1 Concepts of Distributions

1.1 Suppose that 1 < p < 0o, show that C§°(€2) is dense in L”(€2).

1.2

1.3

1.4

Proof. Suppose that u € LP(§2) and we can assume that £ is bounded. (Otherwise take €2,, = QN B(0, n) and thus
we can find u,, = uxq,, for some n such that ||u, — ul|, < ¢, and we will approximate w,, on §2,,) We are going to

find ¢ € C§°(2) such that ||u — 9|, < 2¢ in two §teps.

oY)

)

Find ¢ € Cy(2) such that |ju — ¢||, < e.

Since u is in LP(€2) we can find w1 in LP(2) which is bounded (say, by M) and satisfies |Juq — u|l, < €/3.

Now we can choose K C Q' C Q, where K is closed and Q' is open, such that m(Q \ K) < (537)? and
m(Q\K) < (g57)°- Then [lu1xx —u1llp < Mm(Q\K)P < €/3. Finally, from Luzin's Theorem, we know

that there exits ¢ € C(Q) with support contained in €’ and bounded by M, such that m(E) < (57),

where E = {z : uixx # ¢}. Thus ||luixx — ¢l < 2Mm(E)% +M- m(Q’\K))% < €/3, which implies

that ||[u — ¢||, < e.

Find ¢ € C§°(Q) such that ||¢ — ||, < €.

Since as 2 is bounded and ¢s converges to ¢ uniformly on 2 as § — 0T, we can just let ) = ¢; for some

appropriate 6. O

Prove that § is not locally integrable.

Proof: Note that 0 = 0, hence if § is locally integrable, we must have e*d = ¢ a.e., yielding 6 = O a.e.. But ¢ is

not a zero diétribution, contradition. Therefore § cannot be locally integrable. O

Suppose that

Show that f;(z) — €® in Z'(R).

Proof. For any ¢ € 2(R) we have that (1 + %)Jqﬁ(:r) — e*p(x)asn — oo and |(1+ %)]| < el®land el*l|p(2)| €

L'(R), hence by Lebesgue's Dominated Convergence Theorem it holds that
lim (f;,¢) = lim / fi(x)p(x)dx = / e®d(x)dx = (e”, p(x)).
j—o0 j—o0 R
and thus f; — e* weakly-$tar. O
Show that in 2’ (R),
1 e
1) =D —— +
(1) . — d(x)(e = 07)
@ — ( x2> 5 3(@)(t = 0%)
——exp | —— x
v/t P\t

Proof. We prove a more general proposition that if nonnegative f € L' with fR x)dx = 1, then f§ — § weakly-

§tar as 6 — 01, where f;s is defined by fs(z) = f(x/8)/d. Item (a) is a special case of flz) =
and item (b) f(z) = 3 L

W(1+m2) with § = €

?€_w2/4 with § = \/%

Since [ f(x)dx = 1 we know that [, f5(2)dx = 1, hence for ¢ € Z(12) it holds that

(s, @) wﬂ/ﬁs £)da — mﬂz < [ sst@iote) - 9(0)da

t@ﬁuxwm—¢mwm



1.5

Since ¢ is continuous at z = 0 there exifts d; such that |¢(z) — ¢(0)| < €/2 whenever |z| < ;. Also since
f € LY (R), there exists d2 such that flw\>1/52 f<e€/2||flloo)- Let n = min{dy, d2}. It follows that for § < 7,

fs(@)|o(x) — $(0)|dx +/ fs(@)[o(x) — ¢(0)|dx

|z|>6

(£, 6) — 6(0) s/

lz|<8

<5 [ el [

T2 |2|>5

€
<542l [ Sl
lul>3
< f+2||¢\|oo/ flwdu< s+ 5 =e
2 ful> & 272
Therefore (f5,p) — #(0) as § — 0T, or, f5 — & weakly-§tar. O

Let Q@ C R™ be an open set and K be compat subset of 2. Show that there exists ¢ € C§°(€) such that 0 <
¢(z) < 1and ¢(x) = 1 in a neighbourhood of K.

Proof: Let K5 = {z : d(x, K) < 0} then K5 C € when ¢ is small enough. Then let
vle) = [ gy - )y
Ks

It is clear that (a) ¢ € C§°(12) (since K is bounded, differentiation can be performed under the integral sign); (b)
[(z)] < 1forallz € ;and (c) ¥(z) = 1forallz € B(K,§/2). O

2 'The space of By

2.1

2.2

Verify that the convergence in &(2) in Example 3.2.6 is independent of the choice of { K, }.

Proof. Suppose that || - ||, are induced by {K,,,} and | - ||7,, by { K, }. It suffices to show that for any m there exists
m’ and a con$tant C' such that

¢llm < C-M6llr, V6 € EQ) (1

and for any m/ there exi§ts m’ and a constant C” such that
[0l < C" - llm, Vo € EWQ). )

We prove (1) here, and the proof of (2) is highly similar. It suffices to show that for any K, it is contained in some
K. If not, there exists 2; € Ky, such that z; ¢ K, with n; — 0o as i — oo. Since K, is compact, {x;} has a
convergent subsequence which goes to z. For simplicity, we assume that 2; — x. Since x € Q = [J,°,_; int(K,,/),
we have m/ such that z is an interior point of K,,;. Thus z,, with n large enough are all contained in K/, and

thus in K, for j large enough. This is a contradiction with our choice of ;. O
Let
Igll, = sup  [a*0%(x)]. (m=0,1,2,...)
|kl,la|<m
z€R™
Show that || - ||/, are equivalent countably many norms on . (R").



2.3

2.4

2.5

m
2

Proof. Since (1 + |z|?)
m < 2m’ and we have

> |x|™, we have that ||@]|},, < ||@||m. On the other hand, denote m’ = [m/2], then

m —

m’ m/
I¢llm < sup Cila*10¢(x)] <Y Crlldlom
k:ola\%{m k=0
zeR"

where O, are conStants. O
Show that Pk (2) and &(2) are both By spaces.

Proof: Suppose that {¢y} is Cauchy in Zk () then it is a uniform Cauchy sequence, and thus is convergent to
some function ¢. It is clear that ¢ is continuous and has support in K. Also, {0(*0)¢;} is a Cauchy sequence
and thus is convergent to some continuous funion g. From the uniform convergence of {0(**) ¢, } it must hold
that 9(1.0) f = g. Therefore we know that ¢ € Z,(Q) and Z(Q) is complete.

Now we show that &(€2) is complete. Suppose that { K, } is a sequence of increasing compact sets contained in
Qand Q@ = U, _; K. Let {¢}} be a Cauchy sequence in &'(f2), then it is uniformly convergent on every K,,.
Hence {¢, ()} is Cauchy for every x and thus {¢y } is convergent to some ¢ pointwise. Similarly {9(10)é,} is
convergent to some g. On every K, the convergence is uniformly thus f' = g on every K, and thus forall x € €.

'Therefore we conclude that ¢ € &(£2) and &(€2) is complete. O

Suppose that 2 is a By space, show X' is complete under weak-§tar convergence. In particular, Zf., S’ and &’ are
complete.

Proof: Suppose that { f,,} is a weak-§tar Cauchy sequence in X, that is, for any 2 € 27, { f,(2)} is Cauchy. Thus
the limit of { f,,(z)} exists for every z € 27, call it f(x). In this way we define a funétional f on 2" and it is clear
that f is linear. Now we shall show that f is continuous, that is, f(z;) — 0 whenever z;, — 0 in X.

Since {fn(z)} exiStsforallx € 27, {fn(z)} is bounded. Notice that 2" is of second category (it is a Frechet space),
we can apply Uniform Boundedness Principle that there exi§ts { M}, } such that | f,,(z)| < My||x||x for each k and
therefore | f(x)| < My]|z||x- The conclusion follows easily. O

Let G be a bounded open simply-conneéted region on the complex plane. Denote by A(G) all the analytic functions
over G and define a family of seminorms as follows. Let

GicGicGycGyC---CGnCGpC---CG

is a sequence of connected sets, where G, (m = 1,2,...) is open and its boundary consists of finitely many curves

with finite length. Also ", G, = G. Let

[@llm = max |p(2)], V¢ € A(G).
z€Gpm,

Show that A(G) is a By space. Suppose that {¢,,} C A(G) and there exi§ts {1, } such that

lonllm < My (m=1,2,...5;n=1,2,...)

then {¢y } must have a convergent subsequence.

Proof: Obviously A(G) is a B§j space. Since |J,, Gyn = G, from a similar argument in Problem 1, we know that
each compa& set K C G is contained in some G,,. Hence if we want to prove that some property holds for any
compadt set in G, it suffices to show the property holds for all G,,.

Suppose that {¢;, } is a Cauchy sequence, then ¢y is uniformly convergent on G, thus ¢y, — ¢, for some 1y, on
K. Since {¢y, } are analytic in G,,,, ¥, is analytic in G,,. Also it is easy to see that those {1y, } actually coincides,
and thus a fun&ion v, which is analytic in G, is well-defined, and ¢, — % in A(G).



Now suppose that ||¢, |l < M, for all m, we shall show that {¢,,} is equicontinuous on G,,. Let C be the
boundary of a closed disc in Gy, of radius 7. If 2, 2 are inside G,,, then by Cauchy's integral theorem we obtain

e Lop( on(0)ic
Z =20 n
n(2) — On(20) = — — n(2)dz = - .
Pn(2) = On(20) QTFZ/c(C—Z C—Zo>¢() 2mi /C(C—Z)(C—Zo)
If ¢ (2)] < M on C, we restrict z and zp to the smaller concentric disc of radius /2 and obtain that

160(2) — bu(z0)] < TMmlz = 20l

r

which shows the equicontinuity on the smaller disc. Now it is easy to take the approach of choosing a finite subcov-
ering from a covering of G, proving that {¢,, } is equicontinuous on G,. The conclusion follows from an obvious
diagonalisation argument. O

3 Operations on Distributions

3.1 Calculate
(1) 9y lal;
(2) 0"z} N EeR,AN# —1,-2,...), where

Proof: (1) Assumen > 1. Let ¢ € Z(R), then
0

@21el.0) = (-1 el.0%0) = (-1 ([ a0roteris — [ aorotaic)

= (-1 ( /OOO ¢("1)(x)dw+/ooo ¢("1)(x)dm>

If n = 1 then we find that (97|z|, ¢) = (sgnz, ¢). If n = 2, we proceed as

(@]x],6) = (=1)"(=(0 = ¢ 72(0)) + ¢"~2(0) — 0))
=2(-1)""2¢"2)(0)
=2(6""%, ¢)
Therefore, we conclude that
il sgn, n =1,

(2) Let ¢ € 2(R), then for A > —1 we have

A = OO.T/\ X )ax
(2}, 6) = / b()d

well-defined, and we can rewrite it as

B (_1)k 0o
(@}, ) = (A+1)(A+2)~-~(A+k)/o PG () dr,

which is well-defined for A € (—k +1,—k). It is also well-defined for all A > —(k + 1) except negative
integers. Then it is easy to see that

(O, ¢) = (1)@}, o) = (A =n+1) - My ™", 9).

Hence
3”xi =XA-1)---(A=(n— 1))xf‘f”. O



3.2 Show that

ie.,

<dln|x|,¢)> = lim Mdz, Vo € 2(R).

dx e—0t |z|>e T
Proof. 'This is very §traight-forward. Let ¢ € Z(R) then
J / /
(- nfol,6) = ~(inle], ") = - [ Inlel/(a)ds
x R
= — lim </ ¢ () lnxd:r—l—/ ¢ () ln(—x)dx>

e—0t

g (oo [ [ 40)
— lim <(q§(e)¢(e))lne+/jo gbf)dﬁ/; Qﬁf)dz>

Note that (¢(€) — ¢(€)) Ine = 2e¢’(e) Ine — 0 as € — 0T since ¢’ is bounded. It follows that

e—0Tt T

d o o(x)
(L infa],¢) = lim /lxze o) 4, 0

3.3 Suppose that Q = (a,b) C R, 29 € Qand f € C1(Q\ {xo}) with the discontinuity of the first kind at . Also
suppose that f’ is bounded in © \ {xo}. Show that

% f=F+(f@d) = Flxg))d (o).

Proof. Let ¢ € 2(92),
d / b /
<dxf,<b> ~—tr8) == [ f@ @

- ( / " @) () + / b f(x)¢>’(:v)dfv>

_ To b
- - <f<x><z><x> P [ @ + sl - [ f’<x>¢><x>dx)
b

= b(ao)(F(af) — Sy )+ [ fla)(w)ds
— (f(ad) - F(25))(6(z0), &) + (f', 0) O
3.4 Prove that for all f € 2’(R"™) it holds that
0o f = lim (7 e f — )

where



3.5

Proof. Let ¢ € Z(R™). We shall prove that {(7_pe, ¢ — ¢)/h} converges to Oy, ¢ in Z(R™) as h — 0, afterwards

we would have
(0n.£,0) = ~(1.000) = = (£, Jim 17100 )

= —Aim <f, %(%—hei(b - ¢)>

—0
N S
= _}Pi)r%) E (<Th€1,f7 ¢> - <f7 ¢>) )
= lim o (7 e f.0) — (. 6)), (et = )

h—0

which is desired. To show that {(7_pe, ¢ — ¢)/h} converges to d,,¢ in Z(R™), we want to show that their supports
are contained in some compact set (which is obvious), and

o T—hei(zs - Cb 0 _ T—heiaaéb — 8"“(;5 0
o (et - o) ] = [P -

uniformly as 2 — 0 for multi-index . From Mean Value Theorem, it holds that

T—he; 8a¢(m) — aa(b(x)
h

%¢p(x)| — 0

= 0,,0%(x + 6he;), 6€(0,1)
and the conclusion follows immediately from the fat that 9,,0¢ is uniformly continuous. O
Show that for all f € 2'(R") and ¢ € 2(R") the fun&ion g(x) defined as

9(y) = (f, 7y @)
is in C°(R™).

Proof. It suffices to show that g(y) is continuous and g, (y) = (f, 7—y 0z, (¥)).

Since ¢ is uniformly continuous, 7_, is also uniformly continuous and thus {7_ ()¢ — 7_,¢} converges to 0 in
ZP(R™). Hence g(y + h) — g(y) = ([, 7—(y+n)® — T—y@) — 0 uniformly, which indicates that g is uniformly
continuous.

Now we show that {(7_(y4he,)¢ — T—yP)/h} converges to 7_, 0, () in Z(R™) as h — 0. It is obvious that their
supports are contained in a common compact set. Also We have from Lagrange's Mean Value Theorem that

T (ythe)(x) = T-yd(2)
h

= 0y, ¢(x +y+ 0he;), 6€(0,1)
Note that 0,, ¢ is uniformly continuous, we have that

T_(y+he) () — T_yd(T)

h
uniformly as h — 0. Therefore,
gy +he) —g(y)
— fim (i (yrmy® — T—y®)
h—0 h
_ . Tf(y+h)¢ - T—y¢
- <f ) h >
= <f7 T—yax,; ¢> O



3.6 Show that for every f € .7, there exist u, € L?(R™) and an even number m such that

F= 2 (DA + [af*) % ud]

la|<m

Proof: Examining the proof of Lemma 3.2.11 carefully, we can require the m in Lemma 3.2.11 to be even and
therefore the m in (3.2.6) and consequently (3.2.7) be even. Therefore, there exists an even m and u, € L?(R")

such that
)= X [ wa@oro)a+ e

|a]<m

= 3 (wal@)(1 + o) F,0°6(a))
|a]<m

— Z DG (1 + |2]?) % ug) O
la|<m

4 'The Fourier Transform on .’
4.1 Let H™(R) = {u € &'|0“u € L*(R™)(|a| < m)}, in which the norm is defined as

[ullm = ( > ||5”U||2) -
|a]<m

fullo = ([ a+1epmiF @)

Also we define for each u € H™(R™)

Show that

D [lully, < oo
2) |- Il is an equivalent norm in H™(R™);
(3) H™(R™) is complete.
Proof (1) Since d*u € L*(R™), we have from Plancherel Theorem that . (0%u) € L?(R"), which is (27i€)* (Fu)(€) €

L?(R™), which means that £*(Fu)(€) € L*(R™), or, [, [€]*%[(Fu)(€)[?dE exifts forall || < m. It follows
that ||lul|}, < oco.

(2) Also by Plancherel Theorem it holds that
10%ull2 = | (0%u) |2 = ||(2mi&)* (Fu) (€)l|2 = 2r[|€* (Fu)(§)]l2,

thus

[ullm = 27 ( > e ||2> =2m (/ ( > |£|20¢) u)(§)] df) < 2|ull7,-

la|<m " la]<m
On the other hand,
) 3 3 Ve
Jul < ( e (Z € ) u)(@) dg) - (Z e ||2) = Yl
la|<m la|<m

therefore || - ||/, is equivalent to || - || .



(3) Let {us} be a Cauchy sequence in H™(R"™), then {9uy} is a Cauchy sequence in L?(R™) and thus there
exits u, € L?(R™) such that %uy — u, in L? norm. Since L?(IR™) can be embedded into ./, we have

also that 0%uy, — u, weakly-§tar. Now we shall show that 50‘u0 = Uy, which is because

(0o, ¢) = (=1)!*Nug,0°¢) = lim (=1)1*!(ug,07¢) = lim (9*up, §) = (ua; @)
k— o0 k—o0
forall p € S (R™). O
4.2 For any non-negative real s, let
H*(R™) = {u € L*(R™)|(1+ [¢]*) 2 a(¢) € L*(R™),
where the norm is defined as

Julls = (1 + [€17)2a(€) 2.
Show that

(1) 'This definition is equivalent to the original one when s = m € N;
(2) Inner produc (-, -) can be introduced in H*(R™) such that ||ul|s = (u, u)?;
(3) Letu € H*(R™), show that there exists @ € L] (R™) such that

a(€)(1+1¢*) "% e L*(R")

and

(u, F) = | (&) -u(§)ds, Voe ..

R

Proof. (1) It follows easily from part (1) and (2) of the previous problem.
(2) Let

(o) = [ (1 ey ale s

which is obviously sesqui-linear and conjugate symmetric. The only thing remaining is to show that (u, ) = 0
ifand only if uw = 0. “If" is trivial. Now we consider “only if". Since a nonnegative funtion with integral zero
must be zero almo$t everywhere, we know that @ = 0 and thus v = 0.

(3) Fir§t we show that H*(R™) is complete. Suppose uy, is a Cauchy sequence in H*(R™), then uy, is a Cauchy
sequence in L?, so it is also a Cauchy sequence in measure, hence we can find a subsequence @y, — ¢ almost

everywhere. From the proof of the completeness of L?(R™) we know that ¥ € L% and u;, — © € L2, and
consequently u, — v in L? and v € L?. Similarly, by Fatou's Lemma

/ (1+ [¢2) a7 — of2de = / lim (14 6P) | — @ [2dé < liminf / (1 -+ |¢2) a7 — ar [2de,
Rn t—00 71— 00 R

Rn

whence we see that

im [ (14 (62 - ode = 0.

k—o0 Rn
It follows that ||ux, — v||s € H*(R™) and thus v € H*(R™). Hence H*(R") is a Hilbert space. By Riesz
Representation Theorem, there exists v € H® such that (u, ¢) = (¢,v) forall ¢ € H® D .7.

Now take @(¢) = 9(—£)(1 + |£]?)*. Let K be any compact set, suppose that K C B(0, R) for some R, then

/ A < (1+ R)° / B(—E)ldE < (1+ R2)*[[o]lam(K)* < oo,
K K



whence we know that @ € L] _(R™). And we have from

M - 2s15(6)12 = |lv

that @(¢)(1 4 |£]2)~*/2 € L?>(R™). Finally,

(0. F0) = (Fo.0) = [ (1416 F(Fo)Fude
— 1 2\s 10 ﬂ(ié.) d
[ IRy o-0 e
SRGLGE =
4.3 Let f(z) € L'(R™) show that
FNE = [ s
that is, the Fourier transform of f in %’ is the same as the ordinary Fourier transform.
Proof Let ¢ € .. Since ¢ € L'(R™), we know that
lim p(t)e 2 qt = [ p(t)e At = Fp(x)

R— o0 |I‘SR Rn

and the convergence is uniform. Since .# ¢ is bounded, f\rl < ®(t)e™?™"*dt is bounded too if R is large enough.
Note that f € L'(R"), by Lebesgue's Dominated Convergence Theorem we can write

Fro =70 = [ 1@ [ owetraie= tm [ g [ o

R—o0

n

Now, since ¢ is bounded, we can apply Fubini's Theorem,

(Zf,¢) = lim /| o / ne’zm""’”f(a:)dscqﬁ(t)dtd:r

R—o0

Again by Lebesgue's Dominated Convergence Theorem it holds that

Fro)= [ [ e @i,
completing the proof. O
4.4 There is no non-trivial solution to Af = f in .#/(R").

Proof: Take Fourier Transform of both sides, we have —4m?|¢|? f(&) = f(€), therefore f(€) = 0 and thus f =
0. [



5 Sobolev Spaces

51
52

5.3

5.4

Verify Theorem 3.5.5 for Q@ = R = {(z1,...,2,) € R"|z, > 0}.

Suppose that a € P and u € W™P(R"™), then a - u € W™P(R"™) and there exits a constant C' (dependent on a)
such that
la - ullwme < Clluflwms.

Proof: By definition
9%(au)p = (—1)l / u-ad“¢

n

]R'n.

Applying integration by parts repeatedly, we see that 9*(awu) can be written as sum of terms of form 9% ad%2u.
Each term is in LP(R™) because 97ta is bounded and 072w is in LP(R™), hence the sum is in LP. The inequality
follows easily. O

Suppose that m > [, show that W™?(Q) — WHP(Q).

Proof: Tt is obvious that W™P(€2) C WP(2) and u € W™P(Q) we have that ||ul|y1.0(0) < [[ullwm.r(q) for all
u e WmP(Q). O

Let Q = (a,b) and f € L?*(Q). Prove that there exiéts a unique x € H{ () such that

d?x

and T : f — x is a continuous linear operator from L?(Q) to H?(1).

J(v):—/abv"v—Q/abfv:/ab|v’|2—2/abfv, v e Hi(a,b). @)

Fir§t we show that if v* is a minimiser of J(v), then v* is a solution to (3). Let ¢ € Hg(a,b), then

Proogf. Define

b

b
T+ ) — J(w) =2 / (0" — o+ / &6 >0

a

hence

b b
J(v*—i—ed))—J(v*):Qe/ (U*Il—f)¢+e2/ d"p>0
b

b
J(" =€) = J(v7) = *26/ (™" = f)o+ 62/ ¢"¢ >0

a

for any € > 0. It must hold that
b
/ W =)o =0
for all ¢ € H{(a,b), and thus (v*)"” = f.

Next we show the existence of the minimiser to (4). Recall that (u/,v’) 2 is an inner product on H{ (a,b). Since

ferLtv— f; fv defines a bounded linear funtional, by Riesz representation theorem, there exists w € H} (a, b)
such that

/ab fo= (", w2

10



5.5

5.6

and thus J(v) can be rewritten as
_ 2 2
J(0) = o = wly — ol
which clearly attains minimum at v = w and nowhere else. Therefore the existence and uniqueness has been proved.

It is clear that T is linear. The boundedness of T follows easily from Poincaré's inequality, which is, in our case,
based on the following inequality:

ul| oo < CH H Vu € Hl(a,b) 5)

We have seen in Lemma 1.6.15 that (5) holds for all u € C§°(a,b). Let uw € Hl(a,b). Suppose that {us} C
C§°(a, b) converging to u in H{ (a,b). It is clear from (5) that {uy} is a Cauchy sequence in C([a, b]), and thus

u € C([a,b]), and HukHLN — |Jul|ee. Since uy — win Hg(a,b), it naturally holds that ||d“’“ |2 — ||deL2
Hence (5) holds for u € Hg(a, b). O

Let f(z) € Hi(—1,1). Show that
D=rf1)=0

) f(=
2) f(x) is absolutely continuous;
( ) f'(z) € L?>(—1,1) ("' means derivative a.c.)

Proof (1) Given u € Hj(—1,1), there exist funitions uy, € C§°(—1,1) converging to u in Hg(—1,1). Also
note that H'(—1,1) — ([ 1,1]) and uy, is mapped to itself, hence uy, converges uniformly to some u* on
[1, —1]. Since uk(l) = uy(—1) = 0 for all k we have that u*(1) = u*(—1) = 0.

(2) Let k — oo 'in
y

wily) = o) + [ ui (o

x

and note that

J i = e < ([ o - u'<t>|2ahf)é (y— o)}

we have

IN

1
lwk — ullga(y —2)2 =0

u(y) = u(x) + /y o' (t)tdt

Hence u(z) is absolutely continuous.

(3) 'This is obvious, because v’ = (v’ — u},) + uy, and v’ — uj, and uj, are both in L?(—1,1). O
Let f € H?(R™) (See Exercise 4.2 for the definition). Show thatif s > n/2

1) f(&) € LY(R™);
@ f

Proof: (1)

(x) equals to a continuous and bounded funé&ion on R™ almost everywhere.

-

[ il ([ ax |£|2>S|f<<>%55)é ([ a+iena) <c-u.

for some conétant C.
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(2) For f € #(R™) it holds that
Il < [ 1f@ldE < C 1. ©

Assume for a moment that .7 (R") is dense in H*(R™). Then for any f € H*(R"), we can find {fi} C
Z(R™) such that f, — f in H°(R™). Equation (6) implies that { f;.} is a Cauchy sequence in C*°-norm,
and thus it converges to a bounded continuous fun&tion f* on R™. It holds that for all g € .(R™),

/If—f*llg\S/ If—fk||9|+/ = fillgl < 1 = Felallgllz + 17 — Fellocllglls = 0,
R’IL Rn R?L

because, by Plancherel's Theorem, || f — fill2 = |/ = fell2 < |If = fxlls. Hence f* = f a.e.

Now we show that .%(R") is dense in H*®(R"). Note that C§°(R") is dense in L?(R™), given u € H*(R")
there exists uy, € C§°(R™) such that ||uy, — ul|p2rn) — 0. Let vy, = ug(1+[£]) ™2, then v, € C§°(R™) and
vr(1+€))2 — win L2(R™). Since vy € .7 (R™), there exi§t wy, € .7 (R™) such that vy, = 1), (actually wy, is
the inverse Fourier transform of vy,). Hence iy (1 + |£])2 — win L2(R™), that is, wy, — w in H*(R"). O

5.7 Letm € N, define R
H™™={fes :(1+[*) "% f(¢) € L*(RM)},
and the norm R
A ll=m = 1L+ €)% F(E)ll L2 an)-

Show that any f € H ™™ can be written as the sum of the derivatives of finitely many functions in L?(R™).

Proof: It suffices to show that H "™ (R™) defined in this way is equivalent to H™(R™)’, then the conclusion follows
from Corollary 3.5.13 because H™(R"™) = H{*(R").

By Riesz Representation Theorem, for v € (H™) there exits u, € H™ such that v[u] = (u,u,)gm for all
u € H™. Note that # ~1((1+[£]?)™,) € H~™, hence there exists a natural bijection between (H™)’ and H ™.
Finally, since

17 1A+ P ™ @) m-m = 11+ [E7) F Tl 2 = lluw ]l

it follows that H~"™ and (H™)' are, in fa&, isomorphic. O
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