
1 Definition and Basic Properties of CompaOperator
1.1 Let X be a infinite dimensional Banach space. Show that if A ∈ C(X ), A does not have bounded inverse.

Proof. Denote the unit ball of X by B and the unit sphere S. Suppose that {xn} ⊆ S, then ∥xn∥ ≤
∥A−1∥ ∥Axn∥ for all n. Because {Axn} has a convergent subsequence, we know that xn has a convergent
subsequence too, which implies that S is sequentially compa. is contradis witheorem 1.4.28, which
states that a normed linear space is finite dimensional iff the unit sphere is sequentially compa.

1.2 Let X be a Banach space and A ∈ L (X ) satisfy ∥Ax∥ ≥ a∥x∥ for all x ∈ X , where a is a positive
constant. Prove that A ∈ C(X ) iff X is finite-dimensional.

Proof. It suffices to show that A ∈ C(X ) iff every bounded set in X is sequentially compa.
`If ': Let {xn} be a bounded sequence, thus Axn is bounded since A is bounded, thus it has a convergent
subsequence and A is therefore compa.
`Only if ': Let B be a bounded set and {xn} ⊆ B. We can find a convergent subsequence in {Axn}, say
Axnk

. Note that ∥Axn∥ ≥ a∥xn∥, we know that ∥xnk
∥ is a Cauchy sequence thus convergent (as X is

complete).

1.3 Let X and Y be Banach spaces, A ∈ L (X ,Y ), K ∈ C(X ,Y ) and R(A) ⊆ R(K). Show that
A ∈ C(X ,Y ).

Proof. LetK ′ : X / kerK → X be the canonical map, thenK ′ is also a compa operator, sinceB+kerK
is the unit ball in X / kerK, where B is the unit ball in X . Note that K ′ is continuous, thus K ′−1 is a
closed map, and D(K ′−1) = R(K) ⊇ R(A), hence K ′−1A : X → X / kerK is a closed map, and its
domain is the entire X , thus from the closed graph theorem that K ′−1A is continuous, whence it follows
that A = K(K ′−1A) is compa.

1.4 Let H be a Hilbert space and A : H → H is a compa operator. Suppose that xn ⇀ x0 and yn ⇀ y0.
Show that (xn, Ayn) → (x0, Ay0).

Proof. We have that |(xn, Ayn)− (x0, Ay0)| ≤ |(xn, Ayn−Ay0)|+ |(xn−x0, Ay0)|. Since xn ⇀ x0, it is
clear that {xn} is bounded, say byM , and the second term goes to 0. Since yn ⇀ y0 andA is compa (thus
completely continuous), we have thatAyn → Ay0. Notice that |(xn, Ayn−Ay0)| ≤ ∥xn∥ ∥Ayn−Ay0∥ ≤
M∥Ayn −Ay0∥, thus the first term also goes to 0.

1.5 Let X ,Y be Banach spaces and A ∈ L (X ,Y ). Suppose that R(A) is closed and infinite-dimensional.
Show that A /∈ C(X ,Y ).

Proof. Suppose thatA is compa. Note thatR(A) is a Banach space, and there exist a bounded setB which is
not sequentially compa, sinceR(A) is infinite dimensional. Take {yn} ⊆ B such that it has no convergent
subsequence. ConsiderX / kerA andA′ : X / kerA → R(A) is the induced natural map, which is bijeive.
Let [xn] = A′−1(yn), we can choose xn ∈ [xn] such that Axn = yn and ∥xn∥ ≤ 2∥[xn∥ ≤ 2∥A′−1∥ ∥yn∥,
thus {xn} is bounded. We meet a contradiion. erefore A can not be compa.

1.6 Let wn ∈ K with wn → 0. Show that the map defined as

T : {ξn} 7→ {wnξn}

is a compa operator on lp(p ≥ 1).
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Proof. It is clear that T ∈ L (l2) since {wn} is bounded. Let Tn be a linear operator defined on lp as

Tn : (ξ1, . . . , ξn, ξn+1, . . . ) 7→ (w1ξ1, . . . , wnξn, 0, 0, . . . ).

Since dimTn(l
2) < ∞, Tn has finite-rank. It is also bounded, thus compa. Given ϵ > 0, there exists N

such that |wn| < ϵ for all n > N . It then follows that ∥Tnx − Tx∥ ≤ ϵ∥x∥, thus ∥Tn − T∥ ≤ ϵ, and
∥Tn − T∥ → 0. Because C(l2) is closed, T is compa.

1.7 Let Ω ⊂ Rn be a measurable set and f be a bounded measurable funion on Ω. Prove that F : x(t) 7→
f(t)x(t) is a compa operator on L2(Ω) iff f = 0 almost everywhere on Ω.

Proof. `If ': Trivial.
`Only if ': Assume thatmQ > 0. If f(x) > 0 on a setAwithmA > 0, we can find a compa setC ⊂ Awith
mC > 0. en f is bounded below onC, say, f(x) ≥ c > 0 for all x ∈ C. We can find {xn} ⊆ L2(C) such
that ∥xn∥2 = 1 while xn ⇀ 0 (for instance, take an orthonormal basis). Since F is completely continuous,
we have

∥Fx∥2 =

∫
Ω

|f(t)|2|xn(t)|2 → 0.

On the other hand,
∥Fx∥2 ≥

∫
C

|f(t)|2|xn(t)|2 ≥ c2
∫
C

|xn(t)|2 = c2,

contradiion.

1.8 Let Ω ⊂ Rn be a measurable set and K ∈ L2(Ω× Ω). Show that

A : u(x) 7→
∫
Ω

K(x, y)u(y)dy, ∀u ∈ L2(Ω)

is a compa operator on L2(Ω).

Proof. It is clear that L2(Ω) is separable, hence there exists an orthonormal basis {ui} ⊂ L2(Ω). en

K(x, y) =
∞∑
i=1

Ki(y)ui(x),

where
Ki(y) =

∫
Ω

K(x, y)ui(x).

for almost all y. e Parseval identity gives that∫
Ω

|K(x, y)|2dx =

∞∑
i=1

|Ki(y)|2

and thus ∫
Ω×Ω

|K(x, y)|2dxdy =

∞∑
i=1

∫
Ω

|Ki(y)|2dy. (1)

We now define the following operator of rank N

ANu =

∫
Ω

KN (x, y)f(y)dy,

2



where

KN (x, y) =

N∑
i=1

Ki(y)ui(x).

By Cauchy-Schwarz inequality,

∥(A−AN )∥2 ≤
∫
Ω×Ω

|K(x, y)−KN (x, y)|2dxdy

=

∫
Ω×Ω

|K(x, y)|2dxdy − 2

∫
Ω×Ω

K(x, y)
N∑
i=1

Ki(y)ui(x)dxdy +
N∑
i=1

∫
Ω

|Ki(y)|2dy

=

∫
Ω×Ω

|K(x, y)|2dxdy −
∫
Ω

|Ki(y)|2dy → 0

as N → ∞. Hence AN → A and A is therefore compa.

1.9 Let H be a Hilbert space, A ∈ C(H), {en} is an orthonormal set in H . Show that lim
n→∞

(Aen, en) = 0.

Proof. It can be proved that en ⇀ 0 (See proof to Exercise 2.5.19), thus the conclusion follows from Exercise
4.1.4.

1.10 Let X be a Banach space, A ∈ C(H), X0 is a closed subspace of X such that A(X0) ⊆ X0. Prove that
the map T : [x] 7→ [Ax] is a compa operator on X /X0.

Proof. It can be proved thatB+kerA is the unit ball inX / kerA, whereB is the unit ball inX . Let {[xn]}
be a bounded sequence, we can find {xn} such that ∥xn∥ ≤ 2∥[xn]∥, thus {xn} is bounded, and {Axn} has
a convergent subsequence, thus {T [xn]} = {[Axn]} has also a convergent subsequence. T is compa.

1.11 Let X ,Y ,Z be Banach spaces, X ⊆ Y ⊆ Z , if the embedding map from X to Y is compa and from
Y to Z continuous. Prove that for any ϵ > 0, there exists c(ϵ) > 0 such that

∥x∥Y ≤ ϵ∥x∥X + c(ϵ)∥x∥Z , ∀x ∈ X .

Proof. Prove by contradiion. Suppose that there exists ϵ0, for all n there exists xn ∈ X such that ∥xn∥Y >
ϵ0∥xn∥X +n∥xn∥Z . Let yn = xn/∥xn∥, then it holds that ∥yn∥Y > ϵ0+n∥yn∥Z . Since the embedding
map X → Y is compa and ∥yn∥ = 1 for all n, we know that ∥yn∥Y is bounded thus ∥yn∥Z → 0. Also
we know that {yn} has a convergent subsequence in Y , say ynk

→ y in Y as k → ∞. en znk
→ y in Z

as the embedding map from Y to Z is continuous, and therefore y must be 0. But ∥ynk
∥ ≥ ϵ, we reach a

contradiion.

2 Riesz-Fredholmeory
2.1 Let X be a Banach space and M ⊆ X is a closed linear subspace with codimM = n. Show that there

exists linearly independent set {ϕk}nk=1 ⊆ X ∗ such that

M =

n∩
k=1

N(ϕk).

Proof. Let {ei + M} (i = 1, . . . , n) be a basis of X /M , D = {e1, . . . , en}, Di = span{D \ {ei},M}.
en we have that ei /∈ Di and we can a bounded linear funional ϕi such that ϕi(Di) = 0 and ϕi(ei) = 1.
It is easy to verify that {ϕi} is linearly independent, and M =

∩n
i=1 N(ϕi).
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2.2 Let X ,Y be Banach space and T ∈ L (X ,Y ) is surjeive. Define T̃ : X /N(T ) → Y as

T̃ [x] = Tx, ∀x ∈ [x], ∀[x] ∈ X /N(T );

Show that T̃ is a linear homeomorphism.

Proof. It is clear that T̃ is well-defined and linear. For each [x] we can find x ∈ [x] such that ∥x∥ ≤ 2∥[x]∥.
us ∥T̃ [x]∥ = ∥Tx∥ ≤ ∥T∥ ∥x∥ ≤ 2∥T∥ ∥[x]∥ and T̃ is continuous. Also T̃ is a bijeion, hence it is a
homeomorphism.

2.3 Let X be a Banach space, M,N1, N2 be closed linear subspaces of X . Suppose that

M ⊕N1 = X = M ⊕M2,

show that N1 is homeomorphic to N2.

Proof. It suffices to show that N1 and N2 are both homeomorphic to X /M . Define F : N1 → X /M as
F (x) = x+M , and it is easy to verify that F is well-defined. Since X = M ⊕N1, F is bijeive. Besides,
it holds that ∥F (x)∥ = ∥x+M∥ = infm∈M ∥x+m∥ ≤ ∥x∥, whence we know that F is continuous thus a
homeomorphism.

2.4 Let A ∈ C(X ), T = I −A, show that

(1) ∀x ∈ X /N(T ), ∃x0 ∈ [x], such that ∥x0∥ = ∥[x]∥;
(2) Suppose that y ∈ X such that Tx = y has at least one solution, show that one of the solutions has the

minimum norm.

Proof. (1) Since ∥[x]∥ = infz∈N(T ) ∥x+ z∥, we can choose zn ∈ N(T ) for each n such that ∥x+ zn∥ <

∥[x]∥+ 1
n , so {x+ zn} is bounded. Since A is compa, we have that {Ax+Azn} = {Ax+ zn} has a

convergent subsequence, sayAx+znk
→ z, thus znk

→ z−Ax. It follows that ∥x+znk
∥ → ∥Tx+z∥,

combining with ∥x+ zn∥ → ∥[x]∥ we have that ∥Tx+ z∥ = ∥[x]∥. We verify that Tx+ z ∈ [x], or,
Tx+ z − x ∈ N(T ): T (Tx+ z − x) = T (z −Ax) = limT (znk

) = 0.
(2) Suppose that x′ is a solution to Tx = y, then the set of all the solutions is exaly [x′]. From (1) we

know that there exists x0 ∈ [x′], thus a solution to Tx = y, with the minimum norm ∥[x′]∥.

2.5 Let A ∈ C(X ) and T = I −A. Show that

(1) N(T k) is finite dimensional; and
(2) R(T k) is closed

for all k ∈ N.

Proof. T k = (I −A)k = I −Ak, where Ak is compa, as a result of Proposition 4.1.2(2) and (6).

2.6 Let M be a closed linear subspace on Banach space B. Call a bounded linear operator P : X → M with
P 2 = P a projeion operator on M . Show that

(1) If M is finite dimensional then a projeion operator on M do exist;
(2) If P is a projeion operator on M then I − P is a projeion operator on R(I − P ) from X ;
(3) If P is a projeion operator on M then X = M ⊕N , where N = R(I − P );
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(4) If A ∈ C(X ) and T = I −A, then it holds that

N(T )⊕ X /N(T ) = X = R(T )⊕ X /R(T )

in the sense of isomorphism both algebraical and topological.

Proof. (1) Let e1, . . . , en be a normal basis of M . From Hahn-Banach eorem, there exists continuous
linear funionals f1, . . . , fn such that fk(ej) = δkj . en define Px =

∑
fk(x)ek, and it is easy to

verify that P is bounded and satisfies that P 2 = P .
(2) e conclusion follows from that (I − P )2 = I − 2P + P 2 = I − 2P + P = I − P .
(3) It is clear thatX = M+R(I−P ) and we shall show thatM∩R(I−P ) = 0. Let x ∈ M∩R(I−P ),

then there exists y such that x = (I − P )y, thus Px = P (I − P )y = (P − P 2)y = 0. Since x ∈ M ,
it holds that x = Px, whence we obtain that x = 0.

(4) SinceN(T ) is finite dimensional, from (1) there exists a projeion operator P onN(T ), and from (3)
it suffices to show that X /N(T ) is isomorphic to R(I − P ).
Let F : X /N(T ) → R(I − P ) be defined as F ([x]) = (I − P )x. It is clear that F is well-defined,
bijeive and linear (algebraically isomorphic). For all [x] ∈ X /N(T ) there exists x′ ∈ [x] such that
∥x′∥ ≤ 2∥[x]∥, so ∥F ([x])∥ = ∥(I − P )x′∥ ≤ ∥I − P∥ ∥x′∥ ≤ 2∥I − P∥ ∥[x]∥, and thus F is
continuous (topologically homeomorphic).
erefore we obtain that N(T )⊕ X /N(T ) = X .
Since codimR(T ) = dimN(T ), we know that X /R(T ) andN(T ) are isomorphic both algebraically
and topologically. And it is obvious thatR(T ) is isomorphic toX /N(T ), since themap y = Tx 7→ [x]
is an isomorphism. us we also have that X /R(T )⊕R(T ) = X .

3 Sperumeory of CompaOperators (Riesz-Schaudereory)

(X denotes Banach space in this seion)

3.1 Given sequence of numbers {an} and define operator A on l2 as

A : (x1, x2, . . . ) 7→ (a1x1, a2x2, . . . ).

(1) Show that A ∈ L (l2) iff {an} is bounded;
(2) If A ∈ L (l2) find σ(A) and the types of the speral points.

Proof. (1) `If ': Suppose that |an| ≤ M , then ∥Ax∥ ≤ M∥x∥.
`Only if ': If {an} is not bounded, then there exists n1 < n2 < · · · such that |ank

| > k. For each m,
Take xm = (ξ1, ξ2, . . . ) where ξnm = 1 and ξj = 0 for all of the rest indices j. It is clear that x ∈ l2

and ∥xm∥ = 1. We compute ∥Axm∥ > m
1
2 → ∞ as m → ∞, which contradis with the continuity

of A. erefore {an} is bounded.
(2) Since A ∈ ℓ2, we know that {an} is bounded, say, by M .

If λ = ai for some i, then (λI − A)x = 0 has nonzero solutions and λ ∈ σp(A). Now assume that
λ ̸= ai for all i, then (λI −A)−1 exists, sending (x1, x2, . . . ) to ( x1

λ−a1
, x2

λ−a2
, . . . ).

If λ is not a limit point of {ai}, then 1
|λ−ai| is bounded away from 0, so ( x1

λ−a1
, x2

λ−a2
, . . . ) ∈ ℓ2

whenever (x1, x2, . . . ) ∈ L2 and R(λI −A) = ℓ2, thus λ ̸∈ σ(A).
Now let λ ̸= ai be a limit point of {ai}, suppose that |ank

− λ| < 1
k , where {ank

} are pairwise
distin. Consider x = (x1, x2, . . . ) with xnk

= (λ − ank
)/
√
k and xi = 0 for i ̸= nk, then∑

x2
i =

∑
(λ − ank

)2/k <
∑

1/k3 < ∞. However,
∑

x2
i /(λ − ai)

2 =
∑

1/k = ∞, hence
x ̸∈ R(λI −A). Note that any x with finitely many non-zero components is in R(λI −A), we know
that R(λI −A) is dense in ℓ2. erefore, λ ∈ σc(A).
We conclude that σ(A) = {ai} with σp(A) = {ai} and σc(A) the rest speral points.
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3.2 In C[0, 1] consider the operator

T : x(t) 7→
∫ t

0

x(s)ds, ∀x(t) ∈ C[0, 1].

(1) Show that T is a compa operator;
(2) Find σ(T ) and a nontrivial closed invariant subspace of T .

Proof. (1) It suffices to show thatT (B1) is sequentially compa, or, uniformly bounded and equi-continuous.
First we have that ∥Tx∥ ≤

∣∣∣∫ 1

0
x(s)ds

∣∣∣ ≤ ∥x∥ implying that T (B1) is uniformly bounded. Besides

it holds that |(Tx)(s′) − (Tx)(s′′)| =
∣∣∣∫ s′′

s′
x(s)ds

∣∣∣ ≤ ∥x∥ |s′′ − s′| implying that T (B1) is equi-
continuous.

(2) First of all, ∥T∥ = 1 implies that σ(T ) is contained in the closed disc. Since C[0, 1] is infinite-
dimensional, we know that 0 ∈ σ(T ). Any other speral point must be eigenvalue, that is, if λ ̸= 0
belongs to σ(T ), then Tx = λx has non-zero solution. But Tx = λx has only zero solution, hence
σ(T ) = {0}. An invariant space of T is C1[0, 1].

3.3 Let A ∈ C(X ). Prove that x−Ax = 0 has only zero solution iff x−Ax = y has solution for all y ∈ X .

Proof. `Only if ': is is eorem 4.2.6.
`If ': Let T = I −A, then dimN(T ) = codimR(T ) = 0, thus N(T ) = {0}.

3.4 Let T ∈ L (X ) and there exists m ∈ N such that

X = N(Tm)⊕R(Tm).

Show that p(T ) = q(T ) ≤ m.

Proof. Let x ∈ N(Tm+1). We have that Tmx ∈ R(Tm)∩N(Tm), yielding that Tmx = 0 and x ∈ N(Tm).
So N(Tm+1) ⊆ N(Tm), thus p(T ) ≤ m.
Now we show that q(T ) = p(T ). First we show that q(T ) ≥ p(T ). For simplicity, we use notations p and q
instead of p(T ) and q(T ) respeively.

(1) Proof of p ≤ q. We have that T (R(T q)) = R(T q+1) = R(T q), thus for y ∈ R(T q), we have
x ∈ R(T q) such that Tx = y.
We claim that if Tx = 0 for some x ∈ R(T q) then xmust be zero. If not, there exists x1 ∈ R(T q)\{0}
such that Tx1 = 0, then there exists x2 ̸= 0 such that Tx2 = x1. Continuing this process, we obtain
{xn} such that 0 ̸= x1 = Tx2 = · · · = Tn−1xn, but 0 = Tx1 = Tnxn. us xn /∈ N(Tn−1) and
xn ∈ N(Tn) for all n, which contradis with p < ∞.
Now we show that N(T q+1) = N(T q), which would imply that p ≤ q. It suffices to show that
N(T q+1) ⊆ N(T q). Let x ∈ N(T q+1). Since T qx ∈ R(T q) and T (T qx) = 0, we must have that
T qx = 0 and x ∈ N(T q).

(2) Proof of p ≥ q. is is obviously true for q = 0. Assume that q > 0. It suffices to show that
N(T q−1) ( N(T q). Let y ∈ R(T q−1) \R(T q). en there exists x such that y = T q−1x, and there
also exists z such that Ty = T q+1z since Ty ∈ R(T q) = R(T q+1). us T q−1(x−Tz) = y−T qz ̸= 0
because y /∈ R(T q). So x−Tz does not belong toN(T q−1). And it is obvious that it belongs toN(T q),
which establishes that N(T q−1) ( N(T q).

3.5 Let A,B ∈ L (X ) and AB = BA. Prove that

(1) R(A) and N(A) are invariant subspaces of B;
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(2) R(Bn) and N(Bn) are invariant subspaces of B for all n ∈ N.

Proof. (1) Let y ∈ R(A), then y = Ax for some x. It holds that By = BAx = A(Bx) ∈ R(A), thus
R(A) is an invariant subspace of B.
Let y ∈ N(A), then A(By) = B(Ay) = 0, indicating that By ∈ N(A). Hence N(A) is an invariant
subspace of B.

(2) e conclusion follows from B(Bnx) = Bn(Bx) ∈ R(Bn) and Bn(By) = B(Bny) = 0 for y ∈
N(Bn).

3.6 Let A ∈ L (X ) and M is a finite-dimensional invariant subspace of A. Show that

(1) e aion of A on M can be described by a matrix;
(2) At least one eigenveor of A is in M .

Proof. Trivial, as A|M can be viewed as a linear transformation over M (which is finite dimensional).

3.7 Let x0 ∈ X and f ∈ X ∗ satisfy ⟨f, x0⟩ = 1. Let A = x0 ⊗ f and T = I −A. Find p(T ).

Proof. We have that Ax = ⟨f, x⟩x0 and A2 = A. us N(T ) = N(T 2). If dimX > 1 then N(T ) ̸= X
so p(T ) = 1; otherwise N(T ) = X , so p(T ) = 0.

4 Hilbert-Schmidteorem
(H denotes complex Hilbert space in this seion)

4.1 Let A ∈ L (H), show that A+A∗, AA∗ and A∗A are all symmetric and ∥AA∗∥ = ∥A∗A∥ = ∥A∥2.

Proof. It is trivial to prove that A + A∗, AA∗ and A∗A are symmetric. With respe to norm, we have
∥AA∗∥ = sup∥x∥=1 |(AA

∗x, x)| = sup∥x∥=1 |(A
∗x,A∗x)∥ = sup∥x∥=1 ∥A

∗x∥2 = ∥A∗∥2 = ∥A∥2. Simi-
larly we have ∥A∗A∥ = ∥A∥2.

4.2 Let A ∈ L (H) satisfying (Ax, x) ≥ 0 for all x ∈ H and (Ax, x) = 0 iff x = 0. Show that

∥Ax∥2 ≤ ∥A∥(Ax, x), ∀x ∈ H.

Proof. It is not hard to show that the following generalized Cauchy's Inequality holds.

|(Au, v)|2 ≤ (Au, u)(Av, v).

Let u = x and v = Ax, we have |(Au,Au)|2 ≤ (Ax, x)(A2x,Ax) ≤ (Ax, x) · ∥A∥ · ∥Ax∥2, which
simplifies to our desired result.

4.3 Let A be a symmetric compa operator on H , and

m(A) = inf
∥x∥=1

(Ax, x), M(A) = sup
∥x∥=1

(Ax, x)

Prove that

(1) If m(A) ̸= 0 then m(A) ∈ σp(A);
(2) If M(A) ̸= 0 then M(A) ∈ σp(A);
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Proof. ConsiderAα = A+αI , then the sperum is translated by α, som(Aα) = m(A)+α andM(Aα) =
M(A) + α. For α < 0 small enough, m(Aα) < M(Aα) < 0. Suppose that (Aαxn, xn) → m(Aα) with
∥xn∥ = 1. From Proposition 4.4.5(5), it holds that ∥Aα∥ = −m(Aα). Note that

∥Aαxn −m(Aα)xn∥2 = ∥Aα∥2 − 2m(Aα)(Aαxn, xn) +m(Aα)
2 → 0

as n → ∞, it follows thatm(Aα) is in the sperum of Aα. Hencem(A) is in σ(A), and A is compa, thus
if m(A) ̸= 0 it must be in σp(A).
Similarly consider A+ αI for α > 0 enough, it yields that M(A) ∈ σp(A) if M(A) ̸= 0.

4.4 Let A be a symmetric compa operator, show that

(1) If A is non-zero then it has at least one non-zero eigenvalue;
(2) If M is an non-trivial invariant subspace then M contains some eigenveor of A.

Proof. (1) It follows direly from eorem 4.4.6.
(2) Assume M is closed, then A|M is compa and symmetric. Since M is nontrivial, A|M is non-zero,

and therefore has an eigenvalue on M .

4.5 Show that P ∈ L (H) is an orthogonal projeor if and only if

(1) P is symmetric, i.e., P = P ∗;
(2) P is idempotent, i.e., P 2 = P .

Proof. `Only if ': Trivial.
`If ': Let M = {x : Px = x}, then M is a linear subspace of H . Since P is continuous, it follows that M
is closed. If Px = y then Py = P 2x = Px = y, which means that M is the range of P . Now notice that
(Py, x−Px) = (y, P ∗x−P ∗Px) = (y, Px−P 2x) = 0, soR(P ) ⊥ R(I−P ). Also x = Px+(x−Px),
we see that Px is an orthogonal projeor onto M .

4.6 Show that P ∈ L (H) is an orthogonal projeor if and only if (Px, x) = ∥Px∥2 for all x ∈ H .

Proof. `Only if ': Suppose that P is a projeor, then x = y + z with y ∈ R(P ) and z ∈ R(P )⊥. en
(Px, x) = (y, y + z) = (y, y) + (y, z) = (y, y) = ∥Px∥2.
`If ': From Proposition 4.4.5 (1), we know that P is symmetric, hence P 2 − P is symmetric. Notice that
(P 2x − Px, x) = (P 2x, x) − (Px, x) = (Px, Px) − (Px, x) = 0, it follows from Proposition 4.4.5 (5)
that P 2 − P = 0. Hence P is an orthogonal projeor by the previous problem.

4.7 Let A ∈ L (H), it is called positive operator if (Ax, x) ≥ 0 for all x ∈ H . Show that

(1) All positive operators are symmetric;
(2) e eigenvalues of a positive operators are non-negative.

Proof. (1) Proposition 4.4.5(1).
(2) From Proposition 4.4.5(2), we need only to consider λI − A for real λ. Notice that for negative λ it

holds that

∥(λI −A)x∥2 = ((λI −A)x, (λI −A)x) = λ2∥x∥2 − 2λ(Ax, x) + ∥Ax∥2 ≥ λ2∥x∥2

and thus λI −A is injeive for negative λ. Hence σ(A) ⊂ [0,∞).
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4.8 Let L and M be two closed linear subspace of H . Show that L ⊆ M iff PM − PL is positive.

Proof. `Only if ': Suppose that x = xL + yL = xM + yM where xA ∈ A and yA ∈ A⊥. Decompose xM as
xM = u + v, where u ∈ L and v ∈ L⊥. Notice that yM ⊥ L hence x = u + (v + yM ) is an orthogonal
decomposition along L, and from the uniqueness of decomposition it must hold that xL = u. Since L ⊆ M ,
it holds that xM − xL ∈ M and thus (PMx − PLx, x) = (xM − xL, xM + yM ) = (xM − xL, xM ) =
(v, u+ v) = (v, v) ≥ 0.
`If ': Suppose that x ∈ L then PLx = x. Suppose that x = xM + yM where xM ∈ M and yM ∈ M⊥.
en 0 ≤ (PMx − PLx, x) = (PMx − x, x) = (xM − x, x) = −(yM , xM + yM ) = −(yM + yM ) ≤ 0,
hence yM = 0 and x = xM , hence x ∈ M , and L ⊆ M .

4.9 Let (aij) satisfy
∑∞

i,j=1 |aij |2 < ∞. Define in ℓ2

A : x = {x1, x2, . . . } 7→ y = {y1, y2, . . . }

where yi =
∑∞

j=1 aijxj . Show that

(1) A is compa;
(2) If aij = aji then A is a symmetric compa operator.

Proof. (1) Using Cauchy-Schwarz inequality it is easy to verify that A ∈ L (ℓ2). Define AN ∈ L(ℓ2) as

A : x = {x1, x2, . . . } 7→ y = {y1, . . . , yN , 0, . . . }

thenAN is a finite-rank operator and thus is compa. And it follows from Cauchy-Schwarz inequality
that ∥AN −A∥ → 0, hence A is compa.

(2) Suppose that z = (z1, z2, . . . ). It is not hard to show that∣∣∣∣∣∣
N∑
i=1

N∑
j=1

aijxjzi −
∞∑
i=1

∞∑
i=1

aijxjzi

∣∣∣∣∣∣
2

→ 0

as N → ∞ using Cauchy-Schwarz inequality. Also,
N∑
i=1

N∑
j=1

aijxi =
N∑
i=j

N∑
j=i

ajizixj →
∞∑
j=1

∞∑
i=1

xjaijzi,

which can be proved in the same way. We have established ⟨Ax, z⟩ = ⟨x,Az⟩, hence A is symmetric.

4.10 Let A be a symmetric operator on H and there exists an orthonormal basis in which every veor is an
eigenveor of A. Suppose that

(1) dimN(λI −A) < ∞ (∀λ ∈ σp(A) \ {0})
(2) For any ϵ > 0, the set σp(A) \ [−ϵ, ϵ] is finite.

Show that A is a compa operator on H .

Proof. From the two assumptions we know that A has countably many eigenvalues (including the multiplic-
ity). List them in the decreasing order of absolute value (with multiplicity) as |λ1| ≥ |λ2| ≥ · · · . Since
A is symmetric, we know that the basis contains a basis of N(λI − A) for all eigenvalue λ ̸= 0. en
Ax =

∑∞
i=1(x, ei)ei (no need to consider the eigenveors associated with eigenvalue 0), where ei is an

eigenveor associated with λn. DefineAN =
∑N

i=1 λn(x, ei)ei thenAN is of finite rank and thus compa.
By the Remark 1 of eorem 4.4.7, ∥A−AN∥ → 0 and thus A is compa.
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