
1 Concepts of Distributions
1.1 Suppose that 1 ≤ p <∞, show that C∞

0 (Ω) is dense in Lp(Ω).

Proof. Suppose that u ∈ Lp(Ω) and we can assume thatΩ is bounded. (Otherwise takeΩn = Ω∩B(0, n) and thus
we can find un = uχΩn for some n such that ∥un − u∥p < ϵ, and we will approximate un on Ωn) We are going to
find ψ ∈ C∞

0 (Ω) such that ∥u− ψ∥p < 2ϵ in two steps.

(1) Find ϕ ∈ C0(Ω) such that ∥u− ϕ∥p < ϵ.
Since u is in Lp(Ω) we can find u1 in Lp(Ω) which is bounded (say, by M ) and satisfies ∥u1 − u∥p < ϵ/3.
Now we can choose K ⊆ Ω′ ⊆ Ω, where K is closed and Ω′ is open, such that m(Ω \ K) < ( ϵ

3M )p and
m(Ω′ \K) < ( ϵ

6M )p. en ∥u1χK −u1∥p ≤Mm(Ω\K)
1
p < ϵ/3. Finally, from Luzin's eorem, we know

that there exists ϕ ∈ C(Ω) with support contained in Ω′ and bounded by M , such that m(E) < ( ϵ
12M )p,

where E = {x : u1χK ̸= ϕ}. us ∥u1χK −ϕ∥p < 2M ·m(E)
1
p +M ·m(Ω′ \K))

1
p < ϵ/3, which implies

that ∥u− ϕ∥p < ϵ.
(2) Find ψ ∈ C∞

0 (Ω) such that ∥ϕ− ψ∥p < ϵ.
Since as Ω is bounded and ϕδ converges to ϕ uniformly on Ω as δ → 0+, we can just let ψ = ϕδ for some
appropriate δ.

1.2 Prove that δ is not locally integrable.

Proof. Note that exδ = δ, hence if δ is locally integrable, we must have exδ = δ a.e., yielding δ = 0 a.e.. But δ is
not a zero distribution, contradiion. erefore δ cannot be locally integrable.

1.3 Suppose that

fj(x) =

(
1 +

x

j

)j

(j = 1, 2, . . . )

Show that fj(x) → ex in D ′(R).

Proof. For any ϕ ∈ D(R) we have that (1 + x
j )

jϕ(x) → exϕ(x) as n→ ∞ and |(1 + x
j )

j | ≤ e|x| and e|x||ϕ(x)| ∈
L1(R), hence by Lebesgue's Dominated Convergence eorem it holds that

lim
j→∞

⟨fj , ϕ⟩ = lim
j→∞

∫
R
fj(x)ϕ(x)dx =

∫
R
exϕ(x)dx = ⟨ex, ϕ(x)⟩.

and thus fj → ex weakly-star.

1.4 Show that in D ′(R),

(1) 1

π

ϵ

x2 + ϵ2
→ δ(x)(ϵ→ 0+)

(2) 1

2
√
πt

exp
(
−x

2

4t

)
→ δ(x)(t→ 0+)

Proof. We prove a more general proposition that if nonnegative f ∈ L1 with
∫
R f(x)dx = 1, then fδ → δ weakly-

star as δ → 0+, where fδ is defined by fδ(x) = f(x/δ)/δ. Item (a) is a special case of f(x) = 1
π(1+x2) with δ = ϵ

and item (b) f(x) = 1
2
√
π
e−x2/4 with δ =

√
t.

Since
∫
R f(x)dx = 1 we know that

∫
R fδ(x)dx = 1, hence for ϕ ∈ D(Ω) it holds that

|⟨fδ, ϕ⟩ − ϕ(0)| =
∣∣∣∣∫

R
fδ(x)ϕ(x)dx− ϕ(0)

∣∣∣∣ = ∣∣∣∣∫
R
fδ(x)(ϕ(x)− ϕ(0))dx

∣∣∣∣ ≤ ∫
R
fδ(x)|ϕ(x)− ϕ(0)|dx
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Since ϕ is continuous at x = 0 there exists δ1 such that |ϕ(x) − ϕ(0)| < ϵ/2 whenever |x| < δ1. Also since
f ∈ L1(R), there exists δ2 such that

∫
|x|≥1/δ2

f < ϵ/(2∥f∥∞). Let η = min{δ1, δ2}. It follows that for δ < η,

|⟨fδ, ϕ⟩ − ϕ(0)| ≤
∫
|x|≤δ

fδ(x)|ϕ(x)− ϕ(0)|dx+

∫
|x|>δ

fδ(x)|ϕ(x)− ϕ(0)|dx

≤ ϵ

2

∫
|x|≤δ

fδ(x)dx+ 2∥ϕ∥∞
∫
|x|>δ

fδ(x)dx

≤ ϵ

2
+ 2∥ϕ∥∞

∫
|u|> 1

δ

f(u)du

≤ ϵ

2
+ 2∥ϕ∥∞

∫
|u|> 1

δ2

f(u)du <
ϵ

2
+
ϵ

2
= ϵ.

erefore ⟨fδ, ϕ⟩ → ϕ(0) as δ → 0+, or, fδ → δ weakly-star.

1.5 Let Ω ⊆ Rn be an open set and K be compa subset of Ω. Show that there exists ϕ ∈ C∞
0 (Ω) such that 0 ≤

ϕ(x) ≤ 1 and ϕ(x) = 1 in a neighbourhood ofK.

Proof. LetKδ = {x : d(x,K) ≤ δ} thenKδ ⊆ Ω when δ is small enough. en let

ψ(x) =

∫
Kδ

j δ
2
(y − x)dy.

It is clear that (a) ψ ∈ C∞
0 (Ω) (since Kδ is bounded, differentiation can be performed under the integral sign); (b)

|ψ(x)| ≤ 1 for all x ∈ Ω; and (c) ψ(x) = 1 for all x ∈ B(K, δ/2).

2 e space ofB0

2.1 Verify that the convergence in E (Ω) in Example 3.2.6 is independent of the choice of {Km}.

Proof. Suppose that ∥ · ∥m are induced by {Km} and ∥ · ∥′m by {K ′
m}. It suffices to show that for anym there exists

m′ and a constant C such that
∥ϕ∥m ≤ C · ∥ϕ∥′m′ , ∀ϕ ∈ E (Ω) (1)

and for anym′ there existsm′ and a constant C ′ such that

∥ϕ∥′m′ ≤ C ′ · ∥ϕ∥m, ∀ϕ ∈ E (Ω). (2)

We prove (1) here, and the proof of (2) is highly similar. It suffices to show that for anyKm it is contained in some
Km′ . If not, there exists xi ∈ Km such that xi ̸∈ K ′

ni
with ni → ∞ as i → ∞. Since Km is compa, {xi} has a

convergent subsequence which goes to x. For simplicity, we assume that xi → x. Since x ∈ Ω =
∪∞

m′=1 int(Km′),
we have m′

1 such that x is an interior point of Km′
1
. us xn with n large enough are all contained in Km′

1
, and

thus inKnj
for j large enough. is is a contradiion with our choice of xi.

2.2 Let
∥ϕ∥′m = sup

|k|,|α|≤m
x∈Rn

|xk∂αϕ(x)|. (m = 0, 1, 2, . . . )

Show that ∥ · ∥′m are equivalent countably many norms on S (Rn).
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Proof. Since (1 + |x|2)m
2 ≥ |x|m, we have that ∥ϕ∥′m ≤ ∥ϕ∥m. On the other hand, denote m′ = ⌈m/2⌉, then

m ≤ 2m′ and we have

∥ϕ∥m ≤
m′∑
k=0

sup
|α|≤m
x∈Rn

Ck|x|2k|∂αϕ(x)| ≤
m′∑
k=0

Ck∥ϕ∥′2m′ ,

where Ck are constants.

2.3 Show that DK(Ω) and E (Ω) are both B0 spaces.

Proof. Suppose that {ϕk} is Cauchy in DK(Ω) then it is a uniform Cauchy sequence, and thus is convergent to
some funion ϕ. It is clear that ϕ is continuous and has support in K. Also, {∂(1,0,... )ϕk} is a Cauchy sequence
and thus is convergent to some continuous funion g. From the uniform convergence of {∂(1,0,... )ϕk} it must hold
that ∂(1,0,... )f = g. erefore we know that ϕ ∈ Dk(Ω) and Dk(Ω) is complete.
Now we show that E (Ω) is complete. Suppose that {Km} is a sequence of increasing compa sets contained in
Ω and Ω =

∪∞
m=1Km. Let {ϕk} be a Cauchy sequence in E (Ω), then it is uniformly convergent on every Km.

Hence {ϕk(x)} is Cauchy for every x and thus {ϕk} is convergent to some ϕ pointwise. Similarly {∂(1,0,... )ϕk} is
convergent to some g. On everyKm the convergence is uniformly thus f ′ = g on everyKm and thus for all x ∈ Ω.
erefore we conclude that ϕ ∈ E (Ω) and E (Ω) is complete.

2.4 Suppose that X is a B0 space, showX ′ is complete under weak-star convergence. In particular, D ′
K , S′ and E ′ are

complete.

Proof. Suppose that {fn} is a weak-star Cauchy sequence in X ′, that is, for any x ∈ X , {fn(x)} is Cauchy. us
the limit of {fn(x)} exists for every x ∈ X , call it f(x). In this way we define a funional f on X and it is clear
that f is linear. Now we shall show that f is continuous, that is, f(xk) → 0 whenever xk → 0 in X .
Since {fn(x)} exists for all x ∈ X , {fn(x)} is bounded. Notice thatX is of second category (it is a Frechet space),
we can apply Uniform Boundedness Principle that there exists {Mk} such that |fn(x)| ≤ Mk∥x∥k for each k and
therefore |f(x)| ≤Mk∥x∥k. e conclusion follows easily.

2.5 LetG be a bounded open simply-conneed region on the complex plane. Denote byA(G) all the analytic funions
over G and define a family of seminorms as follows. Let

G1 ⊂ G1 ⊂ G2 ⊂ G2 ⊂ · · · ⊂ Gm ⊂ Gm ⊂ · · · ⊂ G

is a sequence of conneed sets, where Gm (m = 1, 2, . . . ) is open and its boundary consists of finitely many curves
with finite length. Also

∪m
i=1Gm = G. Let

∥ϕ∥m = max
z∈Gm

|ϕ(z)|, ∀ϕ ∈ A(G).

Show that A(G) is a B0 space. Suppose that {ϕn} ⊂ A(G) and there exists {Mn} such that

∥ϕn∥m ≤Mm (m = 1, 2, . . . ;n = 1, 2, . . . )

then {ϕn} must have a convergent subsequence.

Proof. Obviously A(G) is a B∗
0 space. Since

∪
mGm = G, from a similar argument in Problem 1, we know that

each compa set K ⊂ G is contained in some Gm. Hence if we want to prove that some property holds for any
compa set in G, it suffices to show the property holds for all Gm.
Suppose that {ϕk} is a Cauchy sequence, then ϕk is uniformly convergent on Gm, thus ϕk → ψm for some ψm on
Km. Since {ϕk} are analytic inGm, ψm is analytic inGm. Also it is easy to see that those {ψm} aually coincides,
and thus a funion ψ, which is analytic in G, is well-defined, and ϕk → ψ in A(G).
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Now suppose that ∥ϕn∥m ≤ Mm for all m, we shall show that {ϕn} is equicontinuous on Gm. Let C be the
boundary of a closed disc in Gm of radius r. If z, z0 are inside Gm then by Cauchy's integral theorem we obtain
that

ϕn(z)− ϕn(z0) =
1

2πi

∫
C

(
1

ζ − z
− 1

ζ − z0

)
ϕn(z)dz =

z − z0
2πi

∫
C

ϕn(ζ)dζ

(ζ − z)(ζ − z0)
.

If |ϕn(z)| ≤M on C, we restri z and z0 to the smaller concentric disc of radius r/2 and obtain that

|ϕn(z)− ϕn(z0)| ≤
4Mm|z − z0|

r
,

which shows the equicontinuity on the smaller disc. Now it is easy to take the approach of choosing a finite subcov-
ering from a covering ofGm, proving that {ϕn} is equicontinuous onGm. e conclusion follows from an obvious
diagonalisation argument.

3 Operations on Distributions
3.1 Calculate

(1) ∂̃nx |x|;
(2) ∂̃nxλ+ (λ ∈ R, λ ̸= −1,−2, . . . ), where

xλ+ =

{
xλ, x > 0.
0, x ≤ 0.

Proof. (1) Assume n ≥ 1. Let ϕ ∈ D(R), then

⟨∂̃nx |x|, ϕ⟩ = (−1)n⟨|x|, ∂nϕ⟩ = (−1)n
(∫ ∞

0

x∂nϕ(x)dx−
∫ 0

−∞
x∂nϕ(x)dx

)
= (−1)n

(
−
∫ ∞

0

ϕ(n−1)(x)dx+

∫ 0

−∞
ϕ(n−1)(x)dx

)
If n = 1 then we find that ⟨∂̃nx |x|, ϕ⟩ = ⟨sgnx, ϕ⟩. If n = 2, we proceed as

⟨∂̃nx |x|, ϕ⟩ = (−1)n(−(0− ϕ(n−2)(0)) + ϕ(n−2)(0)− 0))

= 2(−1)n−2ϕ(n−2)(0)

= 2⟨δ(n−2), ϕ⟩

erefore, we conclude that

∂nx |x| =
{

sgn, n = 1;
2δ(n−2), n ≥ 2.

(2) Let ϕ ∈ D(R), then for λ > −1 we have

⟨xλ+, ϕ⟩ =
∫ ∞

0

xλϕ(x)dx

well-defined, and we can rewrite it as

⟨xλ+, ϕ⟩ =
(−1)k

(λ+ 1)(λ+ 2) · · · (λ+ k)

∫ ∞

0

xλ+kϕ(k)(x)dx,

which is well-defined for λ ∈ (−k + 1,−k). It is also well-defined for all λ > −(k + 1) except negative
integers. en it is easy to see that

⟨∂̃nxxλ+, ϕ⟩ = (−1)n⟨xλ+, ϕ(n)⟩ = (λ− n+ 1) · · ·λ⟨xλ−n
+ , ϕ⟩.

Hence
∂̃nxλ+ = λ(λ− 1) · · · (λ− (n− 1))xλ−n

+ .
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3.2 Show that
d̃

dx
ln |x| = pv 1

x
,

i.e., ⟨
d̃

dx
ln |x|, ϕ

⟩
= lim

ϵ→0+

∫
|x|≥ϵ

ϕ(x)

x
dx, ∀ϕ ∈ D(R).

Proof. is is very straight-forward. Let ϕ ∈ D(R) then

⟨ d̃
dx

ln |x|, ϕ⟩ = −⟨ln |x|, ϕ′⟩ = −
∫
R
ln |x|ϕ′(x)dx

= − lim
ϵ→0+

(∫ ∞

ϵ

ϕ′(x) lnxdx+

∫ −ϵ

−∞
ϕ′(x) ln(−x)dx

)
= − lim

ϵ→0+

(
−ϕ(ϵ) ln ϵ−

∫ ∞

ϵ

ϕ(x)

x
dx+ ϕ(−ϵ) ln ϵ−

∫ −ϵ

−∞

ϕ(x)

x
dx

)
= lim

ϵ→0+

(
(ϕ(ϵ)− ϕ(ϵ)) ln ϵ+

∫ ∞

ϵ

ϕ(x)

x
dx+

∫ −ϵ

−∞

ϕ(x)

x
dx

)

Note that (ϕ(ϵ)− ϕ(ϵ)) ln ϵ = 2ϵϕ′(ϵ) ln ϵ→ 0 as ϵ→ 0+ since ϕ′ is bounded. It follows that

⟨ d̃
dx

ln |x|, ϕ⟩ = lim
ϵ→0+

∫
|x|≥ϵ

ϕ(x)

x
dx.

3.3 Suppose that Ω = (a, b) ⊂ R, x0 ∈ Ω and f ∈ C1(Ω \ {x0}) with the discontinuity of the first kind at x0. Also
suppose that f ′ is bounded in Ω \ {x0}. Show that

d̃

dx
f = f ′ + (f(x+0 )− f(x−0 ))δ(x0).

Proof. Let ϕ ∈ D(Ω),⟨
d̃

dx
f, ϕ

⟩
= −⟨f, ϕ′⟩ = −

∫ b

a

f(x)ϕ′(x)dx

= −

(∫ x0

a

f(x)ϕ′(x)dx+

∫ b

x0

f(x)ϕ′(x)dx

)

= −

(
f(x)ϕ(x)|x

−
0

a −
∫ x0

a

f ′(x)ϕ(x)dx+ f(x)ϕ(x)|b
x+
0
−
∫ b

x0

f ′(x)ϕ(x)dx

)

= ϕ(x0)(f(x
+
0 )− f(x−0 )) +

∫ b

a

f ′(x)ϕ(x)dx

= (f(x+0 )− f(x−0 ))⟨δ(x0), ϕ⟩+ ⟨f ′, ϕ⟩

3.4 Prove that for all f ∈ D ′(Rn) it holds that

∂̃xif = lim
h→0

1

h
(τ̃−heif − f),

where
ei = (0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) (i = 1, 2, . . . , n).
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Proof. Let ϕ ∈ D(Rn). We shall prove that {(τ−heiϕ− ϕ)/h} converges to ∂xi
ϕ in D(Rn) as h → 0, afterwards

we would have

⟨∂̃xif, ϕ⟩ = −⟨f, ∂xiϕ⟩ = −
⟨
f, lim

h→0

1

h
(τ−heiϕ− ϕ)

⟩
= − lim

h→0

⟨
f,

1

h
(τ̃−heiϕ− ϕ)

⟩
= − lim

h→0

1

h
(⟨τ̃heif, ϕ⟩ − ⟨f, ϕ⟩) ,

= lim
h→0

1

h′
(⟨τ̃−h′eif, ϕ⟩ − ⟨f, ϕ⟩) , (let h′ = −h)

which is desired. To show that {(τ−heiϕ−ϕ)/h} converges to ∂xiϕ in D(Rn), we want to show that their supports
are contained in some compa set (which is obvious), and∣∣∣∣∂α(τ−heiϕ− ϕ

h
− ∂

∂xi
ϕ

)
(x)

∣∣∣∣ = ∣∣∣∣τ−hei∂
αϕ− ∂αϕ

h
(x)− ∂

∂xi
∂αϕ(x)

∣∣∣∣→ 0

uniformly as h→ 0 for multi-index α. From Mean Value eorem, it holds that

τ−hei∂
αϕ(x)− ∂αϕ(x)

h
= ∂xi∂

α(x+ θhei), θ ∈ (0, 1)

and the conclusion follows immediately from the fa that ∂xi∂
αϕ is uniformly continuous.

3.5 Show that for all f ∈ D ′(Rn) and ϕ ∈ D(Rn) the funion g(x) defined as

g(y) = ⟨f, τ−yϕ⟩

is in C∞(Rn).

Proof. It suffices to show that g(y) is continuous and gxi(y) = ⟨f, τ−y∂xi(y)⟩.
Since ϕ is uniformly continuous, τ−y is also uniformly continuous and thus {τ−(y+h)ϕ − τ−yϕ} converges to 0 in
D(Rn). Hence g(y + h) − g(y) = ⟨f, τ−(y+h)ϕ − τ−yϕ⟩ → 0 uniformly, which indicates that g is uniformly
continuous.
Now we show that {(τ−(y+hei)ϕ− τ−yϕ)/h} converges to τ−y∂xiϕ(x) in D(Rn) as h→ 0. It is obvious that their
supports are contained in a common compa set. Also We have from Lagrange's Mean Value eorem that

τ−(y+hei)ϕ(x)− τ−yϕ(x)

h
= ∂xi

ϕ(x+ y + θhei), θ ∈ (0, 1)

Note that ∂xi
ϕ is uniformly continuous, we have that

τ−(y+hei)ϕ(x)− τ−yϕ(x)

h
− τ−y∂xiϕ(x) → 0

uniformly as h→ 0. erefore,

gxi(y) = lim
h→0

g(y + hei)− g(y)

h

= lim
h→0

⟨f, τ−(y+h)ϕ− τ−yϕ⟩
h

=

⟨
f, lim

h→0

τ−(y+h)ϕ− τ−yϕ

h

⟩
= ⟨f, τ−y∂xiϕ⟩.
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3.6 Show that for every f ∈ S ′, there exist uα ∈ L2(Rn) and an even numberm such that

f =
∑

|α|≤m

(−1)|α|∂̃α[(1 + |x|2)m
2 uα]

Proof. Examining the proof of Lemma 3.2.11 carefully, we can require the m in Lemma 3.2.11 to be even and
therefore the m in (3.2.6) and consequently (3.2.7) be even. erefore, there exists an even m and uα ∈ L2(Rn)
such that

⟨f, ϕ⟩ =
∑

|α|≤m

∫
Rn

uα(x)∂
αϕ(x)(1 + |x|2)m

2 dx

=
∑

|α|≤m

⟨uα(x)(1 + |x|2)m
2 , ∂αϕ(x)⟩

=
∑

|α|≤m

(−1)|α|∂̃α[(1 + |x|2)m
2 uα]

4 e Fourier Transform on S ′

4.1 Let Hm(R) = {u ∈ S ′|∂̃αu ∈ L2(Rn)(|α| ≤ m)}, in which the norm is defined as

∥u∥m =

 ∑
|α|≤m

∥∂̃αu∥22

 1
2

.

Also we define for each u ∈ Hm(Rn)

∥u∥′m =

(∫
Rn

(1 + |ξ|2)m|(Fu)(ξ)|2dξ
) 1

2

.

Show that

(1) ∥u∥′m <∞;
(2) ∥ · ∥′m is an equivalent norm in Hm(Rn);
(3) Hm(Rn) is complete.

Proof. (1) Since ∂̃αu ∈ L2(Rn), we have fromPlanchereleorem thatF (∂̃αu) ∈ L2(Rn), which is (2πiξ)α(Fu)(ξ) ∈
L2(Rn), whichmeans that ξα(Fu)(ξ) ∈ L2(Rn), or,

∫
Rn |ξ|2α|(Fu)(ξ)|2dξ exists for all |α| ≤ m. It follows

that ∥u∥′m <∞.
(2) Also by Plancherel eorem it holds that

∥∂αu∥2 = ∥F (∂̃αu)∥2 = ∥(2πiξ)α(Fu)(ξ)∥2 = 2π∥ξα(Fu)(ξ)∥2,

thus

∥u∥m = 2π

 ∑
|α|≤m

∥ξα(Fu)(ξ)∥22

 1
2

= 2π

∫
Rn

 ∑
|α|≤m

|ξ|2α
 |(Fu)(ξ)|2dξ

 1
2

≤ 2π∥u∥′m.

On the other hand,

∥u∥′m ≤

∫
Rn

C

 ∑
|α|≤m

|ξ|2α
 |(Fu)(ξ)|2dξ

 1
2

=
√
C

 ∑
|α|≤m

∥ξα(Fu)(ξ)∥22

 1
2

=

√
C

2π
∥u∥m,

therefore ∥ · ∥′m is equivalent to ∥ · ∥m.

7



(3) Let {uk} be a Cauchy sequence in Hm(Rn), then {∂̃αuk} is a Cauchy sequence in L2(Rn) and thus there
exists uα ∈ L2(Rn) such that ∂αuk → uα in L2 norm. Since L2(Rn) can be embedded into S ′, we have
also that ∂̃αuk → uα weakly-star. Now we shall show that ∂̃αu0 = uα, which is because

⟨∂̃αu0, ϕ⟩ = (−1)|α|⟨u0, ∂αϕ⟩ = lim
k→∞

(−1)|α|⟨uk, ∂αϕ⟩ = lim
k→∞

⟨∂̃αuk, ϕ⟩ = ⟨uα, ϕ⟩

for all ϕ ∈ S (Rn).

4.2 For any non-negative real s, let

Hs(Rn) = {u ∈ L2(Rn)|(1 + |ξ|2) s
2 û(ξ) ∈ L2(Rn),

where the norm is defined as
∥u∥s = ∥(1 + |ξ|2) s

2 û(ξ)∥2.

Show that

(1) is definition is equivalent to the original one when s = m ∈ N;

(2) Inner produ (·, ·) can be introduced in Hs(Rn) such that ∥u∥s = (u, u)
1
2 ;

(3) Let u ∈ Hs(Rn)′, show that there exists ũ ∈ L1
loc(Rn) such that

ũ(ξ)(1 + |ξ|2)− s
2 ∈ L2(Rn)

and
⟨u,Fϕ⟩ =

∫
Rn

ϕ(ξ) · ũ(ξ)dξ, ∀ϕ ∈ S .

Proof. (1) It follows easily from part (1) and (2) of the previous problem.
(2) Let

(u, v) =

∫
Rn

(1 + |ξ|2)sû(ξ)v̂(ξ)dξ,

which is obviously sesqui-linear and conjugate symmetric. e only thing remaining is to show that (u, u) = 0
if and only if u = 0. `If ' is trivial. Now we consider `only if '. Since a nonnegative funion with integral zero
must be zero almost everywhere, we know that û = 0 and thus u = 0.

(3) First we show that Hs(Rn) is complete. Suppose uk is a Cauchy sequence in Hs(Rn), then ûk is a Cauchy
sequence in L2, so it is also a Cauchy sequence in measure, hence we can find a subsequence ûki → v̂ almost
everywhere. From the proof of the completeness of L2(Rn) we know that v̂ ∈ L2 and ûk → v̂ ∈ L2, and
consequently uk → v in L2 and v ∈ L2. Similarly, by Fatou's Lemma∫

Rn

(1 + |ξ|2)|ûk − v̂|2dξ =
∫
Rn

lim
i→∞

(1 + |ξ|2)|ûk − ûki |2dξ ≤ lim inf
i→∞

∫
Rn

(1 + |ξ|2)|ûk − ûki |2dξ,

whence we see that
lim

k→∞

∫
Rn

(1 + |ξ|2)|ûk − v̂|2dξ = 0.

It follows that ∥uk − v∥s ∈ Hs(Rn) and thus v ∈ Hs(Rn). Hence Hs(Rn) is a Hilbert space. By Riesz
Representation eorem, there exists v ∈ Hs such that ⟨u, ϕ⟩ = (ϕ, v) for all ϕ ∈ Hs ⊃ S .
Now take ũ(ξ) = v̂(−ξ)(1 + |ξ|2)s. LetK be any compa set, suppose thatK ⊆ B(0, R) for some R, then∫

K

|ũ| ≤ (1 +R2)s
∫
K

|v̂(−ξ)|dξ ≤ (1 +R2)s∥v̂∥2m(K)
1
2 <∞,
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whence we know that ũ ∈ L1
loc(Rn). And we have from∫
Rn

|ũ(ξ)|2

(1 + |ξ|2)s
dξ =

∫
Rn

(1 + |ξ|2)s|v̂(ξ)|2 = ∥v∥2

that û(ξ)(1 + |ξ|2)−s/2 ∈ L2(Rn). Finally,

⟨u,Fϕ⟩ = (Fϕ, v) =

∫
Rn

(1 + |ξ|2)sF (Fϕ)Fvdξ

=

∫
Rn

(1 + |ξ|2)sϕ(−ξ) ũ(−ξ)
(1 + |ξ|2)s

dξ

=

∫
Rn

ũ(ξ)ϕ(ξ)dξ.

4.3 Let f(x) ∈ L1(Rn) show that
(F̃f)(ξ) =

∫
Rn

f(x)e−2πix·ξdx,

that is, the Fourier transform of f in S ′ is the same as the ordinary Fourier transform.

Proof. Let ϕ ∈ S . Since ϕ ∈ L1(Rn), we know that

lim
R→∞

∫
|x|≤R

ϕ(t)e−2πit·xdt =

∫
Rn

ϕ(t)e−2πit·xdt = Fϕ(x)

and the convergence is uniform. Since Fϕ is bounded,
∫
|x|≤R

ϕ(t)e−2πit·xdt is bounded too if R is large enough.
Note that f ∈ L1(Rn), by Lebesgue's Dominated Convergence eorem we can write

⟨F̃f, ϕ⟩ = ⟨f,Fϕ⟩ =
∫
Rn

f(x)

∫
Rn

ϕ(t)e−2πit·xdtdx = lim
R→∞

∫
Rn

f(x)

∫
|x|≤R

ϕ(t)e−2πit·xdtdx

Now, since ϕ is bounded, we can apply Fubini's eorem,

⟨F̃f, ϕ⟩ = lim
R→∞

∫
|x|≤R

∫
Rn

e−2πit·xf(x)dxϕ(t)dtdx

Again by Lebesgue's Dominated Convergence eorem it holds that

⟨F̃f, ϕ⟩ =
∫
Rn

∫
Rn

e−2πit·xf(x)dxϕ(t)dt,

completing the proof.

4.4 ere is no non-trivial solution to ∆f = f in S ′(Rn).

Proof. Take Fourier Transform of both sides, we have −4π2|ξ|2f̂(ξ) = f̂(ξ), therefore f̂(ξ) = 0 and thus f =
0.
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5 Sobolev Spaces
5.1 Verify eorem 3.5.5 for Ω = Rn

+ = {(x1, . . . , xn) ∈ Rn|xn > 0}.

5.2 Suppose that a ∈ D and u ∈ Wm,p(Rn), then a · u ∈ Wm,p(Rn) and there exists a constant C (dependent on a)
such that

∥a · u∥Wm,p ≤ C∥u∥Wm,p .

Proof. By definition ∫
Rn

∂̃α(au)ϕ = (−1)|α|
∫
Rn

u · a∂αϕ

Applying integration by parts repeatedly, we see that ∂̃α(au) can be written as sum of terms of form ∂β1a∂̃β2u.
Each term is in Lp(Rn) because ∂β1a is bounded and ∂̃β2u is in Lp(Rn), hence the sum is in Lp. e inequality
follows easily.

5.3 Suppose thatm ≥ l, show thatWm,p(Ω) ↩→W l,p(Ω).

Proof. It is obvious thatWm,p(Ω) ⊆ W l,p(Ω) and u ∈ Wm,p(Ω) we have that ∥u∥W l,p(Ω) ≤ ∥u∥Wm,p(Ω) for all
u ∈Wm,p(Ω).

5.4 Let Ω = (a, b) and f ∈ L2(Ω). Prove that there exists a unique x ∈ H1
0 (Ω) such that

d̃2x

dt2
= f, (3)

and T : f 7→ x is a continuous linear operator from L2(Ω) to H2(Ω).

Proof. Define

J(v) = −
∫ b

a

v′′v − 2

∫ b

a

fv =

∫ b

a

|v′|2 − 2

∫ b

a

fv, v ∈ H1
0 (a, b). (4)

First we show that if v∗ is a minimiser of J(v), then v∗ is a solution to (3). Let ϕ ∈ H1
0 (a, b), then

J(v∗ + ϕ)− J(v∗) = 2

∫ b

a

(v∗′′ − f)ϕ+

∫ b

a

ϕ′′ϕ ≥ 0

hence

J(v∗ + ϵϕ)− J(v∗) = 2ϵ

∫ b

a

(v∗′′ − f)ϕ+ ϵ2
∫ b

a

ϕ′′ϕ ≥ 0

J(v∗ − ϵϕ)− J(v∗) = −2ϵ

∫ b

a

(v∗′′ − f)ϕ+ ϵ2
∫ b

a

ϕ′′ϕ ≥ 0

for any ϵ > 0. It must hold that ∫ b

a

(v∗′′ − f)ϕ = 0

for all ϕ ∈ H1
0 (a, b), and thus (v∗)′′ = f .

Next we show the existence of the minimiser to (4). Recall that (u′, v′)L2 is an inner produ on H1
0 (a, b). Since

f ∈ L2, v 7→
∫ b

a
fv defines a bounded linear funional, by Riesz representation theorem, there existsw ∈ H1

0 (a, b)
such that ∫ b

a

fv = (v′, w′)L2
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and thus J(v) can be rewritten as
J(v) = ∥v − w∥2H1

0
− ∥w∥2H1

0

which clearly attains minimum at v = w and nowhere else. erefore the existence and uniqueness has been proved.
It is clear that T is linear. e boundedness of T follows easily from Poincaré's inequality, which is, in our case,
based on the following inequality:

∥u∥L∞ ≤ C
∥∥∥ d̃u
dx

∥∥∥
L2
, ∀u ∈ H1

0 (a, b) (5)

We have seen in Lemma 1.6.15 that (5) holds for all u ∈ C∞
0 (a, b). Let u ∈ H1

0 (a, b). Suppose that {uk} ⊆
C∞

0 (a, b) converging to u in H1
0 (a, b). It is clear from (5) that {uk} is a Cauchy sequence in C([a, b]), and thus

u ∈ C([a, b]), and ∥uk∥L∞ → ∥u∥L∞ . Since uk → u in H1
0 (a, b), it naturally holds that ∥ d̃uk

dx ∥L2 → ∥ d̃u
dx∥L2 .

Hence (5) holds for u ∈ H1
0 (a, b).

5.5 Let f(x) ∈ H1
0 (−1, 1). Show that

(1) f(−1) = f(1) = 0;
(2) f(x) is absolutely continuous;
(3) f ′(x) ∈ L2(−1, 1) (`′' means derivative a.e.)

Proof. (1) Given u ∈ H1
0 (−1, 1), there exist funions uk ∈ C∞

0 (−1, 1) converging to u in H1
0 (−1, 1). Also

note that H1(−1, 1) ↩→ C([−1, 1]) and uk is mapped to itself, hence uk converges uniformly to some u∗ on
[1,−1]. Since uk(1) = uk(−1) = 0 for all k we have that u∗(1) = u∗(−1) = 0.

(2) Let k → ∞ in
uk(y) = uk(x) +

∫ y

x

u′k(t)dt

and note that∫ y

x

|u′k(t)− u′(t)|dt ≤
(∫ y

x

|u′k(t)− u′(t)|2dt
) 1

2

(y − x)
1
2 ≤ ∥uk − u∥H1

0
(y − x)

1
2 → 0

we have
u(y) = u(x) +

∫ y

x

u′(t)tdt

Hence u(x) is absolutely continuous.
(3) is is obvious, because u′ = (u′ − u′k) + uk, and u′ − u′k and u′k are both in L2(−1, 1).

5.6 Let f ∈ Hs(Rn) (See Exercise 4.2 for the definition). Show that if s > n/2

(1) f̂(ξ) ∈ L1(Rn);
(2) f(x) equals to a continuous and bounded funion on Rn almost everywhere.

Proof. (1) ∫
Rn

|f̂(ξ)|dξ ≤
(∫

Rn

(1 + |ξ|2)s|f̂(ξ)|2dξ
) 1

2
(∫

Rn

(1 + |ξ|2)−sdξ

) 1
2

≤ C · ∥f∥s

for some constant C.
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(2) For f ∈ S (Rn) it holds that
∥f∥S (Rn) ≤

∫
Rn

|f̂(ξ)|dξ ≤ C · ∥f∥s (6)

Assume for a moment that S (Rn) is dense in Hs(Rn). en for any f ∈ Hs(Rn), we can find {fk} ⊂
S (Rn) such that fk → f in Hs(Rn). Equation (6) implies that {fk} is a Cauchy sequence in C∞-norm,
and thus it converges to a bounded continuous funion f∗ on Rn. It holds that for all g ∈ S (Rn),∫

Rn

|f − f∗||g| ≤
∫
Rn

|f − fk||g|+
∫
Rn

|f∗ − fk||g| ≤ ∥f − fk∥2∥g∥2 + ∥f∗ − fk∥∞∥g∥1 → 0,

because, by Plancherel's eorem, ∥f − fk∥2 = ∥f̂ − f̂k∥2 ≤ ∥f − fk∥s. Hence f∗ = f a.e.
Now we show that S (Rn) is dense in Hs(Rn). Note that C∞

0 (Rn) is dense in L2(Rn), given u ∈ Hs(Rn)
there exists uk ∈ C∞

0 (Rn) such that ∥uk − u∥L2(Rn) → 0. Let vk = uk(1+ |ξ|)− s
2 , then vk ∈ C∞

0 (Rn) and
vk(1+ |ξ|) s

2 → u in L2(Rn). Since vk ∈ S (Rn), there exist wk ∈ S (Rn) such that vk = ŵk (aually wk is
the inverse Fourier transform of vk). Hence ŵk(1 + |ξ|) s

2 → u in L2(Rn), that is, wk → u in Hs(Rn).

5.7 Letm ∈ N, define
H−m = {f ∈ S ′ : (1 + |ξ|2)−m

2 f̂(ξ) ∈ L2(Rn)},

and the norm
∥f∥−m = ∥(1 + |ξ|2)−m

2 f̂(ξ)∥L2(Rn).

Show that any f ∈ H−m can be written as the sum of the derivatives of finitely many funions in L2(Rn).

Proof. It suffices to show thatH−m(Rn) defined in this way is equivalent toHm(Rn)′, then the conclusion follows
from Corollary 3.5.13 because Hm(Rn) = Hm

0 (Rn).
By Riesz Representation eorem, for v ∈ (Hm)′ there exists uv ∈ Hm such that v[u] = (u, uv)Hm for all
u ∈ Hm. Note that F−1((1+ |ξ|2)mûv) ∈ H−m, hence there exists a natural bijeion between (Hm)′ andH−m.
Finally, since

∥F−1((1 + |ξ|2)mûv)∥H−m = ∥(1 + |ξ|2)m
2 ûv∥L2 = ∥uv∥Hm

it follows that H−m and (Hm)′ are, in fa, isomorphic.
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