1 Definition and Basic Properties of Compact Operator

1.1 Let \mathscr{X} be a infinite dimensional Banach space. Show that if $A \in \mathfrak{C}(\mathscr{X}), A$ does not have bounded inverse.

Proof. Denote the unit ball of \mathscr{X} by B and the unit sphere S. Suppose that $\left\{x_{n}\right\} \subseteq S$, then $\left\|x_{n}\right\| \leq$ $\left\|A^{-1}\right\|\left\|A x_{n}\right\|$ for all n. Because $\left\{A x_{n}\right\}$ has a convergent subsequence, we know that \bar{x}_{n} has a convergent subsequence too, which implies that S is sequentially compact. This contradicts with Theorem 1.4 .28 , which states that a normed linear space is finite dimensional iff the unit sphere is sequentially compact.
1.2 Let \mathscr{X} be a Banach space and $A \in \mathscr{L}(\mathscr{X})$ satisfy $\|A x\| \geq a\|x\|$ for all $x \in \mathscr{X}$, where a is a positive constant. Prove that $A \in \mathscr{C}(\mathscr{X})$ iff \mathscr{X} is finite-dimensional.

Proof. It suffices to show that $A \in \mathfrak{C}(\mathscr{X})$ iff every bounded set in \mathscr{X} is sequentially compact.
'If': Let $\left\{x_{n}\right\}$ be a bounded sequence, thus $A x_{n}$ is bounded since A is bounded, thus it has a convergent subsequence and A is therefore compact.
'Only if': Let B be a bounded set and $\left\{x_{n}\right\} \subseteq B$. We can find a convergent subsequence in $\left\{A x_{n}\right\}$, say $A x_{n_{k}}$. Note that $\left\|A x_{n}\right\| \geq a\left\|x_{n}\right\|$, we know that $\left\|x_{n_{k}}\right\|$ is a Cauchy sequence thus convergent (as \mathscr{X} is complete).
1.3 Let \mathscr{X} and \mathscr{Y} be Banach spaces, $A \in \mathscr{L}(\mathscr{X}, \mathscr{Y}), K \in \mathfrak{C}(\mathscr{X}, \mathscr{Y})$ and $R(A) \subseteq R(K)$. Show that $A \in \mathfrak{C}(\mathscr{X}, \mathscr{Y})$.

Proof. Let $K^{\prime}: \mathscr{X} / \operatorname{ker} K \rightarrow \mathscr{X}$ be the canonical map, then K^{\prime} is also a compact operator, since $B+\operatorname{ker} K$ is the unit ball in $\mathscr{X} / \operatorname{ker} K$, where B is the unit ball in \mathscr{X}. Note that K^{\prime} is continuous, thus $K^{\prime-1}$ is a closed map, and $D\left(K^{\prime-1}\right)=R(K) \supseteq R(A)$, hence $K^{\prime-1} A: \mathscr{X} \rightarrow \mathscr{X} /$ ker K is a closed map, and its domain is the entire \mathscr{X}, thus from the closed graph theorem that $K^{\prime-1} A$ is continuous, whence it follows that $A=K\left(K^{\prime-1} A\right)$ is compact.
1.4 Let H be a Hilbert space and $A: H \rightarrow H$ is a compact operator. Suppose that $x_{n} \rightharpoonup x_{0}$ and $y_{n} \rightharpoonup y_{0}$. Show that $\left(x_{n}, A y_{n}\right) \rightarrow\left(x_{0}, A y_{0}\right)$.

Proof. We have that $\left|\left(x_{n}, A y_{n}\right)-\left(x_{0}, A y_{0}\right)\right| \leq\left|\left(x_{n}, A y_{n}-A y_{0}\right)\right|+\left|\left(x_{n}-x_{0}, A y_{0}\right)\right|$. Since $x_{n} \rightharpoonup x_{0}$, it is clear that $\left\{x_{n}\right\}$ is bounded, say by M, and the second term goes to 0 . Since $y_{n} \rightharpoonup y_{0}$ and A is compact (thus completely continuous), we have that $A y_{n} \rightarrow A y_{0}$. Notice that $\left|\left(x_{n}, A y_{n}-A y_{0}\right)\right| \leq\left\|x_{n}\right\|\left\|A y_{n}-A y_{0}\right\| \leq$ $M\left\|A y_{n}-A y_{0}\right\|$, thus the first term also goes to 0 .
1.5 Let \mathscr{X}, \mathscr{Y} be Banach spaces and $A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$. Suppose that $R(A)$ is closed and infinite-dimensional. Show that $A \notin \mathfrak{C}(\mathscr{X}, \mathscr{Y})$.

Proof. Suppose that A is compact. Note that $R(A)$ is a Banach space, and there exist a bounded set B which is not sequentially compact, since $R(A)$ is infinite dimensional. Take $\left\{y_{n}\right\} \subseteq B$ such that it has no convergent subsequence. Consider $\mathscr{X} / \operatorname{ker} A$ and $A^{\prime}: \mathscr{X} / \operatorname{ker} A \rightarrow R(A)$ is the induced natural map, which is bijective. Let $\left[x_{n}\right]=A^{\prime-1}\left(y_{n}\right)$, we can choose $x_{n} \in\left[x_{n}\right]$ such that $A x_{n}=y_{n}$ and $\left\|x_{n}\right\| \leq 2 \|\left[x_{n}\|\leq 2\| A^{\prime-1}\| \| y_{n} \|\right.$, thus $\left\{x_{n}\right\}$ is bounded. We meet a contradiction. Therefore A can not be compact.
1.6 Let $w_{n} \in \mathbb{K}$ with $w_{n} \rightarrow 0$. Show that the map defined as

$$
T:\left\{\xi_{n}\right\} \mapsto\left\{w_{n} \xi_{n}\right\}
$$

is a compact operator on $l^{p}(p \geq 1)$.

Proof. It is clear that $T \in \mathscr{L}\left(l^{2}\right)$ since $\left\{w_{n}\right\}$ is bounded. Let T_{n} be a linear operator defined on l^{p} as

$$
T_{n}:\left(\xi_{1}, \ldots, \xi_{n}, \xi_{n+1}, \ldots\right) \mapsto\left(w_{1} \xi_{1}, \ldots, w_{n} \xi_{n}, 0,0, \ldots\right)
$$

Since $\operatorname{dim} T_{n}\left(l^{2}\right)<\infty, T_{n}$ has finite-rank. It is also bounded, thus compact. Given $\epsilon>0$, there exists N such that $\left|w_{n}\right|<\epsilon$ for all $n>N$. It then follows that $\left\|T_{n} x-T x\right\| \leq \epsilon\|x\|$, thus $\left\|T_{n}-T\right\| \leq \epsilon$, and $\left\|T_{n}-T\right\| \rightarrow 0$. Because $\mathfrak{C}\left(l^{2}\right)$ is closed, T is compact.
1.7 Let $\Omega \subset \mathbb{R}^{n}$ be a measurable set and f be a bounded measurable function on Ω. Prove that $F: x(t) \mapsto$ $f(t) x(t)$ is a compact operator on $L^{2}(\Omega)$ iff $f=0$ almost everywhere on Ω.

Proof. `If': Trivial.

${ }^{`}$ Only if': Assume that $m Q>0$. If $f(x)>0$ on a set A with $m A>0$, we can find a compact set $C \subset A$ with $m C>0$. Then f is bounded below on C, say, $f(x) \geq c>0$ for all $x \in C$. We can find $\left\{x_{n}\right\} \subseteq L^{2}(C)$ such that $\left\|x_{n}\right\|_{2}=1$ while $x_{n} \rightharpoonup 0$ (for instance, take an orthonormal basis). Since F is completely continuous, we have

$$
\|F x\|^{2}=\int_{\Omega}|f(t)|^{2}\left|x_{n}(t)\right|^{2} \rightarrow 0
$$

On the other hand,

$$
\|F x\|^{2} \geq \int_{C}|f(t)|^{2}\left|x_{n}(t)\right|^{2} \geq c^{2} \int_{C}\left|x_{n}(t)\right|^{2}=c^{2}
$$

contradiction.
1.8 Let $\Omega \subset \mathbb{R}^{n}$ be a measurable set and $K \in L^{2}(\Omega \times \Omega)$. Show that

$$
A: u(x) \mapsto \int_{\Omega} K(x, y) u(y) d y, \quad \forall u \in L^{2}(\Omega)
$$

is a compact operator on $L^{2}(\Omega)$.
Proof. It is clear that $L^{2}(\Omega)$ is separable, hence there exists an orthonormal basis $\left\{u_{i}\right\} \subset L^{2}(\Omega)$. Then

$$
K(x, y)=\sum_{i=1}^{\infty} K_{i}(y) u_{i}(x)
$$

where

$$
K_{i}(y)=\int_{\Omega} K(x, y) u_{i}(x)
$$

for almost all y. The Parseval identity gives that

$$
\int_{\Omega}|K(x, y)|^{2} d x=\sum_{i=1}^{\infty}\left|K_{i}(y)\right|^{2}
$$

and thus

$$
\begin{equation*}
\int_{\Omega \times \Omega}|K(x, y)|^{2} d x d y=\sum_{i=1}^{\infty} \int_{\Omega}\left|K_{i}(y)\right|^{2} d y \tag{1}
\end{equation*}
$$

We now define the following operator of rank N

$$
A_{N} u=\int_{\Omega} K_{N}(x, y) f(y) d y
$$

where

$$
K_{N}(x, y)=\sum_{i=1}^{N} K_{i}(y) u_{i}(x)
$$

By Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left\|\left(A-A_{N}\right)\right\|^{2} & \leq \int_{\Omega \times \Omega}\left|K(x, y)-K_{N}(x, y)\right|^{2} d x d y \\
& =\int_{\Omega \times \Omega}|K(x, y)|^{2} d x d y-2 \int_{\Omega \times \Omega} K(x, y) \sum_{i=1}^{N} K_{i}(y) u_{i}(x) d x d y+\sum_{i=1}^{N} \int_{\Omega}\left|K_{i}(y)\right|^{2} d y \\
& =\int_{\Omega \times \Omega}|K(x, y)|^{2} d x d y-\int_{\Omega}\left|K_{i}(y)\right|^{2} d y \rightarrow 0
\end{aligned}
$$

as $N \rightarrow \infty$. Hence $A_{N} \rightarrow A$ and A is therefore compact.
1.9 Let H be a Hilbert space, $A \in \mathfrak{C}(H),\left\{e_{n}\right\}$ is an orthonormal set in H. Show that $\lim _{n \rightarrow \infty}\left(A e_{n}, e_{n}\right)=0$.

Proof. It can be proved that $e_{n} \rightharpoonup 0$ (See proof to Exercise 2.5.19), thus the conclusion follows from Exercise 4.1.4.
1.10 Let \mathscr{X} be a Banach space, $A \in \mathfrak{C}(H), \mathscr{X}_{0}$ is a closed subspace of \mathscr{X} such that $A\left(\mathscr{X}_{0}\right) \subseteq \mathscr{X}_{0}$. Prove that the map $T:[x] \mapsto[A x]$ is a compact operator on $\mathscr{X} / \mathscr{X}_{0}$.

Proof. It can be proved that $B+\operatorname{ker} A$ is the unit ball in $\mathscr{X} / \operatorname{ker} A$, where B is the unit ball in \mathscr{X}. Let $\left\{\left[x_{n}\right]\right\}$ be a bounded sequence, we can find $\left\{x_{n}\right\}$ such that $\left\|x_{n}\right\| \leq 2\left\|\left[x_{n}\right]\right\|$, thus $\left\{x_{n}\right\}$ is bounded, and $\left\{A x_{n}\right\}$ has a convergent subsequence, thus $\left\{T\left[x_{n}\right]\right\}=\left\{\left[A x_{n}\right]\right\}$ has also a convergent subsequence. T is compact.
1.11 Let $\mathscr{X}, \mathscr{Y}, \mathscr{Z}$ be Banach spaces, $\mathscr{X} \subseteq \mathscr{Y} \subseteq \mathscr{Z}$, if the embedding map from \mathscr{X} to \mathscr{Y} is compact and from \mathscr{Y} to \mathscr{Z} continuous. Prove that for any $\epsilon>0$, there exists $c(\epsilon)>0$ such that

$$
\|x\|_{\mathscr{Y}} \leq \epsilon\|x\|_{\mathscr{X}}+c(\epsilon)\|x\|_{\mathscr{Z}}, \quad \forall x \in \mathscr{X}
$$

Proof. Prove by contradiction. Suppose that there exists ϵ_{0}, for all n there exists $x_{n} \in \mathscr{X}$ such that $\left\|x_{n}\right\|_{\mathscr{Y}}>$ $\epsilon_{0}\left\|x_{n}\right\|_{\mathscr{X}}+n\left\|x_{n}\right\|_{\mathscr{Z}}$. Let $y_{n}=x_{n} /\left\|x_{n}\right\|$, then it holds that $\left\|y_{n}\right\|_{\mathscr{Y}}>\epsilon_{0}+n\left\|y_{n}\right\|_{\mathscr{Z}}$. Since the embedding map $\mathscr{X} \rightarrow \mathscr{Y}$ is compact and $\left\|y_{n}\right\|=1$ for all n, we know that $\left\|y_{n}\right\|_{\mathscr{Y}}$ is bounded thus $\left\|y_{n}\right\|_{\mathscr{Z}} \rightarrow 0$. Also we know that $\left\{y_{n}\right\}$ has a convergent subsequence in \mathscr{Y}, say $y_{n_{k}} \rightarrow y$ in \mathscr{Y} as $k \rightarrow \infty$. Then $z_{n_{k}} \rightarrow y$ in \mathscr{Z} as the embedding map from \mathscr{Y} to \mathscr{Z} is continuous, and therefore y must be 0 . But $\left\|y_{n_{k}}\right\| \geq \epsilon$, we reach a contradiction.

2 Riesz-Fredholm Theory

2.1 Let \mathscr{X} be a Banach space and $M \subseteq \mathscr{X}$ is a closed linear subspace with $\operatorname{codim} M=n$. Show that there exists linearly independent set $\left\{\phi_{k}\right\}_{k=1}^{n} \subseteq \mathscr{X}^{*}$ such that

$$
M=\bigcap_{k=1}^{n} N\left(\phi_{k}\right) .
$$

Proof. Let $\left\{e_{i}+M\right\}(i=1, \ldots, n)$ be a basis of $\mathscr{X} / M, D=\left\{e_{1}, \ldots, e_{n}\right\}, D_{i}=\overline{\operatorname{span}\left\{D \backslash\left\{e_{i}\right\}, M\right\}}$. Then we have that $e_{i} \notin D_{i}$ and we can a bounded linear functional ϕ_{i} such that $\phi_{i}\left(D_{i}\right)=0$ and $\phi_{i}\left(e_{i}\right)=1$. It is easy to verify that $\left\{\phi_{i}\right\}$ is linearly independent, and $M=\bigcap_{i=1}^{n} N\left(\phi_{i}\right)$.
2.2 Let \mathscr{X}, \mathscr{Y} be Banach space and $T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$ is surjective. Define $\widetilde{T}: \mathscr{X} / N(T) \rightarrow \mathscr{Y}$ as

$$
\widetilde{T}[x]=T x, \quad \forall x \in[x], \forall[x] \in \mathscr{X} / N(T) ;
$$

Show that \widetilde{T} is a linear homeomorphism.
Proof. It is clear that \widetilde{T} is well-defined and linear. For each $[x]$ we can find $x \in[x]$ such that $\|x\| \leq 2\|[x]\|$. Thus $\|\widetilde{T}[x]\|=\|T x\| \leq\|T\|\|x\| \leq 2\|T\|\|[x]\|$ and \widetilde{T} is continuous. Also \widetilde{T} is a bijection, hence it is a homeomorphism.
2.3 Let \mathscr{X} be a Banach space, M, N_{1}, N_{2} be closed linear subspaces of \mathscr{X}. Suppose that

$$
M \oplus N_{1}=\mathscr{X}=M \oplus M_{2},
$$

show that N_{1} is homeomorphic to N_{2}.
Proof. It suffices to show that N_{1} and N_{2} are both homeomorphic to \mathscr{X} / M. Define $F: N_{1} \rightarrow \mathscr{X} / M$ as $F(x)=x+M$, and it is easy to verify that F is well-defined. Since $\mathscr{X}=M \oplus N_{1}, F$ is bijective. Besides, it holds that $\|F(x)\|=\|x+M\|=\inf _{m \in M}\|x+m\| \leq\|x\|$, whence we know that F is continuous thus a homeomorphism.
2.4 Let $A \in \mathfrak{C}(\mathscr{X}), T=I-A$, show that
(1) $\forall x \in \mathscr{X} / N(T), \exists x_{0} \in[x]$, such that $\left\|x_{0}\right\|=\|[x]\|$;
(2) Suppose that $y \in \mathscr{X}$ such that $T x=y$ has at least one solution, show that one of the solutions has the minimum norm.

Proof. (1) Since $\|[x]\|=\inf _{z \in N(T)}\|x+z\|$, we can choose $z_{n} \in N(T)$ for each n such that $\left\|x+z_{n}\right\|<$ $\|[x]\|+\frac{1}{n}$, so $\left\{x+z_{n}\right\}$ is bounded. Since A is compact, we have that $\left\{A x+A z_{n}\right\}=\left\{A x+z_{n}\right\}$ has a convergent subsequence, say $A x+z_{n_{k}} \rightarrow z$, thus $z_{n_{k}} \rightarrow z-A x$. It follows that $\left\|x+z_{n_{k}}\right\| \rightarrow\|T x+z\|$, combining with $\left\|x+z_{n}\right\| \rightarrow\|[x]\|$ we have that $\|T x+z\|=\|[x]\|$. We verify that $T x+z \in[x]$, or, $T x+z-x \in N(T): T(T x+z-x)=T(z-A x)=\lim T\left(z_{n_{k}}\right)=0$.
(2) Suppose that x^{\prime} is a solution to $T x=y$, then the set of all the solutions is exactly $\left[x^{\prime}\right]$. From (1) we know that there exists $x_{0} \in\left[x^{\prime}\right]$, thus a solution to $T x=y$, with the minimum norm $\left\|\left[x^{\prime}\right]\right\|$.
2.5 Let $A \in \mathfrak{C}(\mathscr{X})$ and $T=I-A$. Show that
(1) $N\left(T^{k}\right)$ is finite dimensional; and
(2) $R\left(T^{k}\right)$ is closed
for all $k \in \mathbb{N}$.
Proof. $T^{k}=(I-A)^{k}=I-A_{k}$, where A_{k} is compact, as a result of Proposition 4.1.2(2) and (6).
2.6 Let M be a closed linear subspace on Banach space B. Call a bounded linear operator $P: \mathscr{X} \rightarrow M$ with $P^{2}=P$ a projection operator on M. Show that
(1) If M is finite dimensional then a projection operator on M do exist;
(2) If P is a projection operator on M then $I-P$ is a projection operator on $R(I-P)$ from \mathscr{X};
(3) If P is a projection operator on M then $\mathscr{X}=M \oplus N$, where $N=R(I-P)$;
(4) If $A \in \mathfrak{C}(\mathscr{X})$ and $T=I-A$, then it holds that

$$
N(T) \oplus \mathscr{X} / N(T)=\mathscr{X}=R(T) \oplus \mathscr{X} / R(T)
$$

in the sense of isomorphism both algebraical and topological.
Proof. (1) Let e_{1}, \ldots, e_{n} be a normal basis of M. From Hahn-Banach Theorem, there exists continuous linear functionals f_{1}, \ldots, f_{n} such that $f_{k}\left(e_{j}\right)=\delta_{k j}$. Then define $P x=\sum f_{k}(x) e_{k}$, and it is easy to verify that P is bounded and satisfies that $P^{2}=P$.
(2) The conclusion follows from that $(I-P)^{2}=I-2 P+P^{2}=I-2 P+P=I-P$.
(3) It is clear that $\mathscr{X}=M+R(I-P)$ and we shall show that $M \cap R(I-P)=0$. Let $x \in M \cap R(I-P)$, then there exists y such that $x=(I-P) y$, thus $P x=P(I-P) y=\left(P-P^{2}\right) y=0$. Since $x \in M$, it holds that $x=P x$, whence we obtain that $x=0$.
(4) Since $N(T)$ is finite dimensional, from (1) there exists a projection operator P on $N(T)$, and from (3) it suffices to show that $\mathscr{X} / N(T)$ is isomorphic to $R(I-P)$.
Let $F: \mathscr{X} / N(T) \rightarrow R(I-P)$ be defined as $F([x])=(I-P) x$. It is clear that F is well-defined, bijective and linear (algebraically isomorphic). For all $[x] \in \mathscr{X} / N(T)$ there exists $x^{\prime} \in[x]$ such that $\left\|x^{\prime}\right\| \leq 2\|[x]\|$, so $\|F([x])\|=\left\|(I-P) x^{\prime}\right\| \leq\|I-P\|\left\|x^{\prime}\right\| \leq 2\|I-P\|\|[x]\|$, and thus F is continuous (topologically homeomorphic).
Therefore we obtain that $N(T) \oplus \mathscr{X} / N(T)=\mathscr{X}$.
Since codim $R(T)=\operatorname{dim} N(T)$, we know that $\mathscr{X} / R(T)$ and $N(T)$ are isomorphic both algebraically and topologically. And it is obvious that $R(T)$ is isomorphic to $\mathscr{X} / N(T)$, since the map $y=T x \mapsto[x]$ is an isomorphism. Thus we also have that $\mathscr{X} / R(T) \oplus R(T)=\mathscr{X}$.

3 Spectrum Theory of Compact Operators (Riesz-Schauder Theory)

(\mathscr{X} denotes Banach space in this section)

3.1 Given sequence of numbers $\left\{a_{n}\right\}$ and define operator A on l^{2} as

$$
A:\left(x_{1}, x_{2}, \ldots\right) \mapsto\left(a_{1} x_{1}, a_{2} x_{2}, \ldots\right)
$$

(1) Show that $A \in \mathscr{L}\left(l^{2}\right)$ iff $\left\{a_{n}\right\}$ is bounded;
(2) If $A \in \mathscr{L}\left(l^{2}\right)$ find $\sigma(A)$ and the types of the spectral points.

Proof. (1) 'If': Suppose that $\left|a_{n}\right| \leq M$, then $\|A x\| \leq M\|x\|$.
'Only if': If $\left\{a_{n}\right\}$ is not bounded, then there exists $n_{1}<n_{2}<\cdots$ such that $\left|a_{n_{k}}\right|>k$. For each m, Take $x_{m}=\left(\xi_{1}, \xi_{2}, \ldots\right)$ where $\xi_{n_{m}}=1$ and $\xi_{j}=0$ for all of the rest indices j. It is clear that $x \in l^{2}$ and $\left\|x_{m}\right\|=1$. We compute $\left\|A x_{m}\right\|>m^{\frac{1}{2}} \rightarrow \infty$ as $m \rightarrow \infty$, which contradicts with the continuity of A. Therefore $\left\{a_{n}\right\}$ is bounded.
(2) Since $A \in \ell^{2}$, we know that $\left\{a_{n}\right\}$ is bounded, say, by M.

If $\lambda=a_{i}$ for some i, then $(\lambda I-A) x=0$ has nonzero solutions and $\lambda \in \sigma_{p}(A)$. Now assume that $\lambda \neq a_{i}$ for all i, then $(\lambda I-A)^{-1}$ exists, sending $\left(x_{1}, x_{2}, \ldots\right)$ to $\left(\frac{x_{1}}{\lambda-a_{1}}, \frac{x_{2}}{\lambda-a_{2}}, \ldots\right)$.
If λ is not a limit point of $\left\{a_{i}\right\}$, then $\frac{1}{\left|\lambda-a_{i}\right|}$ is bounded away from 0 , so $\left(\frac{x_{1}}{\lambda-a_{1}}, \frac{x_{2}}{\lambda-a_{2}}, \ldots\right) \in \ell^{2}$ whenever $\left(x_{1}, x_{2}, \ldots\right) \in L^{2}$ and $R(\lambda I-A)=\ell^{2}$, thus $\lambda \notin \sigma(A)$.
Now let $\lambda \neq a_{i}$ be a limit point of $\left\{a_{i}\right\}$, suppose that $\left|a_{n_{k}}-\lambda\right|<\frac{1}{k}$, where $\left\{a_{n_{k}}\right\}$ are pairwise distinct. Consider $x=\left(x_{1}, x_{2}, \ldots\right)$ with $x_{n_{k}}=\left(\lambda-a_{n_{k}}\right) / \sqrt{k}$ and $x_{i}=0$ for $i \neq n_{k}$, then $\sum x_{i}^{2}=\sum\left(\lambda-a_{n_{k}}\right)^{2} / k<\sum 1 / k^{3}<\infty$. However, $\sum x_{i}^{2} /\left(\lambda-a_{i}\right)^{2}=\sum 1 / k=\infty$, hence $x \notin R(\lambda I-A)$. Note that any x with finitely many non-zero components is in $R(\lambda I-A)$, we know that $R(\lambda I-A)$ is dense in ℓ^{2}. Therefore, $\lambda \in \sigma_{c}(A)$.
We conclude that $\sigma(A)=\overline{\left\{a_{i}\right\}}$ with $\sigma_{p}(A)=\left\{a_{i}\right\}$ and $\sigma_{c}(A)$ the rest spectral points.
3.2 In $C[0,1]$ consider the operator

$$
T: x(t) \mapsto \int_{0}^{t} x(s) d s, \quad \forall x(t) \in C[0,1] .
$$

(1) Show that T is a compact operator;
(2) Find $\sigma(T)$ and a nontrivial closed invariant subspace of T.

Proof. (1) It suffices to show that $T\left(B_{1}\right)$ is sequentially compact, or, uniformly bounded and equi-continuous. First we have that $\|T x\| \leq\left|\int_{0}^{1} x(s) d s\right| \leq\|x\|$ implying that $T\left(B_{1}\right)$ is uniformly bounded. Besides it holds that $\left|(T x)\left(s^{\prime}\right)-(T x)\left(s^{\prime \prime}\right)\right|=\left|\int_{s^{\prime}}^{s^{\prime \prime}} x(s) d s\right| \leq\|x\|\left|s^{\prime \prime}-s^{\prime}\right|$ implying that $T\left(B_{1}\right)$ is equicontinuous.
(2) First of all, $\|T\|=1$ implies that $\sigma(T)$ is contained in the closed disc. Since $C[0,1]$ is infinitedimensional, we know that $0 \in \sigma(T)$. Any other spectral point must be eigenvalue, that is, if $\lambda \neq 0$ belongs to $\sigma(T)$, then $T x=\lambda x$ has non-zero solution. But $T x=\lambda x$ has only zero solution, hence $\sigma(T)=\{0\}$. An invariant space of T is $C^{1}[0,1]$.
3.3 Let $A \in \mathfrak{C}(\mathscr{X})$. Prove that $x-A x=0$ has only zero solution iff $x-A x=y$ has solution for all $y \in \mathscr{X}$.

Proof. 'Only if': This is Theorem 4.2.6.
'If': Let $T=I-A$, then $\operatorname{dim} N(T)=\operatorname{codim} R(T)=0$, thus $N(T)=\{0\}$.
3.4 Let $T \in \mathscr{L}(\mathscr{X})$ and there exists $m \in \mathbb{N}$ such that

$$
\mathscr{X}=N\left(T^{m}\right) \oplus R\left(T^{m}\right)
$$

Show that $p(T)=q(T) \leq m$.
Proof. Let $x \in N\left(T^{m+1}\right)$. We have that $T^{m} x \in R\left(T^{m}\right) \cap N\left(T^{m}\right)$, yielding that $T^{m} x=0$ and $x \in N\left(T^{m}\right)$. So $N\left(T^{m+1}\right) \subseteq N\left(T^{m}\right)$, thus $p(T) \leq m$.
Now we show that $q(T)=p(T)$. First we show that $q(T) \geq p(T)$. For simplicity, we use notations p and q instead of $p(T)$ and $q(T)$ respectively.
(1) Proof of $p \leq q$. We have that $T\left(R\left(T^{q}\right)\right)=R\left(T^{q+1}\right)=R\left(T^{q}\right)$, thus for $y \in R\left(T^{q}\right)$, we have $x \in R\left(T^{q}\right)$ such that $T x=y$.
We claim that if $T x=0$ for some $x \in R\left(T^{q}\right)$ then x must be zero. If not, there exists $x_{1} \in R\left(T^{q}\right) \backslash\{0\}$ such that $T x_{1}=0$, then there exists $x_{2} \neq 0$ such that $T x_{2}=x_{1}$. Continuing this process, we obtain $\left\{x_{n}\right\}$ such that $0 \neq x_{1}=T x_{2}=\cdots=T^{n-1} x_{n}$, but $0=T x_{1}=T^{n} x_{n}$. Thus $x_{n} \notin N\left(T^{n-1}\right)$ and $x_{n} \in N\left(T^{n}\right)$ for all n, which contradicts with $p<\infty$.
Now we show that $N\left(T^{q+1}\right)=N\left(T^{q}\right)$, which would imply that $p \leq q$. It suffices to show that $N\left(T^{q+1}\right) \subseteq N\left(T^{q}\right)$. Let $x \in N\left(T^{q+1}\right)$. Since $T^{q} x \in R\left(T^{q}\right)$ and $T\left(T^{q} x\right)=0$, we must have that $T^{q} x=0$ and $x \in N\left(T^{q}\right)$.
(2) Proof of $p \geq q$. This is obviously true for $q=0$. Assume that $q>0$. It suffices to show that $N\left(T^{q-1}\right) \subsetneq N\left(T^{q}\right)$. Let $y \in R\left(T^{q-1}\right) \backslash R\left(T^{q}\right)$. Then there exists x such that $y=T^{q-1} x$, and there also exists z such that $T y=T^{q+1} z$ since $T y \in R\left(T^{q}\right)=R\left(T^{q+1}\right)$. Thus $T^{q-1}(x-T z)=y-T^{q} z \neq 0$ because $y \notin R\left(T^{q}\right)$. So $x-T z$ does not belong to $N\left(T^{q-1}\right)$. And it is obvious that it belongs to $N\left(T^{q}\right)$, which establishes that $N\left(T^{q-1}\right) \subsetneq N\left(T^{q}\right)$.
3.5 Let $A, B \in \mathscr{L}(\mathscr{X})$ and $A B=B A$. Prove that
(1) $R(A)$ and $N(A)$ are invariant subspaces of B;
(2) $R\left(B^{n}\right)$ and $N\left(B^{n}\right)$ are invariant subspaces of B for all $n \in \mathbb{N}$.

Proof. (1) Let $y \in R(A)$, then $y=A x$ for some x. It holds that $B y=B A x=A(B x) \in R(A)$, thus $R(A)$ is an invariant subspace of B.
Let $y \in N(A)$, then $A(B y)=B(A y)=0$, indicating that $B y \in N(A)$. Hence $N(A)$ is an invariant subspace of B.
(2) The conclusion follows from $B\left(B^{n} x\right)=B^{n}(B x) \in R\left(B^{n}\right)$ and $B^{n}(B y)=B\left(B^{n} y\right)=0$ for $y \in$ $N\left(B^{n}\right)$.
3.6 Let $A \in \mathscr{L}(\mathscr{X})$ and M is a finite-dimensional invariant subspace of A. Show that
(1) The action of A on M can be described by a matrix;
(2) At least one eigenvector of A is in M.

Proof. Trivial, as $\left.A\right|_{M}$ can be viewed as a linear transformation over M (which is finite dimensional).
3.7 Let $x_{0} \in \mathscr{X}$ and $f \in \mathscr{X}^{*}$ satisfy $\left\langle f, x_{0}\right\rangle=1$. Let $A=x_{0} \otimes f$ and $T=I-A$. Find $p(T)$.

Proof. We have that $A x=\langle f, x\rangle x_{0}$ and $A^{2}=A$. Thus $N(T)=N\left(T^{2}\right)$. If $\operatorname{dim} \mathscr{X}>1$ then $N(T) \neq \mathscr{X}$ so $p(T)=1$; otherwise $N(T)=\mathscr{X}$, so $p(T)=0$.

4 Hilbert-Schmidt Theorem

(H denotes complex Hilbert space in this section)
4.1 Let $A \in \mathscr{L}(H)$, show that $A+A^{*}, A A^{*}$ and $A^{*} A$ are all symmetric and $\left\|A A^{*}\right\|=\left\|A^{*} A\right\|=\|A\|^{2}$.

Proof. It is trivial to prove that $A+A^{*}, A A^{*}$ and $A^{*} A$ are symmetric. With respect to norm, we have $\left\|A A^{*}\right\|=\sup _{\|x\|=1}\left|\left(A A^{*} x, x\right)\right|=\sup _{\|x\|=1} \mid\left(A^{*} x, A^{*} x\right)\left\|=\sup _{\|x\|=1}\right\| A^{*} x\left\|^{2}=\right\| A^{*}\left\|^{2}=\right\| A \|^{2}$. Similarly we have $\left\|A^{*} A\right\|=\|A\|^{2}$.
4.2 Let $A \in \mathscr{L}(H)$ satisfying $(A x, x) \geq 0$ for all $x \in H$ and $(A x, x)=0$ iff $x=0$. Show that

$$
\|A x\|^{2} \leq\|A\|(A x, x), \quad \forall x \in H
$$

Proof. It is not hard to show that the following generalized Cauchy's Inequality holds.

$$
|(A u, v)|^{2} \leq(A u, u)(A v, v)
$$

Let $u=x$ and $v=A x$, we have $|(A u, A u)|^{2} \leq(A x, x)\left(A^{2} x, A x\right) \leq(A x, x) \cdot\|A\| \cdot\|A x\|^{2}$, which simplifies to our desired result.
4.3 Let A be a symmetric compact operator on H, and

$$
m(A)=\inf _{\|x\|=1}(A x, x), \quad M(A)=\sup _{\|x\|=1}(A x, x)
$$

Prove that
(1) If $m(A) \neq 0$ then $m(A) \in \sigma_{p}(A)$;
(2) If $M(A) \neq 0$ then $M(A) \in \sigma_{p}(A)$;

Proof. Consider $A_{\alpha}=A+\alpha I$, then the spectrum is translated by α, so $m\left(A_{\alpha}\right)=m(A)+\alpha$ and $M\left(A_{\alpha}\right)=$ $M(A)+\alpha$. For $\alpha<0$ small enough, $m\left(A_{\alpha}\right)<M\left(A_{\alpha}\right)<0$. Suppose that $\left(A_{\alpha} x_{n}, x_{n}\right) \rightarrow m\left(A_{\alpha}\right)$ with $\left\|x_{n}\right\|=1$. From Proposition 4.4.5(5), it holds that $\left\|A_{\alpha}\right\|=-m\left(A_{\alpha}\right)$. Note that

$$
\left\|A_{\alpha} x_{n}-m\left(A_{\alpha}\right) x_{n}\right\|^{2}=\left\|A_{\alpha}\right\|^{2}-2 m\left(A_{\alpha}\right)\left(A_{\alpha} x_{n}, x_{n}\right)+m\left(A_{\alpha}\right)^{2} \rightarrow 0
$$

as $n \rightarrow \infty$, it follows that $m\left(A_{\alpha}\right)$ is in the spectrum of A_{α}. Hence $m(A)$ is in $\sigma(A)$, and A is compact, thus if $m(A) \neq 0$ it must be in $\sigma_{p}(A)$.
Similarly consider $A+\alpha I$ for $\alpha>0$ enough, it yields that $M(A) \in \sigma_{p}(A)$ if $M(A) \neq 0$.
4.4 Let A be a symmetric compact operator, show that
(1) If A is non-zero then it has at least one non-zero eigenvalue;
(2) If M is an non-trivial invariant subspace then M contains some eigenvector of A.

Proof. (1) It follows directly from Theorem 4.4.6.
(2) Assume M is closed, then $\left.A\right|_{M}$ is compact and symmetric. Since M is nontrivial, $\left.A\right|_{M}$ is non-zero, and therefore has an eigenvalue on M.
4.5 Show that $P \in \mathscr{L}(H)$ is an orthogonal projector if and only if
(1) P is symmetric, i.e., $P=P^{*}$;
(2) P is idempotent, i.e., $P^{2}=P$.

Proof. `Only if': Trivial.

'If': Let $M=\{x: P x=x\}$, then M is a linear subspace of H. Since P is continuous, it follows that M is closed. If $P x=y$ then $P y=P^{2} x=P x=y$, which means that M is the range of P. Now notice that $(P y, x-P x)=\left(y, P^{*} x-P^{*} P x\right)=\left(y, P x-P^{2} x\right)=0$, so $R(P) \perp R(I-P)$. Also $x=P x+(x-P x)$, we see that $P x$ is an orthogonal projector onto M.
4.6 Show that $P \in \mathscr{L}(H)$ is an orthogonal projector if and only if $(P x, x)=\|P x\|^{2}$ for all $x \in H$.

Proof. 'Only if': Suppose that P is a projector, then $x=y+z$ with $y \in R(P)$ and $z \in R(P)^{\perp}$. Then $(P x, x)=(y, y+z)=(y, y)+(y, z)=(y, y)=\|P x\|^{2}$.
'If': From Proposition 4.4.5 (1), we know that P is symmetric, hence $P^{2}-P$ is symmetric. Notice that $\left(P^{2} x-P x, x\right)=\left(P^{2} x, x\right)-(P x, x)=(P x, P x)-(P x, x)=0$, it follows from Proposition 4.4.5 (5) that $P^{2}-P=0$. Hence P is an orthogonal projector by the previous problem.
4.7 Let $A \in \mathscr{L}(H)$, it is called positive operator if $(A x, x) \geq 0$ for all $x \in H$. Show that
(1) All positive operators are symmetric;
(2) The eigenvalues of a positive operators are non-negative.

Proof. (1) Proposition 4.4.5(1).
(2) From Proposition 4.4.5(2), we need only to consider $\lambda I-A$ for real λ. Notice that for negative λ it holds that

$$
\|(\lambda I-A) x\|^{2}=((\lambda I-A) x,(\lambda I-A) x)=\lambda^{2}\|x\|^{2}-2 \lambda(A x, x)+\|A x\|^{2} \geq \lambda^{2}\|x\|^{2}
$$

and thus $\lambda I-A$ is injective for negative λ. Hence $\sigma(A) \subset[0, \infty)$.
4.8 Let L and M be two closed linear subspace of H. Show that $L \subseteq M$ iff $P_{M}-P_{L}$ is positive.

Proof. 'Only if': Suppose that $x=x_{L}+y_{L}=x_{M}+y_{M}$ where $x_{A} \in A$ and $y_{A} \in A^{\perp}$. Decompose x_{M} as $x_{M}=u+v$, where $u \in L$ and $v \in L^{\perp}$. Notice that $y_{M} \perp L$ hence $x=u+\left(v+y_{M}\right)$ is an orthogonal decomposition along L, and from the uniqueness of decomposition it must hold that $x_{L}=u$. Since $L \subseteq M$, it holds that $x_{M}-x_{L} \in M$ and thus $\left(P_{M} x-P_{L} x, x\right)=\left(x_{M}-x_{L}, x_{M}+y_{M}\right)=\left(x_{M}-x_{L}, x_{M}\right)=$ $(v, u+v)=(v, v) \geq 0$.
'If': Suppose that $x \in L$ then $P_{L} x=x$. Suppose that $x=x_{M}+y_{M}$ where $x_{M} \in M$ and $y_{M} \in M^{\perp}$. Then $0 \leq\left(P_{M} x-P_{L} x, x\right)=\left(P_{M} x-x, x\right)=\left(x_{M}-x, x\right)=-\left(y_{M}, x_{M}+y_{M}\right)=-\left(y_{M}+y_{M}\right) \leq 0$, hence $y_{M}=0$ and $x=x_{M}$, hence $x \in M$, and $L \subseteq M$.
4.9 Let $\left(a_{i j}\right)$ satisfy $\sum_{i, j=1}^{\infty}\left|a_{i j}\right|^{2}<\infty$. Define in ℓ^{2}

$$
A: x=\left\{x_{1}, x_{2}, \ldots\right\} \mapsto y=\left\{y_{1}, y_{2}, \ldots\right\}
$$

where $y_{i}=\sum_{j=1}^{\infty} a_{i j} x_{j}$. Show that
(1) A is compact;
(2) If $a_{i j}=\overline{a_{j i}}$ then A is a symmetric compact operator.

Proof. (1) Using Cauchy-Schwarz inequality it is easy to verify that $A \in \mathscr{L}\left(\ell^{2}\right)$. Define $A_{N} \in L\left(\ell^{2}\right)$ as

$$
A: x=\left\{x_{1}, x_{2}, \ldots\right\} \mapsto y=\left\{y_{1}, \ldots, y_{N}, 0, \ldots\right\}
$$

then A_{N} is a finite-rank operator and thus is compact. And it follows from Cauchy-Schwarz inequality that $\left\|A_{N}-A\right\| \rightarrow 0$, hence A is compact.
(2) Suppose that $z=\left(z_{1}, z_{2}, \ldots\right)$. It is not hard to show that

$$
\left|\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} x_{j} \overline{z_{i}}-\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} a_{i j} x_{j} \overline{z_{i}}\right|^{2} \rightarrow 0
$$

as $N \rightarrow \infty$ using Cauchy-Schwarz inequality. Also,

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} x_{i}=\sum_{i=j}^{N} \sum_{j=i}^{N} \overline{a_{j i} z_{i}} x_{j} \rightarrow \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} x_{j} \overline{a_{i j} z_{i}},
$$

which can be proved in the same way. We have established $\langle A x, z\rangle=\langle x, A z\rangle$, hence A is symmetric.
4.10 Let A be a symmetric operator on H and there exists an orthonormal basis in which every vector is an eigenvector of A. Suppose that
(1) $\operatorname{dim} N(\lambda I-A)<\infty\left(\forall \lambda \in \sigma_{p}(A) \backslash\{0\}\right)$
(2) For any $\epsilon>0$, the set $\sigma_{p}(A) \backslash[-\epsilon, \epsilon]$ is finite.

Show that A is a compact operator on H.
Proof. From the two assumptions we know that A has countably many eigenvalues (including the multiplicity). List them in the decreasing order of absolute value (with multiplicity) as $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots$. Since A is symmetric, we know that the basis contains a basis of $N(\lambda I-A)$ for all eigenvalue $\lambda \neq 0$. Then $A x=\sum_{i=1}^{\infty}\left(x, e_{i}\right) e_{i}$ (no need to consider the eigenvectors associated with eigenvalue 0), where e_{i} is an eigenvector associated with λ_{n}. Define $A_{N}=\sum_{i=1}^{N} \lambda_{n}\left(x, e_{i}\right) e_{i}$ then A_{N} is of finite rank and thus compact. By the Remark 1 of Theorem 4.4.7, $\left\|A-A_{N}\right\| \rightarrow 0$ and thus A is compact.

