1 Concepts of Distributions

1.1 Suppose that $1 \leq p<\infty$, show that $C_{0}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.

Proof. Suppose that $u \in L^{p}(\Omega)$ and we can assume that Ω is bounded. (Otherwise take $\Omega_{n}=\Omega \cap B(0, n)$ and thus we can find $u_{n}=u \chi_{\Omega_{n}}$ for some n such that $\left\|u_{n}-u\right\|_{p}<\epsilon$, and we will approximate u_{n} on Ω_{n}) We are going to find $\psi \in C_{0}^{\infty}(\Omega)$ such that $\|u-\psi\|_{p}<2 \epsilon$ in two steps.
(1) Find $\phi \in C_{0}(\Omega)$ such that $\|u-\phi\|_{p}<\epsilon$.

Since u is in $L^{p}(\Omega)$ we can find u_{1} in $L^{p}(\Omega)$ which is bounded (say, by M) and satisfies $\left\|u_{1}-u\right\|_{p}<\epsilon / 3$. Now we can choose $K \subseteq \Omega^{\prime} \subseteq \Omega$, where K is closed and Ω^{\prime} is open, such that $m(\Omega \backslash K)<\left(\frac{\epsilon}{3 M}\right)^{p}$ and $m\left(\Omega^{\prime} \backslash K\right)<\left(\frac{\epsilon}{6 M}\right)^{p}$. Then $\left\|u_{1} \chi_{K}-u_{1}\right\|_{p} \leq M m(\Omega \backslash K)^{\frac{1}{p}}<\epsilon / 3$. Finally, from Luzin's Theorem, we know that there exists $\phi \in C(\Omega)$ with support contained in $\overline{\Omega^{\prime}}$ and bounded by M, such that $m(E)<\left(\frac{\epsilon}{12 M}\right)^{p}$, where $E=\left\{x: u_{1} \chi_{K} \neq \phi\right\}$. Thus $\left.\left\|u_{1} \chi_{K}-\phi\right\|_{p}<2 M \cdot m(E)^{\frac{1}{p}}+M \cdot m\left(\Omega^{\prime} \backslash K\right)\right)^{\frac{1}{p}}<\epsilon / 3$, which implies that $\|u-\phi\|_{p}<\epsilon$.
(2) Find $\psi \in C_{0}^{\infty}(\Omega)$ such that $\|\phi-\psi\|_{p}<\epsilon$.

Since as Ω is bounded and ϕ_{δ} converges to ϕ uniformly on Ω as $\delta \rightarrow 0^{+}$, we can just let $\psi=\phi_{\delta}$ for some appropriate δ.
1.2 Prove that δ is not locally integrable.

Proof. Note that $e^{x} \delta=\delta$, hence if δ is locally integrable, we must have $e^{x} \delta=\delta$ a.e., yielding $\delta=0$ a.e.. But δ is not a zero distribution, contradiction. Therefore δ cannot be locally integrable.
1.3 Suppose that

$$
f_{j}(x)=\left(1+\frac{x}{j}\right)^{j} \quad(j=1,2, \ldots)
$$

Show that $f_{j}(x) \rightarrow e^{x}$ in $\mathscr{D}^{\prime}(\mathbb{R})$.
Proof. For any $\phi \in \mathscr{D}(\mathbb{R})$ we have that $\left(1+\frac{x}{j}\right)^{j} \phi(x) \rightarrow e^{x} \phi(x)$ as $n \rightarrow \infty$ and $\left|\left(1+\frac{x}{j}\right)^{j}\right| \leq e^{|x|}$ and $e^{|x|}|\phi(x)| \in$ $L^{1}(\mathbb{R})$, hence by Lebesgue's Dominated Convergence Theorem it holds that

$$
\lim _{j \rightarrow \infty}\left\langle f_{j}, \phi\right\rangle=\lim _{j \rightarrow \infty} \int_{\mathbb{R}} f_{j}(x) \phi(x) d x=\int_{\mathbb{R}} e^{x} \phi(x) d x=\left\langle e^{x}, \phi(x)\right\rangle
$$

and thus $f_{j} \rightarrow e^{x}$ weakly-star.
1.4 Show that in $\mathscr{D}^{\prime}(\mathbb{R})$,
(1) $\frac{1}{\pi} \frac{\epsilon}{x^{2}+\epsilon^{2}} \rightarrow \delta(x)\left(\epsilon \rightarrow 0^{+}\right)$
(2) $\frac{1}{2 \sqrt{\pi t}} \exp \left(-\frac{x^{2}}{4 t}\right) \rightarrow \delta(x)\left(t \rightarrow 0^{+}\right)$

Proof. We prove a more general proposition that if nonnegative $f \in L^{1}$ with $\int_{\mathbb{R}} f(x) d x=1$, then $f_{\delta} \rightarrow \delta$ weaklystar as $\delta \rightarrow 0^{+}$, where f_{δ} is defined by $f_{\delta}(x)=f(x / \delta) / \delta$. Item (a) is a special case of $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ with $\delta=\epsilon$ and item (b) $f(x)=\frac{1}{2 \sqrt{\pi}} e^{-x^{2} / 4}$ with $\delta=\sqrt{t}$.
Since $\int_{\mathbb{R}} f(x) d x=1$ we know that $\int_{\mathbb{R}} f_{\delta}(x) d x=1$, hence for $\phi \in \mathscr{D}(\Omega)$ it holds that

$$
\left|\left\langle f_{\delta}, \phi\right\rangle-\phi(0)\right|=\left|\int_{\mathbb{R}} f_{\delta}(x) \phi(x) d x-\phi(0)\right|=\left|\int_{\mathbb{R}} f_{\delta}(x)(\phi(x)-\phi(0)) d x\right| \leq \int_{\mathbb{R}} f_{\delta}(x)|\phi(x)-\phi(0)| d x
$$

Since ϕ is continuous at $x=0$ there exists δ_{1} such that $|\phi(x)-\phi(0)|<\epsilon / 2$ whenever $|x|<\delta_{1}$. Also since $f \in L^{1}(\mathbb{R})$, there exists δ_{2} such that $\int_{|x| \geq 1 / \delta_{2}} f<\epsilon /\left(2\|f\|_{\infty}\right)$. Let $\eta=\min \left\{\delta_{1}, \delta_{2}\right\}$. It follows that for $\delta<\eta$,

$$
\begin{aligned}
\left|\left\langle f_{\delta}, \phi\right\rangle-\phi(0)\right| & \leq \int_{|x| \leq \delta} f_{\delta}(x)|\phi(x)-\phi(0)| d x+\int_{|x|>\delta} f_{\delta}(x)|\phi(x)-\phi(0)| d x \\
& \leq \frac{\epsilon}{2} \int_{|x| \leq \delta} f_{\delta}(x) d x+2\|\phi\|_{\infty} \int_{|x|>\delta} f_{\delta}(x) d x \\
& \leq \frac{\epsilon}{2}+2\|\phi\|_{\infty} \int_{|u|>\frac{1}{\delta}} f(u) d u \\
& \leq \frac{\epsilon}{2}+2\|\phi\|_{\infty} \int_{|u|>\frac{1}{\delta_{2}}} f(u) d u<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Therefore $\left\langle f_{\delta}, \phi\right\rangle \rightarrow \phi(0)$ as $\delta \rightarrow 0^{+}$, or, $f_{\delta} \rightarrow \delta$ weakly-star.
1.5 Let $\Omega \subseteq \mathbb{R}^{n}$ be an open set and K be compact subset of Ω. Show that there exists $\phi \in C_{0}^{\infty}(\Omega)$ such that $0 \leq$ $\phi(x) \leq 1$ and $\phi(x)=1$ in a neighbourhood of K.

Proof. Let $K_{\delta}=\{x: d(x, K) \leq \delta\}$ then $K_{\delta} \subseteq \Omega$ when δ is small enough. Then let

$$
\psi(x)=\int_{K_{\delta}} j_{\frac{\delta}{2}}(y-x) d y
$$

It is clear that (a) $\psi \in C_{0}^{\infty}(\Omega)$ (since K_{δ} is bounded, differentiation can be performed under the integral sign); (b) $|\psi(x)| \leq 1$ for all $x \in \Omega$; and (c) $\psi(x)=1$ for all $x \in B(K, \delta / 2)$.

2 The space of B_{0}

2.1 Verify that the convergence in $\mathscr{E}(\Omega)$ in Example 3.2.6 is independent of the choice of $\left\{K_{m}\right\}$.

Proof. Suppose that $\|\cdot\|_{m}$ are induced by $\left\{K_{m}\right\}$ and $\|\cdot\|_{m}^{\prime}$ by $\left\{K_{m}^{\prime}\right\}$. It suffices to show that for any m there exists m^{\prime} and a constant C such that

$$
\begin{equation*}
\|\phi\|_{m} \leq C \cdot\|\phi\|_{m^{\prime}}^{\prime}, \quad \forall \phi \in \mathscr{E}(\Omega) \tag{1}
\end{equation*}
$$

and for any m^{\prime} there exists m^{\prime} and a constant C^{\prime} such that

$$
\begin{equation*}
\|\phi\|_{m^{\prime}}^{\prime} \leq C^{\prime} \cdot\|\phi\|_{m}, \quad \forall \phi \in \mathscr{E}(\Omega) \tag{2}
\end{equation*}
$$

We prove (1) here, and the proof of (2) is highly similar. It suffices to show that for any K_{m} it is contained in some $K_{m^{\prime}}$. If not, there exists $x_{i} \in K_{m}$ such that $x_{i} \notin K_{n_{i}}^{\prime}$ with $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$. Since K_{m} is compact, $\left\{x_{i}\right\}$ has a convergent subsequence which goes to x. For simplicity, we assume that $x_{i} \rightarrow x$. Since $x \in \Omega=\bigcup_{m^{\prime}=1}^{\infty} \operatorname{int}\left(K_{m^{\prime}}\right)$, we have m_{1}^{\prime} such that x is an interior point of $K_{m_{1}^{\prime}}$. Thus x_{n} with n large enough are all contained in $K_{m_{1}^{\prime}}$, and thus in $K_{n_{j}}$ for j large enough. This is a contradiction with our choice of x_{i}.
2.2 Let

$$
\|\phi\|_{m}^{\prime}=\sup _{\substack{|k|,|\alpha| \leq m \\ x \in \mathbb{R}^{n}}}\left|x^{k} \partial^{\alpha} \phi(x)\right| . \quad(m=0,1,2, \ldots)
$$

Show that $\|\cdot\|_{m}^{\prime}$ are equivalent countably many norms on $\mathscr{S}\left(\mathbb{R}^{n}\right)$.

Proof. Since $\left(1+|x|^{2}\right)^{\frac{m}{2}} \geq|x|^{m}$, we have that $\|\phi\|_{m}^{\prime} \leq\|\phi\|_{m}$. On the other hand, denote $m^{\prime}=\lceil m / 2\rceil$, then $m \leq 2 m^{\prime}$ and we have

$$
\|\phi\|_{m} \leq \sum_{k=0}^{m^{\prime}} \sup _{\substack{|\alpha| \leq m \\ x \in \mathbb{R}^{n}}} C_{k}|x|^{2 k}\left|\partial^{\alpha} \phi(x)\right| \leq \sum_{k=0}^{m^{\prime}} C_{k}\|\phi\|_{2 m^{\prime}}^{\prime}
$$

where C_{k} are constants.
2.3 Show that $\mathscr{D}_{K}(\Omega)$ and $\mathscr{E}(\Omega)$ are both B_{0} spaces.

Proof. Suppose that $\left\{\phi_{k}\right\}$ is Cauchy in $\mathscr{D}_{K}(\Omega)$ then it is a uniform Cauchy sequence, and thus is convergent to some function ϕ. It is clear that ϕ is continuous and has support in K. Also, $\left\{\partial^{(1,0, \ldots)} \phi_{k}\right\}$ is a Cauchy sequence and thus is convergent to some continuous function g. From the uniform convergence of $\left\{\partial^{(1,0, \ldots)} \phi_{k}\right\}$ it must hold that $\partial^{(1,0, \ldots)} f=g$. Therefore we know that $\phi \in \mathscr{D}_{k}(\Omega)$ and $\mathscr{D}_{k}(\Omega)$ is complete.
Now we show that $\mathscr{E}(\Omega)$ is complete. Suppose that $\left\{K_{m}\right\}$ is a sequence of increasing compact sets contained in Ω and $\Omega=\bigcup_{m=1}^{\infty} K_{m}$. Let $\left\{\phi_{k}\right\}$ be a Cauchy sequence in $\mathscr{E}(\Omega)$, then it is uniformly convergent on every K_{m}. Hence $\left\{\phi_{k}(x)\right\}$ is Cauchy for every x and thus $\left\{\phi_{k}\right\}$ is convergent to some ϕ pointwise. Similarly $\left\{\partial^{(1,0, \ldots)} \phi_{k}\right\}$ is convergent to some g. On every K_{m} the convergence is uniformly thus $f^{\prime}=g$ on every K_{m} and thus for all $x \in \Omega$. Therefore we conclude that $\phi \in \mathscr{E}(\Omega)$ and $\mathscr{E}(\Omega)$ is complete.
2.4 Suppose that \mathscr{X} is a B_{0} space, show X^{\prime} is complete under weak-star convergence. In particular, $\mathscr{D}_{K}^{\prime}, S^{\prime}$ and \mathscr{E}^{\prime} are complete.

Proof. Suppose that $\left\{f_{n}\right\}$ is a weak-star Cauchy sequence in X^{\prime}, that is, for any $x \in \mathscr{X},\left\{f_{n}(x)\right\}$ is Cauchy. Thus the limit of $\left\{f_{n}(x)\right\}$ exists for every $x \in \mathscr{X}$, call it $f(x)$. In this way we define a functional f on \mathscr{X} and it is clear that f is linear. Now we shall show that f is continuous, that is, $f\left(x_{k}\right) \rightarrow 0$ whenever $x_{k} \rightarrow 0$ in X.
Since $\left\{f_{n}(x)\right\}$ exists for all $x \in \mathscr{X},\left\{f_{n}(x)\right\}$ is bounded. Notice that \mathscr{X} is of second category (it is a Frechet space), we can apply Uniform Boundedness Principle that there exists $\left\{M_{k}\right\}$ such that $\left|f_{n}(x)\right| \leq M_{k}\|x\|_{k}$ for each k and therefore $|f(x)| \leq M_{k}\|x\|_{k}$. The conclusion follows easily.
2.5 Let G be a bounded open simply-connected region on the complex plane. Denote by $A(G)$ all the analytic functions over G and define a family of seminorms as follows. Let

$$
G_{1} \subset \overline{G_{1}} \subset G_{2} \subset \overline{G_{2}} \subset \cdots \subset G_{m} \subset \overline{G_{m}} \subset \cdots \subset G
$$

is a sequence of connected sets, where $G_{m}(m=1,2, \ldots)$ is open and its boundary consists of finitely many curves with finite length. Also $\bigcup_{i=1}^{m} \overline{G_{m}}=G$. Let

$$
\|\phi\|_{m}=\max _{z \in \overline{G_{m}}}|\phi(z)|, \quad \forall \phi \in A(G) .
$$

Show that $A(G)$ is a B_{0} space. Suppose that $\left\{\phi_{n}\right\} \subset A(G)$ and there exists $\left\{M_{n}\right\}$ such that

$$
\left\|\phi_{n}\right\|_{m} \leq M_{m} \quad(m=1,2, \ldots ; n=1,2, \ldots)
$$

then $\left\{\phi_{n}\right\}$ must have a convergent subsequence.
Proof. Obviously $A(G)$ is a B_{0}^{*} space. Since $\bigcup_{m} G_{m}=G$, from a similar argument in Problem 1, we know that each compact set $K \subset G$ is contained in some $\overline{G_{m}}$. Hence if we want to prove that some property holds for any compact set in G, it suffices to show the property holds for all $\overline{G_{m}}$.
Suppose that $\left\{\phi_{k}\right\}$ is a Cauchy sequence, then ϕ_{k} is uniformly convergent on G_{m}, thus $\phi_{k} \rightarrow \psi_{m}$ for some ψ_{m} on K_{m}. Since $\left\{\phi_{k}\right\}$ are analytic in G_{m}, ψ_{m} is analytic in G_{m}. Also it is easy to see that those $\left\{\psi_{m}\right\}$ actually coincides, and thus a function ψ, which is analytic in G, is well-defined, and $\phi_{k} \rightarrow \psi$ in $A(G)$.

Now suppose that $\left\|\phi_{n}\right\|_{m} \leq M_{m}$ for all m, we shall show that $\left\{\phi_{n}\right\}$ is equicontinuous on $\overline{G_{m}}$. Let C be the boundary of a closed disc in G_{m} of radius r. If z, z_{0} are inside G_{m} then by Cauchy's integral theorem we obtain that

$$
\phi_{n}(z)-\phi_{n}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C}\left(\frac{1}{\zeta-z}-\frac{1}{\zeta-z_{0}}\right) \phi_{n}(z) d z=\frac{z-z_{0}}{2 \pi i} \int_{C} \frac{\phi_{n}(\zeta) d \zeta}{(\zeta-z)\left(\zeta-z_{0}\right)}
$$

If $\left|\phi_{n}(z)\right| \leq M$ on C, we restrict z and z_{0} to the smaller concentric disc of radius $r / 2$ and obtain that

$$
\left|\phi_{n}(z)-\phi_{n}\left(z_{0}\right)\right| \leq \frac{4 M_{m}\left|z-z_{0}\right|}{r}
$$

which shows the equicontinuity on the smaller disc. Now it is easy to take the approach of choosing a finite subcovering from a covering of $\overline{G_{m}}$, proving that $\left\{\phi_{n}\right\}$ is equicontinuous on $\overline{G_{m}}$. The conclusion follows from an obvious diagonalisation argument.

3 Operations on Distributions

3.1 Calculate

(1) $\tilde{\partial}_{x}^{n}|x|$;
(2) $\tilde{\partial}^{n} x_{+}^{\lambda}(\lambda \in \mathbb{R}, \lambda \neq-1,-2, \ldots)$, where

$$
x_{+}^{\lambda}= \begin{cases}x^{\lambda}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

Proof. (1) Assume $n \geq 1$. Let $\phi \in \mathscr{D}(\mathbb{R})$, then

$$
\begin{aligned}
\left\langle\tilde{\partial}_{x}^{n}\right| x|, \phi\rangle=(-1)^{n}\langle | x\left|, \partial^{n} \phi\right\rangle & =(-1)^{n}\left(\int_{0}^{\infty} x \partial^{n} \phi(x) d x-\int_{-\infty}^{0} x \partial^{n} \phi(x) d x\right) \\
& =(-1)^{n}\left(-\int_{0}^{\infty} \phi^{(n-1)}(x) d x+\int_{-\infty}^{0} \phi^{(n-1)}(x) d x\right)
\end{aligned}
$$

If $n=1$ then we find that $\left\langle\tilde{\partial}_{x}^{n}\right| x|, \phi\rangle=\langle\operatorname{sgn} x, \phi\rangle$. If $n=2$, we proceed as

$$
\begin{aligned}
\left\langle\tilde{\partial}_{x}^{n}\right| x|, \phi\rangle & \left.=(-1)^{n}\left(-\left(0-\phi^{(n-2)}(0)\right)+\phi^{(n-2)}(0)-0\right)\right) \\
& =2(-1)^{n-2} \phi^{(n-2)}(0) \\
& =2\left\langle\delta^{(n-2)}, \phi\right\rangle
\end{aligned}
$$

Therefore, we conclude that

$$
\partial_{x}^{n}|x|= \begin{cases}\operatorname{sgn}, & n=1 \\ 2 \delta^{(n-2)}, & n \geq 2\end{cases}
$$

(2) Let $\phi \in \mathscr{D}(\mathbb{R})$, then for $\lambda>-1$ we have

$$
\left\langle x_{+}^{\lambda}, \phi\right\rangle=\int_{0}^{\infty} x^{\lambda} \phi(x) d x
$$

well-defined, and we can rewrite it as

$$
\left\langle x_{+}^{\lambda}, \phi\right\rangle=\frac{(-1)^{k}}{(\lambda+1)(\lambda+2) \cdots(\lambda+k)} \int_{0}^{\infty} x^{\lambda+k} \phi^{(k)}(x) d x
$$

which is well-defined for $\lambda \in(-k+1,-k)$. It is also well-defined for all $\lambda>-(k+1)$ except negative integers. Then it is easy to see that

$$
\left\langle\tilde{\partial}_{x}^{n} x_{+}^{\lambda}, \phi\right\rangle=(-1)^{n}\left\langle x_{+}^{\lambda}, \phi^{(n)}\right\rangle=(\lambda-n+1) \cdots \lambda\left\langle x_{+}^{\lambda-n}, \phi\right\rangle .
$$

Hence

$$
\tilde{\partial}^{n} x_{+}^{\lambda}=\lambda(\lambda-1) \cdots(\lambda-(n-1)) x_{+}^{\lambda-n} .
$$

3.2 Show that

$$
\frac{\tilde{d}}{d x} \ln |x|=\mathrm{pv} \frac{1}{x}
$$

i.e.,

$$
\left\langle\frac{\tilde{d}}{d x} \ln \right| x|, \phi\rangle=\lim _{\epsilon \rightarrow 0^{+}} \int_{|x| \geq \epsilon} \frac{\phi(x)}{x} d x, \quad \forall \phi \in \mathscr{D}(\mathbb{R}) .
$$

Proof. This is very straight-forward. Let $\phi \in \mathscr{D}(\mathbb{R})$ then

$$
\begin{aligned}
\left\langle\frac{\tilde{d}}{d x} \ln \right| x|, \phi\rangle=-\langle\ln | x\left|, \phi^{\prime}\right\rangle & =-\int_{\mathbb{R}} \ln |x| \phi^{\prime}(x) d x \\
& =-\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{\epsilon}^{\infty} \phi^{\prime}(x) \ln x d x+\int_{-\infty}^{-\epsilon} \phi^{\prime}(x) \ln (-x) d x\right) \\
& =-\lim _{\epsilon \rightarrow 0^{+}}\left(-\phi(\epsilon) \ln \epsilon-\int_{\epsilon}^{\infty} \frac{\phi(x)}{x} d x+\phi(-\epsilon) \ln \epsilon-\int_{-\infty}^{-\epsilon} \frac{\phi(x)}{x} d x\right) \\
& =\lim _{\epsilon \rightarrow 0^{+}}\left((\phi(\epsilon)-\phi(\epsilon)) \ln \epsilon+\int_{\epsilon}^{\infty} \frac{\phi(x)}{x} d x+\int_{-\infty}^{-\epsilon} \frac{\phi(x)}{x} d x\right)
\end{aligned}
$$

Note that $(\phi(\epsilon)-\phi(\epsilon)) \ln \epsilon=2 \epsilon \phi^{\prime}(\epsilon) \ln \epsilon \rightarrow 0$ as $\epsilon \rightarrow 0^{+}$since ϕ^{\prime} is bounded. It follows that

$$
\left\langle\frac{\tilde{d}}{d x} \ln \right| x|, \phi\rangle=\lim _{\epsilon \rightarrow 0^{+}} \int_{|x| \geq \epsilon} \frac{\phi(x)}{x} d x
$$

3.3 Suppose that $\Omega=(a, b) \subset \mathbb{R}, x_{0} \in \Omega$ and $f \in C^{1}\left(\Omega \backslash\left\{x_{0}\right\}\right)$ with the discontinuity of the first kind at x_{0}. Also suppose that f^{\prime} is bounded in $\Omega \backslash\left\{x_{0}\right\}$. Show that

$$
\frac{\tilde{d}}{d x} f=f^{\prime}+\left(f\left(x_{0}^{+}\right)-f\left(x_{0}^{-}\right)\right) \delta\left(x_{0}\right)
$$

Proof. Let $\phi \in \mathscr{D}(\Omega)$,

$$
\begin{aligned}
\left\langle\frac{\tilde{d}}{d x} f, \phi\right\rangle=-\left\langle f, \phi^{\prime}\right\rangle & =-\int_{a}^{b} f(x) \phi^{\prime}(x) d x \\
& =-\left(\int_{a}^{x_{0}} f(x) \phi^{\prime}(x) d x+\int_{x_{0}}^{b} f(x) \phi^{\prime}(x) d x\right) \\
& =-\left(\left.f(x) \phi(x)\right|_{a} ^{x_{0}^{-}}-\int_{a}^{x_{0}} f^{\prime}(x) \phi(x) d x+\left.f(x) \phi(x)\right|_{x_{0}^{+}} ^{b}-\int_{x_{0}}^{b} f^{\prime}(x) \phi(x) d x\right) \\
& =\phi\left(x_{0}\right)\left(f\left(x_{0}^{+}\right)-f\left(x_{0}^{-}\right)\right)+\int_{a}^{b} f^{\prime}(x) \phi(x) d x \\
& =\left(f\left(x_{0}^{+}\right)-f\left(x_{0}^{-}\right)\right)\left\langle\delta\left(x_{0}\right), \phi\right\rangle+\left\langle f^{\prime}, \phi\right\rangle
\end{aligned}
$$

3.4 Prove that for all $f \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ it holds that

$$
\tilde{\partial}_{x_{i}} f=\lim _{h \rightarrow 0} \frac{1}{h}\left(\tilde{\tau}_{-h e_{i}} f-f\right)
$$

where

$$
e_{i}=(\underbrace{0, \ldots, 0,1}_{i}, 0, \ldots, 0) \quad(i=1,2, \ldots, n)
$$

Proof. Let $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$. We shall prove that $\left\{\left(\tau_{-h e_{i}} \phi-\phi\right) / h\right\}$ converges to $\partial_{x_{i}} \phi$ in $\mathscr{D}\left(\mathbb{R}^{n}\right)$ as $h \rightarrow 0$, afterwards we would have

$$
\begin{aligned}
\left\langle\tilde{\partial}_{x_{i}} f, \phi\right\rangle=-\left\langle f, \partial_{x_{i}} \phi\right\rangle & =-\left\langle f, \lim _{h \rightarrow 0} \frac{1}{h}\left(\tau_{-h e_{i}} \phi-\phi\right)\right\rangle \\
& =-\lim _{h \rightarrow 0}\left\langle f, \frac{1}{h}\left(\tilde{\tau}_{-h e_{i}} \phi-\phi\right)\right\rangle \\
& =-\lim _{h \rightarrow 0} \frac{1}{h}\left(\left\langle\tilde{\tau}_{h e_{i}} f, \phi\right\rangle-\langle f, \phi\rangle\right), \\
& =\lim _{h \rightarrow 0} \frac{1}{h^{\prime}}\left(\left\langle\tilde{\tau}_{-h^{\prime} e_{i}} f, \phi\right\rangle-\langle f, \phi\rangle\right), \quad\left(\text { let } h^{\prime}=-h\right)
\end{aligned}
$$

which is desired. To show that $\left\{\left(\tau_{-h e_{i}} \phi-\phi\right) / h\right\}$ converges to $\partial_{x_{i}} \phi$ in $\mathscr{D}\left(\mathbb{R}^{n}\right)$, we want to show that their supports are contained in some compact set (which is obvious), and

$$
\left|\partial^{\alpha}\left(\frac{\tau_{-h e_{i}} \phi-\phi}{h}-\frac{\partial}{\partial x_{i}} \phi\right)(x)\right|=\left|\frac{\tau_{-h e_{i}} \partial^{\alpha} \phi-\partial^{\alpha} \phi}{h}(x)-\frac{\partial}{\partial x_{i}} \partial^{\alpha} \phi(x)\right| \rightarrow 0
$$

uniformly as $h \rightarrow 0$ for multi-index α. From Mean Value Theorem, it holds that

$$
\frac{\tau_{-h e_{i}} \partial^{\alpha} \phi(x)-\partial^{\alpha} \phi(x)}{h}=\partial_{x_{i}} \partial^{\alpha}\left(x+\theta h e_{i}\right), \quad \theta \in(0,1)
$$

and the conclusion follows immediately from the fact that $\partial_{x_{i}} \partial^{\alpha} \phi$ is uniformly continuous.
3.5 Show that for all $f \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ the function $g(x)$ defined as

$$
g(y)=\left\langle f, \tau_{-y} \phi\right\rangle
$$

is in $C^{\infty}\left(\mathbb{R}^{n}\right)$.
Proof. It suffices to show that $g(y)$ is continuous and $g_{x_{i}}(y)=\left\langle f, \tau_{-y} \partial_{x_{i}}(y)\right\rangle$.
Since ϕ is uniformly continuous, τ_{-y} is also uniformly continuous and thus $\left\{\tau_{-(y+h)} \phi-\tau_{-y} \phi\right\}$ converges to 0 in $\mathscr{D}\left(\mathbb{R}^{n}\right)$. Hence $g(y+h)-g(y)=\left\langle f, \tau_{-(y+h)} \phi-\tau_{-y} \phi\right\rangle \rightarrow 0$ uniformly, which indicates that g is uniformly continuous.
Now we show that $\left\{\left(\tau_{-\left(y+h e_{i}\right)} \phi-\tau_{-y} \phi\right) / h\right\}$ converges to $\tau_{-y} \partial_{x_{i}} \phi(x)$ in $\mathscr{D}\left(\mathbb{R}^{n}\right)$ as $h \rightarrow 0$. It is obvious that their supports are contained in a common compact set. Also We have from Lagrange's Mean Value Theorem that

$$
\frac{\tau_{-\left(y+h e_{i}\right)} \phi(x)-\tau_{-y} \phi(x)}{h}=\partial_{x_{i}} \phi\left(x+y+\theta h e_{i}\right), \quad \theta \in(0,1)
$$

Note that $\partial_{x_{i}} \phi$ is uniformly continuous, we have that

$$
\frac{\tau_{-\left(y+h e_{i}\right)} \phi(x)-\tau_{-y} \phi(x)}{h}-\tau_{-y} \partial_{x_{i}} \phi(x) \rightarrow 0
$$

uniformly as $h \rightarrow 0$. Therefore,

$$
\begin{aligned}
g_{x_{i}}(y) & =\lim _{h \rightarrow 0} \frac{g\left(y+h e_{i}\right)-g(y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left\langle f, \tau_{-(y+h)} \phi-\tau_{-y} \phi\right\rangle}{h} \\
& =\left\langle f, \lim _{h \rightarrow 0} \frac{\tau_{-(y+h)} \phi-\tau_{-y} \phi}{h}\right\rangle \\
& =\left\langle f, \tau_{-y} \partial_{x_{i}} \phi\right\rangle .
\end{aligned}
$$

3.6 Show that for every $f \in \mathscr{S}^{\prime}$, there exist $u_{\alpha} \in L^{2}\left(\mathbb{R}^{n}\right)$ and an even number m such that

$$
f=\sum_{|\alpha| \leq m}(-1)^{|\alpha|} \tilde{\partial}^{\alpha}\left[\left(1+|x|^{2}\right)^{\frac{m}{2}} u_{\alpha}\right]
$$

Proof. Examining the proof of Lemma 3.2.11 carefully, we can require the m in Lemma 3.2.11 to be even and therefore the m in (3.2.6) and consequently (3.2.7) be even. Therefore, there exists an even m and $u_{\alpha} \in L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{aligned}
\langle f, \phi\rangle & =\sum_{|\alpha| \leq m} \int_{\mathbb{R}^{n}} u_{\alpha}(x) \partial^{\alpha} \phi(x)\left(1+|x|^{2}\right)^{\frac{m}{2}} d x \\
& =\sum_{|\alpha| \leq m}\left\langle u_{\alpha}(x)\left(1+|x|^{2}\right)^{\frac{m}{2}}, \partial^{\alpha} \phi(x)\right\rangle \\
& =\sum_{|\alpha| \leq m}(-1)^{|\alpha|} \tilde{\partial}^{\alpha}\left[\left(1+|x|^{2}\right)^{\frac{m}{2}} u_{\alpha}\right]
\end{aligned}
$$

4 The Fourier Transform on \mathscr{S}^{\prime}

4.1 Let $H^{m}(\mathbb{R})=\left\{u \in \mathscr{S}^{\prime} \mid \tilde{\partial}^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right)(|\alpha| \leq m)\right\}$, in which the norm is defined as

$$
\|u\|_{m}=\left(\sum_{|\alpha| \leq m}\left\|\tilde{\partial}^{\alpha} u\right\|_{2}^{2}\right)^{\frac{1}{2}}
$$

Also we define for each $u \in H^{m}\left(\mathbb{R}^{n}\right)$

$$
\|u\|_{m}^{\prime}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{m}|(\mathscr{F} u)(\xi)|^{2} d \xi\right)^{\frac{1}{2}}
$$

Show that
(1) $\|u\|_{m}^{\prime}<\infty$;
(2) $\|\cdot\|_{m}^{\prime}$ is an equivalent norm in $H^{m}\left(\mathbb{R}^{n}\right)$;
(3) $H^{m}\left(\mathbb{R}^{n}\right)$ is complete.

Proof. (1) Since $\tilde{\partial}^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right)$, we have from Plancherel Theorem that $\mathscr{F}\left(\tilde{\partial}^{\alpha} u\right) \in L^{2}\left(\mathbb{R}^{n}\right)$, which is $(2 \pi i \xi)^{\alpha}(\mathscr{F} u)(\xi) \in$ $L^{2}\left(\mathbb{R}^{n}\right)$, which means that $\xi^{\alpha}(\mathscr{F} u)(\xi) \in L^{2}\left(\mathbb{R}^{n}\right)$, or, $\int_{\mathbb{R}^{n}}|\xi|^{2 \alpha}|(\mathscr{F} u)(\xi)|^{2} d \xi$ exists for all $|\alpha| \leq m$. It follows that $\|u\|_{m}^{\prime}<\infty$.
(2) Also by Plancherel Theorem it holds that

$$
\left\|\partial^{\alpha} u\right\|_{2}=\left\|\mathscr{F}\left(\tilde{\partial}^{\alpha} u\right)\right\|_{2}=\left\|(2 \pi i \xi)^{\alpha}(\mathscr{F} u)(\xi)\right\|_{2}=2 \pi\left\|\xi^{\alpha}(\mathscr{F} u)(\xi)\right\|_{2},
$$

thus

$$
\|u\|_{m}=2 \pi\left(\sum_{|\alpha| \leq m}\left\|\xi^{\alpha}(\mathscr{F} u)(\xi)\right\|_{2}^{2}\right)^{\frac{1}{2}}=2 \pi\left(\int_{\mathbb{R}^{n}}\left(\sum_{|\alpha| \leq m}|\xi|^{2 \alpha}\right)|(\mathscr{F} u)(\xi)|^{2} d \xi\right)^{\frac{1}{2}} \leq 2 \pi\|u\|_{m}^{\prime}
$$

On the other hand,

$$
\|u\|_{m}^{\prime} \leq\left(\int_{\mathbb{R}^{n}} C\left(\sum_{|\alpha| \leq m}|\xi|^{2 \alpha}\right)|(\mathscr{F} u)(\xi)|^{2} d \xi\right)^{\frac{1}{2}}=\sqrt{C}\left(\sum_{|\alpha| \leq m}\left\|\xi^{\alpha}(\mathscr{F} u)(\xi)\right\|_{2}^{2}\right)^{\frac{1}{2}}=\frac{\sqrt{C}}{2 \pi}\|u\|_{m}
$$

therefore $\|\cdot\|_{m}^{\prime}$ is equivalent to $\|\cdot\|_{m}$.
(3) Let $\left\{u_{k}\right\}$ be a Cauchy sequence in $H^{m}\left(\mathbb{R}^{n}\right)$, then $\left\{\tilde{\partial}^{\alpha} u_{k}\right\}$ is a Cauchy sequence in $L^{2}\left(\mathbb{R}^{n}\right)$ and thus there exists $u_{\alpha} \in L^{2}\left(\mathbb{R}^{n}\right)$ such that $\partial^{\alpha} u_{k} \rightarrow u_{\alpha}$ in L^{2} norm. Since $L^{2}\left(\mathbb{R}^{n}\right)$ can be embedded into \mathscr{S}^{\prime}, we have also that $\tilde{\partial}^{\alpha} u_{k} \rightarrow u_{\alpha}$ weakly-star. Now we shall show that $\tilde{\partial}^{\alpha} u_{0}=u_{\alpha}$, which is because

$$
\left\langle\tilde{\partial}^{\alpha} u_{0}, \phi\right\rangle=(-1)^{|\alpha|}\left\langle u_{0}, \partial^{\alpha} \phi\right\rangle=\lim _{k \rightarrow \infty}(-1)^{|\alpha|}\left\langle u_{k}, \partial^{\alpha} \phi\right\rangle=\lim _{k \rightarrow \infty}\left\langle\tilde{\partial}^{\alpha} u_{k}, \phi\right\rangle=\left\langle u_{\alpha}, \phi\right\rangle
$$

for all $\phi \in \mathscr{S}\left(R^{n}\right)$.
4.2 For any non-negative real s, let

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right) \left\lvert\,\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \hat{u}(\xi) \in L^{2}\left(\mathbb{R}^{n}\right)\right.\right.
$$

where the norm is defined as

$$
\|u\|_{s}=\left\|\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \hat{u}(\xi)\right\|_{2} .
$$

Show that
(1) This definition is equivalent to the original one when $s=m \in \mathbb{N}$;
(2) Inner product (\cdot, \cdot) can be introduced in $H^{s}\left(\mathbb{R}^{n}\right)$ such that $\|u\| s=(u, u)^{\frac{1}{2}}$;
(3) Let $u \in H^{s}\left(\mathbb{R}^{n}\right)^{\prime}$, show that there exists $\tilde{u} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
\tilde{u}(\xi)\left(1+|\xi|^{2}\right)^{-\frac{s}{2}} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

and

$$
\langle u, \mathscr{F} \phi\rangle=\int_{\mathbb{R}^{n}} \phi(\xi) \cdot \tilde{u}(\xi) d \xi, \quad \forall \phi \in \mathscr{S} .
$$

Proof. (1) It follows easily from part (1) and (2) of the previous problem.
(2) Let

$$
(u, v)=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s} \hat{u}(\xi) \overline{\hat{v}(\xi)} d \xi
$$

which is obviously sesqui-linear and conjugate symmetric. The only thing remaining is to show that $(u, u)=0$ if and only if $u=0$. ' If' is trivial. Now we consider `only if'. Since a nonnegative function with integral zero must be zero almost everywhere, we know that $\hat{u}=0$ and thus $u=0$.
(3) First we show that $H^{s}\left(\mathbb{R}^{n}\right)$ is complete. Suppose u_{k} is a Cauchy sequence in $H^{s}\left(\mathbb{R}^{n}\right)$, then $\widehat{u_{k}}$ is a Cauchy sequence in L^{2}, so it is also a Cauchy sequence in measure, hence we can find a subsequence $\widehat{u_{i}} \rightarrow \hat{v}$ almost everywhere. From the proof of the completeness of $L^{2}\left(\mathbb{R}^{n}\right)$ we know that $\widehat{v} \in L^{2}$ and $\widehat{u_{k}} \rightarrow \hat{v} \in L^{2}$, and consequently $u_{k} \rightarrow v$ in L^{2} and $v \in L^{2}$. Similarly, by Fatou's Lemma

$$
\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)\left|\widehat{u_{k}}-\hat{v}\right|^{2} d \xi=\int_{\mathbb{R}^{n}} \lim _{i \rightarrow \infty}\left(1+|\xi|^{2}\right)\left|\widehat{u_{k}}-\widehat{u_{k}}\right|^{2} d \xi \leq \liminf _{i \rightarrow \infty} \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)\left|\widehat{u_{k}}-\widehat{u_{k}}\right|^{2} d \xi,
$$

whence we see that

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)\left|\widehat{u_{k}}-\hat{v}\right|^{2} d \xi=0
$$

It follows that $\left\|u_{k}-v\right\|_{s} \in H^{s}\left(\mathbb{R}^{n}\right)$ and thus $v \in H^{s}\left(\mathbb{R}^{n}\right)$. Hence $H^{s}\left(\mathbb{R}^{n}\right)$ is a Hilbert space. By Riesz Representation Theorem, there exists $v \in H^{s}$ such that $\langle u, \phi\rangle=(\phi, v)$ for all $\phi \in H^{s} \supset \mathscr{S}$.
Now take $\tilde{u}(\xi)=\overline{\hat{v}(-\xi)}\left(1+|\xi|^{2}\right)^{s}$. Let K be any compact set, suppose that $K \subseteq B(0, R)$ for some R, then

$$
\int_{K}|\tilde{u}| \leq\left(1+R^{2}\right)^{s} \int_{K}|\hat{v}(-\xi)| d \xi \leq\left(1+R^{2}\right)^{s}\|\hat{v}\|_{2} m(K)^{\frac{1}{2}}<\infty
$$

whence we know that $\tilde{u} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. And we have from

$$
\int_{\mathbb{R}^{n}} \frac{|\tilde{u}(\xi)|^{2}}{\left(1+|\xi|^{2}\right)^{s}} d \xi=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{v}(\xi)|^{2}=\|v\|_{2}
$$

that $\hat{u}(\xi)\left(1+|\xi|^{2}\right)^{-s / 2} \in L^{2}\left(\mathbb{R}^{n}\right)$. Finally,

$$
\begin{aligned}
\langle u, \mathscr{F} \phi\rangle=(\mathscr{F} \phi, v) & =\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s} \mathscr{F}(\mathscr{F} \phi) \overline{\mathscr{F}} v d \xi \\
& =\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s} \phi(-\xi) \frac{\tilde{u}(-\xi)}{\left(1+|\xi|^{2}\right)^{s}} d \xi \\
& =\int_{\mathbb{R}^{n}} \tilde{u}(\xi) \phi(\xi) d \xi .
\end{aligned}
$$

4.3 Let $f(x) \in L^{1}\left(\mathbb{R}^{n}\right)$ show that

$$
(\tilde{\mathscr{F}} f)(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x
$$

that is, the Fourier transform of f in \mathscr{S}^{\prime} is the same as the ordinary Fourier transform.
Proof. Let $\phi \in \mathscr{S}$. Since $\phi \in L^{1}\left(\mathbb{R}^{n}\right)$, we know that

$$
\lim _{R \rightarrow \infty} \int_{|x| \leq R} \phi(t) e^{-2 \pi i t \cdot x} d t=\int_{\mathbb{R}^{n}} \phi(t) e^{-2 \pi i t \cdot x} d t=\mathscr{F} \phi(x)
$$

and the convergence is uniform. Since $\mathscr{F} \phi$ is bounded, $\int_{|x| \leq R} \phi(t) e^{-2 \pi i t \cdot x} d t$ is bounded too if R is large enough. Note that $f \in L^{1}\left(\mathbb{R}^{n}\right)$, by Lebesgue's Dominated Convergence Theorem we can write

$$
\langle\tilde{\mathscr{F}} f, \phi\rangle=\langle f, \mathscr{F} \phi\rangle=\int_{\mathbb{R}^{n}} f(x) \int_{\mathbb{R}^{n}} \phi(t) e^{-2 \pi i t \cdot x} d t d x=\lim _{R \rightarrow \infty} \int_{\mathbb{R}^{n}} f(x) \int_{|x| \leq R} \phi(t) e^{-2 \pi i t \cdot x} d t d x
$$

Now, since ϕ is bounded, we can apply Fubini's Theorem,

$$
\langle\tilde{\mathscr{F}} f, \phi\rangle=\lim _{R \rightarrow \infty} \int_{|x| \leq R} \int_{\mathbb{R}^{n}} e^{-2 \pi i t \cdot x} f(x) d x \phi(t) d t d x
$$

Again by Lebesgue's Dominated Convergence Theorem it holds that

$$
\langle\tilde{\mathscr{F}} f, \phi\rangle=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{-2 \pi i t \cdot x} f(x) d x \phi(t) d t
$$

completing the proof.
4.4 There is no non-trivial solution to $\Delta f=f$ in $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.

Proof. Take Fourier Transform of both sides, we have $-4 \pi^{2}|\xi|^{2} \hat{f}(\xi)=\hat{f}(\xi)$, therefore $\hat{f}(\xi)=0$ and thus $f=$ 0 .

5 Sobolev Spaces

5.1 Verify Theorem 3.5 .5 for $\Omega=\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}$.
5.2 Suppose that $a \in \mathscr{D}$ and $u \in W^{m, p}\left(\mathbb{R}^{n}\right)$, then $a \cdot u \in W^{m, p}\left(\mathbb{R}^{n}\right)$ and there exists a constant C (dependent on a) such that

$$
\|a \cdot u\|_{W^{m, p}} \leq C\|u\|_{W^{m, p}}
$$

Proof. By definition

$$
\int_{\mathbb{R}^{n}} \tilde{\partial}^{\alpha}(a u) \phi=(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} u \cdot a \partial^{\alpha} \phi
$$

Applying integration by parts repeatedly, we see that $\tilde{\partial}^{\alpha}(a u)$ can be written as sum of terms of form $\partial^{\beta_{1}} a \tilde{\partial}^{\beta_{2}} u$. Each term is in $L^{p}\left(\mathbb{R}^{n}\right)$ because $\partial^{\beta_{1}} a$ is bounded and $\tilde{\partial}^{\beta_{2}} u$ is in $L^{p}\left(\mathbb{R}^{n}\right)$, hence the sum is in L^{p}. The inequality follows easily.
5.3 Suppose that $m \geq l$, show that $W^{m, p}(\Omega) \hookrightarrow W^{l, p}(\Omega)$.

Proof. It is obvious that $W^{m, p}(\Omega) \subseteq W^{l, p}(\Omega)$ and $u \in W^{m, p}(\Omega)$ we have that $\|u\|_{W^{l, p}(\Omega)} \leq\|u\|_{W^{m, p}(\Omega)}$ for all $u \in W^{m, p}(\Omega)$.
5.4 Let $\Omega=(a, b)$ and $f \in L^{2}(\Omega)$. Prove that there exists a unique $x \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\frac{\tilde{d}^{2} x}{d t^{2}}=f \tag{3}
\end{equation*}
$$

and $T: f \mapsto x$ is a continuous linear operator from $L^{2}(\Omega)$ to $H^{2}(\Omega)$.
Proof. Define

$$
\begin{equation*}
J(v)=-\int_{a}^{b} v^{\prime \prime} v-2 \int_{a}^{b} f v=\int_{a}^{b}\left|v^{\prime}\right|^{2}-2 \int_{a}^{b} f v, \quad v \in H_{0}^{1}(a, b) . \tag{4}
\end{equation*}
$$

First we show that if v^{*} is a minimiser of $J(v)$, then v^{*} is a solution to (3). Let $\phi \in H_{0}^{1}(a, b)$, then

$$
J\left(v^{*}+\phi\right)-J\left(v^{*}\right)=2 \int_{a}^{b}\left(v^{* \prime \prime}-f\right) \phi+\int_{a}^{b} \phi^{\prime \prime} \phi \geq 0
$$

hence

$$
\begin{aligned}
J\left(v^{*}+\epsilon \phi\right)-J\left(v^{*}\right) & =2 \epsilon \int_{a}^{b}\left(v^{* \prime \prime}-f\right) \phi+\epsilon^{2} \int_{a}^{b} \phi^{\prime \prime} \phi \geq 0 \\
J\left(v^{*}-\epsilon \phi\right)-J\left(v^{*}\right) & =-2 \epsilon \int_{a}^{b}\left(v^{* \prime \prime}-f\right) \phi+\epsilon^{2} \int_{a}^{b} \phi^{\prime \prime} \phi \geq 0
\end{aligned}
$$

for any $\epsilon>0$. It must hold that

$$
\int_{a}^{b}\left(v^{* \prime \prime}-f\right) \phi=0
$$

for all $\phi \in H_{0}^{1}(a, b)$, and thus $\left(v^{*}\right)^{\prime \prime}=f$.
Next we show the existence of the minimiser to (4). Recall that $\left(u^{\prime}, v^{\prime}\right)_{L^{2}}$ is an inner product on $H_{0}^{1}(a, b)$. Since $f \in L^{2}, v \mapsto \int_{a}^{b} f v$ defines a bounded linear functional, by Riesz representation theorem, there exists $w \in H_{0}^{1}(a, b)$ such that

$$
\int_{a}^{b} f v=\left(v^{\prime}, w^{\prime}\right)_{L^{2}}
$$

and thus $J(v)$ can be rewritten as

$$
J(v)=\|v-w\|_{H_{0}^{1}}^{2}-\|w\|_{H_{0}^{1}}^{2}
$$

which clearly attains minimum at $v=w$ and nowhere else. Therefore the existence and uniqueness has been proved. It is clear that T is linear. The boundedness of T follows easily from Poincaré's inequality, which is, in our case, based on the following inequality:

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C\left\|\frac{\tilde{d} u}{d x}\right\|_{L^{2}}, \quad \forall u \in H_{0}^{1}(a, b) \tag{5}
\end{equation*}
$$

We have seen in Lemma 1.6.15 that (5) holds for all $u \in C_{0}^{\infty}(a, b)$. Let $u \in H_{0}^{1}(a, b)$. Suppose that $\left\{u_{k}\right\} \subseteq$ $C_{0}^{\infty}(a, b)$ converging to u in $H_{0}^{1}(a, b)$. It is clear from (5) that $\left\{u_{k}\right\}$ is a Cauchy sequence in $C([a, b])$, and thus $u \in C([a, b])$, and $\left\|u_{k}\right\|_{L^{\infty}} \rightarrow\|u\|_{L^{\infty}}$. Since $u_{k} \rightarrow u$ in $H_{0}^{1}(a, b)$, it naturally holds that $\left\|\frac{\tilde{d} u_{k}}{d x}\right\|_{L^{2}} \rightarrow\left\|\frac{\tilde{d} u}{d x}\right\|_{L^{2}}$. Hence (5) holds for $u \in H_{0}^{1}(a, b)$.
5.5 Let $f(x) \in H_{0}^{1}(-1,1)$. Show that
(1) $f(-1)=f(1)=0$;
(2) $f(x)$ is absolutely continuous;
(3) $f^{\prime}(x) \in L^{2}(-1,1)\left({ }^{\prime \prime}\right.$ means derivative a.e.)

Proof. (1) Given $u \in H_{0}^{1}(-1,1)$, there exist functions $u_{k} \in C_{0}^{\infty}(-1,1)$ converging to u in $H_{0}^{1}(-1,1)$. Also note that $H^{1}(-1,1) \hookrightarrow C([-1,1])$ and u_{k} is mapped to itself, hence u_{k} converges uniformly to some u^{*} on $[1,-1]$. Since $u_{k}(1)=u_{k}(-1)=0$ for all k we have that $u^{*}(1)=u^{*}(-1)=0$.
(2) Let $k \rightarrow \infty$ in

$$
u_{k}(y)=u_{k}(x)+\int_{x}^{y} u_{k}^{\prime}(t) d t
$$

and note that

$$
\int_{x}^{y}\left|u_{k}^{\prime}(t)-u^{\prime}(t)\right| d t \leq\left(\int_{x}^{y}\left|u_{k}^{\prime}(t)-u^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}(y-x)^{\frac{1}{2}} \leq\left\|u_{k}-u\right\|_{H_{0}^{1}}(y-x)^{\frac{1}{2}} \rightarrow 0
$$

we have

$$
u(y)=u(x)+\int_{x}^{y} u^{\prime}(t) t d t
$$

Hence $u(x)$ is absolutely continuous.
(3) This is obvious, because $u^{\prime}=\left(u^{\prime}-u_{k}^{\prime}\right)+u_{k}$, and $u^{\prime}-u_{k}^{\prime}$ and u_{k}^{\prime} are both in $L^{2}(-1,1)$.
5.6 Let $f \in H^{s}\left(\mathbb{R}^{n}\right)$ (See Exercise 4.2 for the definition). Show that if $s>n / 2$
(1) $\hat{f}(\xi) \in L^{1}\left(\mathbb{R}^{n}\right)$;
(2) $f(x)$ equals to a continuous and bounded function on \mathbb{R}^{n} almost everywhere.

Proof. (1)

$$
\int_{\mathbb{R}^{n}}|\hat{f}(\xi)| d \xi \leq\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{-s} d \xi\right)^{\frac{1}{2}} \leq C \cdot\|f\|_{s}
$$

for some constant C.
(2) For $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ it holds that

$$
\begin{equation*}
\|f\|_{\mathscr{S}\left(\mathbb{R}^{n}\right)} \leq \int_{\mathbb{R}^{n}}|\hat{f}(\xi)| d \xi \leq C \cdot\|f\|_{s} \tag{6}
\end{equation*}
$$

Assume for a moment that $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is dense in $H^{s}\left(\mathbb{R}^{n}\right)$. Then for any $f \in H^{s}\left(\mathbb{R}^{n}\right)$, we can find $\left\{f_{k}\right\} \subset$ $\mathscr{S}\left(\mathbb{R}^{n}\right)$ such that $f_{k} \rightarrow f$ in $H^{s}\left(\mathbb{R}^{n}\right)$. Equation (6) implies that $\left\{f_{k}\right\}$ is a Cauchy sequence in $C^{\infty}{ }_{-}$norm, and thus it converges to a bounded continuous function f^{*} on \mathbb{R}^{n}. It holds that for all $g \in \mathscr{S}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}}\left|f-f^{*}\right||g| \leq \int_{\mathbb{R}^{n}}\left|f-f_{k}\left\|g\left|+\int_{\mathbb{R}^{n}}\right| f^{*}-f_{k}\right\| g\right| \leq\left\|f-f_{k}\right\|_{2}\|g\|_{2}+\left\|f^{*}-f_{k}\right\|_{\infty}\|g\|_{1} \rightarrow 0
$$

because, by Plancherel's Theorem, $\left\|f-f_{k}\right\|_{2}=\left\|\hat{f}-\hat{f}_{k}\right\|_{2} \leq\left\|f-f_{k}\right\|_{s}$. Hence $f^{*}=f$ a.e.
Now we show that $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is dense in $H^{s}\left(\mathbb{R}^{n}\right)$. Note that $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{2}\left(\mathbb{R}^{n}\right)$, given $u \in H^{s}\left(\mathbb{R}^{n}\right)$ there exists $u_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\left\|u_{k}-u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \rightarrow 0$. Let $v_{k}=u_{k}(1+|\xi|)^{-\frac{s}{2}}$, then $v_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $v_{k}(1+|\xi|)^{\frac{s}{2}} \rightarrow u$ in $L^{2}\left(\mathbb{R}^{n}\right)$. Since $v_{k} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, there exist $w_{k} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ such that $v_{k}=\hat{w}_{k}$ (actually w_{k} is the inverse Fourier transform of $\left.v_{k}\right)$. Hence $\hat{w}_{k}(1+|\xi|)^{\frac{s}{2}} \rightarrow u$ in $L^{2}\left(\mathbb{R}^{n}\right)$, that is, $w_{k} \rightarrow u$ in $H^{s}\left(\mathbb{R}^{n}\right)$.
5.7 Let $m \in \mathbb{N}$, define

$$
H^{-m}=\left\{f \in \mathscr{S}^{\prime}:\left(1+|\xi|^{2}\right)^{-\frac{m}{2}} \hat{f}(\xi) \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

and the norm

$$
\|f\|_{-m}=\left\|\left(1+|\xi|^{2}\right)^{-\frac{m}{2}} \hat{f}(\xi)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Show that any $f \in H^{-m}$ can be written as the sum of the derivatives of finitely many functions in $L^{2}\left(\mathbb{R}^{n}\right)$.
Proof. It suffices to show that $H^{-m}\left(\mathbb{R}^{n}\right)$ defined in this way is equivalent to $H^{m}\left(\mathbb{R}^{n}\right)^{\prime}$, then the conclusion follows from Corollary 3.5.13 because $H^{m}\left(\mathbb{R}^{n}\right)=H_{0}^{m}\left(\mathbb{R}^{n}\right)$.
By Riesz Representation Theorem, for $v \in\left(H^{m}\right)^{\prime}$ there exists $u_{v} \in H^{m}$ such that $v[u]=\left(u, u_{v}\right)_{H^{m}}$ for all $u \in H^{m}$. Note that $\mathscr{F}^{-1}\left(\left(1+|\xi|^{2}\right)^{m} \widehat{u_{v}}\right) \in H^{-m}$, hence there exists a natural bijection between $\left(H^{m}\right)^{\prime}$ and H^{-m}. Finally, since

$$
\left\|\mathscr{F}^{-1}\left(\left(1+|\xi|^{2}\right)^{m} \widehat{u_{v}}\right)\right\|_{H^{-m}}=\left\|\left(1+|\xi|^{2}\right)^{\frac{m}{2}} \widehat{u_{v}}\right\|_{L^{2}}=\left\|u_{v}\right\|_{H^{m}}
$$

it follows that H^{-m} and $\left(H^{m}\right)^{\prime}$ are, in fact, isomorphic.

