
1 Concepts of Distributions
1.1 Suppose that 1 ≤ p <∞, show that C∞

0 (Ω) is dense in Lp(Ω).

Proof. Suppose that u ∈ Lp(Ω) and we can assume thatΩ is bounded. (Otherwise takeΩn = Ω∩B(0, n) and thus
we can find un = uχΩn for some n such that ∥un − u∥p < ϵ, and we will approximate un on Ωn) We are going to
find ψ ∈ C∞

0 (Ω) such that ∥u− ψ∥p < 2ϵ in two steps.

(1) Find ϕ ∈ C0(Ω) such that ∥u− ϕ∥p < ϵ.
Since u is in Lp(Ω) we can find u1 in Lp(Ω) which is bounded (say, by M ) and satisfies ∥u1 − u∥p < ϵ/3.
Now we can choose K ⊆ Ω′ ⊆ Ω, where K is closed and Ω′ is open, such that m(Ω \ K) < ( ϵ

3M )p and
m(Ω′ \K) < ( ϵ

6M )p. en ∥u1χK −u1∥p ≤Mm(Ω\K)
1
p < ϵ/3. Finally, from Luzin's eorem, we know

that there exists ϕ ∈ C(Ω) with support contained in Ω′ and bounded by M , such that m(E) < ( ϵ
12M )p,

where E = {x : u1χK ̸= ϕ}. us ∥u1χK −ϕ∥p < 2M ·m(E)
1
p +M ·m(Ω′ \K))

1
p < ϵ/3, which implies

that ∥u− ϕ∥p < ϵ.
(2) Find ψ ∈ C∞

0 (Ω) such that ∥ϕ− ψ∥p < ϵ.
Since as Ω is bounded and ϕδ converges to ϕ uniformly on Ω as δ → 0+, we can just let ψ = ϕδ for some
appropriate δ.

1.2 Prove that δ is not locally integrable.

Proof. Note that exδ = δ, hence if δ is locally integrable, we must have exδ = δ a.e., yielding δ = 0 a.e.. But δ is
not a zero distribution, contradiion. erefore δ cannot be locally integrable.

1.3 Suppose that

fj(x) =

(
1 +

x

j

)j

(j = 1, 2, . . . )

Show that fj(x) → ex in D ′(R).

Proof. For any ϕ ∈ D(R) we have that (1 + x
j )

jϕ(x) → exϕ(x) as n→ ∞ and |(1 + x
j )

j | ≤ e|x| and e|x||ϕ(x)| ∈
L1(R), hence by Lebesgue's Dominated Convergence eorem it holds that

lim
j→∞

⟨fj , ϕ⟩ = lim
j→∞

∫
R
fj(x)ϕ(x)dx =

∫
R
exϕ(x)dx = ⟨ex, ϕ(x)⟩.

and thus fj → ex weakly-star.

1.4 Show that in D ′(R),

(1) 1

π

ϵ

x2 + ϵ2
→ δ(x)(ϵ→ 0+)

(2) 1

2
√
πt

exp
(
−x

2

4t

)
→ δ(x)(t→ 0+)

Proof. We prove a more general proposition that if nonnegative f ∈ L1 with
∫
R f(x)dx = 1, then fδ → δ weakly-

star as δ → 0+, where fδ is defined by fδ(x) = f(x/δ)/δ. Item (a) is a special case of f(x) = 1
π(1+x2) with δ = ϵ

and item (b) f(x) = 1
2
√
π
e−x2/4 with δ =

√
t.

Since
∫
R f(x)dx = 1 we know that

∫
R fδ(x)dx = 1, hence for ϕ ∈ D(Ω) it holds that

|⟨fδ, ϕ⟩ − ϕ(0)| =
∣∣∣∣∫

R
fδ(x)ϕ(x)dx− ϕ(0)

∣∣∣∣ = ∣∣∣∣∫
R
fδ(x)(ϕ(x)− ϕ(0))dx

∣∣∣∣ ≤ ∫
R
fδ(x)|ϕ(x)− ϕ(0)|dx
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Since ϕ is continuous at x = 0 there exists δ1 such that |ϕ(x) − ϕ(0)| < ϵ/2 whenever |x| < δ1. Also since
f ∈ L1(R), there exists δ2 such that

∫
|x|≥1/δ2

f < ϵ/(2∥f∥∞). Let η = min{δ1, δ2}. It follows that for δ < η,

|⟨fδ, ϕ⟩ − ϕ(0)| ≤
∫
|x|≤δ

fδ(x)|ϕ(x)− ϕ(0)|dx+

∫
|x|>δ

fδ(x)|ϕ(x)− ϕ(0)|dx

≤ ϵ

2

∫
|x|≤δ

fδ(x)dx+ 2∥ϕ∥∞
∫
|x|>δ

fδ(x)dx

≤ ϵ

2
+ 2∥ϕ∥∞

∫
|u|> 1

δ

f(u)du

≤ ϵ

2
+ 2∥ϕ∥∞

∫
|u|> 1

δ2

f(u)du <
ϵ

2
+
ϵ

2
= ϵ.

erefore ⟨fδ, ϕ⟩ → ϕ(0) as δ → 0+, or, fδ → δ weakly-star.

1.5 Let Ω ⊆ Rn be an open set and K be compa subset of Ω. Show that there exists ϕ ∈ C∞
0 (Ω) such that 0 ≤

ϕ(x) ≤ 1 and ϕ(x) = 1 in a neighbourhood ofK.

Proof. LetKδ = {x : d(x,K) ≤ δ} thenKδ ⊆ Ω when δ is small enough. en let

ψ(x) =

∫
Kδ

j δ
2
(y − x)dy.

It is clear that (a) ψ ∈ C∞
0 (Ω) (since Kδ is bounded, differentiation can be performed under the integral sign); (b)

|ψ(x)| ≤ 1 for all x ∈ Ω; and (c) ψ(x) = 1 for all x ∈ B(K, δ/2).

2 e space ofB0

2.1 Verify that the convergence in E (Ω) in Example 3.2.6 is independent of the choice of {Km}.

Proof. Suppose that ∥ · ∥m are induced by {Km} and ∥ · ∥′m by {K ′
m}. It suffices to show that for anym there exists

m′ and a constant C such that
∥ϕ∥m ≤ C · ∥ϕ∥′m′ , ∀ϕ ∈ E (Ω) (1)

and for anym′ there existsm′ and a constant C ′ such that

∥ϕ∥′m′ ≤ C ′ · ∥ϕ∥m, ∀ϕ ∈ E (Ω). (2)

We prove (1) here, and the proof of (2) is highly similar. It suffices to show that for anyKm it is contained in some
Km′ . If not, there exists xi ∈ Km such that xi ̸∈ K ′

ni
with ni → ∞ as i → ∞. Since Km is compa, {xi} has a

convergent subsequence which goes to x. For simplicity, we assume that xi → x. Since x ∈ Ω =
∪∞

m′=1 int(Km′),
we have m′

1 such that x is an interior point of Km′
1
. us xn with n large enough are all contained in Km′

1
, and

thus inKnj
for j large enough. is is a contradiion with our choice of xi.

2.2 Let
∥ϕ∥′m = sup

|k|,|α|≤m
x∈Rn

|xk∂αϕ(x)|. (m = 0, 1, 2, . . . )

Show that ∥ · ∥′m are equivalent countably many norms on S (Rn).
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Proof. Since (1 + |x|2)m
2 ≥ |x|m, we have that ∥ϕ∥′m ≤ ∥ϕ∥m. On the other hand, denote m′ = ⌈m/2⌉, then

m ≤ 2m′ and we have

∥ϕ∥m ≤
m′∑
k=0

sup
|α|≤m
x∈Rn

Ck|x|2k|∂αϕ(x)| ≤
m′∑
k=0

Ck∥ϕ∥′2m′ ,

where Ck are constants.

2.3 Show that DK(Ω) and E (Ω) are both B0 spaces.

Proof. Suppose that {ϕk} is Cauchy in DK(Ω) then it is a uniform Cauchy sequence, and thus is convergent to
some funion ϕ. It is clear that ϕ is continuous and has support in K. Also, {∂(1,0,... )ϕk} is a Cauchy sequence
and thus is convergent to some continuous funion g. From the uniform convergence of {∂(1,0,... )ϕk} it must hold
that ∂(1,0,... )f = g. erefore we know that ϕ ∈ Dk(Ω) and Dk(Ω) is complete.
Now we show that E (Ω) is complete. Suppose that {Km} is a sequence of increasing compa sets contained in
Ω and Ω =

∪∞
m=1Km. Let {ϕk} be a Cauchy sequence in E (Ω), then it is uniformly convergent on every Km.

Hence {ϕk(x)} is Cauchy for every x and thus {ϕk} is convergent to some ϕ pointwise. Similarly {∂(1,0,... )ϕk} is
convergent to some g. On everyKm the convergence is uniformly thus f ′ = g on everyKm and thus for all x ∈ Ω.
erefore we conclude that ϕ ∈ E (Ω) and E (Ω) is complete.

2.4 Suppose that X is a B0 space, showX ′ is complete under weak-star convergence. In particular, D ′
K , S′ and E ′ are

complete.

Proof. Suppose that {fn} is a weak-star Cauchy sequence in X ′, that is, for any x ∈ X , {fn(x)} is Cauchy. us
the limit of {fn(x)} exists for every x ∈ X , call it f(x). In this way we define a funional f on X and it is clear
that f is linear. Now we shall show that f is continuous, that is, f(xk) → 0 whenever xk → 0 in X .
Since {fn(x)} exists for all x ∈ X , {fn(x)} is bounded. Notice thatX is of second category (it is a Frechet space),
we can apply Uniform Boundedness Principle that there exists {Mk} such that |fn(x)| ≤ Mk∥x∥k for each k and
therefore |f(x)| ≤Mk∥x∥k. e conclusion follows easily.

2.5 LetG be a bounded open simply-conneed region on the complex plane. Denote byA(G) all the analytic funions
over G and define a family of seminorms as follows. Let

G1 ⊂ G1 ⊂ G2 ⊂ G2 ⊂ · · · ⊂ Gm ⊂ Gm ⊂ · · · ⊂ G

is a sequence of conneed sets, where Gm (m = 1, 2, . . . ) is open and its boundary consists of finitely many curves
with finite length. Also

∪m
i=1Gm = G. Let

∥ϕ∥m = max
z∈Gm

|ϕ(z)|, ∀ϕ ∈ A(G).

Show that A(G) is a B0 space. Suppose that {ϕn} ⊂ A(G) and there exists {Mn} such that

∥ϕn∥m ≤Mm (m = 1, 2, . . . ;n = 1, 2, . . . )

then {ϕn} must have a convergent subsequence.

Proof. Obviously A(G) is a B∗
0 space. Since

∪
mGm = G, from a similar argument in Problem 1, we know that

each compa set K ⊂ G is contained in some Gm. Hence if we want to prove that some property holds for any
compa set in G, it suffices to show the property holds for all Gm.
Suppose that {ϕk} is a Cauchy sequence, then ϕk is uniformly convergent on Gm, thus ϕk → ψm for some ψm on
Km. Since {ϕk} are analytic inGm, ψm is analytic inGm. Also it is easy to see that those {ψm} aually coincides,
and thus a funion ψ, which is analytic in G, is well-defined, and ϕk → ψ in A(G).
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Now suppose that ∥ϕn∥m ≤ Mm for all m, we shall show that {ϕn} is equicontinuous on Gm. Let C be the
boundary of a closed disc in Gm of radius r. If z, z0 are inside Gm then by Cauchy's integral theorem we obtain
that

ϕn(z)− ϕn(z0) =
1

2πi

∫
C

(
1

ζ − z
− 1

ζ − z0

)
ϕn(z)dz =

z − z0
2πi

∫
C

ϕn(ζ)dζ

(ζ − z)(ζ − z0)
.

If |ϕn(z)| ≤M on C, we restri z and z0 to the smaller concentric disc of radius r/2 and obtain that

|ϕn(z)− ϕn(z0)| ≤
4Mm|z − z0|

r
,

which shows the equicontinuity on the smaller disc. Now it is easy to take the approach of choosing a finite subcov-
ering from a covering ofGm, proving that {ϕn} is equicontinuous onGm. e conclusion follows from an obvious
diagonalisation argument.

3 Operations on Distributions
3.1 Calculate

(1) ∂̃nx |x|;
(2) ∂̃nxλ+ (λ ∈ R, λ ̸= −1,−2, . . . ), where

xλ+ =

{
xλ, x > 0.
0, x ≤ 0.

Proof. (1) Assume n ≥ 1. Let ϕ ∈ D(R), then

⟨∂̃nx |x|, ϕ⟩ = (−1)n⟨|x|, ∂nϕ⟩ = (−1)n
(∫ ∞

0

x∂nϕ(x)dx−
∫ 0

−∞
x∂nϕ(x)dx

)
= (−1)n

(
−
∫ ∞

0

ϕ(n−1)(x)dx+

∫ 0

−∞
ϕ(n−1)(x)dx

)
If n = 1 then we find that ⟨∂̃nx |x|, ϕ⟩ = ⟨sgnx, ϕ⟩. If n = 2, we proceed as

⟨∂̃nx |x|, ϕ⟩ = (−1)n(−(0− ϕ(n−2)(0)) + ϕ(n−2)(0)− 0))

= 2(−1)n−2ϕ(n−2)(0)

= 2⟨δ(n−2), ϕ⟩

erefore, we conclude that

∂nx |x| =
{

sgn, n = 1;
2δ(n−2), n ≥ 2.

(2) Let ϕ ∈ D(R), then for λ > −1 we have

⟨xλ+, ϕ⟩ =
∫ ∞

0

xλϕ(x)dx

well-defined, and we can rewrite it as

⟨xλ+, ϕ⟩ =
(−1)k

(λ+ 1)(λ+ 2) · · · (λ+ k)

∫ ∞

0

xλ+kϕ(k)(x)dx,

which is well-defined for λ ∈ (−k + 1,−k). It is also well-defined for all λ > −(k + 1) except negative
integers. en it is easy to see that

⟨∂̃nxxλ+, ϕ⟩ = (−1)n⟨xλ+, ϕ(n)⟩ = (λ− n+ 1) · · ·λ⟨xλ−n
+ , ϕ⟩.

Hence
∂̃nxλ+ = λ(λ− 1) · · · (λ− (n− 1))xλ−n

+ .
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3.2 Show that
d̃

dx
ln |x| = pv 1

x
,

i.e., ⟨
d̃

dx
ln |x|, ϕ

⟩
= lim

ϵ→0+

∫
|x|≥ϵ

ϕ(x)

x
dx, ∀ϕ ∈ D(R).

Proof. is is very straight-forward. Let ϕ ∈ D(R) then

⟨ d̃
dx

ln |x|, ϕ⟩ = −⟨ln |x|, ϕ′⟩ = −
∫
R
ln |x|ϕ′(x)dx

= − lim
ϵ→0+

(∫ ∞

ϵ

ϕ′(x) lnxdx+

∫ −ϵ

−∞
ϕ′(x) ln(−x)dx

)
= − lim

ϵ→0+

(
−ϕ(ϵ) ln ϵ−

∫ ∞

ϵ

ϕ(x)

x
dx+ ϕ(−ϵ) ln ϵ−

∫ −ϵ

−∞

ϕ(x)

x
dx

)
= lim

ϵ→0+

(
(ϕ(ϵ)− ϕ(ϵ)) ln ϵ+

∫ ∞

ϵ

ϕ(x)

x
dx+

∫ −ϵ

−∞

ϕ(x)

x
dx

)

Note that (ϕ(ϵ)− ϕ(ϵ)) ln ϵ = 2ϵϕ′(ϵ) ln ϵ→ 0 as ϵ→ 0+ since ϕ′ is bounded. It follows that

⟨ d̃
dx

ln |x|, ϕ⟩ = lim
ϵ→0+

∫
|x|≥ϵ

ϕ(x)

x
dx.

3.3 Suppose that Ω = (a, b) ⊂ R, x0 ∈ Ω and f ∈ C1(Ω \ {x0}) with the discontinuity of the first kind at x0. Also
suppose that f ′ is bounded in Ω \ {x0}. Show that

d̃

dx
f = f ′ + (f(x+0 )− f(x−0 ))δ(x0).

Proof. Let ϕ ∈ D(Ω),⟨
d̃

dx
f, ϕ

⟩
= −⟨f, ϕ′⟩ = −

∫ b

a

f(x)ϕ′(x)dx

= −

(∫ x0

a

f(x)ϕ′(x)dx+

∫ b

x0

f(x)ϕ′(x)dx

)

= −

(
f(x)ϕ(x)|x

−
0

a −
∫ x0

a

f ′(x)ϕ(x)dx+ f(x)ϕ(x)|b
x+
0
−
∫ b

x0

f ′(x)ϕ(x)dx

)

= ϕ(x0)(f(x
+
0 )− f(x−0 )) +

∫ b

a

f ′(x)ϕ(x)dx

= (f(x+0 )− f(x−0 ))⟨δ(x0), ϕ⟩+ ⟨f ′, ϕ⟩

3.4 Prove that for all f ∈ D ′(Rn) it holds that

∂̃xif = lim
h→0

1

h
(τ̃−heif − f),

where
ei = (0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) (i = 1, 2, . . . , n).
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Proof. Let ϕ ∈ D(Rn). We shall prove that {(τ−heiϕ− ϕ)/h} converges to ∂xi
ϕ in D(Rn) as h → 0, afterwards

we would have

⟨∂̃xif, ϕ⟩ = −⟨f, ∂xiϕ⟩ = −
⟨
f, lim

h→0

1

h
(τ−heiϕ− ϕ)

⟩
= − lim

h→0

⟨
f,

1

h
(τ̃−heiϕ− ϕ)

⟩
= − lim

h→0

1

h
(⟨τ̃heif, ϕ⟩ − ⟨f, ϕ⟩) ,

= lim
h→0

1

h′
(⟨τ̃−h′eif, ϕ⟩ − ⟨f, ϕ⟩) , (let h′ = −h)

which is desired. To show that {(τ−heiϕ−ϕ)/h} converges to ∂xiϕ in D(Rn), we want to show that their supports
are contained in some compa set (which is obvious), and∣∣∣∣∂α(τ−heiϕ− ϕ

h
− ∂

∂xi
ϕ

)
(x)

∣∣∣∣ = ∣∣∣∣τ−hei∂
αϕ− ∂αϕ

h
(x)− ∂

∂xi
∂αϕ(x)

∣∣∣∣→ 0

uniformly as h→ 0 for multi-index α. From Mean Value eorem, it holds that

τ−hei∂
αϕ(x)− ∂αϕ(x)

h
= ∂xi∂

α(x+ θhei), θ ∈ (0, 1)

and the conclusion follows immediately from the fa that ∂xi∂
αϕ is uniformly continuous.

3.5 Show that for all f ∈ D ′(Rn) and ϕ ∈ D(Rn) the funion g(x) defined as

g(y) = ⟨f, τ−yϕ⟩

is in C∞(Rn).

Proof. It suffices to show that g(y) is continuous and gxi(y) = ⟨f, τ−y∂xi(y)⟩.
Since ϕ is uniformly continuous, τ−y is also uniformly continuous and thus {τ−(y+h)ϕ − τ−yϕ} converges to 0 in
D(Rn). Hence g(y + h) − g(y) = ⟨f, τ−(y+h)ϕ − τ−yϕ⟩ → 0 uniformly, which indicates that g is uniformly
continuous.
Now we show that {(τ−(y+hei)ϕ− τ−yϕ)/h} converges to τ−y∂xiϕ(x) in D(Rn) as h→ 0. It is obvious that their
supports are contained in a common compa set. Also We have from Lagrange's Mean Value eorem that

τ−(y+hei)ϕ(x)− τ−yϕ(x)

h
= ∂xi

ϕ(x+ y + θhei), θ ∈ (0, 1)

Note that ∂xi
ϕ is uniformly continuous, we have that

τ−(y+hei)ϕ(x)− τ−yϕ(x)

h
− τ−y∂xiϕ(x) → 0

uniformly as h→ 0. erefore,

gxi(y) = lim
h→0

g(y + hei)− g(y)

h

= lim
h→0

⟨f, τ−(y+h)ϕ− τ−yϕ⟩
h

=

⟨
f, lim

h→0

τ−(y+h)ϕ− τ−yϕ

h

⟩
= ⟨f, τ−y∂xiϕ⟩.
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3.6 Show that for every f ∈ S ′, there exist uα ∈ L2(Rn) and an even numberm such that

f =
∑

|α|≤m

(−1)|α|∂̃α[(1 + |x|2)m
2 uα]

Proof. Examining the proof of Lemma 3.2.11 carefully, we can require the m in Lemma 3.2.11 to be even and
therefore the m in (3.2.6) and consequently (3.2.7) be even. erefore, there exists an even m and uα ∈ L2(Rn)
such that

⟨f, ϕ⟩ =
∑

|α|≤m

∫
Rn

uα(x)∂
αϕ(x)(1 + |x|2)m

2 dx

=
∑

|α|≤m

⟨uα(x)(1 + |x|2)m
2 , ∂αϕ(x)⟩

=
∑

|α|≤m

(−1)|α|∂̃α[(1 + |x|2)m
2 uα]

4 e Fourier Transform on S ′

4.1 Let Hm(R) = {u ∈ S ′|∂̃αu ∈ L2(Rn)(|α| ≤ m)}, in which the norm is defined as

∥u∥m =

 ∑
|α|≤m

∥∂̃αu∥22

 1
2

.

Also we define for each u ∈ Hm(Rn)

∥u∥′m =

(∫
Rn

(1 + |ξ|2)m|(Fu)(ξ)|2dξ
) 1

2

.

Show that

(1) ∥u∥′m <∞;
(2) ∥ · ∥′m is an equivalent norm in Hm(Rn);
(3) Hm(Rn) is complete.

Proof. (1) Since ∂̃αu ∈ L2(Rn), we have fromPlanchereleorem thatF (∂̃αu) ∈ L2(Rn), which is (2πiξ)α(Fu)(ξ) ∈
L2(Rn), whichmeans that ξα(Fu)(ξ) ∈ L2(Rn), or,

∫
Rn |ξ|2α|(Fu)(ξ)|2dξ exists for all |α| ≤ m. It follows

that ∥u∥′m <∞.
(2) Also by Plancherel eorem it holds that

∥∂αu∥2 = ∥F (∂̃αu)∥2 = ∥(2πiξ)α(Fu)(ξ)∥2 = 2π∥ξα(Fu)(ξ)∥2,

thus

∥u∥m = 2π

 ∑
|α|≤m

∥ξα(Fu)(ξ)∥22

 1
2

= 2π

∫
Rn

 ∑
|α|≤m

|ξ|2α
 |(Fu)(ξ)|2dξ

 1
2

≤ 2π∥u∥′m.

On the other hand,

∥u∥′m ≤

∫
Rn

C

 ∑
|α|≤m

|ξ|2α
 |(Fu)(ξ)|2dξ

 1
2

=
√
C

 ∑
|α|≤m

∥ξα(Fu)(ξ)∥22

 1
2

=

√
C

2π
∥u∥m,

therefore ∥ · ∥′m is equivalent to ∥ · ∥m.
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(3) Let {uk} be a Cauchy sequence in Hm(Rn), then {∂̃αuk} is a Cauchy sequence in L2(Rn) and thus there
exists uα ∈ L2(Rn) such that ∂αuk → uα in L2 norm. Since L2(Rn) can be embedded into S ′, we have
also that ∂̃αuk → uα weakly-star. Now we shall show that ∂̃αu0 = uα, which is because

⟨∂̃αu0, ϕ⟩ = (−1)|α|⟨u0, ∂αϕ⟩ = lim
k→∞

(−1)|α|⟨uk, ∂αϕ⟩ = lim
k→∞

⟨∂̃αuk, ϕ⟩ = ⟨uα, ϕ⟩

for all ϕ ∈ S (Rn).

4.2 For any non-negative real s, let

Hs(Rn) = {u ∈ L2(Rn)|(1 + |ξ|2) s
2 û(ξ) ∈ L2(Rn),

where the norm is defined as
∥u∥s = ∥(1 + |ξ|2) s

2 û(ξ)∥2.

Show that

(1) is definition is equivalent to the original one when s = m ∈ N;

(2) Inner produ (·, ·) can be introduced in Hs(Rn) such that ∥u∥s = (u, u)
1
2 ;

(3) Let u ∈ Hs(Rn)′, show that there exists ũ ∈ L1
loc(Rn) such that

ũ(ξ)(1 + |ξ|2)− s
2 ∈ L2(Rn)

and
⟨u,Fϕ⟩ =

∫
Rn

ϕ(ξ) · ũ(ξ)dξ, ∀ϕ ∈ S .

Proof. (1) It follows easily from part (1) and (2) of the previous problem.
(2) Let

(u, v) =

∫
Rn

(1 + |ξ|2)sû(ξ)v̂(ξ)dξ,

which is obviously sesqui-linear and conjugate symmetric. e only thing remaining is to show that (u, u) = 0
if and only if u = 0. `If ' is trivial. Now we consider `only if '. Since a nonnegative funion with integral zero
must be zero almost everywhere, we know that û = 0 and thus u = 0.

(3) First we show that Hs(Rn) is complete. Suppose uk is a Cauchy sequence in Hs(Rn), then ûk is a Cauchy
sequence in L2, so it is also a Cauchy sequence in measure, hence we can find a subsequence ûki → v̂ almost
everywhere. From the proof of the completeness of L2(Rn) we know that v̂ ∈ L2 and ûk → v̂ ∈ L2, and
consequently uk → v in L2 and v ∈ L2. Similarly, by Fatou's Lemma∫

Rn

(1 + |ξ|2)|ûk − v̂|2dξ =
∫
Rn

lim
i→∞

(1 + |ξ|2)|ûk − ûki |2dξ ≤ lim inf
i→∞

∫
Rn

(1 + |ξ|2)|ûk − ûki |2dξ,

whence we see that
lim

k→∞

∫
Rn

(1 + |ξ|2)|ûk − v̂|2dξ = 0.

It follows that ∥uk − v∥s ∈ Hs(Rn) and thus v ∈ Hs(Rn). Hence Hs(Rn) is a Hilbert space. By Riesz
Representation eorem, there exists v ∈ Hs such that ⟨u, ϕ⟩ = (ϕ, v) for all ϕ ∈ Hs ⊃ S .
Now take ũ(ξ) = v̂(−ξ)(1 + |ξ|2)s. LetK be any compa set, suppose thatK ⊆ B(0, R) for some R, then∫

K

|ũ| ≤ (1 +R2)s
∫
K

|v̂(−ξ)|dξ ≤ (1 +R2)s∥v̂∥2m(K)
1
2 <∞,
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whence we know that ũ ∈ L1
loc(Rn). And we have from∫
Rn

|ũ(ξ)|2

(1 + |ξ|2)s
dξ =

∫
Rn

(1 + |ξ|2)s|v̂(ξ)|2 = ∥v∥2

that û(ξ)(1 + |ξ|2)−s/2 ∈ L2(Rn). Finally,

⟨u,Fϕ⟩ = (Fϕ, v) =

∫
Rn

(1 + |ξ|2)sF (Fϕ)Fvdξ

=

∫
Rn

(1 + |ξ|2)sϕ(−ξ) ũ(−ξ)
(1 + |ξ|2)s

dξ

=

∫
Rn

ũ(ξ)ϕ(ξ)dξ.

4.3 Let f(x) ∈ L1(Rn) show that
(F̃f)(ξ) =

∫
Rn

f(x)e−2πix·ξdx,

that is, the Fourier transform of f in S ′ is the same as the ordinary Fourier transform.

Proof. Let ϕ ∈ S . Since ϕ ∈ L1(Rn), we know that

lim
R→∞

∫
|x|≤R

ϕ(t)e−2πit·xdt =

∫
Rn

ϕ(t)e−2πit·xdt = Fϕ(x)

and the convergence is uniform. Since Fϕ is bounded,
∫
|x|≤R

ϕ(t)e−2πit·xdt is bounded too if R is large enough.
Note that f ∈ L1(Rn), by Lebesgue's Dominated Convergence eorem we can write

⟨F̃f, ϕ⟩ = ⟨f,Fϕ⟩ =
∫
Rn

f(x)

∫
Rn

ϕ(t)e−2πit·xdtdx = lim
R→∞

∫
Rn

f(x)

∫
|x|≤R

ϕ(t)e−2πit·xdtdx

Now, since ϕ is bounded, we can apply Fubini's eorem,

⟨F̃f, ϕ⟩ = lim
R→∞

∫
|x|≤R

∫
Rn

e−2πit·xf(x)dxϕ(t)dtdx

Again by Lebesgue's Dominated Convergence eorem it holds that

⟨F̃f, ϕ⟩ =
∫
Rn

∫
Rn

e−2πit·xf(x)dxϕ(t)dt,

completing the proof.

4.4 ere is no non-trivial solution to ∆f = f in S ′(Rn).

Proof. Take Fourier Transform of both sides, we have −4π2|ξ|2f̂(ξ) = f̂(ξ), therefore f̂(ξ) = 0 and thus f =
0.
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5 Sobolev Spaces
5.1 Verify eorem 3.5.5 for Ω = Rn

+ = {(x1, . . . , xn) ∈ Rn|xn > 0}.

5.2 Suppose that a ∈ D and u ∈ Wm,p(Rn), then a · u ∈ Wm,p(Rn) and there exists a constant C (dependent on a)
such that

∥a · u∥Wm,p ≤ C∥u∥Wm,p .

Proof. By definition ∫
Rn

∂̃α(au)ϕ = (−1)|α|
∫
Rn

u · a∂αϕ

Applying integration by parts repeatedly, we see that ∂̃α(au) can be written as sum of terms of form ∂β1a∂̃β2u.
Each term is in Lp(Rn) because ∂β1a is bounded and ∂̃β2u is in Lp(Rn), hence the sum is in Lp. e inequality
follows easily.

5.3 Suppose thatm ≥ l, show thatWm,p(Ω) ↩→W l,p(Ω).

Proof. It is obvious thatWm,p(Ω) ⊆ W l,p(Ω) and u ∈ Wm,p(Ω) we have that ∥u∥W l,p(Ω) ≤ ∥u∥Wm,p(Ω) for all
u ∈Wm,p(Ω).

5.4 Let Ω = (a, b) and f ∈ L2(Ω). Prove that there exists a unique x ∈ H1
0 (Ω) such that

d̃2x

dt2
= f, (3)

and T : f 7→ x is a continuous linear operator from L2(Ω) to H2(Ω).

Proof. Define

J(v) = −
∫ b

a

v′′v − 2

∫ b

a

fv =

∫ b

a

|v′|2 − 2

∫ b

a

fv, v ∈ H1
0 (a, b). (4)

First we show that if v∗ is a minimiser of J(v), then v∗ is a solution to (3). Let ϕ ∈ H1
0 (a, b), then

J(v∗ + ϕ)− J(v∗) = 2

∫ b

a

(v∗′′ − f)ϕ+

∫ b

a

ϕ′′ϕ ≥ 0

hence

J(v∗ + ϵϕ)− J(v∗) = 2ϵ

∫ b

a

(v∗′′ − f)ϕ+ ϵ2
∫ b

a

ϕ′′ϕ ≥ 0

J(v∗ − ϵϕ)− J(v∗) = −2ϵ

∫ b

a

(v∗′′ − f)ϕ+ ϵ2
∫ b

a

ϕ′′ϕ ≥ 0

for any ϵ > 0. It must hold that ∫ b

a

(v∗′′ − f)ϕ = 0

for all ϕ ∈ H1
0 (a, b), and thus (v∗)′′ = f .

Next we show the existence of the minimiser to (4). Recall that (u′, v′)L2 is an inner produ on H1
0 (a, b). Since

f ∈ L2, v 7→
∫ b

a
fv defines a bounded linear funional, by Riesz representation theorem, there existsw ∈ H1

0 (a, b)
such that ∫ b

a

fv = (v′, w′)L2
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and thus J(v) can be rewritten as
J(v) = ∥v − w∥2H1

0
− ∥w∥2H1

0

which clearly attains minimum at v = w and nowhere else. erefore the existence and uniqueness has been proved.
It is clear that T is linear. e boundedness of T follows easily from Poincaré's inequality, which is, in our case,
based on the following inequality:

∥u∥L∞ ≤ C
∥∥∥ d̃u
dx

∥∥∥
L2
, ∀u ∈ H1

0 (a, b) (5)

We have seen in Lemma 1.6.15 that (5) holds for all u ∈ C∞
0 (a, b). Let u ∈ H1

0 (a, b). Suppose that {uk} ⊆
C∞

0 (a, b) converging to u in H1
0 (a, b). It is clear from (5) that {uk} is a Cauchy sequence in C([a, b]), and thus

u ∈ C([a, b]), and ∥uk∥L∞ → ∥u∥L∞ . Since uk → u in H1
0 (a, b), it naturally holds that ∥ d̃uk

dx ∥L2 → ∥ d̃u
dx∥L2 .

Hence (5) holds for u ∈ H1
0 (a, b).

5.5 Let f(x) ∈ H1
0 (−1, 1). Show that

(1) f(−1) = f(1) = 0;
(2) f(x) is absolutely continuous;
(3) f ′(x) ∈ L2(−1, 1) (`′' means derivative a.e.)

Proof. (1) Given u ∈ H1
0 (−1, 1), there exist funions uk ∈ C∞

0 (−1, 1) converging to u in H1
0 (−1, 1). Also

note that H1(−1, 1) ↩→ C([−1, 1]) and uk is mapped to itself, hence uk converges uniformly to some u∗ on
[1,−1]. Since uk(1) = uk(−1) = 0 for all k we have that u∗(1) = u∗(−1) = 0.

(2) Let k → ∞ in
uk(y) = uk(x) +

∫ y

x

u′k(t)dt

and note that∫ y

x

|u′k(t)− u′(t)|dt ≤
(∫ y

x

|u′k(t)− u′(t)|2dt
) 1

2

(y − x)
1
2 ≤ ∥uk − u∥H1

0
(y − x)

1
2 → 0

we have
u(y) = u(x) +

∫ y

x

u′(t)tdt

Hence u(x) is absolutely continuous.
(3) is is obvious, because u′ = (u′ − u′k) + uk, and u′ − u′k and u′k are both in L2(−1, 1).

5.6 Let f ∈ Hs(Rn) (See Exercise 4.2 for the definition). Show that if s > n/2

(1) f̂(ξ) ∈ L1(Rn);
(2) f(x) equals to a continuous and bounded funion on Rn almost everywhere.

Proof. (1) ∫
Rn

|f̂(ξ)|dξ ≤
(∫

Rn

(1 + |ξ|2)s|f̂(ξ)|2dξ
) 1

2
(∫

Rn

(1 + |ξ|2)−sdξ

) 1
2

≤ C · ∥f∥s

for some constant C.
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(2) For f ∈ S (Rn) it holds that
∥f∥S (Rn) ≤

∫
Rn

|f̂(ξ)|dξ ≤ C · ∥f∥s (6)

Assume for a moment that S (Rn) is dense in Hs(Rn). en for any f ∈ Hs(Rn), we can find {fk} ⊂
S (Rn) such that fk → f in Hs(Rn). Equation (6) implies that {fk} is a Cauchy sequence in C∞-norm,
and thus it converges to a bounded continuous funion f∗ on Rn. It holds that for all g ∈ S (Rn),∫

Rn

|f − f∗||g| ≤
∫
Rn

|f − fk||g|+
∫
Rn

|f∗ − fk||g| ≤ ∥f − fk∥2∥g∥2 + ∥f∗ − fk∥∞∥g∥1 → 0,

because, by Plancherel's eorem, ∥f − fk∥2 = ∥f̂ − f̂k∥2 ≤ ∥f − fk∥s. Hence f∗ = f a.e.
Now we show that S (Rn) is dense in Hs(Rn). Note that C∞

0 (Rn) is dense in L2(Rn), given u ∈ Hs(Rn)
there exists uk ∈ C∞

0 (Rn) such that ∥uk − u∥L2(Rn) → 0. Let vk = uk(1+ |ξ|)− s
2 , then vk ∈ C∞

0 (Rn) and
vk(1+ |ξ|) s

2 → u in L2(Rn). Since vk ∈ S (Rn), there exist wk ∈ S (Rn) such that vk = ŵk (aually wk is
the inverse Fourier transform of vk). Hence ŵk(1 + |ξ|) s

2 → u in L2(Rn), that is, wk → u in Hs(Rn).

5.7 Letm ∈ N, define
H−m = {f ∈ S ′ : (1 + |ξ|2)−m

2 f̂(ξ) ∈ L2(Rn)},

and the norm
∥f∥−m = ∥(1 + |ξ|2)−m

2 f̂(ξ)∥L2(Rn).

Show that any f ∈ H−m can be written as the sum of the derivatives of finitely many funions in L2(Rn).

Proof. It suffices to show thatH−m(Rn) defined in this way is equivalent toHm(Rn)′, then the conclusion follows
from Corollary 3.5.13 because Hm(Rn) = Hm

0 (Rn).
By Riesz Representation eorem, for v ∈ (Hm)′ there exists uv ∈ Hm such that v[u] = (u, uv)Hm for all
u ∈ Hm. Note that F−1((1+ |ξ|2)mûv) ∈ H−m, hence there exists a natural bijeion between (Hm)′ andH−m.
Finally, since

∥F−1((1 + |ξ|2)mûv)∥H−m = ∥(1 + |ξ|2)m
2 ûv∥L2 = ∥uv∥Hm

it follows that H−m and (Hm)′ are, in fa, isomorphic.
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