1 Concept of Linear Operators
(Z and & are Banach spaces in this section)

1.1 Prove that T € (2, %) iff T is a linear operator and maps bounded set in 2" into bounded set in %/

Proof- *Only if" part is obvious. Now we show the "if" part. If T" is not a bounded operator, then we can find
{zn} C X such that |T(z,)|| > n||lzs|. Let yn = xn/l|znl|, then ||y, || = 1 for all n while | Ty, || > n.
Contradiétion. O

1.2 Let A € (X2, %) and show that
) [[All = sup [|Az[; Q) [[A]l = sup [|Az].

lzll <1 lz|l<1
Progf. (1) On the one hand, we have

[All = sup [|Az]| < sup [|Az],

llzll=1 llzll<1
On the other hand, it holds that for all  with ||z|| < 1,
[ Az < [[A[] fl=]] < [lA]l
Taking supremum of both sides yields that

sup [|Az|| < [|A].
el <1

(2) Let M = sup ||Az|and N = sup ||Az||. It suffices to show that M = N. Itis clear that M < N.
llzll<1 llzll<1

If M < N then there exi§ts ||xg]] = 1 such that ||Azg|| = s > M, thus there exists r € (0,1) such

that ||A(rzo)|| = rs > M. Note that ||rag|| < 1, we have met a contradiction. Therefore M and N

must be the same. O

1.3 Let f € Z(Z2,RY), show that
Ml = sup f(x); (@) sup [f(x)] =3[ f[[(¥6 > 0).

llzll=1 llzll<é

Proof (1) Fir§t of all it is obvious that || f|| = sup |f(x)|. Note that f is an linear operator thus f(—z) =

[lz]|=1
— f(z), hence the absolute value symbol can be removed, yielding || f|| = sup f(z).
lzl|=1
) .
x
= sup [f(z)| = sup |f (=)= sup [f(z)|= ][l
0 all<s |m|<6‘ (5] Jall <1

1.4 Lety(t) € C]0, 1], and we define a functional f over C[0, 1] as

1
f(z) = /0 z(t)y(t)dt, Yz e C[0,1].

Find | f]].



Proof: Observe that

U@H=téaﬁwﬁmd<%;wwHMUd%<MHAIMMﬁ,

thus

@
11 =sup S < [ o

Note that |y(t)| = sgn(y(t))y(t). Using Luzin's theorem, it is not difficult to show that there exi§ts x,,(t) €
C[0, 1] with ||z, || = 1 such that

/0 lz(t)y(t) — sgn(y(t))y(t)| dt < %

Then it follows that

| oy
0

/0 acn(t)y(t)dt’ + %
1

n.

Aiwwwwwﬂ<

P+ 5 < 1A lall + = < 171+

Letting n — oo we obtain that

1
1= [ e

O
1.5 Let f be anon-zero bounded linear fun&ional over 2. Letd = inf{||z|| : f(x) = 1}, show that || f|| = 1/d.
Progf. From the continuity of f we know that d > 0 and f(z¢) = 1 for some ||zo|| = d. So it suffices to
show that || f|| < 1/d, thatis, | f(z)| < ||z||/d. This is obvious true for those x such that f(x) = 0. Assume
f(x) #0. Note that f (z/f(x)) = 1, then ||lz/ f(2)|| = d, yielding | f ()| < [l]|/d. B

1.6 Let f € 2™, show that for any € > 0, there exits zg € 2" with ||zg|| < 1+ € such that f(z¢) = || f]|.

Proof: Let e > 0. From the definition of || f||, there exifts « such that

Il 1f(2)
1+e = [z

Take zg = ‘]U(J;H)‘ x as desired. O

1.7 Let T : 2" — % be alinear map and define
N(T)={rxc X : Tz =0}.

(1) T € L(Z,%), show that N(T') is a closed subspace of 2.
(2) Does the condition that N(T') is a closed subspace of 2" imply that T' € £ (2", %)?
(3) If f is a linear functional, show that

fe " <= N(f)isaclosed subspace.

Progf. (1) Trivial, as T is continuous.



(2) No. Let

o0
Z|:cn|<oo}.

n=1

X = {($1,$27---7xn)

Define the norm of & = (z1,...,%p,...) € Z as ||z|| = sup |z, ]|. Itis clear that 2 is a linear space
n>1

under the usual addition and scalar multiplication. It is also easy to verify that 2" is complete, thus a
Banach space. Define f(z) = > x;. Leta = (1,-1,0,0,...) € £ and define Tz = = — af(z).
i=1
Obviously N(T') = {0} is closed.
WEe shall prove that T is unbounded. Suppose that T is bounded, then we have (note that ||a|| = 1)
[f (@) = llaf(@)[| = lz — Tz| < [zl + |T=]| < L+ Tzl

which indicates that | f(x)] is bounded. However, it is easy to see that f is unbounded. Contradition.
Therefore, T' mus$t be unbounded.

(3) =" follows from (1). Now we show the ** <" part. Suppose that f is unbounded, there exi§t {z,,} C
Z such that || f(z,)|| > nl||xn]||. Let yn = zn/||zn| then ||y.|| = 1 and |f(y,)| > n. Define

Yn Y1

flyn)  f(n)’
it holds that f(z,) = 0 and thus z,, € N(f). On the other hand, it follows from

Zn =

7t = 7

that z, = —y1/f(y1). But f(—y1/f(y1)) = —1, which contradi&s with the closedness of N (f).

<——=0, n—x

1
n

O

1.8 Let f be a linear funétional on 2" and denote
Hy ={zx e 2 | f(x) =)}, VAEK,
Iffe Z*and | f| =1, show that
@) |f(2)| = inf{l|lz - z[| | Vz € H}}, Vo € 2
(2) For any A € K, the distance to H JQ from any point x € H ;‘ is a conétant. Give geometric explanation

of (1) and (2) for Z = R?, K = R%.

Proof. (1) Letd = inf{[|lz—z| | V= € H}}. Foranye > 0, there exits 2. € H} such that ||z —z[| < d+e.
Then | f(x)] = |f(z — ze)| < || fll ]z — z¢]| < d + €, whence it holds that | f(z)| < d.
On the other hand, if y ¢ H7 then for all it holds that 2’ = = — f(x)y/ f(y) € HY. Take norm on
the both sides of f(y)(z — ') = f(x)y, we obtain that (notice that ||y| # 0)

For any € > 0, there exi$ts y such that | f(y)|/|ly]| > || f]] — ¢, thus
(UfIF =&)< fIF = e)llw — 2"l < [f ()]

It follows that || f||d < |f(x)]|, or d < |f(x)| from the arbitrariness of e.



(2) Letx € HJ? It is implied by (1) that d(a:,HJ(c)) =|f(z)| = |\

Geometric demongtration(2” = R% K = R). Let e; = (1,0), e2 = (0,1), f1 = f(e1), fo = f(e2). Then

for x = (a,b), f(x) = afi + bfa, || f|| = 1 implies that \/fZ + f2 = 1. Hence | f(z)| = |af1 + bf2| gives
the ditance from point z = (a, b) to the line fiz + foy =0, or, | f(z)| = d(z, HJQ) Since ng and H]‘? are
parallel lines, the diStance between them is | A|.

1.9 Let 2" be a real normed linear space and f a non-zero real-valued linear functional on 2. Show that there
does not exist an open ball B(xg, §) such that f(z¢) is the maximum or minimum value of f(x) in B(xo, ).

Proof: Notice that f(Azg) = Af(zo). Given J, there exifts € such that forall A € (1 —¢€, 1+ €) it holds that
Az € B(zg,d). Hence, if f(xg) # 0, f(2o) can not be maximum or minimum value of f in B(zg,d). O

2 Riesz Representation Theorem and Its Applications
(H refers to Hilbert space in this section)

2.1 Let fy,..., fn be bounded linear func¢tional over H, let
M= (\N(fx), N(fi)={z€H: fr(z)=0}, k=1,....n.
k=1

Letxg € H and denote by yg the orthogonal projection of z¢ onto M. Show that there exi&ts y1, ...,y € H
and a1, ..., ar € K such that

n
Yo = To — E akYk-
k=1

Proof: By Riesz Representation Theorem, there exists y, for each & such that fi,(z) = (x,yx) forallz € H.
Since f is continuous, N(fi) is closed and so is M. Thus z( has the unique decomposition g = yo + 2o
where yo € M and 29 € M. Therefore it is sufficient to show that M1 = span{yi,...,y,}, e, M =
span{y1, ..., yn}" (See Exercise 1.6.5). This is §traight forward since N(fx) = (spanyx)* and M is their

interseétion. O

2.2 Let ! be a real-valued bounded linear fun&ional and C' is a closed convex set in H. Define
Lo
F(w) = 3ol = 1(v).

(1) There exiéts u* € H such that

1 1
F) = 5l = ol = 5"

(2) 'There exists unique ug € C such that f(ug) = inf f(v).

vel

Proof: (1) By Riesz Representation Theorem, there exists u* such that (v, u*) = I(v) for all v € C. This
u* is exaltly our desire.

(2) Let C" = {u*} — C, then C” is a closed convex set too. By Theorem 1.6.31, there exists v’ € C”, thus
up € C such that [|v/| = ||u* — uo|| = infuec ||[u* — u||. The conclusion follows immediately. O

2.3 Suppose the elements of H are complex-valued functions on S. For z € S, the map J,.(f) = f(z) (Vf € H)
induces a continuous linear functional over H. Show that there exi$ts K : S x S — C satisfying



2.4

2.5

(1) Foranyy € S, K(x,y) as a funéion of = belongs to H;
@) fly)=(f.K(,y), Vfe€H, VyeSs.

(A fun&tion K (z,y) satisfying the two conditions above is called the reproducing kernel of H; and the second
condition is called reproducing property)

Progf. By Riesz Representation Theorem, there exi§ts f, € H such that J,(f) = (f, fz) = f(x) for all

x € X. Define K(z,y) = fy(z) and the two conditions are satisfied. O
Prove that the reproducing kernel of H2(D) (See Example 1.6.28 for the definition) is
K(z,w) = __1 €D
Z,w = a0 zZ,w .

Proof. Firt we verify that K (z,w) = 1/(m(1 — 2w)?) is a reproducing kernel of H?(D). Since |1 — zw| >
1 — |zw| > 1 — |w| (note that |z| < 1), hence K (z,w) is bounded over D and thus K (z,w) € H?(D) as a
fun&ion of 2. On the other hand, let f(2) € H?(D) with Taylor expansion

f(z)= Z anz",
n=0

it follows from

and Exercise 1.6.11(b) that
(f7 K('7w)) = Z apw" = f(w)7
n=0

which is exactly the reproducing property. Therefore, K (z,w) = 1/(m(1 — zw)?) is a reproducing kernel of
H?(D).

Now we prove that the reproducing kernel is unique. Suppose K and K’ are two reproducing kernels of H
consisting of fun&ions on S. Then (K — K/ K — K') = (K — K',K) — (K — K',K') = 0 due to the
reproducing property. O

Let L and M be two closed subspaces of H. Show that

(1) L L M iff PLPy = 0;
@) L= ML iff Py + Py = I
(3) PpLPyr = Pron iff PLPy = Py Pr.

Progf. (1) “Only if" is obvious. Now we prove the “if" part. It follows from Py, Py; = 0 that Prz = 0 for
allz € M. Writing z = y+ 2, wherey € Land z € L+, we see that x € L+ forallz € M. Therefore
L1 M.

(2) “Only if' is obvious. Now prove the “if' part. Write z = y + 2, where y € M and 2 € M*. Then
z = Prx+ Pyx = Prz+vy, thus Pre = 2z € M+ and L C M~*. On the other hand, take z € M~
then x = Prax + Pyx = Prx € L, which implies that MLt CL.



(3) "If": Noticing that P Pyjx € L and Py Prx € M, we know that P Pyx € LN M. And it holds
that
r=Prx+ Prix = PL(PM.’E + PMLI') + Prix = PLPyx+ PLPypx+ Prix. (1)

It is obvious that Priz € (L N M)L. Observing that PPy = Py — Ppi Py, it follows that
PprPypx € (LN M)*t. Hence, PLPypx + Prixisin (LN M)+ and PPy x = Proye.

Only if": It is well-known that if P is a projetor then it holds (Px,y) = (x, Py) forall z,y € H.
Since Pr, Py = Prna we have

(PyPrx,y) = (Prx, Puy) = (x, PLPyy) = (PLPyx,y) = (Pux, Pry) = (2, PpPry).
Write = y + 2z, where y € LN M and z € (L N M)*. It is clear that PyyPry = y, and
(PyPrz, Py Prz) = (2, Py (PrPa)Pru) = (2, Ppamz) = 0, hence Py Prz = 0. Therefore
PMPLI:y:PLmMJ?. O
3 Category and Open Mapping Theorem
3.1 Let 2 be a Banach space and 2 a closed subspace of Z". The map ¢ : 2~ — 2/ 2 is defined as
p:x— (2], Yo e X,

where [z] is the quotient class of x (see Exercise 1.4.17). Show that ¢ is an open map.

Proof: From Exercise 1.4.17(6), 2"/ 2 is a Banach space. From (4), ¢ is continuous, thus ¢ € (2", 2"/ Z).
It is obvious that ¢ is surjective. From open mapping theorem we know that ¢ is an open map. O

3.2 Let 27, % be Banach spaces. The equations Uz = y has solution z € 2 forally € %, where U €
L(Z, %), and there exists m > 0 such that

[Uz|| > m|z| VYxe Z.

Show that U has continuous inverse U ! and [|[U || < 1/m.

Proof- Tt is clear that U is surjective, and we show that U is injective. Consider the equation Uz = 0. It has
a solution = xg, thus 0 = ||[Uxg|| > m||zo]|, which implies that o = 0. Therefore, by Banach Inverse
Mapping Theorem, we know that U~ exi§tsand U~! € £ (27, %).

Lety € %, ||yl = |[UUy)|| = m||U~ty|, it follows that ||[U~y||/|ly|| < 1/m. Therefore, |U1| <
1/m. O

3.3 Let H be a Hilbert space, A € .Z(H) and Im > 0 such that
|(Az,z)| > m||z|?, VxeH
Show that A~ € Z(H).

Proof: Clearly, Az = 0 implies that z = 0, thus A is injeCtive. Note that || Az|| ||z > |(Az,z)| > m|z|]?,
or, ||Az|| > m||z||, we have that R(A) is a closed subspace of H. If R(A) C H, there exifts 29 # 0 such that
zo L R(A), resulting in 0 = |(Azg,x0)| > ml|xol|?, which contradiéts with x¢ # 0. Hence R(A) = H
and A is surjetive. It follows from Inverse Mapping Theorem that A~! is continuous. O

3.4 Let X,Y be two normed linear spaces, D is a linear subspace of 2" and A : D — %/ is a linear map. Show
that

(1) If Ais continuous and D is closed, then A is closed;



(2) If A is continuous and closed, then the completeness of % implies the closedness of D;
(3) If Ais an injective closed map, then A~ is also a closed map;

(4) If 2 is complete, A is an injetive closed operator, R(A) is dense in % and A~ is continuous, show
that R(A) = %

Proof (1) Let {x,,} be a sequence of points in D converging to x in norm, and Az, — y. Since D is
closed, it holds that z € D. As A is continuous we have that Az,, — Ax. Thus Az = y,and Aisa
closed map.

(2) Let x € D, there exists a sequence of points z,, converging to = in norm. Since A is continuous, A
is bounded, thus ||Az,, — Az, || = |A(@m — z0)|| < [JA]| |€m — zn]|, which implies that Az, is a
Cauchy sequence in %'. Since % is complete, Ax,, — y for some y € #. From the definition of a
closed map, we have © € D and y = Ax. Therefore D is closed.

(3) Itis clear that A~! does exit. Suppose that y, — y and z,, = A~ 'y,, — x. Since A is closed, we
know that z € D and y = Az, thus y € R(A) and z = A1y, implying that A~! is a closed map.

(4) Lety € % we have from the density of R(A) in % that there exi§ts {y,,} C R(A) such that y,, — .
Let 2, = A~ 'y,. Since A~! is continuous and thus bounded, we have that

[Zm = Znll = 1A Ym — A7 ull = 1A Wm — )| S NAT I Ym — yall;

which implies that {x,, } is a Cauchy sequence, thus converging to some x € £ from the completeness
of 2. Since A is a closed map, we have that z € D andy = Az € R(A). Therefore, R(A) =%. O

3.5 Using Corollary 2.3.13, show that (C[0,1], || - ||1) is not a Banach space, where || f|j1 = fol |f(@®)|dt(Vf €
Clo,1)).

Proof: Suppose that (C[0, 1], || ||1) is a Banach space, then the norm || -|| defined in Example 1.4.5 is §tronger

than || - ||;. Corollary 2.3.13 says that they are equivalent and thus there exi§ts ¢ such that || - || < ¢|| - ||1.
Take f, = =™, || full = L but ||f||1 = #—1 — 0(n — o). Contradi¢tion. Therefore (C[0, 1], || - ||1) is not
a Banach space. O

3.6 (Gelfand Lemma) Let 2 be a Banach space, p : 2 — R! satisfies
M) pla) >0 (Ve 2)
(2) p(Az) = Ap(z) (VA >0,Vx e Z).
) p(z1 +x2) < p(z1) +p(z2) (Vo1,220 € Z)
(4) lim p(zn) > p(z) as z, — =

n— oo

Show that 3M > 0, such that p(z) < M|jz| (Vz € Z7).

Proof: Define ||z||1 = ||| + p(z) + p(—x). It is easy to verify that p(0) = 0 and || - || is a norm attually.
Let {z,} be a Cauchy sequence with respet to || - ||1, then it is also a Cauchy sequence with respect to || - ||,

thus converges to some z € 2" in norm || - ||. Also we have that p(z, — ) < eforalln,m > N(e). It
follows from (4) that p(z — x.,) < €, thus p(x — x,,) — 0 as m — oo and similarly p(x,, — z) — 0 too.
Therefore {xz,,} converges to z in norm || - ||1. It is obvious that || - ||1 is §tronger than || - ||, thus by Corollary

2.3.13 there exists M such that
zll1 = |lz]| + p(z) + p(—2) < M|z,

whence we obtain that p(z) < (M — 1)||z||. O



3.7

3.8

Let £ and & be Banach spaces. A, € Z(Z,%)(n=1,2,...),andforallz € 2, {A,z} is convergent
in . Show that 3A € .£(2,%/), such that

Apx = Az(Vz € Z7), and||A]| < lim [|A,].
n— oo

Proof: Since {A,,x} converges in # forall x € 2. we can define A : 2" — ¥ as Az = l1m Az
It is easy to verify that A is linear. Suppose that {4,,, } satisfies 11m |An, || = 11m (Al Then for all

lz]] # 0, we have ||Az|| = hm |An, x| < 11m | A. ] ]| = hm AR 12| It follows from uniform
boundedness theorem that {||A I} is bounded thus Ais boundedn b O
Letl < p < cowith1/p+1/q = 1. If the sequence {ay } makes Y, a&y convergentforallz = {&,} € 17,
k=1
show that {a;} € l9. Define f : I? — Roas f(z) > ax&k, show that
k=1

£l = (Z Iakq>
k=1

Lemma Suppose that {ay }7_, satisfies > |ag|? = 1, then there exists {bx }}_; such that Y |bx|P = 1 and
> lagbg| = 1.
Proor or LEmma Take by, = |ax|?/ak, and notice that p(q — 1) = g.

We need the following lemma.

o0
Progf. Suppose that {a,} ¢ {9, or > |ag|? does not converge, then there exi§t 0 = i1 < 49 < ... such that
k=1

in41
Sp= 3 lag|? > n? for all n. Since
k=in+1
in+1
> |onl =
1/q ’
kein 41 | Sn
according to the lemma there exi§ts by, (k = i, + 1, ..., 4p41) such that
in41 In+1
> b=t 3 |-
" ’ Sl/q
k=in+1 k=in+1'Pn
Let b}, = b, /n?/? we have
Tnt1 1 Tnt1 Sl/q )
/! |\p / o n =_1
Z |bn| _ﬁ7 Z |anbn|_ n2 > na
k=in+1 k=in+1

We have obtained a sequence {b,,}' C IP, however,

2
Z\akbk\>2nq =00 smce§—1<1),

which is a contradiftion, and therefore {a;} must be in {9.



It is easy to verify that f is linear. By Holder's inequality,

Q=

(Z §k|p> = llallglllp,

k=1

<Y lake| = <Z ak|q>
k=1 k=1

whence we see that || f|| < ||allq- If f = 0, then ay, = 0 for all k and it holds automatically that || f|| = ||al,.

Assume f # 0, then ay, are not all zeroes. Define x,, = ( %n) én), fgn), .. ), where

)

) Jlan|?/an, k<n,a #0;
X =
g Oa ki>n, orak:()_

Notice that p(q — 1) = g, it holds that

2nll, = (Z(Iaqu_l)p> = (ZI%I")
k=1 k=1

Za 3 Zlaqu,

and

Hence

f 1-3
151> fim T E:mwl = Jall,

O

3.9 Let {ax} be a sequence such that > ax&y exits for every x = {£,} € I*. Show that {a;} € [°°. Define
k=1

&)
f:l' > Ras f(x) = 3 agéy , show that || f|| = sup |ax|.
k=1 k>1

Progf. 1f {a)} is unbounded, we can find i1 < i3 < ... such that |a;,| > k. Let x = {&} where
&, = sgna;, /k* and &, = 0 otherwise. It is clear that = € I, however, Y ar& = 3 |ai, |/k* > S 1/k,
which is a contradiGtion. Therefore it must hold that {ay} € I*°.

Let z € I1, it holds that

< lawe] < suplar] Y €kl = llallollz]s-
k=1 k=1 k=1
So [If]l < llallcc-
Let z,, = (zp1, Tna,...) where 2,,,, = 1 and x5, = 0 for all k # n, then ||z,]l1 = 1 and |f(2)| = |an|-
Hence
1712 sup T — s |

3.10 Prove uniform boundedness theorem by Gelfand lemma.



3.11

3.12

3.13

Progf. Suppose that W C Z(Z,% ) and sup ||Az| < oco. Define p(z) = sup ||Az||, and p(x) satisfies
AeWw AeW
all the conditions in the Gelfand lemma. Here we show fourth condition.

Suppose that z,, — x. Let ¢, = it;f (%, ). For every A € W we have ¢, > iI;f || Az, ||. Taking limits

on both sides we have that lim ¢, > lim |Az,| = |Ax|. Therefore, lim p(x,) > sup |Ax|.
n—oo n—oo n— oo AcW

Now we apply Gelfand's lemma that there exists M such that p(z) = sup [|Az| < M||z| forallz € 2,
Aew
indicating that ||A]| < M. O

Let 27, % be Banach spaces, A € ZL( 2, %) is a surjeCtion. Show that if y,, — yo in ¥/, then there exit
C > 0and z,, — zg such that Az,, =y, and ||z, || < Cllyn]|-

Proof: Define f : 2°/N(A) — # as f : [x] — Ax. This is well-defined and bijective. Exercise 1.4.17(5)
claims that for all [x] € 27/ N(A), there exiéts 2’ € [z] such that ||z’|| < 2||[x]]|. It follows that

£ 2]l = A2 < AL |2/} < 2| Al 1]

which implies that f is bounded. Thus f~! is bounded too from Banach Inverse Mapping Theorem. Let
Yn — Yo and [z,] = f~1(yn). And we can find a,, € N(A) such that ||z, —a,|| < 2||[zn — an]|| = 2||[za]]]-
Let z,, = 2, — a,, we have that Az,, = Az, = yn, v, — 2o and ||, || < 2[|F 7 |A]l |ynl]- O

Let 27, % be Banach spaces and T a closed linear map with D(T) € £ and R(T) C Y. Let N(T) =
{r e Z :Tx=0}.

(1) Show that N(T) is a closed subspace of Z7;
(2) Show that N(T') = {0} and R(T) is closed in ¢ if and only if 3a > 0 such that ||z|| < a|/Tz|| for all
x € D(T);

(3) Denote by d(x, N(T")) the distance between z € 2 and N(T'). Show that R(T') is closed in % if and
only if 3a > 0 such that d(z, N(T')) < a||Tz| for all z € D(T).

Progf. (1) Suppose that {z,} C N(T') with z,, — x¢. Then T'z,, = 0 — 0. Since T is closed, we have
that 2o € D(T') and T'zp = 0, thus 29 € N(T'). N(T) is closed.

(2) "If": Lety, = Tz, — y € . If follows from ||, — 2,| < allym — yn|| that {z,} is a Cauchy

sequence, thus converges to some point x € 2 since 2 is complete. Since T is a closed map, we
have that x € D(T) and y = Tz € R(T), which implies that R(T) is closed. Let z € N(T'), then
lz]| < a||Tz|| =0,s0x=0,and N(T) = {0}.
*Only if": Since R(T) is closed, (R(T), || - ||) is a Banach space. Since N(T') = 0, T is injective and
there exists 7! : R(T) — X. According to Exercise 2.3.4(3), T~ is a closed map. The closed graph
theorem tells us that 7~ is continuous thus bounded, |7~ 'z|| < al|x|| forsome aandz € D(T~1) =
R(T),so ||z|| < a||Tx| forallz € D(T).

(3) From Exercise 1.4.17(6), we know that 2" /N(T') is a Banach space. Define T: 2 /N(T) = ¥ as
T[z] = Tx. We have N(T') = [0] and R(T) = R(T'). We shall show that T is a closed map.

Suppose that [2,,] — [20] and T[z,] — y. According to Exercise 1.4.17(5), we can choose 2/, € [x,]
such that x,, — =z, and thus T'z], — y. Since T is a closed map, it holds that z{, € D(T') and
y = Tz}, Hence [x}] is well-defined, y = T[x}] and T is a closed map. It follows from (2) that R(T)
is closed iff d(z, N (T)) = ||[2]|| < a||T[z]|| = a||Tz]| for some a. O

Let a(x,y) be a sesquilinear functional over a Hilbert space H, which satisfies that

(1) 3M > 0, such that |a(z,y)| < M||z| ly|| Y,y € H;

10



3.14

(2) 3§ > 0, such that |a(x, z)| > §||z||* Vz € H.
Prove that Vf € H*,3 | yy € H, such that

a(z,ys) = f(z) (Vo€ H)

and y¢ depends on f continuously.

Proof: Fixy € H, define Ty () = a(x,y) for x € H. It is clear that T}, is a linear fun&ional and |Ty(x)| =
la(z,y)| < M|z|||ly|l, which implies that T}, is continuous and || T, || < M||y||. By Riesz's Representation
Theorem, there exists unique Y (f) for every f such that

(z,Y(f)) = f(z),Vz € H.

We want to find unique y such that T,,(z) = f(z) for all x € H, or (because Y : H* — H is injetive),
Y(T,) =Y (/).
Let0 < p < §/M?. Define A: H— H as

Ay=y—p(Y(Ty) - Y(f)), y€H,

then for all y1, y2 € H, denote y = y; — y2, it holds that

[Ayr — Aya|l = llyr —y2 — p(Y(Ty,) = Y(T},))
= |y —pY(T,)|
lyll* = 2p(y, Y(Ty)) + p* 1Y (T})|I?
Ilyll* = 20T, (y) + p°T, (Y (T}))
Iyl = 2pa(y, y) + paly, Y (T}))
lyll* = 2p8lyl1* + o> M|yl Y (T,)]|
(1—2p0 + p*M?)|[y|*  (because [|Y(T,)|| = [T, )

IN A

Since 1 — 2pd 4+ p?M? < 1, A is a contraltion map, thus A has a unique fixed point, say y, and p(Y (T},) —
Y(f)) =00rY(T,) = Y(f). This y is exactly the y; we desire.

Now we show the continuity. Let f, g € H*, then

Sllys —wgl> < lalyy — yg vr — yg)l
= |(f=9)r =yl < If =gl llys — vl

hence ||y; — yql| < ||f — gl|/9, which indicates the continuity. O

Suppose that {2 be a bounded open region with smooth boundary in R2. The map « :  — R is bounded
and measurable such that 0 < o < . Let f € L?(Q). Define

afu,v) = / (Vu - Vo + auv)dzdy, Vu,v € H (Q);
Q

F(v) = / fodxdy, Vv € L*(Q).
Q
Show that there exists unique u € H'({) such that

a(u,v) = F(v),Yv € H'(Q).

11



Proof: We verify the conditions in the previous problem are satisfied and the conclusion follows immediately.

It is clear that a(u, v) is bilinear. Suppose that |a(z,y)| < M (M > 1), then it holds that

la(u,v)] < M/Q(IIVuII-IIWII+IUI-\UD

IN

1 1
M /Q (I9ul® + [ul?)* (9] + [of?)?

M ([ avu+ )] [ woe+ 12|

= Mjullg vl

IN

and

o, )| = /Q (IVul + aful?) > min{1, ap} /Q (IVul® + [ul?) = min{L, a0} {jul%:.

4 Hahn-Banach Theorem

4.1

4.2

4.3

Let p be a sublinear functional on a real linear space 27, show that

(1) p(0) =05
2) p(=z) = —p(x);
(3) Given zg € &, there exits a real fun&ional f on £ such that f(z¢) = p(xo) and f(z) < p(z).

Progf. (1) p(a-0) =a-p(0) for a > 0, hence p(0) = 0.

(2) 0=p(0) = p(z + (—x)) < p(z) + p(—=x), hence p(—x) > —p(z).

(3) Consider 2y = {Azo | A € R}. Itis a closed subspace, and we define fo(Azg) = Ap(zo) for A > 0
and fo(Azg) = —Af(—xg) for A < 0 on it. From real Hahn-Banach Theorem, we can extend fj to f
over entire 2 such that f(z) < p(x) and f(xg) = fo(zo) = p(z0o). O

Let 2 be a real linear space consisting of all real sequence = {a, }. The equality and operations over 2~
are defined coordinate-wise, and we define

p(z) = lim a, Vr=1{a,}eZ

n—oo

Show that p(x) is a sublinear functional on 2.
Proof. 'Trivial. O

Let X be a complex linear space and p a seminorm over £ satisfying that p(zo) # 0 for all zp € Z". Show
that there exiéts linear funétional f on 2 such that

(1) f(zo) =1
@) |f(@)] < p(x)/p(x0), YT EX.

Progf. Consider £y = {Az¢ | A € R}, which is a closed subspace. We define fo(x) = || for z = Az,
then | fo(z)| < p(x)/p(xo). According to Hahn-Banach Theorem, we can extend fj to f over the entire 2
such that f(z) < p(x)/p(x0) and f(z0) = fo(zo) = 1. 0

12



4.4

4.5

4.6

4.7

Let 2" be a normed linear space and {x,,} C 2. If {f(z,,)} is bounded for all f € Z™*, show that {z,,}
is bounded in 2.

Proof: Let gn(f) = f(xn), hence for every f € X*, {gn(f)} is bounded, it follows from uniform bound-
edness theorem that {||g, ||} is bounded.

el )
lonll = sup ™ = s S

fexx fexx

Since f € X*, the right-hand side < ||z,]|, however, from Corollary 2.4.6 there exifts f € X* such
that f(x,) = ||zn]| and || f]] = 1, it follows that the right-hand side is exally ||z ||. Therefore {x,} is
bounded. O

Let 2 be a closed subspace of normed linear space Z". Show that
p(z, Zo) = sup{|f(2)| : f € X*, || f]l =1, f(Zo) = 0},

where p(z, 2p) = inf |z — vy
y€Zo

Progf. 'The §tatement holds trivially for p(z, Zo) = 0. Assume p(x, Zp) > 0, for f with || f|| = 1 and
f(Zo) =0, it holds that

[f@)] =[f@ =yl <[flle—yll=lz-yll, yeZo

hence

sup{|f(z)| | f € X" [[f =1, f(Zo) =0} < yiengtfwo |z =yl = p(z, Zo).
It follows from Theorem 2.4.7 that the equality does hold. O
Let 2" be a normed linear space and 1, . . . , &, be n linearly independent ve&tors in 2" and C1, . .., C,, be

n constants in K. Suppose that M > 0, show that there exits f € 27* such that f(zy) = Cyand || f|| < M

if and only if it holds that
Z CLk-Ck § M Z ATl
k=1 k=1

firallaq,...,a, € K.

Progf. 'The “only if" part is trivial. We shall prove the “if" part. Assume that for all a4, ..., a, € K it holds

that |[>"7_, axCi| < M ||>°)_, axzy||, then we can define a linear funcional fo on span {1, ..., x,} such
that fo(x) = C and itis clear that || fo|| < M. According to Hahn-Banach Theorem, we can extend fj to
a fun&ional f over entire 2" with || f|| = || fol| < M. O
Given n linearly independent vetors 21, . . . , ,, in a normed linear space 2, show that there exit f1,..., f,, €

X * such that
<f'“mj>:67fﬂ7 i?j:1727"'7n-

Proof: Given j, we can define a linear functional fy over span{z,...,z,} with fo(xp) = 1iff & = j.
We shall show that f, € X* then Hahn-Banach Theorem $tates the existence of f; as required. Let z =
Z?:l Ni; then fo(l') = ‘)\]| Thus

A 1

foll =sup ——=2— =sup —,
Mol =P T3l =P T2

it suffices to show that the norm of )~ A\;x; (where A; = 1) is not less than d for some d > 0, or, p(z;, Zp) >
0, where 2y = span{x1,...,2;-1,%41,...,%,}. This is obviously true, as 2y is closed and does not
contain ;. O

13



4.8

4.9

4.10

411

4.12

Let 2 be a linear space, show that M is the maximal linear subspace of 2" iff dim(Z /M) = 1.

Progf. "If": Assume that dim(%2 /M) = 1, then Z' /M = {[azo] : a € K}, where 2y ¢ M. Suppose
that there is a linear space S 2 M. Take zg € S\ M, we have that azg € S and axg + M C S for all
a € K. Notice that the union of azg + M is exaltly 2, hence S = £, which implies that M is the maximal
subspace.

“Only if": Suppose that M is a maximal subspace. Take zo ¢ M. Since | J,cx (azo+ M) is a linear subspace
and it mu$t be £ due to the maximality of M. So dim(2" /M) = 1. O

Let 2 be a complex linear space, E an nonempty balanced set and f a linear fun&tional on 2". Show that

[f(z)] < sup Rf(y), VxeE.
yeE

Proof. Let 0 be the argument of f(z), then |f(z)] = e~ f(z) = f(e ¥z) = Rf(e ¥z),and e ¥z € E

since E is balanced. The conclusion follows immediately. O

Let 2 be a normed linear space, E an nonempty balanced closed convex set and g € 2"\ E. Prove that
there exists f € X™* and a > 0 such that

|f(x)| < a<|f(xo)], VzekE.

Progf. Since xo ¢ E and E is closed, there exists  such that B(zg,d) C E° View 2 as a real normed
linear space and apply Theorem 2.4.15, there exists s € R and a nonzero continuous linear fun&ional g such
that g(z) < sforallz € E and g(z) > s for all x € B(xg,d). Define f(x) = g(z) — ig(ix) then fisa
complex linear functional, and | f(x)| = g(e~*’z), where § = arg f (). Hence |f(x)| < s forall x € E,
and |f(zo)| > Rf(z0) = g(xg) > s, because g(x() can not be the minimum or maximum value of g in
B(xg,0) (see Exercise 2.1.9). O

Let 2 be a normed linear space, E, F' are two disjoint nonempty convex set in 2", where E is open and
balanced. Show that there exi§ts f € X* such that

|f(2)] < yigg\f(y)l, Vx € E.

Proof: View 2 as real linear space and apply Theorem 2.4.15, we obtain s € R and a nonzero continuous
linear funétional g such that g(z) < sforallx € F and g(x) > sforallx € F. Let f(x) = g(z) — ig(ix)
then f is a complex linear fun&ional, and |f(x)| = g(e~?z) < s, where = arg f(x). Aétually the
inequality holds §trictly because E is open. And fory € F, |f(y)| > Rf(y) = g(y) > s, hence inf|f(y)| >
s. O

Let C be a convex set in a real normed linear space B* and zp € C°, x1 € 0C, z2 = m(x1 — xo) + To
(m > 1). Show that s & C.

Proof: Suppose that 2o € C. Since zg is an interior point, there exists ¢ such that B(zg,0) € C. Let
d = (1 — L). We shall show that B(x1,d) C C to meet a contradiction.

Let z € B(zy,d) and u = (2 — La5)/(1 — 1), then 2 = Las + (1 — L)u. It suffices to show that
|lu — xo|| < 6, and in fa&, we have

—%xg Z-(%l’z—’-(l—%)xo z— 1 d
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4.13

4.14

4.15

4.16

4.17

4.18

Let M be a closed convex set in a normed linear space 2, show that for all x € 2"\ M there exifts f; € 2
satisfying || f1]| = 1 and

sup f1(y) < fi(z) — d(),

yeM

where d(z) = inf, e ||z — 2.

Proof Let zy € M€, we see that B(xg,d(x)) N M = (), then applying Theorem 2.4.15, there exiéts s and
g € Z* such that g(x) < sforx € M and g(x) > s for z € B(xg,0). Let f1 = g/||g||, we have fi(x) <
s/|lg|| for x € M and fi(z) > s/||g|| for all z € B(zo,0). It suffices to show that inf,c g, ) f1(2) =
fi(x) — d(z). This is true, because

. f — H f —
veni iy 1@ yeisthy f1@o = dl=y)
= fl(a?o)—d(x) sup fl(y)
yeB(0,1)

filzo) = d(@)[| fl]-

Let M be a closed convex set of real normed linear space 2. Show that

inf ||z — z|| = sup {f(x)— sup f(z)}, Ve e 2.

ZEM fsi el

Proof: Since || f|| = 1, we have that f(x) — f(z) < ||z — z||. Take infimum on both sides, we obtain that
f(z) —sup,,, f(2) <infens ||z — 2], and hence the right-hand side is not greater than the left one. If
x ¢ M, combining with the previous problem, we know the equality holds.

If x € M, the proposition is false. Take the closed unit ball as M and 2 = 0. The left-hand side is obviously
0. Since || f|| = 1, thatis, sup , _; [f(2)| = 1, we must have that sup__,, f(z) = 1. Thus the right-hand
side is —1. O

Let 2" be a Banach space and f : 2" — R is a continuous convex funtional with f(x) # oo. Define
f : Z*—=Ras
[r(@) = sup {(z",2) — f(x)}, Va'e 2T,
zeX
show that f*(z*) # co.
Let 2" be a Banach space and z(¢) : [a,b] — 2 is a continuous fun&tion. Denote by A a partition of [a, b]:

a=th <t <ty <---<t, =0

Define ||A|| = maxo<i<n—1{|ti+1 — ti|}. Show that the limit

n—1
li ti) (i1 —t;
HAlﬁgO;x( i) (tiv1 i)

exifts in 2. (The limit is called the Riemann integral of fun&ion z(t) over [a, b])

Let 2 be a Banach space and G an open domain with boundary (simple curve) L. If z(z) : G — 2 is
analytic within G and continuous on G. Show that [} z(z)dz = 0.

Prove that

(1) |z|is convex on R;

15



(2) 'The subderivative of |z| at z = 0, namely, 9|x|(0), is [-1, 1].

Progf. (1) Trivial.

(2) From definition, we have that 9|z|(0) = {z* € R* : (z*,z) < |z|(Vx € R)}. Let * € 9|z|(0) and
A = (z*,1), then |A| < 1and (z*,y) = Ay. On the other hand, it is easy to verify that such z* are
subgradient of |z|. The conclusion follows immediately. O

5 Conjugate Space, Weak Convergence and Reflexive Space

5.1

52

5.3

Show that (IP)* = 19,1 <p < oo,1/p+1/g=1.

Progf. Letb = {by} € 19, define fi,(a) = > agby for a € [P which is a linear functional. From Holder's
Inequality we have that |> " arbi| < |la|| ||b|| and thus the map b — f, is a map from {9 to (IP)*, denote it
by F.

We show that F' is a surje&ive isometry. Given f € (IP)* we shall find b € [7 such that f, = f and
IIb]l = [If]l- Let zp, = (2n1, 2n2, - . . ) where zp = dpk, and by, = f(z1). We shall prove that b € [? based

on the following two cases.

(1) Case p > 1. Let ¢ = |bg|? ?bg, and y,, = (c1,...,¢p,0,...), then we have (> ;_, |bg|?) =

Soh=r kb = f(yn) < N lynll = £ =y bx]?) 7, hence (375, [bk?)e < || f] for all n and
beld

(2) Casep = 1. [br] = [g(zn)| < llgll [Iznll = llgll, thus b € 172

Then it is not difficult to show that f(a) = Y aiby forall a € IP. O

Let C be the set of all convergent sequences of numbers, and define

- 1s {€k} € C = sup [&],

E>1
show that C* = [1.

Proof Leta = {ay} €1, define f(a) =g, : C = Ras g(z) = a1\ + Y| axt+12x, where X is the limit
of {z,,}, then we have that g, (z)| < [M|a1|+ [|z]| >pes |lax| < ||a]||z]|, thus g4 € C* Furthermore, take
x = (sgnay,sgnas,...) we have |g,(z)| = ||al|, hence ||ga|| = ||la|l, and f : I* — C* is an isometry (it is
obvious that f is injective).

It suffices to show that f is surjetive. Let g € C*, let ax41 = g(zx), where x = (g1, ..., Tk;, ... ) and
Ty = Oy, Let 7, = (sgnag,sgnan, ...sgaan.0,... ), then Sy lax| = la(z)| < ozl = [l
for all n, hence >, , |ax| exists and we can define a1 = g((1,1,...)) — > axt1. Itis easy to verify that
a = (a1,az,...) is what we desire. Therefore f is surjective. O

Let Cy be the set of all sequences converging to 0, and define

-1 {&k} € € = sup [l

k>1

show that Cj = 1.
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54

55

5.6

5.7

5.8

Proof. Let a = {ax} € ', define f(a) = g, : C — Roas g(z) = Y ag. Itis clear that g, ()
exifts since {&;} is bounded. And |[g,(x)|] < |la| ||z||, which implies that ||g.|| < |la||. Let y, =

(sgnai,...,sgna,,0,0,...), then g,(y,) = i, lax| — llal| asn — oo, and [Jy,|| = 1 for all n,
hence ||ga|| = ||al|, and f : I* — C* is an isometry.
Now we shall show that f is surjective. Let g € C*, let ai, = g(xx), where 2, = (2g1,...,2kj,...) and

x)j = O;. Notice thatif z = (A1, A,...) € C then ) \;z; converges to z in Cp, hence g(z) = )" apAg.
The laét thing is to show that a is in ! indeed. Take z,, = (sgnay,...,sgnan,0,...), then >_7_, |ax| =
lg(z2)] < lgll l|znll = llg|| for all n. Hence Y |ay| exists and f is therefore surjective. O

Prove that a finite dimensional normed linear space is reflexive.

Proof- Suppose that e1, ..., e, be a basis of normed linear space 2. Since the natural map 7" : &~ —
Z** is injective, Teq, ..., Tey, is a basis of T(Z"), thus dimT'(Z") = n. Now it suffices to show that
the conjugate space of a n-dimensional space is also n-dimensional. Based on this, we would have that
dim Z7* = dim 2™ = dim £~ = n, whence it must hold that T'(2") = 2™** and 2 is reflexive.

To prove that dim 2™* = n, we shall find a basis of Z7*. Take fi, ..., f,, defined by f;(e;) = d;5, it is easy
to verify that { f;} is a basis. O

Prove that a Banach space is reflexive iff its conjugate space is reflexive.

Progf. Denote the Banach space by £, the natural map from 2" to 2™** by T and the natural map from
Z*to Z** by U.

“Only if": Assume that 2" is reflexive, or T' is bijective. Let y € Z™*** we need to find f € Z7* such that
Uf =y,ory(X)=X(f)forall X € 27**. Define f : 2" — Kas f(z) = y(Tx), we shall show that f is
exaltly desired.

Let X € 27**, then we have X(f) = f(T'X) = y(X). And we also know that f € 27, because

[f (@) = ly(Tz)| < [lyll | T=[] = llyll ll=[].

“If": Assume that 27 is reflexive, hence 2™** is reflexive (this is the “only-if" part). Since 2~ is complete,
T X is a closed subspace of Z™** thus reflexive (Pettis Theorem). O

Let X be a normed linear space and T the natural map from X to X**. Show that R(T') is closed iff 2 is
complete.

Proof- Trivial, as T is an isometry. O

Define T over ! as
T: (21,22, oy Tpy-o) = (0,21, 22, 0oy Ty el )

Show that T € £(I') and find T™*.
Proof. It is clear that ||Tz|| = ||z|| hence T € Z(I'). Forall f € (I*)*, T* f(z) = f(T'z). Note that f

corresponds to (b1, ba, ... ) in I* as presented in Exercise 2.5.1. Thus T* f corresponds to (ba, b3, ... ). So
T* f is the left shift operator in {*°. O

Define T over I? as
T:(T1,%2, 0y Tpyeen ) > (T, — ey — o).

Show that T' € £(I?) and find T*.
Proof |Tz|| = > |zg|/k* < (2 |z£|2)2 (32 1/k2)2 < /2||z|, hence T is a bounded operator. Suppose

f € (I*)* ~ I corresponds to (b1,ba,...) € I2. Then T* f corresponds to (b1,b2/2,...). Therefore
T f = f. 0
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59

5.10

511

5.12

5.13

5.14

Let H be a Hilbert space, A € .Z(H) satisfies
(Az,y) = (z,Ay), Vz,ye€ H.
Show that

(1) A" =4
(2) If R(A) is dense in H, then fun&ion Az = y has a unique solution for all y € R(A).

Progf. (1) Let f € H*, from Riesz Representation Theorem, there exists yy € H such that f(z) =
(x,yf) and || f|| = |lyfl|. So H* ~ H, under the isometry f — y¢. Since it holds that (z,ya-¢) =
(A*f)(z) = f(Az) = (Az,yy) = (x, Ayy) for all z, we must have y4-5 = Ayy forall f € H*. A*
maps f to A* f, corresponding with y¢ to ya~y = Ayy in H, therefore A* = A.

(2) It suffices to show that Az = 0 has unique solution z = 0. Suppose ¥ is a solution to Az = 0 then
0 = (z, Ay) = (Az,y) for all z, hence y is orthogonal to every element in R(A). Since R(A) is dense,
we have that y is orthogonal to every element in 2", and y muét be 0. O

Let 2" and % be normed linear spacesand A € Z(2, %). Suppose that A~ ! exi§tsand A~! € L(¥, Z),
show that

(1) (A*) 7! existsand (A*)~t € L (27, 7*);

2) (A t=(AThn

Progf. Fir§t we show that A* is bijettive. Suppose that A* f = 0, where f € #*. 'Then f(Az) = A*f(z) =
0 for all z. Since A is bijective and AZ" = 27, we have that f(z) = 0 forallz € 27, i.e,, f = 0, which
implies that A is injective. Let f € 27, define g as g(z) = f(A™'x), then g(Ax) = f(z), indicating that
A*g = f, thus A* is surjective. Therefore, (A*) ™! exists.

Let f € 2 and g = (A%)"1f, then f = A%, thus g(Az) = A%g(x) = f(z), and |g(a)| = |F(A~1a)| <
171 1A] l2ll, henee [[(A%) = 71| < 1711 1A=, and [|(A*) ]| < [ A7]. So (A7) ") € (27, &%),

It follows from (A*) ! f(z) = f(A7tx) = (A71)* f(x) that (A*)~1 = (A~1)*. O

Remark. Tt is known that [* = I, hence [ = [* = (AA=1)* = (A~1)* A~
Let Z', %, % be normed linear spaces, B € £ (%2, %) and A € L(¥,%). Show that (AB)* = B*A*.

Proof: Let f € Z7*. It follows from (AB)*f(x) = f(ABx) = A*f(Bx) = B*A* f(z) that (AB)* =
B*A*. -

Let 27, % be Banach space and T : 2" — % is a linear operator. For all g € #* it holds that the map
x> g(Tx) is in Z*, show that T is continuous.

Progf. 1t suffices to show that T is a closed map and the conclusion follows from Closed Graph Theorem.
Suppose that ,, — = and T'x,, — y. From the assumption we know that g(T'x,,) — g(Tx) forallg € Y™,

thus T'z,, — Tx. Hence Tx = y. O
Suppose that {z,,} C Cla,b], z € C[a,b] and z,, = z. Show that limz,,(¢) = z(¢) for all x € [a, b].
Progf. Fixt, define f € Cla,b]* as f(x) = x(t) (| f(z)| < ||z| thus || f]] < 1). According to the definition
of weak convergence, lim f(x,,) = f(x), which is exaltly lim z,, (t) = z(¢). O
In a normed linear space holds x,, — . Show that liminf,, .o ||| > ||z0o]|-
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5.15

5.16

5.17

5.18

Progf. 1t holds obviously if gy = 0. Now assume that o < 0. There exists a linear funional such that
f(zo) = |lmoll, and || f|| = 1. From lim f(z,,) = f(zo) it follows that for any € > 0, ||z,| > |f(zn)| >
|f(z0)| — € = ||xo|| — € when n is large enough, which implies that lim inf ||z, || > ||zo]|- O

Let H be a Hilbert space and {e,, } an orthonormal basis. Show that z,, — z¢ in H iff

(1) ||xx]| is bounded;

(2) (n,ex) — (vo,er) asn — oo forall k.

Proof: “If'": Let f € H*, by Riesz Representation Theorem we have y¢ such that f(z) = (z,yy) for all
x € H. Write yy = >, yxek. Lety} = > r—1 Ykek. Given € > 0, there exists NV such that |jy; — yill <e
forall n > N. For this Yy}, we have |(z,, — ajo,y;})| < S lysll(zn — zo, ex)| = 0 from (2), and thus
there exists N1 > N such that |(x,, — z9,y})| < € foralln > Ny. Suppose that ||z, || < M and from the
previous problem we see that ||zo]| < M. It follows that

|f(@n) = f(0)]

(20 — 0, yy)]

[(2n — x0, yF)| + (20 — z0, 5 — Y}l
€+ [lzn — 2ollllyy — vyl

(14+2M)e,

INIAIA

which implies that f(x,,) — f(zo).

"Only if": Assume that x,, — z. Let f € H* as f(z) = («, e), then (2) holds by the definition of weak
convergence. For each n, define T,, € H** as T,,(f) = f(xn), then it can be shown that ||T},|| = ||z,
Then (1) follows from Uniform Boundedness Theorem. O

Let T;, be a translation map in LP(R) as (T,u)(x) = u(z + n) for all w € LP(R). Prove that T;, — 0 but
[Taully = l[ullp-

Proof: It is clear that || T, ul|, = |lul|,. Let f € LP(R)*, we shall show that f(T,,u) — f(0) for all u, or,
equivalently, let v € L9, show that fR Thu-v — 0. Given € > 0. Since u € LP there exists X such that

(fn \u|p)% < ¢, and since u € LY there exists A such that (fio |v|q)% < €. Thus there exits N such that
A+n > X foralln > N. And for those n, it holds that

/RTnu-v /A u(z + n)v(z)

which implies that f Thu-v — 0. O

+ /OO u(z + n)v(z)

A

IN

elloll + llulle = (llull + llvl)e,

Let S, be an operator on LP(R) defined as

(Swu)(z) = { u(@), o <n;

0, |z| > n.

Show that S, converges to I §trongly but not uniformly.

Proof. Letu € LP(R), then [|(S,, — I)(u)|| = ([° \u|p)1> — 0, hence S,, — I §trongly. For a fixed n > 1,
take u(x) = X|z/>n1/2? then ||(S, — I)ul| = ||ul], so || Sy — I|| > 1. Therefore S,, does not converge to I
uniformly. O

Let H be a Hilbert space, z,, = o and ¥, — yo. Show that (z,, y») — (zo, Yo)-
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5.19

5.20

521

522

5.23

Progf. 'The weak convergence of {z,,} implies that for any y € H it holds that (z,,y) — (zo,y). Given ¢,
there exists N such that |(z,,,v0) — (%0, y0)| < € and ||y, — yo|| < € foralln > N. And from the uniform
boundedness priciple there exists M such that ||x,, || < M for all n. Therefore,

|(xnayn) - (man0)| < |(xn7yn) - (l’n,yo)| + \(zn,yo) - ($o,yo)|
< @l llyn — yoll + €
< (M 1)e,
implying that (2, yn) — (Z0, Yo)- 0

Let {e,,} be an orthonormal set in Hilbert space H. Prove that e,, — 0 and e,, / 0.

Proof. It follows from Y~ |(e,, x)|? < ||z||* that (e,,,2) — O for all # € H, thus e,, — 0. It is obvious
that e,, /4 0 because ||e,,|| = 1 for all n. O

Let H be a Hilbert space. Show that x,, — z in H iff ||z, || — ||| and 2, — .

Proof: “If": Given € > 0. Since x,, — x, there exits N such that [(z, —, )| < eand |(zp,z) — (z, )| < €
forall n > N. We can also require that |||z, || — ||z]|| < € for n > N. Then we have

[(@n —z,2p —2)| < (@0 —2,20)] + |(2n — 2, 2)]

< Nlzall = (20, 2)[ + €
< Nl = Izl + [zl = (2n, 2)| + €
< e,
which shows that ||z, — z|| = 0, or 2,, — .
*Only if": Trivial. O

Show that the weak sequential compactness of a set in a reflexive Banach space is equivalent to the bound-
edness.

Progf. In the proof of Eberlein-Smulian Theorem, it has been proved that boundedness implies weak se-
quential compactness. Now we prove the converse. Assume that A C 2 is weak sequentially compa&t, we

shall show that A is bounded.

If A is unbounded, then there exit {x,,} C A such that ||z, || > n and z,, — (. View z,, as elements in
Z* and (zp, ) — (@0, f) forall f € X*. From uniform boundedness principle it follows that ||z, ]| is
bounded. We meet a contradiction and therefore A must be bounded. O

Show that closed convex set in a normed linear space is weakly closed, that is, if M is a closed convex set,
{zn} € M and z,, — xo then o € M.

Progf. From Mazur's Theorem and the closedness of M, it follows immediately that 2y € co({z,}) C
M. O

Let 2" be a reflexive Banach space and M a bounded closed convex set in Z". Show that for every f € 27,
f attains maximum and minimum value on M.

Proof It is clear that sup ., f(x) exists, denote it by S. Then there exists {x,} € M such that S >
f(z,) > S — 1. From Eberlein-Smulian Theorem and the previous problem we know that there exists
xo € M such that z,,, — =, then f(x¢) = lim f(x,,) = S. The proof of the minimum case is similar. [
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5.24

Let 2" be a reflexive Banach space and M a nonempty closed convex set in 2". Show that there exists
2o € M such that ||zo|| = inf{||z| : x € M}.

Proof Letd = inf{||z| : @ € M} then there exists {z,} C M such thatd < ||z,,|| < d+ L. Thus {z,,}
is bounded, it follows from Eberlein-Smulian Theorem that there exists z( such that z,,, — xo. Moreover,
from Exercise 2.5.22, we have that xg € M, thus ||xg|| > d. On the other hand, there exits f € 2™* that
F (o) = lfzoll and £ = 1. Thus Jzo | = |/ (zo)] = b £ (rm )| < limsup [|F] g | = i sup [l || =
d. Therefore ||xq|| = d. O

6 Speltrum of Linear Operators

6.1

6.2

6.3

Let 2" be a Banach space. Show that the set of all continuously invertible operators is an open subset of

2(2).

Proof. Fir§t we have this fact: If A, B are invertible then AB is invertible too and (AB)~! = B71A~L.
Let A be an invertible operator in .#(.2"). For any B € L(2") with ||[A — B|| < 1/||A71]|, it holds that
(A — B)A~!|| < 1 and thus from Lemma 2.6.6 we have that I — ((A — B)A~!) = BA~! is invertible.
Therefore B = (BA) ! A is invertible. O

Let A be a closed linear operator, A1, ..., A, € 0,(A) are mutually di§tin&, x; is an eigenvector of A;. Show
that {z1,...,z,} are linearly independent.

Proof: Suppose that {x1,...,x,} is linearly dependent, then we can find a shortest equation (‘shortest'
means least number of items) with nontrivial coefficients as

C1Tg, + CoTpy + - CpT,, =0 (2)
where k; € {1,...,n} and ¢; # 0. Then we have
cAxg, + oAz, + -+ cp Az, =0,

or
C1 M T, + A2, - - + Cp ATk, = 0.

m

On the other hand, we have

ciMlzxg, + o lxg, + -+ cp iy, = 0.

m

Thus

CQ()\l — )\2)37k2 + -4+ Cn()\l — )\n)ka =0,
which has nontrivial coefficients and less terms than has (2). This is a contradi&ion, and therefore {x1, ..., 2, }
must be linearly independent. O

In two-sided [? space, the right shift operator A is defined as

T = ("'7§7na€7’n+17'"55717£O7§1a"'767171,577,7"') €l2

= AT = (o My Nt Ty e oy =15 705 My e v o s D1y Ty -« - )

where 7., = £—1 (m € Z). Prove that 0.(A) = o(A) = unit circle.
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6.4

Proof. Since || A = 1, o(A) is contained within the unit disc. If [\| < 1, then (A — A)z = B(% — A)Cz =
1 - B(AM — AA) Dz, where B is the left-shift operator and D is the reverse operator (D), = z_y). All of
the three operators on the right-hand side is invertible and so is their product. Therefore, 0(A) C C, where
C denotes the unit circle.

Consider A = 1. Since

k
$0+2j:1yj, k>0

y=UI—-Ax < yp = — Tp_1 < T = ,
( ) { ‘Tofzj:l_kyjﬁ k<0

it holds that

2
00

2
k -1

R(I-A)= yelz:z x0—|—Zyj —I—xo—Zyj < oo for some xg
=1

k=1 j=—k

It is obvious that R(I — A) # 2. Let £ € [2, for any € > 0, there exi$ts IV such that

0o k=—N-1 62
oo+ D> el < 5
k=N+1 k=—o00

Lete = chv:_N &k, find m such that |c|?/m < €2/3, let

& l7] < N;
Y; = 7C/ma N+1§‘]‘SN+m7
0, l7] > N +m,

theny = (.., —Yny-- -, Y0,---,Yn) € R(I — A) and ||€ — y|| < e. Hence R(I — A) is dense in 2" and
1 € 0.(A). Moreover, the general case of |\| = 1 can be reduced to A = 1. In fa& we have that

y=AN —-A)x <= yp=Ap— Tk
<~ )\kilyk = )\kxk - )\kilxk_l
= =& — k-1,

where 1, = A1y, and &, = APy, which reduces to A = 1. As a result, C' C o (A). Finally we conclude
that o.(A) = o(A) = C. O

Consider the left shift operator in 12

A (51752,...) — (52,537...).
Show that 0,(A) = {\: [A| <1}, 0.(4) = {\: [\ =1}, and 0 (A) = 0,(A) Uo(A).

Proof. Since ||A|| =1, 0(A) is contained within the unit disk. We discuss the following two cases.

(1) |A] < 1. Take y = (1, A, A%, ...) we have that Ay = )y, therefore A € 7,,(A).

(2) |A| = 1. Fir& it is clear that A is not an eigenvalue.
First consider A = 1. Since

k

y=I—-Ax <= yp =) — Tpy1 = $k+1=$1—zij
j=1
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6.5

it holds that

[e's) k
R(I-A)= yGlQ:Z xl—Zyj < oo for some x1
k=1 j=1

Obviously R(I — A) # 12, Let £ € 12, for any € > 0, there exists N such that

o0

2
€
> lalf < 5

k=N+1

Letc = Eszl &k, find m such that |c|?/m < €2 /6, let

&> J<N;
—c¢/m, N+1<j<N+m;
0, j>N+m.

Then we have that y = (y1,¥2,...) € R(I — A) (where 1 = 0) and ||€ — y|| < ¢, 50 R(I — A) = 2
and 1 € 0.(A). Moreover, the general case of |A| = 1 can be reduced to A = 1. In fact we have that

y=A —-A)zx <= yp=Arp— Tp1
< Aikilyk = )\7k$1C - Aikill’]ﬁ_l
= Mk =& — &k,

where 1, = A" 1y and &, = A~Fy, which reduces to A = 1. As a result, C' C o.(A).

Finally we conclude that 0.(4) = C, 0,(A) = {z: |z2| < 1} and 6 (A) = 0.(A) U 0, (A). O
Consider the differential operator on L?(0, 00)
A:x(t) — %’ D(A) = H'(0, 00).

Show that

(1) 0,(A) ={A e C: R <0}
(2) oo(A) ={reC: RA =0}

Proof. Consider the differential equation (Al — A)z = 0, or Az(t) = 4. It has solution z(t) = Ke™.
Then it is easy to verity that x € H'(0,00) when R\ < 0 and in other cases z(¢) = 0 is the unique solution

in H'(0,00). Therefore 0,(4) = {\ € C: R\ < 0}.

It is a well-known result (Paley—Wiener Theorem) that L?(0, oo) is exaétly the image of holomorphic fourier
transform of Hardy space of the upper half-plane H(C*), namely, F(H(C*)) = L?(0, o).

Consider the equation

M —-Az =y, =xy¢cL*0,0)

Let z = f and y = §, where f, g are holomorphic on upper half-plane. Applying inverse Fourier transform
on both sides, the above equation becomes

)\f—lZf:g7
. _ 9(2)
Fz) =" 3)



The right-hand side is well-defined over upper half-plane when A > 0 and f is holomorphic on upper-
plane. It is clear that f is square-integrable (since |A — iz| < RA) and so is iz f since izf = A\f — g, hence
f admits weak derivative, that is, = € H(0,00). Therefore, {\ € C: RA > 0} C p(A).

'The above argument §till applies to the case *A = 0, however, with further conétraints. We see that f(z)
given by (3) may fail to be square-integrable (despite it is &till holomorphic). Thus R(A — A) # L?(0, 00).
But for y in a dense subset of L?(0, c0), such as span{s™e~*}, the f(z) given by (3) falls in D(A). Hence
R(M — A) = L?(0,00) and {A € C: RA =0} C 0.(A). O
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