exists a one-to-one correspondence between the set of all closed subsets of M and the set of closed ideals of C(M).

Proof. Suppose X is a closed subset of M. Define $J_X = \{f \in C(M) : f(x) = 0 \text{ for all } x \in X\}$, which is clearly a closed ideal of C(M). The map $X \mapsto J_X$ is clearly injective by Urysohn's Lemma. Now we prove the converse. Suppose that J is a closed ideal of C(M), let $X = \bigcap_{f \in J} \{x : f(x) = 0\}$, which is the intersection of closed sets, and thus closed. From Theorem 5.3.1 we know that X is non-empty and thus $J \subseteq J_X$. Let $f \in J_X$. Given any positive ϵ let $F_{\epsilon} = \{x \in M : |f(x)| \ge \epsilon\}$ then F_{ϵ} is compact and disjoint from X. If there exists $g_{\epsilon} \in J$ such that $g_{\epsilon} = 1$ on F_{ϵ} and $|g_{\epsilon}| \le 1$ on M, then $fg_{\epsilon} \in J$ and $||f - fg_{\epsilon}|| \le \epsilon$, which implies that $f \in I$ since J is closed. Therefore $J = J_X$.

Now we shall construct such g_{ϵ} . For any $x \notin F_{\epsilon}$ there exists $f_x \in J$ such that $f_x(x) \neq 0$ and thus $f_x(x)$ is non-zero on a neighbbourhood of x. Since F_{ϵ} is compact, we can choose a finite cover of the neighbourhoods corresponding to x_1, \ldots, x_n . Then

$$h_{\epsilon}(x) = \sum_{i=1}^{n} f_{x_i}(x) \overline{f_{x_i}(x)} = \sum_{i=1}^{n} |f_{x_i}(x)|^2$$

is contained in J and positive on F_{ϵ} . Since F_{ϵ} is continuous, h_{ϵ} attains minimum c at some x_0 . Now let $k_{\epsilon}(x) = \max\{h_{\epsilon}(x), c\}$, then $k_{\epsilon} \in C(M)$, $k_{\epsilon} > 0$ everywhere and $k_{\epsilon} = h_{\epsilon}$ on F_{ϵ} . Finally let $g_{\epsilon} = k_{\epsilon}^{-1}h_{\epsilon}$.

3.4 Let $\mathscr{A} = C^n[0,1]$ with norm

$$||f|| = \sup_{0 \le t \le 1} \sum_{k=0}^{n} \frac{|f^{(k)}(t)|}{k!}.$$

Show that, under the usual addition, multiplication and scalar multiplication of functions, \mathscr{A} is a Banach algebra. How to characterise its maximal ideals?

Proof. It is easy to verify that \mathscr{A} is an algebra and $||fg|| \leq ||f|| ||g||$. To show the completeness of \mathscr{A} recall that if $u_n \to u$ and $u'_n \to v$ uniformly, where u_n, u, u'_n, v are continuous, then u' = v. It is then straightforward to see that \mathscr{A} is complete, and thus a Banach algebra. Similar to the case of $C^1[0,1]$, the maximal ideals are homomorphic and isomorphic to [0,1].

- 3.5 Define positionwise multiplication on ℓ^1 . Show that ℓ^1 is a commutative Banach algebra without identity. Furthermore, show that
 - (1) There exists a one-to-one correspondence between \mathfrak{M} and \mathbb{Z} ;
 - (2) Gelfand topology is discrete topology;

conclusion follows from the closedness of J.

(3) There exists a one-to-one correspondence between the set of closed ideals of ℓ^1 and the set of subsets of \mathbb{Z} .

Proof. It is clear that ℓ^1 is commutative. If it has identity e, then e = (1, 1, 1, ...), which is not in ℓ^1 . Hence ℓ^1 has no identity. It is also clear that $||xy|| \leq ||x|| ||y||$. Therefore ℓ^1 is a Banach algebra. For the next problems, we can replace \mathbb{Z} by \mathbb{Z}^+ , the set of non-negative integers.

(1) Let $n \in \mathbb{Z}^+$. Consider $J_n = \{x \in \ell^1 : x_n = 0\}$, which is clearly an ideal. It is also easy to see that J_n is maximal, and the map $n \mapsto J_n$ is injective.

For n = 0, consider $J_0 = \{x \in \ell^1 : \exists N_x \forall n \ge N_x, x_n = 0\}$, which is also clearly a maximal ideal.

Now we prove the converse. Let J be a maximal ideal. If for any k there exists $x_k \in J$ such that $x_{k,k} \neq 0$, then $x_{k,k}e_k \in J$ and thus $e_k \in J$. For any $x \in \ell^1$, all finite truncations of x are in J. We conclude that $J_0 \subseteq J$ and by maximality of J, we have that $J = J_0$. Otherwise, there exists n such that $x_n = 0$ for all $x \in J$, so that $J \subseteq J_n$ and thus $J = J_n$ by maximality of J.

- (2) From part (1) it is clear that $\hat{x}(n) = x_n$ for all $x \in \ell^1$. There exists $x \in \ell^1$ such that $x_i \neq x_j$ for all pair $i \neq j$. Since \hat{x} is continuous under Gelfand topology, it must be discrete.
- (3) For any non-empty subset I ⊆ Z⁺, consider J_I = {x ∈ l¹ : x_n = 0 for all n ∈ I}. It is clear that J_I is a closed ideal, and the map I → J_I is injective. We shall show the converse. Let J be a closed ideal. Consider I = ⋂_{x∈J} Z(x) where Z(x) = {n ∈ Z⁺ : x_n = 0}. We claim that I ≠ Ø. If for any k there exists x_k ∈ J such that x_{k,k} ≠ 0, then x_{k,k}e_k ∈ J and thus e_k ∈ J. As a consequence, for any x ∈ l¹, all finite truncations of x are in J. Since J is closed, we conclude that J = l¹. Contradiction.

Hence $I \neq \emptyset$. We have seen that $J \subseteq J_I$. Now we shall show that $J = J_I$. From a similar argument to the above, we have $e_k \in J$ for all $k \notin I$, hence any $x \in J_I$ can be approximated by its finite truncations, and $\overline{J} = J_I$. The

3.6 Let \mathscr{A} be a semi-simple commutative Banach algebra. Prove that $\Gamma(\mathscr{A})$ is closed in $C(\mathfrak{M})$ if and only if there exists a constant K such that $||a||^2 \leq K ||a^2||$ for all $a \in \mathscr{A}$.

Proof. We use the notations of Problem 5.2.12.

`If': The assumptions implies that $r \geq \frac{1}{K} > 0$, thus s > r > 0, i.e., $s ||a|| \leq ||\hat{a}||$ for all $a \in \mathscr{A}$. Suppose that $\{\widehat{a_n}\}$ is a Cauchy sequence in $C(\mathfrak{M})$, then $||a_n||$ is a Cauchy sequence in \mathscr{A} . Hence there exists $a \in \mathscr{A}$ such that $a_n \to a$. By continuity of Γ , it holds that $\widehat{a_n} \to \widehat{a}$, whence it follows that $\Gamma(\mathscr{A})$ is closed.

`Only if': It suffices to show that $s \neq 0$ then $r \geq s^2 > 0$. The Gelfand transform $a \mapsto \hat{a}$ is a continuous isomorphism between two Banach spaces, \mathscr{A} and $C(\mathfrak{M})$, as $\Gamma(\mathscr{A})$ is closed and \mathscr{A} is semisimple. By Open Mapping Theorem, Γ^{-1} exists and is continuous, that is, there exists c such that $\|\Gamma^{-1}\hat{a}\| \leq c \|\hat{a}\|$ for all $\hat{a} \in C(\mathscr{A})$, i.e., $\|a\| \leq c \|\hat{a}\|$ for all $a \in \mathscr{A}$.

4 C^* -algebra

4.1 Let \mathscr{A} be a commutative Banach algebra. Suppose that \mathscr{A} is semi-simple, then every involution on \mathscr{A} is continuous.

Proof. By Closed Graph Theorem it suffices to show that involution is closed, that is, suppose that $a_m \to 0$ and $a_m^* \to a$, we need to show that a = 0. Since \mathscr{A} is semi-simple, we need only to show that r(a) = 0. In factom $r(a) \leq r(a - a_m^*) + r(a_m^*) \leq ||a - a_m^*|| + ||a_m^*|| \to 0$.

4.2 Verify that $L^1(\mathbb{R})$ is a Banach algebra under the multiplication of convolution

$$(x*y)(t) = \int_{\mathbb{R}} x(s)y(t-s)ds$$

and involution

$$x^*(t) = \overline{x(-t)}.$$

Is it a C^* -algebra?

Proof. We have that

$$(x*y)^*(t) = \overline{(x*y)(-t)} = \overline{\int_{\mathbb{R}} x(s)y(-t-s)ds} = \int_{\mathbb{R}} \overline{x(s)y(t-s)}ds$$
$$= \int_{\mathbb{R}} \overline{x(-s)y(-t+s)}ds = \int_{\mathbb{R}} x^*(s)y^*(t-s)ds = x^*y^* = y^*x^*$$

since convolution is commutative. The rest assumptions are easy to verify. Hence $L^1(\mathbb{R})$ is a Banach algebra with involution as defined. It is not a C^* -algebra. Take $f(x) = (\operatorname{sgn} x)\chi_{[-1,1]}(x)$, then

$$(f^*f)(x) = \begin{cases} 2-3|s|, & |s| \le 1; \\ -2+|s|, & 1 < |s| \le 2; \\ 0, & \text{otherwise.} \end{cases}$$

and $||f^*f|| = \frac{8}{3}$ while ||f|| = 2, so $||f^*f|| \neq ||f||^2$.

4.3 Consider the algebra of analytic functions $A_0(\mathbb{D})$. Show that conjugation $f \mapsto \overline{f}$ is an involution on $A_0(\mathbb{D})$ and under which $A_0(\mathbb{D})$ is a C^* -algebra. Show the map $* : f \mapsto f^*(z) = \overline{f(\overline{z})}$ is an involution, too. Is $A_0(\mathbb{D})$ a C^* -algebra with this involution?

Proof. The statement crossed out does not hold, as \overline{f} is not necessarily analytic when f is analytic. It is obvious that * is an involution. Let f(z) = iz + 1, then $f^*(z) = -iz + 1$, so $||f^*f|| = \sup_{|z| \le 1} |1 + z^2| = 3$ while $||f||^2 = 4$. Hence $A_0(\mathbb{D})$ with * as involution is not a C^* -algebra. 4.4 Let \mathscr{A} be a Banach algebra with involution * and S be a subset of A. We say that S is *regular* if

- (1) S is commutative, i.e., ab = ba for any $a, b \in S$;
- (2) S is closed under involution, i.e., whenever $a \in S$ it holds that $a^* \in S$.

Obviously for any $a \in S$ we have $aa^* = a^*a$. A regular subset is said to be *maximal* if it is not a proper subset of any normal subset. Let \mathscr{B} be a maximal regular subset of \mathscr{A} , show that

- (1) \mathscr{B} is a closed commutative subalgebra of \mathscr{A} ;
- (2) $\forall a \in \mathscr{B}$, it holds that $\sigma_{\mathscr{B}}(a) = \sigma_{\mathscr{A}}(a)$.
- *Proof.* (1) Let $a, b \in \mathscr{B}$. It is clear that a+b commutes with \mathscr{B} because each of a and b commutes with \mathscr{B} . Hence \mathscr{B} is closed under addition since \mathscr{B} is maximal. Similarly it can be shown that S is closed under multiplication and scalar multiplication. The laws of associativity and distributivity are inherited from \mathscr{A} . Therefore \mathscr{B} is a commutative subalgebra.

Now we shall show that \mathscr{B} is closed. Suppose $a_n \to a$ and $\{a_n\} \subseteq \mathscr{B}$. From the continuity of multiplication, we have that a commutes with \mathscr{B} . Since \mathscr{B} is maximal, it must hold that $a \in \mathscr{B}$. Therefore \mathscr{B} is closed.

- (2) Clearly $\sigma_{\mathscr{A}}(a) \subseteq \sigma_{\mathscr{B}}(a)$. If $\lambda \notin \sigma_{\mathscr{A}} a$ then $(\lambda e a)^{-1}$ exists. Since $(\lambda e a)^{-1}$ commutes with \mathscr{B} and \mathscr{B} is maximal, we have $(\lambda e a)^{-1} \in \mathscr{B}$ and therefore $\lambda \notin \sigma_{\mathscr{B}}(a)$. Hence $\sigma_{\mathscr{B}}(a) = \sigma_{\mathscr{A}}(a)$. \Box
- 4.5 Let \mathscr{A} be a C^* -algebra, show that
 - (1) Let a be an hermitian element, then $\sigma(a) \subset \mathbb{R}^1$;
 - (2) If *a* is normal $(aa^* = a^*a)$ then ||a|| = r(a);
 - (3) $||a||^2 = r(aa^*).$

Proof. Let \mathscr{B} be the closure of the subalgebra generated by e, a, elements of form $(\lambda e - a)^{-1}$ for $\lambda \in \rho(a)$. Then \mathscr{B} is commutative and $\sigma_{\mathscr{B}}(a) = \sigma_{\mathscr{A}}(a)$. We consider Gelfand transform on \mathscr{B} for part (1) and (2).

- (1) It follows immediately from Arens' Lemma.
- (2) In fact, normality of a means that a and a^* is commutative. Hence the proof of Theorem 5.4.8 (3) holds, and $||a|| = ||\Gamma a|| = r(a)$.
- (3) It is clear that aa^* is normal, hence by part (2), $r(aa^*) = ||aa^*|| = ||a^*||^2 = ||a||^2$.
- 4.6 Let \mathscr{A} be a C^* -algebra and $a \in \mathscr{A}$. We say a is positive, denoted by $a \ge 0$, if a is hermitian and $\sigma(a) \subseteq [0, +\infty]$. Show that
 - (1) $\forall a \in \mathscr{A}, aa^* \geq 0;$
 - (2) If $a, b \in \mathscr{A}$, $a \ge 0$, $b \ge 0$ then $a + b \ge 0$;
 - (3) For all $a \in \mathscr{A}$, $e + aa^*$ is invertible in \mathscr{A} .
 - *Proof.* (1) It is trivial that aa^* is hermitian. As in the previous problem, we consider Gelfand transform in $C^*(a)$, which is commutative since $a = a^*$. Thus $\Gamma aa^* = \Gamma a\Gamma a^* = |\Gamma a|^2 \ge 0$, therefore $aa^* \ge 0$.
 - (2) First consider C*(a), which is commutative. We claim that ||λe-a|| ≤ λ for all λ ≥ ||a||. In fact, Γ(λe-a) = λ Γ(a). Since a ≥ 0, Γ(a)(J) ∈ [0, λ], we have that Γ(λe a)(J) ∈ [0, λ] and thus ||λe a|| = ||Γ(λe a)|| ≤ λ. Similarly for b ≥ 0, we can find μ such that ||μe b|| ≤ μ. Hence ||(λ + μ)e (a + b)|| ≤ ||λe a|| + ||μe b|| ≤ λ + μ. Now in C*(a + b),

$$\lambda+\mu\geq \|\lambda+\mu)e-(a+b)\|=\|\Gamma((\lambda+\mu)e-(a+b))\|\geq |(\lambda+\mu)-\Gamma(a+b)(J)|\geq (\lambda+\mu)-\Gamma(a+b)(J)|\geq (\lambda+\mu)-\Gamma(a+b)(J)|\geq (\lambda+\mu)-\Gamma(a+b)(J)|\leq (\lambda+\mu)-\Gamma(a+b)(J)|< (\lambda+\mu)-\Gamma$$

for all J, whence it follows that $\Gamma(a+b)(J) \ge 0$ for all J, that is, $a+b \ge 0$. Similarly, by choosing an appropriate subalgebra, we may, without loss of generality, assume that \mathscr{A} is commutative. Then $\Gamma(a+b) = \Gamma a + \Gamma b \ge 0$. Hence $a+b \ge 0$.

- (3) This is a direct corollary of part (1).
- 4.7 Let \mathscr{X} be a Hilbert space and \mathscr{A} a C^* -algebra of $L(\mathscr{X})$. Define

$$\mathscr{A}^{c} = \{ T \in L(\mathscr{X}) : TA = AT, \, \forall A \in \mathscr{A} \},\$$

which is called the *centre* of \mathscr{A} . Show that \mathscr{A}^c is a C^* -algebra and closed under weak topology.

Proof. It is easy to see that \mathscr{A}^c is closed under addition, multiplication, scalar multiplication and involution, whence it follows that \mathscr{A}^c is a C^* -algebra. Now we shall show it is closed under weak topology. Suppose that $T_n \rightharpoonup T$, $\{T_n\} \subseteq \mathscr{A}^c$. Note that \mathscr{X} is a Hilbert space and thus reflexive, we have $T_n x \to Tx$ for all $x \in H$. Hence $AT_n x \to ATx$, that is, $T_n Ax \to ATx$ for all $A \in \mathscr{A}$ and $x \in H$. Recall that multiplication is continuous, $T_n A \to TA$, hence TAx = ATx for all $x \in H$, that is exactly TA = AT for all $A \in \mathscr{A}$. Therefore $T \in \mathscr{A}^c$ and \mathscr{A}^c is closed under weak topology.

5 Normal Operators in Hilbert spaces

- 5.1 Let N be a normal operator in a Hilbert space. Show that
 - (1) If $\phi \in C(\sigma(N))$ then $\sigma(\phi(N)) = \phi(\sigma(N))$;
 - (2) If $\phi \in C(\sigma(N))$, $\psi \in C(\sigma(\phi(N)))$, then $(\psi \circ \phi)(N) = \psi(\phi(N))$.
 - *Proof.* (1) Since $\lambda I \phi(N) = (\lambda \phi)(N)$, we have that $\lambda I \phi(N)$ is invertible $\Leftrightarrow \phi(z) \neq \lambda$ for all $z \in \sigma(N)$ $\Leftrightarrow \lambda \notin \phi(\sigma(N))$.
 - (2) By part (1), ψ(φ(N)) is well-defined. It is clear that the conclusion holds when ψ is a polynomial of z and z̄. For a general ψ, pick a sequence of polynomials ψ_n → ψ, then ψ_n ∘ φ → ψ ∘ φ, the conclusion follows from the continuity of the isomorphism between A_N and C(σ(N)).
- 5.2 Show that N is normal iff $||Nx|| = ||N^*x||$ for all x.

$$\textit{Proof. } N^*N = NN^* \Leftrightarrow \langle N^*Nx, x \rangle = \langle NN^*x, x \rangle \Leftrightarrow \langle Nx, Nx \rangle = \langle N^*x, N^*x \rangle \Leftrightarrow \|Nx\|^2 = \|N^*x\|^2. \qquad \square$$

- 5.3 Let N be a normal operator. Show that
 - (1) $||N|| = \sup\{|\lambda| : \lambda \in \sigma(N)\}$, and if P is a polynomial then

$$||P(N)|| = \sup\{|P(\lambda)| : \lambda \in \sigma(N)\}$$

- (2) for $A \in L(\mathscr{X})$ it holds that $||A||^2 = r(AA^*)$.
- *Proof.* (1) When N is normal, P(N) is normal, too. The conclusion follows from Problem 5.4.5(2). (2) Problem 5.4.5(3).
- 5.4 Show that the product of two positive operators is positive.

Proof. Notice that $\Gamma(ab) = \Gamma a \Gamma b$.

5.5 Let $A, B \in L(\mathscr{X}), 0 \le A \le B$. Suppose that A and B are commutative, then $A^2 \le B^2$. However, this is not necessarily true when A and B are not commutative.

Proof. Note that $B^2 - A^2 = (B + A)(B - A)$ because A and B are commutative. The conclusion then follows from the previous problem and Problem 5.4.6.

Take
$$\mathscr{X} = \mathbb{R}^2$$
. Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 4 \\ 2 & 10 \end{pmatrix}$, then $B \ge A \ge 0$ but $AB \ne BA$. Then $B^2 - A^2 = \begin{pmatrix} 4 & 32 \\ 10 & 79 \end{pmatrix}$, which is not positive.

5.6 Let N be a normal operator, then there exists $P, Q \in L(\mathcal{X})$, P is positive and unique, Q is unitary, such that

$$N = PQ = QP.$$

This is called polar decomposition of N.

Proof. Put p(z) = |z| and q(z) = z/|z| if $z \neq 0$, q(0) = 1. Then p and q are continuous functions on $\sigma(N)$. Put $P = \tilde{\Gamma}^{-1}p$ and $Q = \tilde{\Gamma}^{-1}q$. Since $p \ge 0$, we know that $P \ge 0$. Since $q\bar{q} = 1$, $QQ^* = Q^*Q = I$. Since z = p(z)q(z), the relation N = PQ = QP follows from the symbolic calculus.

Now we prove that uniqueness of P. If N = QP, P positive and Q unitary, then $N^*N = P^*Q^*QP = P^*P = P^2$. The uniquesness of P follows from the uniqueness of $(N^*N)^{\frac{1}{2}}$.

5.7 Let \mathscr{X} be a locally compact topological space and \mathscr{H} a Hilbert space. Definition 5.5.13 gives a spectral family $(\mathscr{X}, \mathscr{B}, E)$, show that if $\Delta_1, \Delta_2 \in \mathscr{B}$ then

$$E(\Delta_1 \cap \Delta_2) = E(\Delta_1)E(\Delta_2).$$

Proof. First we show that if $\Delta_1 \cap \Delta_2$ = then $E(\Delta_1)E(\Delta_2) = 0$. Note that $E(\Delta_1 \cup \Delta_2) = E(\Delta_1) + E(\Delta_2)$ is a projector, hence $(E(\Delta_1) + E(\Delta_2))^2 = E(\Delta_1) + E(\Delta_2)$, whence it follows that $E(\Delta_1)E(\Delta_2) = 0$. In the general case, $E(\Delta_1) = E(\Delta_1 \setminus \Delta_2) + E(\Delta_1 \cap \Delta_2)$ and $E(\Delta_2) = E(\Delta_1 \setminus \Delta_1) + E(\Delta_1 \cap \Delta_2)$. Hence

general case, $E(\Delta_1) = E(\Delta_1 \setminus \Delta_2) + E(\Delta_1 + \Delta_2)$ and $E(\Delta_2) = E(\Delta_1 \setminus \Delta_1) + E(\Delta_1 + \Delta_2)$. There

$$E(\Delta_1)E(\Delta_2) = (E(\Delta_1 \setminus \Delta_2) + E(\Delta_1 \cap \Delta_2))(E(\Delta_1 \setminus \Delta_1) + E(\Delta_1 \cap \Delta_2)).$$

Notice that $\Delta_1 \setminus \Delta_2$, $\Delta_2 \setminus \Delta_1$ and $\Delta_1 \cap \Delta_2$ are mutually disjoint, the conclusion follows from the expansion of the right-hand side.

5.8 Let N be a normal operator and E is the associated spectral family. Then for any Borel set $\Delta \subseteq \mathbb{C}$, $E(\Delta)$ is contained in the weak closure of the C^* algebra generated by N and N^{*}. Let $S \in L(\mathscr{X})$, SN = NS, show that $SE(\Delta) = E(\Delta)S$.

LEMMA 1 The unit ball of a Banach space X is weak*-dense in the unit ball of X^{**} .

PROOF OF LEMMA I Suppose there exists $x^{**} \in X^{**}$, $\|x\|_{X^{**}} \leq 1$, x is not in the weak*-closure of $B(X) \subseteq X^{**}$. Hence there exists a functional $f \in X^*$ and a real number c, by Hahn-Banach Theorem, such that $\Re\langle x, f \rangle < c < \Re\langle x^{**}, f \rangle$ for all x in the unit ball of X. Since 0 is contained in the unit ball of X, c > 0. We can then divide by c and replace f by $c^{-1}f$, and assume that there exists $f \in X^*$ such that $\Re\langle x, f \rangle < 1 < \Re\langle x^{**}, f \rangle$. Since -ix is in the unit ball of X whenever x is in it, this implies that $\Im\langle x, f \rangle < 1$ and thus $|\langle x, f \rangle| \leq 1$ for all $||x|| \leq 1$. Hence $||f||_{X^*} \leq 1$, then $1 < |\langle x^{**}, f \rangle| \leq ||x^{**}|| ||f|| \leq 1$. Contradiction.

Lemma 2 Let X be a compact space and $\phi \in B(X)$. Then there exists a sequence of continuous functions $\{u_n\}$ on X such that $||u_n|| \le ||\phi||$ for all n and $\int u_n \, dm \to \int \phi \, dm$ for all $m \in M(X)$.

PROOF OF LEMMA 2 Note that C(X) is a Banach space. The previous lemma tells us that the unit ball of C(X) is weak*-dense in the unit ball of $C(X)^{**} = M(X)^*$. Identify B(X) with a subspace of $M(X)^*$, and we are done.

Proof. By Lemma 2 and Theorem 5.5.14, there exist $\{f_n\} \subseteq C(\sigma(N))$ such that

$$(f_n(N)x, y) = \int f_n(z) \ d(E(z)x, y) \to \int \chi_{\Delta}(z) \ d(E(z)x, y) = (\chi_{\Delta}(N)x, y)$$

for all x and y. Since $f_n(N) \in \mathscr{A}_N$, the result above shows that χ_{Δ} is in the weak closure of \mathscr{A}_N . Finally note that $\chi_{\Delta}(N) = E(\Delta \cap \sigma(N)) = E(\Delta)$. Also we have $||f_n|| \le ||\chi_{\Delta}|| = 1$, thus by Theorem 5.5.12(4), $SE(\Delta) = E(\Delta)S$.

- 5.9 Let N be a normal operator. Prove that
 - (1) N is unitary $\Leftrightarrow \sigma(N) \subset S^1$;
 - (2) N is self-adjoint $\Leftrightarrow \sigma(N) \subset \mathbb{R}^1$;
 - (3) N is positive $\Leftrightarrow \sigma(N) \subset \mathbb{R}^1_+$;
 - *Proof.* (1) N is unitary $\Rightarrow 1 = \Gamma(NN^*) = (\Gamma N)(\Gamma N^*) = \Gamma N \overline{\Gamma N} = |\Gamma N|^2 \Rightarrow \sigma(N) \subseteq S^1$. Reversing the procedure above, $\sigma(N) \subseteq S^1 \Rightarrow \Gamma(NN^*) = 1$ and similarly $\sigma(N) \subseteq S^1 \Rightarrow \Gamma(N^*N) = 1$. It follows from the injectivity of Γ that $NN^* = N^*N = I$, i.e., N is unitary.
 - (2) N is self-adjoint $\Leftrightarrow \Gamma N = \Gamma N^* = \overline{\Gamma N} \Leftrightarrow \Gamma N \in \mathbb{R} \Leftrightarrow \sigma(N) \subseteq \mathbb{R}^1$.
 - (3) See Theorem 5.5.5.
- 5.10 Suppose that N is a normal operator and $\sigma(N)$ is countable. Then there is an orthonormal basis $B = \{y\} \subseteq \mathscr{X}$, where y's are eigenvectors of N, and Fourier expansion

$$x = \sum_{y \in B} (x, y) y, \forall x \in \mathscr{X},$$

where the Fourier coefficients (x, y) = 0 except for countably many ones.

Proof. We claim that if x and y belong to different eigenvalues, say λ and μ , then $\langle x, y \rangle = 0$. In fact, $E(\{\lambda\})\mathscr{X} = \ker(\lambda I - N)$ and $E(\{\lambda\})\mathscr{X}$ is orthogonal to $E(\{\mu\})\mathscr{X}$.

Since ker $(\lambda I - T)$ is closed, so we can choose an orthonormal basis. Combining those bases of each $\lambda \in \sigma(N)$, we obtain an orthonormal set in \mathscr{H} . We shall show that it is complete, i.e., $x \perp \{y\}$, or, $x \perp \text{ker}(\lambda I - T)$ for all λ implies that x = 0.

Let $P_{\lambda} = E(\{\lambda\})$. Suppose that $x \perp \ker(\lambda I - T) = \operatorname{im} P_{\lambda}$, then $x \in \operatorname{im} P_{\lambda}^{\perp} = \ker P_{\lambda}$, that is, $P_{\lambda}x = 0$. Suppose that $\sigma(N) = \{\lambda_1, \lambda_2, \dots\}$, then

$$x = Ix = E(\sigma(N)x = \lim_{n \to \infty} \sum_{k=1}^{n} P_{\lambda_k}x = 0$$

as desired. Fourier expansion follows from Theorem 1.6.23 and 1.6.25.

5.11 Let N be a normal operator on \mathcal{H} . Show that N is compact if and only if all following three conditions hold:

- (1) $\sigma(N)$ is countable;
- (2) If $\sigma(N)$ has a limit point, it must be 0;
- (3) If $\lambda \in \sigma(N)$, $\lambda \neq 0$, then dim $E(\{\lambda\})\mathcal{H} < +\infty$.

Proof. Only if': This is rather straightforward. Since N is compact, we have that $\sigma(N) \setminus \{0\} = \sigma_p(N) \setminus \{0\}$ and $\sigma_p(N)$ has at most one limit point 0 (Theorem 4.3.1). Hence (1) and (2) hold, while (3) is just Fredholm Theorem (Theorem 4.2.10(3)), i.e., dim ker($\lambda I - N$) < + ∞ .

If: Suppose that $|\lambda_1| \ge |\lambda_2| \ge \cdots$. Denote $P_n = E(\{\lambda_1, \ldots, \lambda_n\})$ and P_0 be the projector along ker N. Let $N_n = NP_n$. Then dim $N_n \mathscr{H} \le \sum E(\lambda_i) \mathscr{H} < +\infty$, which implies that N_n is finite-rank and thus compact. If $\sigma(N)$ is finite then $N_n = N$ for some n and N is therefore compact. Now assume that $\sigma(N)$ is infinite and thus $\lambda_n \to 0$. We want to show that $N_n \to N$.

Construct an orthonormal basis as in the previous problem, we have that $x = \sum (x, e_i)e_i$ for all x and $Nx = \sum \lambda_i(x, e_i)e_i$. Note that $N_n x$ is just a partial sum of Nx, containing all terms up to λ_n (inclusive). Then the argument in Remark 1 after Theorem 4.4.7 is valid, and we see that $N_n \to N$ and N is therefore compact. \Box

5.12 Let N be a compact normal operator, show that

- (1) There exists λ , an eigenvalue of N, such that $||N|| = |\lambda|$;
- (2) If $\phi \in C(\sigma(N))$ and $\phi(0) = 0$, then $\phi(N)$ is compact.
- *Proof.* (1) Suppose that $|\lambda_1| \ge |\lambda_2| \ge \cdots$. We claim that $||N|| = |\lambda_1|$. Problem 5.5.10 and Problem 5.5.11 tells us that N is diagonalisable, $Nx = \sum \lambda_i(x, e_i)e_i$. Hence

$$\|Nx\| = \left\|\sum \lambda_i(x, e_i)e_i\right\| = \left(\sum |\lambda_i|^2 |(x, e_i)|^2\right)^{\frac{1}{2}} \le |\lambda_1| \left(\sum |(x, e_i)|^2\right)^{\frac{1}{2}} \le |\lambda_1| \|x\|,$$

hence $||N|| \leq |\lambda_1|$. For $x \in \ker(\lambda_1 I - N)$, it holds that $||Nx|| = ||\lambda_1||, ||x||$. Therefore $||N|| = |\lambda_1|$.

- (2) It is clear that φ(N) is normal. Then we shall verify the three conditions in the previous problem are satisfied. Firstly, σ(φ(N)) = φ(σ(N)) is countable because σ(N) is countable. Secondly, suppose y₀ is a limit point of σ(φ(N)) = φ(σ(N)), then there exists {x_n} ⊆ σ(N) (x_n mutually different) such that φ(x_n) → y₀. Since σ(N) is compact, we can find a subsequence of x_n, still denoted by x_n, such that x_n → x₀ for some x₀ ∈ σ(N). We know that x₀ = 0, and thus y₀ = φ(x₀) = φ(0) = 0. Thirdly, note that E_{φ(N)}(λ) = E_N(φ⁻¹(λ)) and φ⁻¹(λ) is finite when λ ≠ 0. It follows immediately that dim E_{φ(N)}(λ)ℋ < ∞ when λ ≠ 0.
- 5.13 Let N be a normal operator and E the spectral family corresponding to N. Let $\phi \in C(\sigma(N))$ and $\omega = \ker \phi$. Show that

$$\ker \phi(N) = \operatorname{im} E(\omega).$$

Proof. ker $\phi(N) = \operatorname{im} E_{\phi(N)}(\{0\}) = \operatorname{im} E_N(\phi^{-1}(\{0\})) = \operatorname{im} E_N(\omega)$, as it is not difficult to show that $E_{\phi(N)}(\Omega) = E_N(\phi^{-1}(\Omega))$ using Problem 5.5.1.

5.14 Let N be a normal operator, O an open set containing $\sigma(N)$ with a Jordan boundary. Suppose that ϕ is analytic on a neighbourhood of $\sigma(N)$ and O is contained in the analytic domain of ϕ . Show that

$$\phi(N) = \frac{1}{2\pi i} \int_{\partial O} \phi(z) (zI - N)^{-1} dz.$$

Proof. It is known in Theorem 2.6.9 that $(zI-N)^{-1}$ is analytic on its domain. Next, we show that if F is an operatorvalued analytic function over a domain Ω then $\int_{\partial\Omega} Fdz = 0$. In fact, let ϕ be any continuous functional, $\phi \circ F$ is analytic. It follows from continuity that $\phi(\int_{\partial\Omega} Fdz) = \int_{\partial\Omega} \phi \circ Fdz$, which equals to 0 by Cauchy's Theorem. Note that it holds for any continuous functional ϕ , by Hahn-Banach Theorem, it must hold that $\int_{\partial\Omega} Fdz = 0$. Hence for polynomial ϕ , we can replace ∂O by a possibly larger circle outside $|z| \leq ||N||$. It is therefore easy to verify the desired equation, using expansion $(zI - N)^{-1} = z^{-1} \sum_{i=0}^{\infty} z^{-i} A^i$. Having established the equation for polynomial ϕ , we can approximate a general ϕ by polynomials, completing the proof. 5.15 Let N be a normal operator and C a connected component of $\sigma(N)$. Suppose that $\Gamma \subseteq \rho(N)$ is a Jordan curve, Γ encloses C and contains no other spectrum inside itself besides C. Show that

$$E(C) = \frac{1}{2\pi i} \oint_{\Gamma} (zI - N)^{-1} dz.$$

Proof. Let $P = \frac{1}{2\pi i} \oint_{\Gamma} (zI - N)^{-1} dz$. First we shall show that $P^2 = P$. Choose Γ_1 inside Γ such that Γ_1 encloses C also. Similar to the argument in the previous problem, we have that $\oint_{\Gamma_1} (zI - N)^{-1} dz = \oint_{\Gamma} (zI - N)^{-1} dz$.

$$\begin{split} P^2 &= \frac{1}{2\pi i} \oint_{\Gamma} (zI - N)^{-1} dz \frac{1}{2\pi i} \oint_{\Gamma_1} (wI - N)^{-1} dw \\ &= -\frac{1}{4\pi^2} \oint_{\Gamma} \int_{\Gamma_1} (zI - N)^{-1} (wI - N)^{-1} dw dz \\ &= -\frac{1}{4\pi^2} \oint_{\Gamma} \int_{\Gamma_1} \frac{(zI - N)^{-1} - (wI - N)^{-1}}{w - z} dw dz \\ &= -\frac{1}{4\pi^2} \oint_{\Gamma} (zI - N)^{-1} \int_{\Gamma_1} \frac{dw}{w - z} dz - \frac{1}{4\pi^2} \oint_{\Gamma_1} (wI - N)^{-1} \oint_{\Gamma} \frac{dz}{z - w} dw \\ &= 0 + \frac{1}{4\pi^2} \int_{\Gamma_1} 2\pi i (wI - N)^{-1} dw \\ &= \frac{1}{2\pi i} \oint_{\Gamma_1} (wI - N)^{-1} dw = P. \end{split}$$

It is clear from the definition that P commutes with any bounded operator that commutes with N. Now we shall show that the spectrum of N restricted to im P is contained in C, that is, $\lambda I - N$ is invertible on im P for $\lambda \in \sigma(N) \setminus C$. Consider

$$Q = \frac{1}{2\pi i} \oint_{\Gamma} \frac{1}{\lambda - z} (zI - N)^{-1} dz$$

It is clear that QN = NQ and thus QP = PQ. In fact,

$$Q(\lambda I - N) = (\lambda I - N)Q = \frac{1}{2\pi i} \oint_{\Gamma} \frac{(\lambda - z)I + (zI - N)}{\lambda - z} (zI - N)^{-1} dz$$
$$= \frac{1}{2\pi i} \oint_{\Gamma} (zI - N)^{-1} dz + \frac{I}{2\pi i} \oint_{\Gamma} \frac{dz}{\lambda - z}$$
$$= P + 0 = P.$$

Note that P is the identity map on im P, hence Q is the the inverse of $(\lambda I - N)$ on im P. Also, the spectrum of N restricted to ker P is contained in $\sigma(N) \setminus C$, which can be shown similarly by replacing C by $\sigma(N) \setminus C$ (the connectedness of C is not essential, separation of two compact sets is).

Now we look at E(C), which satisfies all the properties that we have proved for P. As a consequence, it is easy to prove that PE(C) = P and E(C)P = E(C). Therefore P = E(C). \Box

6 Applications to Singular Integral Operators

No Exercises.