1 Basics of Algebras

1.1 Let ¢ be a non-zero linear fun&ional on an algebra &7 over complex numbers, satisfying (¢, ab) = (¢, a){(¢,b).
Such a linear fun&ional ¢ is also called a complex homomorphism. Show that
(1) if o7 has identity e then ¢(e) = 1,
(2) for any invertible a € 7, it holds that ¢(a) # 0.

Proof. (1) Since ¢ is nonzero, there exi§ts a such that ¢(a) # 0. Then ¢(a) = ¢(ae) = ¢(a)d(e), and thus
o(e) =1.
@) 1=¢(e) = p(aa™") = ¢(a)p(a™"). O

1.2 Let J be an ideal of algebra 7. Show that J is maximal iff </ /J does not contain a non-zero ideal.

Proof. *Only if": Let J be a maximal ideal of <. Suppose that # = &7 /J contains a non-zero ideal Jp. Consider
the natural maps ¢ : & — B and @) : B — AB/Jp. Itis clear that both ¢ and 1) are non-trivial homomorphisms,
and thus ker(¢ o ¢) is an ideal of &7 containing J. Since Jp is non-zero, there exits a € & such that [a] € Jp
and [a] # [0]. Therefore a € ker(¢ - ¢) but a ¢ J, which contradi&ts with the maximality of J.

“If": Suppose # = &7 /.J does not contain a non-zero ideal but J' D J is a bigger ideal of &7. Consider Jp =
{[z] € B :x € J'\ J}. Since J' \ J # (), we know that Jg # (. From J' # <7 we also know that Jg # 2.
Lastly, for all [a] € % and [j] € Jg, it holds that [a][j] = [aj] = [j] and [j][a] = [ja] = [j] because ja € J’ and
aj € J' as J' is an ideal. We have found that Jg is a non-zero ideal of Z. Contradiion. O

2 Banach Algebra

2.1 Let 47 be a Banach algebra with identity and G(&) be the set of all invertible elements in %7. Show that G(/) is

open and a — a~ ! is continuous.

Proof. We shall use the next problem in the proof. Let a € G(«7). Then for all b € B(a, W}l‘l)’ we have that
la=t(b —a)|| < 1. Hence e + a=1(b — a) is invertible and b = a(e + a~1(b — a)) is invertible.
To show the continuity of inverse map, we fir§t observe that for a,b € G(7) it holds that

b~ =a7Ml = la+n)~" —a”|

(

= lale+a™tp)~ —a7!
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For a given € > 0 we can choose ¢ such that
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then ||b=! — a™!|| < € whenever ||b — a| < 4. O



2.2 Let 7 be a Banach algebra with identity and a € & with ||a|| < 1. Show thate — a € G(&) and

(e —a) E a”.

Proof Letyn = ZTJLO a™. Since ||a|| < 1, itis easy to show that {yy } is Cauchy and hence y converges to some

y € /. Observe that (e — a)yn = yn(e —a) = e — a’¥ ™! — e as N — oco. Since multiplication is continuous,
we have that (e — a)y = y(e — a) = e, which shows thate —a € G(&/) and (e — a)~! = y. O

2.3 Let <7 be a Banach algebra with identity and a € 0(G()). Prove that
(1) Ifa, € G(«), a,, — a, then lim,,_, ||a,, || = oo

(2) 'There exi§ts b,, € #, ||b,,|| = 1, such that lim,,_, o ab,, = lim,,_,o bpa = 0.

Proof. (1) If |la, || < L foralln, then |la, ' (a—a,)|| < 1forn sufficiently large, which means that e +a,,* (a —
a,) € G() and a = a,(e + a, (a — a,)) € G(«). Contradi&tion.

(2) Suppose that a,, — a with a,, € G(«). Let b, = a,;'/||a; ||, then

la ‘W
llaball =
lan ™|

[(a —an + a,,)a;lH
T
H

lan
I(a — an)a;* + el
Iwnﬂ
I(a — an)az*[| + ]
B la
< Ja—an]+ lell

laz |

as n — oo. Hence ab,, — 0. Similarly we can show that b,a — 0.

d:{(%‘ §>:a,ﬁec}

be an algebra under the usual addition and multiplication of matrices. Show that &/ is a Banach algebra under the

norm
|G &)=t

Proof. 'The only less trivial part is to show the completeness. Suppose that {A4,,} C ¢/ is a Cauchy sequence. Since
|A;, — Al = | — @m| + |8 — Bml, we know that {a, } and {a,, } are Cauchy sequences, hence o, — « and
a f

0 . O

2.4 Let

Br, — [ for some « and f. It is then §traightforward to see that 4,, —

2.5 Let &7 be a Banach algebra with identity and ¢ : & — C a homomorphism. Then |¢(a)| < ||a| foralla € 7.

Proof: Suppose that |¢(a)| > ||a|| for some a. Let b = a/|¢(a)|, then |¢(b)| = 1 > ||b]|, and e — b is invertible.
Thus 1 = ¢(e) = ¢p(e — b)d((e — b)~1). Note that ¢(e — b) = ¢(e) — #(b) = 0. Contradiction. O



2.6

2.7

2.8

2.9

2.10

Let o be a commutative Banach algebra with identity. Show that a € & is invertible if and only if ¢(a) # 0 for
all non-trivial continuous homomorphism ¢ : & — C.

Proof. “Only if': Trivial, as 1 = ¢(e) = ¢p(a)p(a™).

“If": Suppose that a is not invertible. Let J be a maximal ideal containing a (J exists because a.o/ is an ideal). Then
by Gelfand-Mazur Theorem, o7 /J is isomorphic to C, and there exi$ts a natural continuous homomorphism from

¢ : & — Csuch that ¢;(a) = 0. Contradi&tion. O

Let o7 be a Banach algebra with identity and a € %7. Show that

(1) o(a) is compa&t;
(2) o(a) is not empty.

Proof (1) Let X € o(s). Itis clear that |[\| > [|a||, otherwise Ae — a = A(e — a/\) would be invertible as
la/A|| < 1. Hence o(a) is bounded.

Now we show that p(a) is open. Suppose that A € p(a), then e — a € G(&). Recall that G(&7) is open,
hence there exits € such that Ae — a + 1 € G(A) whenever ||7|| < €. In particular, choose 7 = de, where
|6] < €/]|e]|, it follows that (A + §)e — a is invertible.

(2) Suppose that o(a) = 0, then Ae — a is invertible for all \. Define 7(\) = (Ae — a)~!. The rest of the proof
goes as in the proof of Gelfand-Mazur Theorem. Finally we arrive at #(A) = 0 for all A. ContradiGtion. [

Let o7 be a Banach algebra with identity and a,b € &/. Show that

(1) If e — ab is invertible then e — ba is invertible, too;
(2) If A € o(ab), A # 0, then X € o(ba);
(3) If a is invertible then o (ab) = o(ba).

Proof (1) (e —ba)™! = e+ b(e — ab) " a.

(2) e — ba is invertible = ¢ — A~ !ba is invertible = (by the firt part) e — A~ 1ab is invertible => \e — ab is
invertible. Contradi¢tion.

(3) Ae — ab is invertible <= Aa~! — b is invertible <= \e — ba is invertible. O

Let o7 and % be commutative Banach algebras with identity and % semi-simple. Let ¢ : &7 — % be a homomor-
phism, show that ¢ is continuous.

Proof: We shall show that ¢ is closed, whence the continuity follows from Closed Graph Theorem. Suppose that
a, — 0in &7 and ¢(a,) — bin . We want to show that b = 0. If not, since 2 is semi-simple, there exifts a
maximal ideal J such that b ¢ J. By Gelfand-Mazur Theorem, there exists an isomorphism i : #/J — C, and
i([b]) # 0. Note that i 0otp o ¢ : &/ — C is a homomorphism, where 1 is the natural homomorphism from 2 to
A/ J. By Problem 2.4, |i ot o ¢(an)| < ||an| forall n. Let n — oo, we find that |i 0 ¢(b)| < 0, thus i o ¢p(b) =0
and ¢(b) = 0. Contradiétion. O

Let o7 be a Banach algebra with identity. Let
r(a) = sup{|A| : A € o(a)},
which is called the spectral radius of a. Show that for all a,b € <7,

1) 7(a) = lim, o0 [la™]|7;
(2) T(ab) = T(ba);
(3) if ab = ba then r(a +b) < r(a) + r(b) and r(ab) < r(a)r(b).



Proof. (1) According to Cauchy-Hadamard test, when A > limsup,,_, . [|a"| #, it holds that

©)

©)

-1 = a”
()\6 - a) - Z Ant1l’
n=0

Therefore 7(a) < limsup,, ,._ [|a”||%. Next we show that limsup,,_, . [[a”||* < r(a). Forall ¢ € &7*, the
fun&tion A — (¢, (Ae — a)~1) is analytic in the region |A| > r(a). Hence

6.0~y = Y2 200

and )
S N TR R PO
A=r(a)+e

= omi

1

Let M = max|y|=y(a)+e ||(Ae — a) 7|, then M < oo because (Ae — a) ™! is continuous w.r.t. A. Thus

[(¢,a™)| < [|SlIM (r(a) + )"
for all ¢ € o7*. Hence by Hahn-Banach Theorem,
llan |l < M(r(a) + €)™+
Therefore

lim |lan||" < 7(a) +e.

n—oo
W= r(a).

Now we show that r(a) < liminf,_, [|a”| . Note that

Let € — 0 and we conclude that limsup,,_, . ||a"

Ale —a"” = (e —a)P(a) = P(a)(Xe — a),
where
Pla) =X""te4+ " 20+ a7},
whence we see that A € o(a) implies that \" € o (a™). Itfollows that |A"| < ||a™||, and |A| < liminf,_, [|a™

By Exercise 2.8(2), o(ab) and o(ba) differ by 0 only at most. If both o(ab) and o(ba) contain a non-zero
number, we would have 7(ab) = r(ba). Now suppose that o(ab) = {0}, then Ae — ab is invertible for any
A # 0. By Exercise 2.8(2), Ae — ba is invertible, too, and thus o(ba) = {0} since o (ba) # 0.

Since ab = ba, it holds that |[(ab)"||= = |ja™b™||% < [ja™| = ||b"
that r(ab) < r(a)r(b).

Pick a > r(a) and 8 > r(b), let z = a/a and y = b/S. Then

1 1
" - n n—k n—k !
s(Z(k)a’“ﬁ oy k) .

. It follows immediately from part (1)

n
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for all n. Since 0 < kj,,/n < 1 we can choose a subsequence such that k,,, /n; — § for some ¢ as i tends to
infinity. Denote this subsequence by k,,. If § = 0 then

limsup ||z ||= < limsup||x||k7" <1,
n— oo n— oo

1
n



otherwise k,,, # 0 for ¢ big enough and thus

En
lim sup ka”H% = lim sup (||xk"||ﬁ) T =r@)P <1
n— o0 n— o0

because r(z) < ||z|| < 1. Therefore r(a + b) < a4 3 and the conclusion follows by letting @ — r(a)* and
B—r®)". O

2.11 Let & = {f € C*[0,1]} with norm
I£ller = NI+ 1L

Show that &7 is a semi-simple commutative Banach algebra.

Proof- It is clear that &/ is a commutative Banach algebra with identity. We shall show the semi-simpleness by
showing

lim ||f*]|" =0= f=0.
n—oo

In fa&, 7(f) = 0 means that Ae — f is invertible for all A # 0. If f(xg) = A # 0 for some ¢ then Ae — f would
not be invertible. Hence f(z) = 0 forall z € [0, 1]. O

2 A
2.12 Let &/ be a commutative Banach algebra and r = inf la”] and s = inf HaHoo. Show that s < r < s.

a0 [la]/? a0 |lal|

Proof Note that ||Tal|? = ||Ta?|| < |la?], it follows that s> < r. Now we show the second half. Starting from
la2|| > r||al|?, then ||a*|| > r||a?||? > r3|a|/*. By induction one can show that ||a2k I > T2k71||a\|2k, hence
la®* 13 > r'=5 ol

Letting &k — o0, we obtain that ||d||oc > 7]lal|. It follows immediately that s > r. O

3 Examples and Applications
3.1 Let .
o = {f Z=Cafll= ) IfmM < oo}

n=—oo

under the usual addition of scalar multiplication and the following multiplication

frgn)= > fn—kygk).

k=—o0
Show that

(1) & is a commutative Banach algebra;

(2) Let K = {z € C: § < |z] < 2} then K is one-to-one correspondent with 90 and the Gelfand representation
of .o/ is the Laurent series that are absolutely convergent on K.
Proof. (1) Itis easy to verify that &7 is a commutative algebra, and

o0

TR

n=—oo

Y fln—k)g(k)| 2™

k=—o00




Yo D I =k)llgk)2™

<
n=—0o0 k=—oo

= ¥ (Z f(nk)|2'"> lg(k)|
k=—oc0 \n=-—o0

< 3 (AI2EHlgk)!
k=—oc0

= I/ 1lgll-

The only thing left is to show that .7 is complete. Suppose that {f,} is a Cauchy sequence, i.e., for given
¢ there exi§ts NV such that for all m > n > N it holds that >_, , | fm (k) — fa(k)|2/*] < €. This implies
that {f,,(k)} is Cauchy and thus f, (k) — f(k) for some f. Note that >, _, [fin(k) — f(K)[2I" < ¢, i,
fm — f € &, and therefore f € &7

(2) For f € of define gy(2) = > _,c, f(n)z", which is well-defined on K. Given 29 € K, consider homo-
morphism ¢, : f — gy(20), then J,, = ker ¢, is a maximal ideal, since g/ (%) is continuous. Obviously
2o — J,, is injective, and we shall show that this mapping is surjetive also. Let J € 9, we want to find
2o € K such that ¢; = ¢, ie, (¢, f) = gf(20) forall f € &. Let h € A such that g5 (z) = z, then
gnn(2) = 2" Since [{(¢p7,h)"| = [(¢5, h™)| < ||h™|| = 2!"! for all n, it follows that (¢, h) € K, say 20,
then by continuity of ¢, (¢s, f) = gf(20) forall f € &7. Alually f — gy is the Gelfand representation of
. O

3.2 Let o/ be the semi-simple commutative Banach algebra in Problem 2.11. Find its maximal ideal space 9. For

3.3

z € [0, 1] define
J={fed: f(z)=f(x) =0}

show that J is a closed ideal of < and <7 /J is a two-dimensional algebra with one-dimensional radical.

1]. Foragivenz € [0, 1],
) = (f(x), f'(x)) is an

Proof: Similarly to Theorem 5.3.1, we have that 90 is homeomorphic and isomorphic to [0,
it is obvious that .J is a closed ideal. It is easy to verify that ¢ : &/ /J — C2 as ¢(
isomorphism, where the multiplication of C? is defined as

(x1,y1)(z2,y2) = (122, T1Y2 + T2Y1)-

It is then easy to see that the identity element of C? is (1,0) and all the non-invertible elements have the form
(0, z). In fa&, those non-invertible elements contitute the only maximal ideal in 7. Hence the radical is one-
dimensional. O

Let 9t be a compact T5 space. Show that there exiSts a one-to-one correspondence between the set of all closed
subsets of M and the set of closed ideals of C'(M).

Proof. Suppose X is a closed subset of M. Define Jx = {f € C(M) : f(z) = 0forallz € X}, which is clearly
a closed ideal of C'(M). The map X — Jx is clearly injective by Urysohn's Lemma. Now we prove the converse.
Suppose that ./ is a closed ideal of C(M), let X = ;. ;{z : f(z) = 0}, which is the intersection of closed sets,
and thus closed. From Theorem 5.3.1 we know that X is non-empty and thus J C Jx. Let f € Jx. Given any
positive € let F, = {z € M : |f(z)| > €} then F is compa& and disjoint from X. If there exiéts g € J such that
ge = lon Fe and |g| < 1 on M, then fg. € J and ||f — fge|| < €, which implies that f € I since J is closed.
Therefore J = Jx.

Now we shall con§tru&t such g.. For any « ¢ F there exiéts f,, € J such that f,(z) # 0 and thus f,(z) is non-zero

on a neighbhourhood of z. Since F, is compact, we can choose a finite cover of the neighbourhoods corresponding

tor1,...,T,. Then
fol Vfor(@) = |fu, (@)

i=1



3.4

3.5

3.6

is contained in J and positive on F¢. Since F, is continuous, h. attains minimum c at some xo. Now let k(z)

max{hc(z), c}, then k. € C(M), k. > 0 everywhere and k. = h. on F,. Finally let g. = k_"h.. O
yw! y €

Let & = C™[0, 1] with norm

— [/ (t)]
= su E .
111 ogtrg)lkzo k!

Show that, under the usual addition, multiplication and scalar multiplication of functions, 7 is a Banach algebra.
How to characterise its maximal ideals?

Proof. It is easy to verify that o7 is an algebra and || fg|| < || f] |lg|l- To show the completeness of <7 recall that if

un, — wand u), — v uniformly, where w,,, u, u,,, v are continuous, then u’ = v. It is then §traightforward to see

that &7 is complete, and thus a Banach algebra. Similar to the case of C'! [0, 1], the maximal ideals are homomorphic

and isomorphic to [0, 1]. O

Define positionwise multiplication on ¢*. Show that ¢! is a commutative Banach algebra without identity. Further-
more, show that

(1) There exists a one-to-one correspondence between 9t and Z;
(2) Gelfand topology is discrete topology;

(3) There exists a one-to-one correspondence between the set of closed ideals of £! and the set of subsets of Z.

Proof: Tt is clear that ¢! is commutative. If it has identity e, then e = (1,1,1,...), which is not in £'. Hence ¢!
has no identity. It is also clear that ||zy|| < || ||ly||. Therefore ¢! is a Banach algebra. For the next problems, we
can replace Z by Z™, the set of non-negative integers.

(1) Letn € Z*. Consider J,, = {z € ¢! : ¥, = 0}, which is clearly an ideal. It is also easy to see that J,, is
maximal, and the map n — J,, is injeCtive.
For n = 0, consider Jy = {z € /! : IN,Vn > N,,, x,, = 0}, which is also clearly a maximal ideal.
Now we prove the converse. Let J be a maximal ideal. If for any k there exists z;, € J such that zy  # 0,
then zy xex € J and thus e € J. For any x € ¢!, all finite truncations of x are in JJ. We conclude that
Jo C J and by maximality of J, we have that J = Jy. Otherwise, there exists n such that =, = 0 for all
x € J, so that J C J,, and thus J = J,, by maximality of J.

(2) From part (1) itis clear that Z(n) = z,, for all z € ¢'. There exists x € ¢! such that z; # x; for all pairi # j.
Since £ is continuous under Gelfand topology, it must be discrete.

(3) For any non-empty subset I C Z*, consider J; = {x € ¢! : z,, = 0foralln € I}. Itis clear that J; is a
closed ideal, and the map I — J7 is injective. We shall show the converse. Let J be a closed ideal. Consider
I =,c;Z(x)where Z(z) = {n € Z* : x, = 0}. We claim that I # (.
If for any k there exi§ts x5, € J such that xy , # 0, then xy, rer € J and thus e, € J. As a consequence, for
any z € (1, all finite truncations of z are in J. Since J is closed, we conclude that J = (. Contradiction.

Hence I # 0.

We have seen that J C J;. Now we shall show that J = J;. From a similar argument to the above, we
have e, € J forall k ¢ I, hence any « € Jr can be approximated by its finite truncations, and J = J;. The
conclusion follows from the closedness of J. O

Let &7 be a semi-simple commutative Banach algebra. Prove that I'(<7) is closed in C'(91) if and only if there exists
a constant K such that ||a|? < K||a?| foralla € <.



Proof- We use the notations of Problem 5.2.12.

‘If": 'The assumptions implies that r > + > 0, thus s > r > 0, i.e,, sllal| < [|a| forall @ € «/. Suppose that
{@,} is a Cauchy sequence in C'(91), then ||a,|| is a Cauchy sequence in .. Hence there exi§ts a € <7 such that
an — a. By continuity of T, it holds that a,, — @, whence it follows that I'(.¢7) is closed.

“Onlyif": It suffices to show that s # 0 thenr > 52 > 0. The Gelfand transform a — @ is a continuous isomorphism
between two Banach spaces, o7 and C'(9), as I'(<7) is closed and & is semisimple. By Open Mapping Theorem,
I'~! exists and is continuous, that is, there exits ¢ such that | ~1a|| < c||a|| for all @ € C(#), i.e., ||a]| < c|a]l
foralla € &. O

4 ('*-algebra

4.1

4.2

4.3

Let o/ be a commutative Banach algebra. Suppose that <7 is semi-simple, then every involution on &/ is continuous.

Proof. By Closed Graph Theorem it suffices to show that involution is closed, that is, suppose that a,,, — 0 and

a’, — a, we need to show that a = 0. Since &7 is semi-simple, we need only to show that (a) = 0. In fa&tm

r(a) <r(a—ap) +r(ay,) < lla—ap[l + [lag, || = 0. N

Verify that L' (R) is a Banach algebra under the multiplication of convolution

@en)(t) = [ als)ut - 9)ds

and involution

Is it a C*-algebra?

Proof- We have that

@www:uwmﬁzémmeww@:/Hﬁﬁf&m

R

= /Rx(fs)y(ft + 8)ds = / x*(s)y*(t — s)ds = z*y* = y*z*

R

since convolution is commutative. The rest assumptions are easy to verify. Hence L' (R) is a Banach algebra with
involution as defined. It is not a C*-algebra. Take f(x) = (sgnx)x[—1,1(7), then

2-3s|, 5] <1
(fFH@)=9 =24]s], 1<|s| <2

0, otherwise.

and || f* f]| = § while [|f]| = 2, so [ f*f]| # Il /> H

Consider the algebra of analytic fun&tions A (D). Shew-tha Afteation is-an-invelat aAoID)an
underwhich-Ag{B)is-aC*algebra: Show the map * : f — f*(z) = f(Z) is an involution, too. Is Ay(D) a
C*-algebra with this involution?

Proof. The $tatement crossed out does not hold, as f is not necessarily analytic when f is analytic.

It is obvious that * is an involution. Let f(2) =iz + 1, then f*(2) = —iz + 1, s0 || f* f|| = sup|, ;<1 |1 + 22=3
while || f||? = 4. Hence Ao (D) with * as involution is not a C*-algebra. O



4.4 Let o/ be a Banach algebra with involution * and S be a subset of A. We say that S is regular if

oY)
)

S is commutative, i.e., ab = ba for any a, b € S;

S is closed under involution, i.e., whenever a € S it holds that a* € S.

Obviously for any a € S we have aa* = a*a. A regular subset is said to be maximal if it is not a proper subset of
any normal subset. Let 24 be a maximal regular subset of o7, show that

ey
)

A is a closed commutative subalgebra of 7
Va € A, it holds that o g(a) = o (a).

Proof. (1) Leta,b € . Itis clear that a4+ b commutes with 28 because each of a and b commutes with 2. Hence

©)

2 is closed under addition since 4 is maximal. Similarly it can be shown that .S is closed under multiplication
and scalar multiplication. The laws of associativity and distributivity are inherited from </ Therefore # is a
commutative subalgebra.

Now we shall show that 4 is closed. Suppose a,, — a and {a,,} C . From the continuity of multiplication,
we have that a commutes with 9. Since & is maximal, it muét hold that a € 4. Therefore 4 is closed.
Clearly 0./ (a) C og(a). If A € 07a then (Ae — a) ! exists. Since (Ae — a) ™! commutes with % and % is
maximal, we have (Ae — a) ™! € £ and therefore A ¢ o(a). Hence 0(a) = 0 (a). O

4.5 Let & be a C*-algebra, show that

1)
)
©)

Let a be an hermitian element, then o(a) C RY;

If a is normal (aa* = a*a) then ||a]| = r(a);

lal|* = r(aa®).

Proof. Let 2 be the closure of the subalgebra generated by e, a, elements of form (Ae — a) ™! for A € p(a). Then
2 is commutative and 0z (a) = 04(a). We consider Gelfand transform on & for part (1) and (2).

(1) It follows immediately from Arens' Lemma.

(2) In fa&, normality of @ means that ¢ and a* is commutative. Hence the proof of Theorem 5.4.8 (3) holds, and

lall = [Tal| = r(a).

(3) Itis clear that aa* is normal, hence by part (2), r(aa*) = ||aa*| = |la*||* = ||al*. O

4.6 Let o be a C*-algebra and a € &7. We say a is positive, denoted by a > 0, if @ is hermitian and o(a) C [0, +o0].
Show that
(1) VYa € &, aa* > 0
(2) Ifa,be &/,a>0,b>0thena+b > 0;
(3) Foralla € &, ¢ + aa™ is invertible in 2.

Proof. (1) Itis trivial that aa™ is hermitian. As in the previous problem, we consider Gelfand transform in C*(a),

which is commutative since @ = a*. Thus 'aa* = I'al'a* = |Ta|? > 0, therefore aa* > 0.

(2) Fir&t consider C*(a), which is commutative. We claim that |[Ae—a|| < Aforall A > ||a||. Infa&, T'(Ae—a) =

A — I'(a). Since a > 0, T'(a)(J) € [0, )], we have that T'(Ae — a)(J) € [0, )] and thus ||Ae — al| =
IT(Ae —a)|| < A. Similarly for b > 0, we can find y such that ||ue — b|| < p. Hence ||[(A+p)e — (a+b)|| <
IAe — a|| + |lne — b|| < A+ p. Now in C*(a + b),

Atp > [ A+ pe—(atd)f| = [T((A+p)e = (a+b)| = [(A+p) =T(a+b)(J)] = (A+p) =T(a+b)(J)

for all J, whence it follows that I'(a + b)(J) > 0 for all J, thatis, a + b > 0.
Similarly, by choosing an appropriate subalgebra, we may, without loss of generality, assume that .27 is com-
mutative. ThenI'(a + b) =Ta +T'b > 0. Hencea + b > 0.



(3) This is a direct corollary of part (1). O

4.7 Let 2 be a Hilbert space and o/ a C*-algebra of L(Z"). Define
A ={TeL(Z):TA=AT, VAc &},
which is called the centre of 7. Show that o7¢ is a C*-algebra and closed under weak topology.

Proof Itis easy to see that &7 is closed under addition, multiplication, scalar multiplication and involution, whence
it follows that .7 is a C*-algebra. Now we shall show it is closed under weak topology. Suppose that T,, — T,
{T,,} € «7°. Note that £ is a Hilbert space and thus reflexive, we have T,,x — Tx for all x € H. Hence
AT,z — ATz, thatis, T,Ax — ATz forall A € o/ and ©+ € H. Recall that multiplication is continuous,
T,A — TA, hence TAx = ATx forall x € H, that is exaltly TA = AT forall A € /. Therefore T € &7 and
/¢ is closed under weak topology. O

5 Normal Operators in Hilbert spaces

5.1 Let N be a normal operator in a Hilbert space. Show that
(1) If ¢ € C(o(NN)) then o(¢(N)) = ¢(o(N));
) It p € C(o(N)), ¥ € C(a(¢(N))), then (¢ 0 §)(N) = ¢p(¢(NV)).

Proof. (1) Since A\ — ¢(N) = (A — ¢)(N), we have that A\I — ¢(N) is invertible < ¢(2) # A forall z € o(N)
& A g ¢(o(N)).
(2) By part (1), ¥(¢(IV)) is well-defined. It is clear that the conclusion holds when v is a polynomial of z and Z.
For a general v, pick a sequence of polynomials t,, — 1, then ¢,, 0 ¢ — 1) o ¢, the conclusion follows from
the continuity of the isomorphism between <7y and C'(c(N)). O
5.2 Show that N is normal iff || Nz|| = || N*z|| for all z.
Proof N*N = NN* & (N*Nz,z) = (NN*x,2) & (Nx, Nz) = (N*z, N*z) < ||[Nz|]? = ||[N*z|% O
5.3 Let N be a normal operator. Show that
(1) ||IN|| = sup{|A| : A € 0(N)}, and if P is a polynomial then
[P(N)]| = sup{|P(A)] : A € o(N)}
(2) for A € L(Z) it holds that || A||? = r(AA*).

Proof. (1) When N is normal, P(N) is normal, too. The conclusion follows from Problem 5.4.5(2).
(2) Problem 5.4.5(3). O

5.4 Show that the produ& of two positive operators is positive.
Proof. Notice that I'(ab) = T'al'b. O

55 Let A,B € L(%),0 < A < B. Suppose that A and B are commutative, then A? < B2, However, this is not
necessarily true when A and B are not commutative.
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5.6

5.7

5.8

Proof. Note that B2 — A? = (B + A)(B — A) because A and B are commutative. The conclusion then follows
from the previous problem and Problem 5.4.6.

25 2 10
< 4 32> , which is not positive. 0

Take 2 = R2. LetA:(l 2) andB:(l 4>,thenBzAZObutAB7éBA Then B2 — 4% =

10 79

Let N be a normal operator, then there exists P,Q € L(Z"), P is positive and unique, () is unitary, such that
N =PQ =QP.
This is called polar decomposition of N.

Proof. Put p(z) = |z| and ¢(2) = z/|z| if z # 0, ¢(0) = 1. 'Then p and ¢ are continuous functions on o(N).
Put P =T"'pand Q = I'"'q. Since p > 0, we know that P > 0. Since ¢§ = 1, QQ* = Q*Q = I. Since
z = p(2)q(2), the relation N = PQ = QP follows from the symbolic calculus.

Now we prove that uniqueness of P. If N = QP, P positive and @ unitary, then N*N = P*Q*QP = P*P = P2
1

'The uniquesness of P follows from the uniqueness of (N*N)z. O

Let 2" be a locally compact topological space and .7 a Hilbert space. Definition 5.5.13 gives a spectral family
(2, B, E), show that if Ay, Ay € B then

E(A1 N As) = E(A)E(As).

Proof: Fir§t we show that if Ay N Ay = then E(A1)E(A3) = 0. Note that E(A; UAy) = E(A1) + E(Az)isa
projector, hence (E(A1) + E(A2))? = E(A1) + E(A2), whence it follows that E(A;)E(Ay) = 0.

In the general case, E(A1) = E(A1 \ Az) + E(A1 N Ag) and E(Ag) = E(A1\ A1) + E(A1 N Ag). Hence
E(A1)E(A2) = (E(A1\ A2) + E(A1 N A))E(A1\ Ar) + E(A1 N AR)).

Notice that Ay \ Ag, Ay \ Aq and Ay N Ay are mutually disjoint, the conclusion follows from the expansion of the
right-hand side. O

Let N be a normal operator and E is the associated spectral family. Then for any Borel set A C C, E(A) is
contained in the weak closure of the C* algebra generated by N and N*. Let S € L(Z"), SN = NS, show that
SE(A) = E(A)S.

LemMa 1 The unit ball of a Banach space X is weak*-dense in the unit ball of X**.

Proor or LEMMA 1 Suppose there exists ** € X**, ||z||x+~ < 1, x is not in the weak™ closure of B(X) C X**.
Hence there exiéts a fun&ional f € X* and a real number ¢, by Hahn-Banach Theorem, such that R(x, f) < ¢ <
R(x**, f) for all z in the unit ball of X. Since 0 is contained in the unit ball of X, ¢ > 0. We can then divide by
c and replace f by ¢~! f, and assume that there exi§ts f € X* such that R(z, f) < 1 < R(z**, f). Since —iz is in
the unit ball of X whenever z is in it, this implies that (z, f) < 1 and thus |(z, )| < 1 forall ||z|| < 1. Hence
Ifllx+ <1, then 1 < |(z**, f)| < |l ||f|| < 1. Contradi&ion. O

Lemma 2 Let X be a compact space and ¢ € B(X). Then there exiéts a sequence of continuous funions {u,, } on
X such that ||u,|| < ||¢|| forall n and [ u, dm — [ ¢ dm forallm € M(X).

Proor or LEmma 2 Note that C'(X) is a Banach space. 'The previous lemma tells us that the unit ball of C'(X)
is weak®™-dense in the unit ball of C(X)** = M(X)*. Identify B(X) with a subspace of M (X)*, and we are
done. O
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59

5.10

5.11

Proof. By Lemma 2 and Theorem 5.5.14, there exist { f,} C C(o(IV)) such that

(Fu(N)z,y) = / fal2) d(E(2)z, ) — / xa () d(E(2)z,y) = (xa(V)z,y)

for all x and y. Since f,(N) € , the result above shows that xa is in the weak closure of /. Finally note
that xa(N) = E(ANo(N)) = E(A). Also we have || f,|| < [|xall = 1, thus by Theorem 5.5.12(4), SE(A) =
E(A)S. O

Let N be a normal operator. Prove that

(1) N is unitary & o(N) C Sh
(2) N is self-adjoint & o(N) C RY;
(3) N is positive < o(N) C RL;

Proof (1) N isunitary = 1 = (NN*) = (IN)('N*) = INTN = |[IN|?> = o(N) C S*. Reversing the
procedure above, o(N) C S = I'(NN*) = 1 and similarly o(N) C S* = I'(N*N) = 1. It follows from
the injectivity of I' that NN* = N*N = I, i.e., N is unitary.

(2) N isself-adjoint & I'N =I'N*=TN & I'N € R< o(N) CRL
(3) See Theorem 5.5.5. O

Suppose that N is a normal operator and o(N) is countable. Then there is an orthonormal basis B = {y} C &,
where y's are eigenvectors of IV, and Fourier expansion

r=> (v,y)y,Vr e Z,

yeB

where the Fourier coeflicients (z,y) = 0 except for countably many ones.

Proof. We claim that if z and y belong to different eigenvalues, say A and g, then (z,y) = 0. In fa&, E({\}) Z" =
ker(A — N) and E({\}) Z" is orthogonal to E({u}) 2 .

Since ker(AI — T') is closed, so we can choose an orthonormal basis. Combining those bases of each A € o(N),
we obtain an orthonormal set in /. We shall show that it is complete, i.e., z L {y}, or, z L ker(AI — T) for all
A implies that = 0.

Let Py = E({\}). Suppose that x | ker(A\] —T) = im Py, then x € im P- = ker Py, thatis, P\z = 0. Suppose
that o(N) = {A1, Ag, ... }, then

z=Ir=FE((N)x= nlgr;oI;P)"“m =0

as desired. Fourier expansion follows from Theorem 1.6.23 and 1.6.25. O

Let N be a normal operator on .7’. Show that N is compact if and only if all following three conditions hold:

(1) o(N) is countable;
(2) If 0(N) has a limit point, it must be 0;
(3) If A € o(N), A # 0, then dim E({\})# < +o0.

12



5.12

5.13

5.14

Proof. *Only if": This is rather §traightforward. Since N is compact, we have that o(N) \ {0} = 0,(IV) \ {0} and
op(N) has at mo§t one limit point 0 (Theorem 4.3.1). Hence (1) and (2) hold, while (3) is just Fredholm Theorem
(Theorem 4.2.10(3)), i.e., dim ker(AI — N) < 4oo0.

“If": Suppose that |A1] > |A2] > ---. Denote P, = E({\1,...,A,}) and Py be the projector along ker N. Let
N, = NP,. Then dim N,,.# < > E(\;).# < 400, which implies that N, is finite-rank and thus compa&. If
o(N) is finite then N, = N for some n and N is therefore compact. Now assume that (V) is infinite and thus
An — 0. We want to show that V,, — N.

Construét an orthonormal basis as in the previous problem, we have that z = > (x,¢;)e; for all x and Nz =
> Ai(z,e;)e;. Note that N, is just a partial sum of Nz, containing all terms up to A, (inclusive). Then the
argument in Remark 1 after Theorem 4.4.7 is valid, and we see that N,, — N and N is therefore compat. O

Let N be a compa& normal operator, show that

(1) There exists A, an eigenvalue of N, such that || N|| = |A|;
(2) It ¢ € C(o(N)) and ¢(0) = 0, then ¢(NV) is compact.

Proof. (1) Suppose that [A;| > [Ag| > ---. We claim that || N|| = |A;]. Problem 5.5.10 and Problem 5.5.11 tells
us that N is diagonalisable, Nz = >~ A\;(z, e;)e;. Hence

1 1

INvall = |32 A eed| = (32 It e)l)” < Il (X1 en ) < Indlfall,

hence | N|| < |A1]. For x € ker(AI — N), it holds that | Nz|| = || A1]|, ||=]|- Therefore || N|| = |A1]-

(2) Itis clear that ¢(IV) is normal. Then we shall verify the three conditions in the previous problem are satisfied.
Fir§tly, o (¢(N)) = ¢(o(IN)) is countable because o(N) is countable. Secondly, suppose ¥ is a limit point of
o(p(N)) = ¢(c(N)), then there exists {z,} C o(N) (x,, mutually different) such that ¢(x,,) — yo. Since
o(N) is compact, we can find a subsequence of z,,, §till denoted by x,, such that x,, — ¢ for some xg € (V).
We know that 2y = 0, and thus yo = ¢(20) = ¢(0) = 0. Thirdly, note that Ey(n)(X) = En(¢~(\)) and
¢~ (X) is finite when A # 0. It follows immediately that dim Ey(y)(A)# < 0o when X # 0. O

Let N be a normal operator and F the spectral family corresponding to N. Let ¢ € C(0(N)) and w = ker ¢.
Show that
ker ¢(N) = im F(w).

Proof. ker p(N) = im Ey(n)({0}) = im Ex (¢~ ({0})) = im En (w), asitis not difficult to show that Ey () =
En(¢71(£2)) using Problem 5.5.1. O

Let N be a normal operator, O an open set containing o (/N) with a Jordan boundary. Suppose that ¢ is analytic on
a neighbourhood of 0(N) and O is contained in the analytic domain of ¢. Show that

H(N) = QLM - (2)(2I — N)™'dz.

Proof: Ttis known in Theorem 2.6.9 that (21— N) ! is analytic on its domain. Next, we show that if I is an operator-
valued analytic funtion over a domain Q then [, Fdz = 0. In fa&, let ¢ be any continuous functional, ¢ o F
is analytic. It follows from continuity that ¢( [, Fdz) = [, ¢ o Fidz, which equals to 0 by Cauchy's Theorem.
Note that it holds for any continuous fun&tional ¢, by Hahn-Banach Theorem, it must hold that f o Fdz = 0.
Hence for polynomial ¢, we can replace 9O by a possibly larger circle outside |z| < ||N||. It is therefore easy to
verify the desired equation, using expansion (21 — N)~! = 271 5°2° ' 27? A%, Having eStablished the equation for
polynomial ¢, we can approximate a general ¢ by polynomials, completing the proof. O
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5.15 Let N be a normal operator and C' a connected component of (V). Suppose that I" C p(N) is a Jordan curve, T’
encloses C' and contains no other spectrum inside itself besides C. Show that

E(C) = 2; 75 (21 — N)"'dz.

Proof Let P = 5= §,.(2] — N)~'dz. Fir§t we shall show that P> = P. Choose I'y inside I' such that I'; encloses
C also. Similar to the argument in the previous problem, we have that fFl (21 = N)"'dz = §.(2I — N)'d=.

1 1
P? = (zI N)~ 1dzf7{ (wl — N) tdw
27i 27 Jp,

=-13 7{ /Fl(zl — N)—l(wl — N) 'dwdz

(z2I = N)~ I—-N)!
= 2%/ z —(w ) dwdz
i r, w—z

dw 1 dz
— I — N _ I—N —1
47r2 (Z ) /F1 w— zdz 472 751 (w ) ]{ z— wdw

1
=0+ -— / 2mi(wl — N) tdw
477'2 ry

1
— I—N)Ydw=P.
=5 (w )" dw

It is clear from the definition that P commutes with any bounded operator that commutes with N. Now we
shall show that the spectrum of N retricted to im P is contained in C, that is, A\l — N is invertible on im P for

A€ a(N)\ C. Consider
1 1 .
Q_27Tifi~)\—z(21 N) 'dz

It is clear that QN = NQ and thus QP = PQ. In fa&,

(A=2)I+ (2I —N) 1
- N - _
QA = N) = O\ = N)Q = 5 ¢ B er vyt
1 1 dz
I—-N)tdz+ —
~ omi F(z ) Jr27rz rA—z
=P+0=P

Note that P is the identity map on im P, hence () is the the inverse of (AI — N) on im P. Also, the spe¢trum of
N retri¢ted to ker P is contained in o(NN) \ C, which can be shown similarly by replacing C by o(N) \ C (the
connectedness of C' is not essential, separation of two compadt sets is).

Now we look at E(C), which satisfies all the properties that we have proved for P. As a consequence, it is easy to
prove that PE(C) = P and E(C)P = E(C). Therefore P = E(C). O

6 Applications to Singular Integral Operators

No Exercises.
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