1 Definition and Basic Properties of Compact Operator

1.1 Let \mathscr{X} be a infinite dimensional Banach space. Show that if $A \in \mathfrak{C}(\mathscr{X})$, A does not have bounded inverse.

Proof. Denote the unit ball of \mathscr{X} by B and the unit sphere S. Suppose that $\{x_n\} \subseteq S$, then $||x_n|| \leq ||A^{-1}|| ||Ax_n||$ for all n. Because $\{Ax_n\}$ has a convergent subsequence, we know that x_n has a convergent subsequence too, which implies that S is sequentially compact. This contradicts with Theorem 1.4.28, which states that a normed linear space is finite dimensional iff the unit sphere is sequentially compact. \Box

1.2 Let \mathscr{X} be a Banach space and $A \in \mathscr{L}(\mathscr{X})$ satisfy $||Ax|| \ge a||x||$ for all $x \in \mathscr{X}$, where a is a positive constant. Prove that $A \in \mathfrak{C}(\mathscr{X})$ iff \mathscr{X} is finite-dimensional.

Proof. It suffices to show that $A \in \mathfrak{C}(\mathscr{X})$ iff every bounded set in \mathscr{X} is sequentially compact.

If: Let $\{x_n\}$ be a bounded sequence, thus Ax_n is bounded since A is bounded, thus it has a convergent subsequence and A is therefore compact.

`Only if': Let B be a bounded set and $\{x_n\} \subseteq B$. We can find a convergent subsequence in $\{Ax_n\}$, say Ax_{n_k} . Note that $||Ax_n|| \ge a ||x_n||$, we know that $||x_{n_k}||$ is a Cauchy sequence thus convergent (as \mathscr{X} is complete).

1.3 Let \mathscr{X} and \mathscr{Y} be Banach spaces, $A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$, $K \in \mathfrak{C}(\mathscr{X}, \mathscr{Y})$ and $R(A) \subseteq R(K)$. Show that $A \in \mathfrak{C}(\mathscr{X}, \mathscr{Y})$.

Proof. Let $K' : \mathscr{X} / \ker K \to \mathscr{X}$ be the canonical map, then K' is also a compact operator, since $B + \ker K$ is the unit ball in $\mathscr{X} / \ker K$, where B is the unit ball in \mathscr{X} . Note that K' is continuous, thus K'^{-1} is a closed map, and $D(K'^{-1}) = R(K) \supseteq R(A)$, hence $K'^{-1}A : \mathscr{X} \to \mathscr{X} / \ker K$ is a closed map, and its domain is the entire \mathscr{X} , thus from the closed graph theorem that $K'^{-1}A$ is continuous, whence it follows that $A = K(K'^{-1}A)$ is compact.

1.4 Let H be a Hilbert space and $A : H \to H$ is a compact operator. Suppose that $x_n \rightharpoonup x_0$ and $y_n \rightharpoonup y_0$. Show that $(x_n, Ay_n) \to (x_0, Ay_0)$.

Proof. We have that $|(x_n, Ay_n) - (x_0, Ay_0)| \le |(x_n, Ay_n - Ay_0)| + |(x_n - x_0, Ay_0)|$. Since $x_n \rightharpoonup x_0$, it is clear that $\{x_n\}$ is bounded, say by M, and the second term goes to 0. Since $y_n \rightharpoonup y_0$ and A is compact (thus completely continuous), we have that $Ay_n \rightarrow Ay_0$. Notice that $|(x_n, Ay_n - Ay_0)| \le ||x_n|| ||Ay_n - Ay_0|| \le M||Ay_n - Ay_0||$, thus the first term also goes to 0.

1.5 Let \mathscr{X}, \mathscr{Y} be Banach spaces and $A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$. Suppose that R(A) is closed and infinite-dimensional. Show that $A \notin \mathfrak{C}(\mathscr{X}, \mathscr{Y})$.

Proof. Suppose that A is compact. Note that R(A) is a Banach space, and there exist a bounded set B which is not sequentially compact, since R(A) is infinite dimensional. Take $\{y_n\} \subseteq B$ such that it has no convergent subsequence. Consider $\mathscr{X} / \ker A$ and $A' : \mathscr{X} / \ker A \to R(A)$ is the induced natural map, which is bijective. Let $[x_n] = A'^{-1}(y_n)$, we can choose $x_n \in [x_n]$ such that $Ax_n = y_n$ and $||x_n|| \le 2||x_n|| \le 2||A'^{-1}|| ||y_n||$, thus $\{x_n\}$ is bounded. We meet a contradiction. Therefore A can not be compact.

1.6 Let $w_n \in \mathbb{K}$ with $w_n \to 0$. Show that the map defined as

$$T: \{\xi_n\} \mapsto \{w_n\xi_n\}$$

is a compact operator on $l^p (p \ge 1)$.

Proof. It is clear that $T \in \mathscr{L}(l^2)$ since $\{w_n\}$ is bounded. Let T_n be a linear operator defined on l^p as

$$T_n: (\xi_1, \ldots, \xi_n, \xi_{n+1}, \ldots) \mapsto (w_1\xi_1, \ldots, w_n\xi_n, 0, 0, \ldots).$$

Since dim $T_n(l^2) < \infty$, T_n has finite-rank. It is also bounded, thus compact. Given $\epsilon > 0$, there exists N such that $|w_n| < \epsilon$ for all n > N. It then follows that $||T_n x - Tx|| \le \epsilon ||x||$, thus $||T_n - T|| \le \epsilon$, and $||T_n - T|| \to 0$. Because $\mathfrak{C}(l^2)$ is closed, T is compact.

1.7 Let $\Omega \subset \mathbb{R}^n$ be a measurable set and f be a bounded measurable function on Ω . Prove that $F : x(t) \mapsto f(t)x(t)$ is a compact operator on $L^2(\Omega)$ iff f = 0 almost everywhere on Ω .

Proof. `If': Trivial.

`Only if': Assume that mQ > 0. If f(x) > 0 on a set A with mA > 0, we can find a compact set $C \subset A$ with mC > 0. Then f is bounded below on C, say, $f(x) \ge c > 0$ for all $x \in C$. We can find $\{x_n\} \subseteq L^2(C)$ such that $||x_n||_2 = 1$ while $x_n \rightharpoonup 0$ (for instance, take an orthonormal basis). Since F is completely continuous, we have

$$||Fx||^2 = \int_{\Omega} |f(t)|^2 |x_n(t)|^2 \to 0.$$

On the other hand,

$$|Fx||^2 \ge \int_C |f(t)|^2 |x_n(t)|^2 \ge c^2 \int_C |x_n(t)|^2 = c^2,$$

contradiction.

1.8 Let $\Omega \subset \mathbb{R}^n$ be a measurable set and $K \in L^2(\Omega \times \Omega)$. Show that

$$A: u(x)\mapsto \int_{\Omega} K(x,y)u(y)dy, \quad \forall u\in L^2(\Omega)$$

is a compact operator on $L^2(\Omega)$.

Proof. It is clear that $L^2(\Omega)$ is separable, hence there exists an orthonormal basis $\{u_i\} \subset L^2(\Omega)$. Then

$$K(x,y) = \sum_{i=1}^{\infty} K_i(y)u_i(x)$$

where

$$K_i(y) = \int_{\Omega} K(x, y) u_i(x).$$

for almost all y. The Parseval identity gives that

$$\int_{\Omega} |K(x,y)|^2 dx = \sum_{i=1}^{\infty} |K_i(y)|^2$$

and thus

$$\int_{\Omega \times \Omega} |K(x,y)|^2 dx dy = \sum_{i=1}^{\infty} \int_{\Omega} |K_i(y)|^2 dy.$$
⁽¹⁾

We now define the following operator of rank ${\cal N}$

$$A_N u = \int_{\Omega} K_N(x, y) f(y) dy,$$

where

$$K_N(x,y) = \sum_{i=1}^N K_i(y)u_i(x).$$

By Cauchy-Schwarz inequality,

$$\begin{split} \|(A - A_N)\|^2 &\leq \int_{\Omega \times \Omega} |K(x, y) - K_N(x, y)|^2 dx dy \\ &= \int_{\Omega \times \Omega} |K(x, y)|^2 dx dy - 2 \int_{\Omega \times \Omega} K(x, y) \sum_{i=1}^N K_i(y) u_i(x) dx dy + \sum_{i=1}^N \int_{\Omega} |K_i(y)|^2 dy \\ &= \int_{\Omega \times \Omega} |K(x, y)|^2 dx dy - \int_{\Omega} |K_i(y)|^2 dy \to 0 \end{split}$$

as $N \to \infty$. Hence $A_N \to A$ and A is therefore compact.

1.9 Let H be a Hilbert space, $A \in \mathfrak{C}(H)$, $\{e_n\}$ is an orthonormal set in H. Show that $\lim_{n \to \infty} (Ae_n, e_n) = 0$.

Proof. It can be proved that $e_n \rightarrow 0$ (See proof to Exercise 2.5.19), thus the conclusion follows from Exercise 4.1.4.

1.10 Let \mathscr{X} be a Banach space, $A \in \mathfrak{C}(H)$, \mathscr{X}_0 is a closed subspace of \mathscr{X} such that $A(\mathscr{X}_0) \subseteq \mathscr{X}_0$. Prove that the map $T : [x] \mapsto [Ax]$ is a compact operator on $\mathscr{X}/\mathscr{X}_0$.

Proof. It can be proved that $B + \ker A$ is the unit ball in $\mathscr{X} / \ker A$, where B is the unit ball in \mathscr{X} . Let $\{[x_n]\}$ be a bounded sequence, we can find $\{x_n\}$ such that $||x_n|| \le 2||[x_n]||$, thus $\{x_n\}$ is bounded, and $\{Ax_n\}$ has a convergent subsequence, thus $\{T[x_n]\} = \{[Ax_n]\}$ has also a convergent subsequence. T is compact. \Box

1.11 Let $\mathscr{X}, \mathscr{Y}, \mathscr{Z}$ be Banach spaces, $\mathscr{X} \subseteq \mathscr{Y} \subseteq \mathscr{Z}$, if the embedding map from \mathscr{X} to \mathscr{Y} is compact and from \mathscr{Y} to \mathscr{Z} continuous. Prove that for any $\epsilon > 0$, there exists $c(\epsilon) > 0$ such that

$$\|x\|_{\mathscr{Y}} \leq \epsilon \|x\|_{\mathscr{X}} + c(\epsilon) \|x\|_{\mathscr{Z}}, \quad \forall x \in \mathscr{X}.$$

Proof. Prove by contradiction. Suppose that there exists ϵ_0 , for all n there exists $x_n \in \mathscr{X}$ such that $||x_n||_{\mathscr{Y}} > \epsilon_0 ||x_n||_{\mathscr{X}} + n ||x_n||_{\mathscr{X}}$. Let $y_n = x_n / ||x_n||$, then it holds that $||y_n||_{\mathscr{Y}} > \epsilon_0 + n ||y_n||_{\mathscr{X}}$. Since the embedding map $\mathscr{X} \to \mathscr{Y}$ is compact and $||y_n|| = 1$ for all n, we know that $||y_n||_{\mathscr{Y}}$ is bounded thus $||y_n||_{\mathscr{X}} \to 0$. Also we know that $\{y_n\}$ has a convergent subsequence in \mathscr{Y} , say $y_{n_k} \to y$ in \mathscr{Y} as $k \to \infty$. Then $z_{n_k} \to y$ in \mathscr{X} as the embedding map from \mathscr{Y} to \mathscr{X} is continuous, and therefore y must be 0. But $||y_{n_k}|| \ge \epsilon$, we reach a contradiction.

2 Riesz-Fredholm Theory

2.1 Let \mathscr{X} be a Banach space and $M \subseteq \mathscr{X}$ is a closed linear subspace with $\operatorname{codim} M = n$. Show that there exists linearly independent set $\{\phi_k\}_{k=1}^n \subseteq \mathscr{X}^*$ such that

$$M = \bigcap_{k=1}^{n} N(\phi_k)$$

Proof. Let $\{e_i + M\}$ (i = 1, ..., n) be a basis of \mathscr{X}/M , $D = \{e_1, ..., e_n\}$, $D_i = \operatorname{span}\{D \setminus \{e_i\}, M\}$. Then we have that $e_i \notin D_i$ and we can a bounded linear functional ϕ_i such that $\phi_i(D_i) = 0$ and $\phi_i(e_i) = 1$. It is easy to verify that $\{\phi_i\}$ is linearly independent, and $M = \bigcap_{i=1}^n N(\phi_i)$. 2.2 Let \mathscr{X}, \mathscr{Y} be Banach space and $T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$ is surjective. Define $\widetilde{T} : \mathscr{X}/N(T) \to \mathscr{Y}$ as

 $\widetilde{T}[x] = Tx, \quad \forall x \in [x], \forall [x] \in \mathscr{X}/N(T);$

Show that \widetilde{T} is a linear homeomorphism.

Proof. It is clear that \widetilde{T} is well-defined and linear. For each [x] we can find $x \in [x]$ such that $||x|| \le 2||[x]||$. Thus $||\widetilde{T}[x]|| = ||Tx|| \le ||T|| ||x|| \le 2||T|| ||[x]||$ and \widetilde{T} is continuous. Also \widetilde{T} is a bijection, hence it is a homeomorphism.

2.3 Let \mathscr{X} be a Banach space, M, N_1, N_2 be closed linear subspaces of \mathscr{X} . Suppose that

$$M \oplus N_1 = \mathscr{X} = M \oplus M_2,$$

show that N_1 is homeomorphic to N_2 .

Proof. It suffices to show that N_1 and N_2 are both homeomorphic to \mathscr{X}/M . Define $F: N_1 \to \mathscr{X}/M$ as F(x) = x + M, and it is easy to verify that F is well-defined. Since $\mathscr{X} = M \oplus N_1$, F is bijective. Besides, it holds that $||F(x)|| = ||x + M|| = \inf_{m \in M} ||x + m|| \le ||x||$, whence we know that F is continuous thus a homeomorphism.

- 2.4 Let $A \in \mathfrak{C}(\mathscr{X})$, T = I A, show that
 - (1) $\forall x \in \mathscr{X}/N(T), \exists x_0 \in [x], \text{ such that } ||x_0|| = ||[x]||;$
 - (2) Suppose that $y \in \mathscr{X}$ such that Tx = y has at least one solution, show that one of the solutions has the minimum norm.
 - *Proof.* (1) Since $||[x]|| = \inf_{z \in N(T)} ||x + z||$, we can choose $z_n \in N(T)$ for each n such that $||x + z_n|| < ||[x]|| + \frac{1}{n}$, so $\{x + z_n\}$ is bounded. Since A is compact, we have that $\{Ax + Az_n\} = \{Ax + z_n\}$ has a convergent subsequence, say $Ax + z_{n_k} \to z$, thus $z_{n_k} \to z Ax$. It follows that $||x + z_{n_k}|| \to ||Tx + z||$, combining with $||x + z_n|| \to ||[x]||$ we have that ||Tx + z|| = ||[x]||. We verify that $Tx + z \in [x]$, or, $Tx + z x \in N(T)$: $T(Tx + z x) = T(z Ax) = \lim T(z_{n_k}) = 0$.
 - (2) Suppose that x' is a solution to Tx = y, then the set of all the solutions is exactly [x']. From (1) we know that there exists $x_0 \in [x']$, thus a solution to Tx = y, with the minimum norm ||[x']||.
- 2.5 Let $A \in \mathfrak{C}(\mathscr{X})$ and T = I A. Show that
 - (1) $N(T^k)$ is finite dimensional; and
 - (2) $R(T^k)$ is closed

for all $k \in \mathbb{N}$.

Proof. $T^k = (I - A)^k = I - A_k$, where A_k is compact, as a result of Proposition 4.1.2(2) and (6).

- 2.6 Let M be a closed linear subspace on Banach space B. Call a bounded linear operator $P : \mathscr{X} \to M$ with $P^2 = P$ a projection operator on M. Show that
 - (1) If M is finite dimensional then a projection operator on M do exist;
 - (2) If P is a projection operator on M then I P is a projection operator on R(I P) from \mathscr{X} ;
 - (3) If P is a projection operator on M then $\mathscr{X} = M \oplus N$, where N = R(I P);

(4) If $A \in \mathfrak{C}(\mathscr{X})$ and T = I - A, then it holds that

$$N(T) \oplus \mathscr{X}/N(T) = \mathscr{X} = R(T) \oplus \mathscr{X}/R(T)$$

in the sense of isomorphism both algebraical and topological.

- *Proof.* (1) Let e_1, \ldots, e_n be a normal basis of M. From Hahn-Banach Theorem, there exists continuous linear functionals f_1, \ldots, f_n such that $f_k(e_j) = \delta_{kj}$. Then define $Px = \sum f_k(x)e_k$, and it is easy to verify that P is bounded and satisfies that $P^2 = P$.
- (2) The conclusion follows from that $(I P)^2 = I 2P + P^2 = I 2P + P = I P$.
- (3) It is clear that $\mathscr{X} = M + R(I-P)$ and we shall show that $M \cap R(I-P) = 0$. Let $x \in M \cap R(I-P)$, then there exists y such that x = (I-P)y, thus $Px = P(I-P)y = (P-P^2)y = 0$. Since $x \in M$, it holds that x = Px, whence we obtain that x = 0.
- (4) Since N(T) is finite dimensional, from (1) there exists a projection operator P on N(T), and from (3) it suffices to show that $\mathscr{X}/N(T)$ is isomorphic to R(I P).

Let $F : \mathscr{X}/N(T) \to R(I-P)$ be defined as F([x]) = (I-P)x. It is clear that F is well-defined, bijective and linear (algebraically isomorphic). For all $[x] \in \mathscr{X}/N(T)$ there exists $x' \in [x]$ such that $\|x'\| \leq 2\|[x]\|$, so $\|F([x])\| = \|(I-P)x'\| \leq \|I-P\| \|x'\| \leq 2\|I-P\| \|[x]\|$, and thus F is continuous (topologically homeomorphic).

Therefore we obtain that $N(T) \oplus \mathscr{X}/N(T) = \mathscr{X}$.

Since $\operatorname{codim} R(T) = \dim N(T)$, we know that $\mathscr{X}/R(T)$ and N(T) are isomorphic both algebraically and topologically. And it is obvious that R(T) is isomorphic to $\mathscr{X}/N(T)$, since the map $y = Tx \mapsto [x]$ is an isomorphism. Thus we also have that $\mathscr{X}/R(T) \oplus R(T) = \mathscr{X}$.

3 Spectrum Theory of Compact Operators (Riesz-Schauder Theory)

($\mathscr X$ denotes Banach space in this section)

3.1 Given sequence of numbers $\{a_n\}$ and define operator A on l^2 as

$$A: (x_1, x_2, \dots) \mapsto (a_1 x_1, a_2 x_2, \dots).$$

- (1) Show that $A \in \mathscr{L}(l^2)$ iff $\{a_n\}$ is bounded;
- (2) If $A \in \mathscr{L}(l^2)$ find $\sigma(A)$ and the types of the spectral points.
- *Proof.* (1) If: Suppose that $|a_n| \leq M$, then $||Ax|| \leq M ||x||$.

`Only if': If $\{a_n\}$ is not bounded, then there exists $n_1 < n_2 < \cdots$ such that $|a_{n_k}| > k$. For each m, Take $x_m = (\xi_1, \xi_2, \dots)$ where $\xi_{n_m} = 1$ and $\xi_j = 0$ for all of the rest indices j. It is clear that $x \in l^2$ and $||x_m|| = 1$. We compute $||Ax_m|| > m^{\frac{1}{2}} \to \infty$ as $m \to \infty$, which contradicts with the continuity of A. Therefore $\{a_n\}$ is bounded.

(2) Since $A \in \ell^2$, we know that $\{a_n\}$ is bounded, say, by M.

If $\lambda = a_i$ for some i, then $(\lambda I - A)x = 0$ has nonzero solutions and $\lambda \in \sigma_p(A)$. Now assume that $\lambda \neq a_i$ for all i, then $(\lambda I - A)^{-1}$ exists, sending (x_1, x_2, \dots) to $(\frac{x_1}{\lambda - a_1}, \frac{x_2}{\lambda - a_2}, \dots)$.

If λ is not a limit point of $\{a_i\}$, then $\frac{1}{|\lambda-a_i|}$ is bounded away from 0, so $(\frac{x_1}{\lambda-a_1}, \frac{x_2}{\lambda-a_2}, \dots) \in \ell^2$ whenever $(x_1, x_2, \dots) \in L^2$ and $R(\lambda I - A) = \ell^2$, thus $\lambda \notin \sigma(A)$.

Now let $\lambda \neq a_i$ be a limit point of $\{a_i\}$, suppose that $|a_{n_k} - \lambda| < \frac{1}{k}$, where $\{a_{n_k}\}$ are pairwise distinct. Consider $x = (x_1, x_2, ...)$ with $x_{n_k} = (\lambda - a_{n_k})/\sqrt{k}$ and $x_i = 0$ for $i \neq n_k$, then $\sum x_i^2 = \sum (\lambda - a_{n_k})^2/k < \sum 1/k^3 < \infty$. However, $\sum x_i^2/(\lambda - a_i)^2 = \sum 1/k = \infty$, hence $x \notin R(\lambda I - A)$. Note that any x with finitely many non-zero components is in $R(\lambda I - A)$, we know that $R(\lambda I - A)$ is dense in ℓ^2 . Therefore, $\lambda \in \sigma_c(A)$.

We conclude that $\sigma(A) = \overline{\{a_i\}}$ with $\sigma_p(A) = \{a_i\}$ and $\sigma_c(A)$ the rest spectral points.

3.2 In C[0,1] consider the operator

$$T: x(t) \mapsto \int_0^t x(s) ds, \quad \forall x(t) \in C[0,1].$$

- (1) Show that T is a compact operator;
- (2) Find $\sigma(T)$ and a nontrivial closed invariant subspace of T.
- *Proof.* (1) It suffices to show that $T(B_1)$ is sequentially compact, or, uniformly bounded and equi-continuous. First we have that $||Tx|| \le \left|\int_0^1 x(s)ds\right| \le ||x||$ implying that $T(B_1)$ is uniformly bounded. Besides it holds that $|(Tx)(s') - (Tx)(s'')| = \left|\int_{s'}^{s''} x(s)ds\right| \le ||x|| |s'' - s'|$ implying that $T(B_1)$ is equi-continuous.
- (2) First of all, ||T|| = 1 implies that σ(T) is contained in the closed disc. Since C[0, 1] is infinitedimensional, we know that 0 ∈ σ(T). Any other spectral point must be eigenvalue, that is, if λ ≠ 0 belongs to σ(T), then Tx = λx has non-zero solution. But Tx = λx has only zero solution, hence σ(T) = {0}. An invariant space of T is C¹[0, 1].
- 3.3 Let $A \in \mathfrak{C}(\mathscr{X})$. Prove that x Ax = 0 has only zero solution iff x Ax = y has solution for all $y \in \mathscr{X}$.

Proof. `Only if': This is Theorem 4.2.6.

If: Let T = I - A, then dim $N(T) = \operatorname{codim} R(T) = 0$, thus $N(T) = \{0\}$.

3.4 Let $T \in \mathscr{L}(\mathscr{X})$ and there exists $m \in \mathbb{N}$ such that

$$\mathscr{X} = N(T^m) \oplus R(T^m)$$

Show that $p(T) = q(T) \le m$.

Proof. Let $x \in N(T^{m+1})$. We have that $T^m x \in R(T^m) \cap N(T^m)$, yielding that $T^m x = 0$ and $x \in N(T^m)$. So $N(T^{m+1}) \subseteq N(T^m)$, thus $p(T) \leq m$.

Now we show that q(T) = p(T). First we show that $q(T) \ge p(T)$. For simplicity, we use notations p and q instead of p(T) and q(T) respectively.

(1) Proof of $p \leq q$. We have that $T(R(T^q)) = R(T^{q+1}) = R(T^q)$, thus for $y \in R(T^q)$, we have $x \in R(T^q)$ such that Tx = y.

We claim that if Tx = 0 for some $x \in R(T^q)$ then x must be zero. If not, there exists $x_1 \in R(T^q) \setminus \{0\}$ such that $Tx_1 = 0$, then there exists $x_2 \neq 0$ such that $Tx_2 = x_1$. Continuing this process, we obtain $\{x_n\}$ such that $0 \neq x_1 = Tx_2 = \cdots = T^{n-1}x_n$, but $0 = Tx_1 = T^nx_n$. Thus $x_n \notin N(T^{n-1})$ and $x_n \in N(T^n)$ for all n, which contradicts with $p < \infty$.

Now we show that $N(T^{q+1}) = N(T^q)$, which would imply that $p \leq q$. It suffices to show that $N(T^{q+1}) \subseteq N(T^q)$. Let $x \in N(T^{q+1})$. Since $T^q x \in R(T^q)$ and $T(T^q x) = 0$, we must have that $T^q x = 0$ and $x \in N(T^q)$.

- (2) Proof of $p \ge q$. This is obviously true for q = 0. Assume that q > 0. It suffices to show that $N(T^{q-1}) \subsetneq N(T^q)$. Let $y \in R(T^{q-1}) \setminus R(T^q)$. Then there exists x such that $y = T^{q-1}x$, and there also exists z such that $Ty = T^{q+1}z$ since $Ty \in R(T^q) = R(T^{q+1})$. Thus $T^{q-1}(x-Tz) = y-T^qz \ne 0$ because $y \notin R(T^q)$. So x-Tz does not belong to $N(T^{q-1})$. And it is obvious that it belongs to $N(T^q)$, which establishes that $N(T^{q-1}) \subsetneq N(T^q)$.
- 3.5 Let $A, B \in \mathscr{L}(\mathscr{X})$ and AB = BA. Prove that
 - (1) R(A) and N(A) are invariant subspaces of B;

- (2) $R(B^n)$ and $N(B^n)$ are invariant subspaces of B for all $n \in \mathbb{N}$.
- *Proof.* (1) Let $y \in R(A)$, then y = Ax for some x. It holds that $By = BAx = A(Bx) \in R(A)$, thus R(A) is an invariant subspace of B. Let $y \in N(A)$, then A(By) = B(Ay) = 0, indicating that $By \in N(A)$. Hence N(A) is an invariant subspace of B.
- (2) The conclusion follows from $B(B^n x) = B^n(Bx) \in R(B^n)$ and $B^n(By) = B(B^n y) = 0$ for $y \in N(B^n)$.
- 3.6 Let $A \in \mathscr{L}(\mathscr{X})$ and M is a finite-dimensional invariant subspace of A. Show that
 - (1) The action of A on M can be described by a matrix;
 - (2) At least one eigenvector of A is in M.

Proof. Trivial, as $A|_M$ can be viewed as a linear transformation over M (which is finite dimensional). \Box

3.7 Let $x_0 \in \mathscr{X}$ and $f \in \mathscr{X}^*$ satisfy $\langle f, x_0 \rangle = 1$. Let $A = x_0 \otimes f$ and T = I - A. Find p(T).

Proof. We have that $Ax = \langle f, x \rangle x_0$ and $A^2 = A$. Thus $N(T) = N(T^2)$. If dim $\mathscr{X} > 1$ then $N(T) \neq \mathscr{X}$ so p(T) = 1; otherwise $N(T) = \mathscr{X}$, so p(T) = 0.

4 Hilbert-Schmidt Theorem

(*H* denotes complex Hilbert space in this section)

4.1 Let $A \in \mathscr{L}(H)$, show that $A + A^*$, AA^* and A^*A are all symmetric and $||AA^*|| = ||A^*A|| = ||A||^2$.

Proof. It is trivial to prove that $A + A^*$, AA^* and A^*A are symmetric. With respect to norm, we have $||AA^*|| = \sup_{||x||=1} |(AA^*x, x)| = \sup_{||x||=1} |(A^*x, A^*x)|| = \sup_{||x||=1} ||A^*x||^2 = ||A^*||^2 = ||A||^2$. Similarly we have $||A^*A|| = ||A||^2$.

4.2 Let $A \in \mathscr{L}(H)$ satisfying $(Ax, x) \ge 0$ for all $x \in H$ and (Ax, x) = 0 iff x = 0. Show that

$$||Ax||^2 \le ||A||(Ax,x), \quad \forall x \in H.$$

Proof. It is not hard to show that the following generalized Cauchy's Inequality holds.

$$|(Au, v)|^2 \le (Au, u)(Av, v).$$

Let u = x and v = Ax, we have $|(Au, Au)|^2 \leq (Ax, x)(A^2x, Ax) \leq (Ax, x) \cdot ||A|| \cdot ||Ax||^2$, which simplifies to our desired result.

4.3 Let A be a symmetric compact operator on H, and

$$m(A) = \inf_{\|x\|=1} (Ax, x), \quad M(A) = \sup_{\|x\|=1} (Ax, x)$$

Prove that

- (1) If $m(A) \neq 0$ then $m(A) \in \sigma_p(A)$;
- (2) If $M(A) \neq 0$ then $M(A) \in \sigma_p(A)$;

Proof. Consider $A_{\alpha} = A + \alpha I$, then the spectrum is translated by α , so $m(A_{\alpha}) = m(A) + \alpha$ and $M(A_{\alpha}) = M(A) + \alpha$. For $\alpha < 0$ small enough, $m(A_{\alpha}) < M(A_{\alpha}) < 0$. Suppose that $(A_{\alpha}x_n, x_n) \to m(A_{\alpha})$ with $||x_n|| = 1$. From Proposition 4.4.5(5), it holds that $||A_{\alpha}|| = -m(A_{\alpha})$. Note that

$$||A_{\alpha}x_{n} - m(A_{\alpha})x_{n}||^{2} = ||A_{\alpha}||^{2} - 2m(A_{\alpha})(A_{\alpha}x_{n}, x_{n}) + m(A_{\alpha})^{2} \to 0$$

as $n \to \infty$, it follows that $m(A_{\alpha})$ is in the spectrum of A_{α} . Hence m(A) is in $\sigma(A)$, and A is compact, thus if $m(A) \neq 0$ it must be in $\sigma_p(A)$.

Similarly consider $A + \alpha I$ for $\alpha > 0$ enough, it yields that $M(A) \in \sigma_p(A)$ if $M(A) \neq 0$.

4.4 Let A be a symmetric compact operator, show that

- (1) If A is non-zero then it has at least one non-zero eigenvalue;
- (2) If M is an non-trivial invariant subspace then M contains some eigenvector of A.

Proof. (1) It follows directly from Theorem 4.4.6.

(2) Assume M is closed, then $A|_M$ is compact and symmetric. Since M is nontrivial, $A|_M$ is non-zero, and therefore has an eigenvalue on M.

- 4.5 Show that $P \in \mathscr{L}(H)$ is an orthogonal projector if and only if
 - (1) P is symmetric, i.e., $P = P^*$;
 - (2) P is idempotent, i.e., $P^2 = P$.

Proof. `Only if': Trivial.

If: Let $M = \{x : Px = x\}$, then M is a linear subspace of H. Since P is continuous, it follows that M is closed. If Px = y then $Py = P^2x = Px = y$, which means that M is the range of P. Now notice that $(Py, x - Px) = (y, P^*x - P^*Px) = (y, Px - P^2x) = 0$, so $R(P) \perp R(I - P)$. Also x = Px + (x - Px), we see that Px is an orthogonal projector onto M.

4.6 Show that $P \in \mathscr{L}(H)$ is an orthogonal projector if and only if $(Px, x) = ||Px||^2$ for all $x \in H$.

Proof. Only if: Suppose that P is a projector, then x = y + z with $y \in R(P)$ and $z \in R(P)^{\perp}$. Then $(Px, x) = (y, y + z) = (y, y) + (y, z) = (y, y) = ||Px||^2$.

'If': From Proposition 4.4.5 (1), we know that P is symmetric, hence $P^2 - P$ is symmetric. Notice that $(P^2x - Px, x) = (P^2x, x) - (Px, x) = (Px, Px) - (Px, x) = 0$, it follows from Proposition 4.4.5 (5) that $P^2 - P = 0$. Hence P is an orthogonal projector by the previous problem.

4.7 Let $A \in \mathscr{L}(H)$, it is called positive operator if $(Ax, x) \ge 0$ for all $x \in H$. Show that

- (1) All positive operators are symmetric;
- (2) The eigenvalues of a positive operators are non-negative.

Proof. (1) Proposition 4.4.5(1).

(2) From Proposition 4.4.5(2), we need only to consider $\lambda I - A$ for real λ . Notice that for negative λ it holds that

$$\|(\lambda I - A)x\|^{2} = ((\lambda I - A)x, (\lambda I - A)x) = \lambda^{2} \|x\|^{2} - 2\lambda(Ax, x) + \|Ax\|^{2} \ge \lambda^{2} \|x\|^{2}$$

and thus $\lambda I - A$ is injective for negative λ . Hence $\sigma(A) \subset [0, \infty)$.

4.8 Let L and M be two closed linear subspace of H. Show that $L \subseteq M$ iff $P_M - P_L$ is positive.

Proof. `Only if': Suppose that $x = x_L + y_L = x_M + y_M$ where $x_A \in A$ and $y_A \in A^{\perp}$. Decompose x_M as $x_M = u + v$, where $u \in L$ and $v \in L^{\perp}$. Notice that $y_M \perp L$ hence $x = u + (v + y_M)$ is an orthogonal decomposition along L, and from the uniqueness of decomposition it must hold that $x_L = u$. Since $L \subseteq M$, it holds that $x_M - x_L \in M$ and thus $(P_M x - P_L x, x) = (x_M - x_L, x_M + y_M) = (x_M - x_L, x_M) = (v, u + v) = (v, v) \ge 0$.

If: Suppose that $x \in L$ then $P_L x = x$. Suppose that $x = x_M + y_M$ where $x_M \in M$ and $y_M \in M^{\perp}$. Then $0 \leq (P_M x - P_L x, x) = (P_M x - x, x) = (x_M - x, x) = -(y_M, x_M + y_M) = -(y_M + y_M) \leq 0$, hence $y_M = 0$ and $x = x_M$, hence $x \in M$, and $L \subseteq M$.

4.9 Let (a_{ij}) satisfy $\sum_{i,j=1}^{\infty} |a_{ij}|^2 < \infty$. Define in ℓ^2

$$A: x = \{x_1, x_2, \dots\} \mapsto y = \{y_1, y_2, \dots\}$$

where $y_i = \sum_{j=1}^{\infty} a_{ij} x_j$. Show that

- (1) A is compact;
- (2) If $a_{ij} = \overline{a_{ji}}$ then A is a symmetric compact operator.

Proof. (1) Using Cauchy-Schwarz inequality it is easy to verify that $A \in \mathscr{L}(\ell^2)$. Define $A_N \in L(\ell^2)$ as

$$A: x = \{x_1, x_2, \dots\} \mapsto y = \{y_1, \dots, y_N, 0, \dots\}$$

then A_N is a finite-rank operator and thus is compact. And it follows from Cauchy-Schwarz inequality that $||A_N - A|| \to 0$, hence A is compact.

(2) Suppose that $z = (z_1, z_2, ...)$. It is not hard to show that

$$\left|\sum_{i=1}^{N}\sum_{j=1}^{N}a_{ij}x_j\overline{z_i} - \sum_{i=1}^{\infty}\sum_{i=1}^{\infty}a_{ij}x_j\overline{z_i}\right|^2 \to 0$$

as $N \to \infty$ using Cauchy-Schwarz inequality. Also,

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} x_i = \sum_{i=j}^{N} \sum_{j=i}^{N} \overline{a_{ji} z_i} x_j \to \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} x_j \overline{a_{ij} z_i},$$

which can be proved in the same way. We have established $\langle Ax, z \rangle = \langle x, Az \rangle$, hence A is symmetric.

- 4.10 Let A be a symmetric operator on H and there exists an orthonormal basis in which every vector is an eigenvector of A. Suppose that
 - (1) dim $N(\lambda I A) < \infty (\forall \lambda \in \sigma_p(A) \setminus \{0\})$
 - (2) For any $\epsilon > 0$, the set $\sigma_p(A) \setminus [-\epsilon, \epsilon]$ is finite.

Show that A is a compact operator on H.

Proof. From the two assumptions we know that A has countably many eigenvalues (including the multiplicity). List them in the decreasing order of absolute value (with multiplicity) as $|\lambda_1| \ge |\lambda_2| \ge \cdots$. Since A is symmetric, we know that the basis contains a basis of $N(\lambda I - A)$ for all eigenvalue $\lambda \ne 0$. Then $Ax = \sum_{i=1}^{\infty} (x, e_i)e_i$ (no need to consider the eigenvectors associated with eigenvalue 0), where e_i is an eigenvector associated with λ_n . Define $A_N = \sum_{i=1}^{N} \lambda_n(x, e_i)e_i$ then A_N is of finite rank and thus compact. By the Remark 1 of Theorem 4.4.7, $||A - A_N|| \rightarrow 0$ and thus A is compact.