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Let 2" be a infinite dimensional Banach space. Show that if A € €(27), A does not have bounded inverse.

Proof: Denote the unit ball of 2" by B and the unit sphere S. Suppose that {z,,} C S, then ||z,| <
| A= || Ay, || for all n. Because { Az, } has a convergent subsequence, we know that z,, has a convergent
subsequence too, which implies that S is sequentially compaé&t. This contradicts with Theorem 1.4.28, which
States that a normed linear space is finite dimensional iff the unit sphere is sequentially compact. O

Let £ be a Banach space and A € Z(Z) satisfy | Az|| > a||z|| for all z € 2, where a is a positive
conétant. Prove that A € €(2") iff 2 is finite-dimensional.

Progf. 1t suffices to show that A € €(Z") iff every bounded set in 2 is sequentially compact.

“If": Let {z,,} be a bounded sequence, thus Az, is bounded since A is bounded, thus it has a convergent
subsequence and A is therefore compact.

*Only if": Let B be a bounded set and {x,,} C B. We can find a convergent subsequence in { Az, }, say
Az, . Note that ||Az,| > allz,||, we know that ||z, || is a Cauchy sequence thus convergent (as £ is
complete). O

Let 2" and ¢ be Banach spaces, A € L(2,%), K € €(Z,%) and R(A) C R(K). Show that
Aed(Z,%).

Proof Let K' : 2"/ ker K — 2 be the canonical map, then K is also a compact operator, since B +ker K
is the unit ball in 2"/ ker K, where B is the unit ball in 2". Note that K’ is continuous, thus K'~! is a
closed map, and D(K'™1') = R(K) 2 R(A), hence K’ 'A : 2 — 2 /ker K is a closed map, and its
domain is the entire 2, thus from the closed graph theorem that K'~1 A is continuous, whence it follows

that A = K(K'7!A) is compadt. O

Let H be a Hilbert space and A : H — H is a compaét operator. Suppose that x, — xo and y,, — yo.
Show that (2, Ay,) — (z0, Ayo).

Proof: We have that |(2,,, Ayn) — (20, Ayo)| < [(@n, Ayn — Ayo)| +|(2n — x0, Ayo)|. Since z,, — xo, itis
clear that {z,, } is bounded, say by M, and the second term goes to 0. Since y,, — yo and A is compact (thus
completely continuous), we have that Ay,, — Ayg. Notice that |(z,,, Ay — Ayo)| < ||zn ] |Ayn — Ayol| <
M|| Ay, — Ayol|, thus the firt term also goes to 0. O

Let 27, % be Banach spaces and A € £ (Z",%). Suppose that R(A) is closed and infinite-dimensional.
Show that A ¢ €(2,%).

Progf. Suppose that A is compact. Note that R(A) is a Banach space, and there exist abounded set B which is
not sequentially compa&, since R(A) is infinite dimensional. Take {y,} C B such that it has no convergent
subsequence. Consider 2"/ ker Aand A’ : 2"/ ker A — R(A) is the induced natural map, which is bijective.
Let [x,] = A"~ *(yy,), we can choose x,, € [z,] such that Az,, = y,, and ||z, || < 2||[zn] < 2|47 [|ynll,
thus {x,,} is bounded. We meet a contradi¢tion. Therefore A can not be compact. O

Let w,, € Kwith w,, — 0. Show that the map defined as

is a compact operator on IP(p > 1).
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Proof. It is clear that T € Z(I?) since {w,, } is bounded. Let T}, be a linear operator defined on [? as

Tn: &1y s &nséngty o) = (Wi, .o, wn€n, 0,0,...).

Since dim 7, (I?) < oo, T}, has finite-rank. It is also bounded, thus compaét. Given € > 0, there exists N
such that |w,| < € foralln > N. It then follows that || T,z — Tz|| < €|z]|, thus |1, — T|| < ¢, and
| T, — T|| — 0. Because €(I?) is closed, T is compact. O

Let Q C R™ be a measurable set and f be a bounded measurable fun&ion on 2. Prove that F' : z(t) —
f(t)z(t) is a compac operator on L2(€2) iff f = 0 almost everywhere on .

Progf. "If": Trivial.

*Onlyif": Assume thatm@ > 0. If f(z) > O onaset AwithmA > 0, we can find a compa&t set C' C A with
mC > 0. Then f is bounded below on C, say, f(z) > ¢ > Oforallz € C. We can find {x,,} C L?*(C) such
that ||x,,||2 = 1 while z,, — 0 (for in§tance, take an orthonormal basis). Since F is completely continuous,
we have

|Fa? = / FOPlza®) = 0.
On the other hand,
|Fa|? > / FOP ) > ¢ / e (t) = &2,
C C

contradition. O

Let Q C R™ be a measurable set and K € L?(Q x Q). Show that
A u(z) — / K(z,y)u(y)dy, Yue L*(Q)
Q

is a compact operator on L2(£2).

Proof. Tt is clear that L?() is separable, hence there exists an orthonormal basis {u;} C L?(2). Then
K($7 y) = Z Kl(y)u’t(x)a
i=1

where

Ki(y) = A K(z, y)ui().

for almo$t all y. The Parseval identity gives that

[ K@k =Y 1K)

and thus .
/ K (2, ) Pdady = 5 / K (y)2dy. )
axQ = Jo

We now define the following operator of rank N

ANuz/QKN(x,y)f(y)dy,



where

By Cauchy-Schwarz inequality,

I(A— AP < / K@) = K (o) Pdady
X

N

N
:/QXQ|K($,?J)| dxdy — 2 K(m,y)ZKz(y)ul(a:)dxdy—&-;/Q|Kz(y)| dy

QxQ i=1

— [ Kw)Pdsdy— [ Kito)Pdy 0
QxQ Q
as N — oo. Hence Ay — A and A is therefore compact. O

1.9 Let H be a Hilbert space, A € €(H), {e,, } is an orthonormal set in H. Show that lim (Ae,,e,) = 0.

n—oo

Proof: It can be proved that e,, — 0 (See proof to Exercise 2.5.19), thus the conclusion follows from Exercise
4.1.4. O

1.10 Let 2 be a Banach space, A € €(H), 2 is a closed subspace of 2" such that A(Zy) C Zp. Prove that
the map 7" : [z] — [Ax] is a compact operator on 2"/ .

Proof: It can be proved that B +ker A is the unit ball in 2"/ ker A, where B is the unit ballin 2". Let {[x,]}
be a bounded sequence, we can find {z,,} such that ||z, || < 2||[x,]||, thus {x,} is bounded, and {Ax,, } has
a convergent subsequence, thus {T'[z,]} = {[Ax,]} has also a convergent subsequence. T is compa&. O

1.11 Let 27, %, Z be Banach spaces, ' C % C %, if the embedding map from 2 to % is compact and from
% to & continuous. Prove that for any € > 0, there exists c(€) > 0 such that

lelly < ellzlle +c(Olz]z, VeeZ.

Proof: Prove by contradiction. Suppose that there exists €, for all n there exits z,, € 2" such that ||z, ||& >
eol|znll 2 +nllzn|| 2. Letyn, = xn/||2n||, then it holds that ||y, || > €0+ n||yn|| 2. Since the embedding
map 2" — ¥ is compact and ||y, || = 1 for all n, we know that ||y, || is bounded thus ||y, ||z — 0. Also
we know that {y,, } has a convergent subsequence in %, say y,,, — vy in % as k — co. Then z,, — yin &
as the embedding map from % to & is continuous, and therefore y must be 0. But ||y, || > €, we reach a
contradiction. O

2 Riesz-Fredholm Theory

2.1 Let # be a Banach space and M C 2" is a closed linear subspace with codim M = n. Show that there
exiéts linearly independent set {¢ }7_; € £ such that

M = () N(¢w)-
k=1

Proof: Let {e; + M} (i = 1,...,n) be a basis of Z°/M, D = {e1,...,en}, D; = span{D \ {e;}, M}.
Then we have that ¢; ¢ D; and we can a bounded linear fun&ional ¢; such that ¢;(D;) = 0 and ¢;(e;) = 1.
It is easy to verify that {¢; } is linearly independent, and M = (!, N(¢;). O
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Let &', % be Banach space and T' € .2 (2", %) is surjective. Define T:2Z/N(T) = % as
T[z] = Tz, Ve [z],V[z] € Z/N(T);
Show that T is a linear homeomorphism.

Progf. It is clear that T is well-defined and linear. For each [2] we can find @ € [2] such that ||z| < 2||[]|.

Thus ||T[z]|| = |Tz| < |T|| =]l < 2|7 ||[x]]| and T is continuous. Also T is a bijection, hence it is a
homeomorphism. O
Let 2" be a Banach space, M, N1, N3 be closed linear subspaces of :Z". Suppose that

M@&N, =2 =M M,,
show that V7 is homeomorphic to No.

Proof. 1t suffices to show that Ny and N3 are both homeomorphic to 2" /M. Define F' : Ny — Z /M as
F(x) = x4+ M, and it is easy to verify that F' is well-defined. Since 2" = M @ Ny, F is bije&tive. Besides,

it holds that || F(z)|| = ||l + M|| = infien ||z + m| < ||x||, whence we know that F is continuous thus a
homeomorphism. 0
Let Ac €(Z), T =1 — A, show that

(1) Vo € 2 /N(T), 3x € [a], such that [z = |[[]];

(2) Suppose that y € 2 such that Tx = y has at least one solution, show that one of the solutions has the
minimum norm.

Progf. (1) Since ||[z]|| = inf.c n(7) || + 2||, we can choose z, € N(T') for each n such that ||z + 2, || <
|[z]]| 4+ £, so {z + 2, } is bounded. Since A is compac, we have that { Az + Az,} = {Az+ 2,} hasa
convergent subsequence, say Az +z,, — z, thus z,,, — z—Az. Itfollows that ||z+2,, || = |[Tx+=|,
combining with ||z + z,,|| — ||[x]|| we have that || Tz + z|| = ||[z]||. We verify that Tz + z € [], o,
Ter+z—2zeNT):TTz+z—2)=T(2— Az) =limT(z,, ) = 0.

(2) Suppose that 2’ is a solution to Tz = y, then the set of all the solutions is exactly [z']. From (1) we
know that there exists 2o € [2'], thus a solution to T'z = y, with the minimum norm ||[2]]]. O

Let A€ €(Z)and T = I — A. Show that

(1) N(T*) is finite dimensional; and
(2) R(T*) is closed

forall k € N.
Proof T* = (I — A)* = I — Ay, where Ay, is compad, as a result of Proposition 4.1.2(2) and (6). O

Let M be a closed linear subspace on Banach space B. Call a bounded linear operator P : 2 — M with
P? = P a projection operator on M. Show that

(1) If M is finite dimensional then a proje&tion operator on M do exist;

(2) If P is a proje&tion operator on M then I — P is a proje&tion operator on R(I — P) from Z;

(3) If P is a projeftion operator on M then & = M & N, where N = R(I — P);



(4)

IfAe&(Z)and T = I — A, then it holds that
NTYe Z/NT)=2Z =R(T)® Z/R(T)

in the sense of isomorphism both algebraical and topological.

Proof: (1) Letey,..., e, be a normal basis of M. From Hahn-Banach Theorem, there exiéts continuous

)
(3)

(4)

linear funtionals f1,. .., f, such that fi(e;) = dx;. Then define Px = 3 fi(z)eg, and it is easy to
verify that P is bounded and satisfies that P? = P.

The conclusion follows from that (I — P)2 =1 —-2P+ P?>=1—-2P+P=1— P.

Itis clear that 2 = M + R(I — P) and we shall show that MNR(I —P) = 0. Letz € MNR(I—P),
then there exists y such that = (I — P)y, thus Pz = P(I — P)y = (P — P%)y = 0. Since z € M,
it holds that x = Px, whence we obtain that x = 0.

Since N (T') is finite dimensional, from (1) there exi§ts a projeGtion operator P on N (T'), and from (3)
it suffices to show that 2"/ N(T) is isomorphic to R(I — P).

Let F: 27 /N(T) — R(I — P) be defined as F([z]) = (I — P)z. It is clear that F is well-defined,
bijeGtive and linear (algebraically isomorphic). For all [z] € 2 /N(T) there exi§ts 2’ € [z] such that
'] < 2[[[«][], so [|[F([zDI| = (I = P)a"| < [[I = P|[||2"|| < 2[[I — P|[||[][|, and thus F"is
continuous (topologically homeomorphic).

Therefore we obtain that N(T) & &' /N(T) = Z.

Since codim R(T) = dim N(T'), we know that 2" /R(T") and N (T') are isomorphic both algebraically
and topologically. And itis obvious that R(T") is isomorphic to Z /N (T'), since themapy = Tz — []
is an isomorphism. Thus we also have that 2" /R(T) ® R(T) = Z'. O

3 Speétrum Theory of Compalt Operators (Riesz-Schauder Theory)

(Z denotes Banach space in this setion)

3.1 Given sequence of numbers {a,, } and define operator A on [ as

1)
2)

A: (1131,1’2,...) — (alxl,agxg,...).

Show that A € .Z(1?) iff {a,,} is bounded,;
If A € £(I?) find 0(A) and the types of the spectral points.

Proof: (1) “If': Suppose that |a,| < M, then ||Az|| < M||z|.

)

*Only if": If {a,, } is not bounded, then there exi§ts n; < ng < --- such that |a,, | > k. For each m,
Take ., = (£1,&a,...) where &, = 1 and &; = 0 for all of the ret indices j. It is clear that x € [?

and ||z, || = 1. We compute || Az, | > m?2 — 0o as m — oo, which contradics with the continuity
of A. Therefore {a,,} is bounded.

Since A € (2, we know that {a,, } is bounded, say, by M.

If X = a; for some i, then (M — A)z = 0 has nonzero solutions and A € ¢,(A). Now assume that
A # a; for all i, then (A] — A)~! exits, sending (21, z2,...) to Er )

If A is not a limit point of {a;}, then ﬁ is bounded away from 0, so (/\flal, ,\fiz ,...) €12
whenever (71, 72,...) € L? and R(AI — A) = %, thus A € o(A).

Now let A # a; be a limit point of {a;}, suppose that |a,, — A| < %, where {ay, } are pairwise
distin&. Consider ¢ = (z1,22,...) with z,, = (A — ank)/\/E and z; = 0 for ¢ # ny, then
Sa?2 =Y (N —an,)?/k < Y. 1/k® < co. However, > 22/(A — a;)> = >, 1/k = oo, hence
x ¢ R(A — A). Note that any = with finitely many non-zero components is in R(AI — A), we know
that R(AI — A) is dense in ¢2. Therefore, A € o.(A).

We conclude that o(A) = {a;} with 0, (A) = {a;} and o.(A) the rest spectral points. O




3.2 In C[0, 1] consider the operator
t
T a(t) / 2(s)ds, Va(t) € C[o,1].
0

(1) Show that T is a compact operator;

(2) Find o(T') and a nontrivial closed invariant subspace of T'.

Progf. (1) Itsuffices to show that T'( By ) is sequentially compa&, or, uniformly bounded and equi-continuous.
First we have that ||Txz| < ’fol x(s)ds

it holds that |(T'z)(s') — (Tx)(s")| =
continuous.

(2) First of all, || T|| = 1 implies that o(7T') is contained in the closed disc. Since C[0,1] is infinite-
dimensional, we know that 0 € o(T"). Any other spetral point must be eigenvalue, that is, if A # 0
belongs to o(T'), then Tz = Ax has non-zero solution. But T’z = Ax has only zero solution, hence

o(T) = {0}. An invariant space of T' is C1[0, 1]. O

< ||z|| implying that T'(By) is uniformly bounded. Besides
f:,” z(s)ds

< ||z|||s" — §'| implying that T'(By) is equi-

3.3 Let A € €(Z"). Prove that  — Az = 0 has only zero solution iff ¥ — Az = y has solution forally € 2.

Proof: *Only if": This is Theorem 4.2.6.
If': Let T = I — A, then dim N(T') = codim R(T") = 0, thus N(T") = {0}. O

3.4 LetT € Z(Z) and there exists m € N such that
2 = N(T™) & R(T™).

Show that p(T") = ¢(T") < m.
Proof. Letx € N(T™*1). We have that Tz € R(T™)NN (T™), yielding that 7™z = Oandz € N(T™).
So N(T™+1) C N(T™), thus p(T) < m.

Now we show that ¢(T") = p(T'). Fir§t we show that ¢(T") > p(T'). For simplicity, we use notations p and ¢
inftead of p(7T") and ¢(T") respeétively.

(1) Proof of p < q. We have that T(R(T9)) = R(T9"') = R(TY), thus for y € R(TY), we have
x € R(T?) such that Tz = y.

We claim that if T2 = 0 for some z € R(T?) then x must be zero. If not, there exi§ts z; € R(T'?)\ {0}
such that T'zq = 0, then there exists 2 # 0 such that T'x5 = z1. Continuing this process, we obtain
{2} such that 0 # xy = Twg = -+- = T" 12, but 0 = Txy = T"z,. Thus x,, ¢ N(T" ') and
xn, € N(T™) for all n, which contradi&ts with p < .

Now we show that N(T9t!) = N(T9), which would imply that p < q. It suffices to show that
N(T9tY) C N(T?). Let x € N(T*1). Since T92 € R(T?) and T(T%z) = 0, we must have that
T9z =0and x € N(T).

(2) Proof of p > ¢. 'This is obviously true for ¢ = 0. Assume that ¢ > 0. It suffices to show that
N(T971) € N(T9). Lety € R(T?') \ R(T?). Then there exiéts x such that y = 79"z, and there
also exists z such that Ty = Tz since Ty € R(TY) = R(T9). Thus T9 Y (x—T2) = y—T9% # 0
becausey ¢ R(T?). Sox—Tz does not belong to N (T971). And it is obvious that it belongs to N (T9),
which establishes that N(7971) C N(T1). O

3.5 Let A,B € Z(Z) and AB = BA. Prove that
(1) R(A) and N(A) are invariant subspaces of B;



(2) R(B™) and N(B™) are invariant subspaces of B for alln € N.

Progf. (1) Lety € R(A), then y = Az for some z. It holds that By = BAx = A(Bz) € R(A), thus
R(A) is an invariant subspace of B.

Lety € N(A), then A(By) = B(Ay) = 0, indicating that By € N(A). Hence N(A) is an invariant

subspace of B.
(2) 'The conclusion follows from B(B"x) = B™(Bz) € R(B™) and B"(By) = B(B™y) = 0fory €
N(B™). O

3.6 Let A € Z(Z) and M is a finite-dimensional invariant subspace of A. Show that

(1) The attion of A on M can be described by a matrix;
(2) At least one eigenveCtor of Aisin M.

Proof: Trivial, as A|ps can be viewed as a linear transformation over M (which is finite dimensional). O
3.7 Letaxg € 2 and f € 2" satisfy (f,z9) =1. Let A=20® fand T = I — A. Find p(T).
Proof. We have that Az = (f, z)z¢ and A2 = A. Thus N(T) = N(T?). If dim 2" > 1 then N(T) # 2

so p(T) = 1; otherwise N(T) = 27, so p(T) = 0. d

4 Hilbert-Schmidt Theorem

(H denotes complex Hilbert space in this section)

4.1 Let A € £(H), show that A + A*, AA* and A* A are all symmetric and || AA*|| = ||A*A| = || A2

Proof: It is trivial to prove that A + A*, AA* and A* A are symmetric. With respect to norm, we have
JAA*)| = supypy_y [(AA%2,2)] = supy._y (A%, A*2)| = supy_, 14" = A% 2 = [[A]. Simi-
larly we have ||A*A| = || Al O

4.2 Let A € £(H) satistying (Az,z) > 0 forall z € H and (Az,z) = 0iff x = 0. Show that
|Az|? < ||A||(Az,x), Yz € H.
Proof. It is not hard to show that the following generalized Cauchy's Inequality holds.
|(Au, v)|* < (Au,u)(Av,v).

Letw = z and v = Ax, we have |(Au, Au)|? < (Ax,x)(A%x, Az) < (Az,x) - ||A|| - ||Az||?, which
O

simplifies to our desired result.

4.3 Let A be a symmetric compact operator on H, and

m(A) = \Ii\?L(Ax’x)’ M(A) = Hmﬂlgl(Am,a:)

Prove that

(1) If m(A) # 0 then m(A) € o,(4);
(2) If M(A) # 0 then M(A) € o,(A);
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4.5

4.6

4.7

Progf. Consider A, = A+ al, then the spectrum is translated by a, so m(A,) = m(A)+aand M (A,) =
M(A) 4+ a. For a < 0 small enough, m(A,) < M(As) < 0. Suppose that (Ap Ty, Tn) — m(Ay) with
||z || = 1. From Proposition 4.4.5(5), it holds that || A,|| = —m(A,). Note that

[Aazn —m(Aa)znl? = [[Aall? = 2m(Aa)(Aan, 20) +m(A0)? = 0
as n — 09, it follows that m(A,) is in the spe¢trum of A,,. Hence m(A) isin 0(A), and A is compa&, thus
if m(A) # 0 it must be in 0, (A).
Similarly consider A 4+ af for & > 0 enough, it yields that M (A) € 0,(A) if M(A) # 0. O

Let A be a symmetric compact operator, show that

(1) If Ais non-zero then it has at least one non-zero eigenvalue;

(2) If M is an non-trivial invariant subspace then M contains some eigenvector of A.

Proof: (1) It follows directly from Theorem 4.4.6.

(2) Assume M is closed, then Al is compaét and symmetric. Since M is nontrivial, A|y; is non-zero,
and therefore has an eigenvalue on M.

O

Show that P € .Z(H) is an orthogonal projector if and only if

(1) P is symmetric, i.e., P = P*;
(2) P isidempotent, i.e., P2 = P.

Progf. “Only if": Trivial.

If': Let M = {x : Px = x}, then M is a linear subspace of H. Since P is continuous, it follows that M
is closed. If Pz = y then Py = P2z = Px = y, which means that M is the range of P. Now notice that
(Py,z— Pz) = (y, P*x — P*Pz) = (y, Px — P?>x) = 0,50 R(P) L R(I —P). Also x = Px+ (v — Px),
we see that Px is an orthogonal projector onto M. O

Show that P € .#(H) is an orthogonal projector if and only if (Px,z) = || Pz||? forallz € H.

Proof. *Only if": Suppose that P is a projector, then x = y + 2 with y € R(P) and 2 € R(P)*. Then
(Pz,x) = (y,y+2) = (:9) + ¥.2) = (y,9) = | Pz|*.

*If": From Proposition 4.4.5 (1), we know that P is symmetric, hence P? — P is symmetric. Notice that
(P?x — Pz,z) = (P%z,2) — (Pz,2) = (Pz, Pz) — (Px,x) = 0, it follows from Proposition 4.4.5 (5)
that P? — P = 0. Hence P is an orthogonal projector by the previous problem. O

Let A € Z(H), it is called positive operator if (Az,z) > 0 for all z € H. Show that

(1) All positive operators are symmetric;

(2) 'The eigenvalues of a positive operators are non-negative.

Proof: (1) Proposition 4.4.5(1).

(2) From Proposition 4.4.5(2), we need only to consider AI — A for real X. Notice that for negative \ it
holds that

1A = A)z[|* = (M = A)z, (A = A)x) = M|z — 2X(Az, 2) + [ Az = N?2]?

and thus AI — A is inje&ive for negative A. Hence o(A4) C [0, 00). O



4.8 Let L and M be two closed linear subspace of H. Show that L C M iff Py; — Py, is positive.

Progf. “Only if": Suppose that x = w1, +yr, = p + yu wherexq € Aand yu € AL, Decompose x s as
Ty = u+ v, where u € L and v € L*. Notice that yps L L hence z = u + (v + yas) is an orthogonal
decomposition along L, and from the uniqueness of decomposition it must hold that z;, = u. Since L C M,
it holds that z;; — 7, € M and thus (PM{E — PLLC,LE) = ((E]V[ —xr,Tp + yIM) = (iEM — ZL’L7£L'1V[) =
(v,u+v) = (v,v) > 0.

“If'": Suppose that x € L then Prz = . Suppose that x = s + yas where 2y € M and ypy € ML

Then 0 < (Pyx — Pra,x) = (Pyzx —x,2) = (xpm — x,2) = —(yam, om0 +ynm) = —(ymr +ym) <0,
hence yp; = 0 and © = a7, hence x € M,and L C M. O

4.9 Let (ai;) satisfy ;5 |ai;|* < co. Define in £2
Az ={x1,29,...} » y={y1,92,...}
where y; = 3272 a;;x;. Show that
(1) Ais compa&;

(2) If a;; = @;; then A is a symmetric compact operator.

Proof. (1) Using Cauchy-Schwarz inequality it is easy to verify that A € £ (¢?). Define Ay € L(£?) as

A:x={z1,22,...} »y={y1,...,yn,0,...}

then A is a finite-rank operator and thus is compa&. And it follows from Cauchy-Schwarz inequality
that ||Ay — A|| — 0, hence A is compa&.

(2) Suppose that z = (z1, 22, ... ). It is not hard to show that

2
N N co oo
E E aij:rjzﬁ-— E E aijwjzﬁ- —0

i=1 j=1 i=1i=1

as N — oo using Cauchy-Schwarz inequality. Also,

N N N N co oo
E E Qi Tq = E E mﬂf]% E E ZL’]‘W,

i=1 j=1 i=j j=i j=1i=1

which can be proved in the same way. We have e§tablished (Ax, z) = (x, Az), hence A is symmetric.
O

4.10 Let A be a symmetric operator on H and there exits an orthonormal basis in which every veftor is an

eigenvector of A. Suppose that

(1) dim N(AI — A) < oo (VA € 0,(A) \ {0})
(2) Forany € > 0, the set 0,,(A) \ [—¢, €] is finite.

Show that A is a compact operator on H.

Progf. From the two assumptions we know that A has countably many eigenvalues (including the multiplic-
ity). List them in the decreasing order of absolute value (with multiplicity) as [A1] > |A2| > ---. Since
A is symmetric, we know that the basis contains a basis of N(A] — A) for all eigenvalue A # 0. Then
Az = > (z,e;)e; (no need to consider the eigenvectors associated with eigenvalue 0), where e; is an
eigenvector associated with A,,. Define Ay = Ziil An (2, e;)e; then Ay is of finite rank and thus compa&.
By the Remark 1 of Theorem 4.4.7, ||A — An|| — 0 and thus A is compa&t. O



