1 Concept of Linear Operators

(\mathscr{X} and \mathscr{Y} are Banach spaces in this section)
1.1 Prove that $T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$ iff T is a linear operator and maps bounded set in \mathscr{X} into bounded set in \mathscr{Y}.

Proof. 'Only if' part is obvious. Now we show the `if' part. If T is not a bounded operator, then we can find $\left\{x_{n}\right\} \subseteq X$ such that $\left\|T\left(x_{n}\right)\right\|>n\left\|x_{n}\right\|$. Let $y_{n}=x_{n} /\left\|x_{n}\right\|$, then $\left\|y_{n}\right\|=1$ for all n while $\left\|T y_{n}\right\|>n$. Contradiction.
1.2 Let $A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$ and show that
(1) $\|A\|=\sup _{\|x\| \leq 1}\|A x\| ;$
(2) $\|A\|=\sup _{\|x\|<1}\|A x\|$.

Proof. (1) On the one hand, we have

$$
\|A\|=\sup _{\|x\|=1}\|A x\| \leq \sup _{\|x\| \leq 1}\|A x\|,
$$

On the other hand, it holds that for all x with $\|x\| \leq 1$,

$$
\|A x\| \leq\|A\|\|x\| \leq\|A\| .
$$

Taking supremum of both sides yields that

$$
\sup _{\|x\| \leq 1}\|A x\| \leq\|A\| .
$$

(2) Let $M=\sup _{\|x\|<1}\|A x\|$ and $N=\sup _{\|x\| \leq 1}\|A x\|$. It suffices to show that $M=N$. It is clear that $M \leq N$. If $M<N$ then there exists $\left\|x_{0}\right\|=1$ such that $\left\|A x_{0}\right\|=s>M$, thus there exists $r \in(0,1)$ such that $\left\|A\left(r x_{0}\right)\right\|=r s>M$. Note that $\left\|r x_{0}\right\|<1$, we have met a contradiction. Therefore M and N must be the same.
1.3 Let $f \in \mathscr{L}\left(\mathscr{X}, \mathbb{R}^{1}\right)$, show that
(1) $\|f\|=\sup _{\|x\|=1} f(x) ;$
(2) $\sup _{\|x\|<\delta}|f(x)|=\delta\|f\|(\forall \delta>0)$.

Proof. (1) First of all it is obvious that $\|f\|=\sup _{\|x\|=1}|f(x)|$. Note that f is an linear operator thus $f(-x)=$ $-f(x)$, hence the absolute value symbol can be removed, yielding $\|f\|=\sup _{\|x\|=1} f(x)$.
(2)

$$
\frac{1}{\delta} \sup _{\|x\|<\delta}|f(x)|=\sup _{\|x\|<\delta}\left|f\left(\frac{x}{\delta}\right)\right|=\sup _{\|x\|<1}|f(x)|=\|f\| .
$$

1.4 Let $y(t) \in C[0,1]$, and we define a functional f over $C[0,1]$ as

$$
f(x)=\int_{0}^{1} x(t) y(t) d t, \quad \forall x \in C[0,1] .
$$

Find $\|f\|$.

Proof. Observe that

$$
|f(x)|=\left|\int_{0}^{1} x(t) y(t) d t\right| \leq \int_{0}^{1}|x(t)||y(t)| d t \leq\|x\| \int_{0}^{1}|y(t)| d t
$$

thus

$$
\|f\|=\sup \frac{|f(x)|}{\|x\|} \leq \int_{0}^{1}|y(t)| d t
$$

Note that $|y(t)|=\operatorname{sgn}(y(t)) y(t)$. Using Luzin's theorem, it is not difficult to show that there exists $x_{n}(t) \in$ $C[0,1]$ with $\left\|x_{n}\right\|=1$ such that

$$
\int_{0}^{1}|x(t) y(t)-\operatorname{sgn}(y(t)) y(t)| d t<\frac{1}{n}
$$

Then it follows that

$$
\begin{aligned}
\int_{0}^{1}|y(t)| d t & =\left|\int_{0}^{1} \operatorname{sgn}(y(t)) y(t) d t\right|<\left|\int_{0}^{1} x_{n}(t) y(t) d t\right|+\frac{1}{n} \\
& =\left|f\left(x_{n}\right)\right|+\frac{1}{n} \leq\|f\|\left\|x_{n}\right\|+\frac{1}{n} \leq\|f\|+\frac{1}{n}
\end{aligned}
$$

Letting $n \rightarrow \infty$ we obtain that

$$
\|f\| \geq \int_{0}^{1}|y(t)| d t
$$

1.5 Let f be a non-zero bounded linear functional over \mathscr{X}. Let $d=\inf \{\|x\|: f(x)=1\}$, show that $\|f\|=1 / d$.

Proof. From the continuity of f we know that $d>0$ and $f\left(x_{0}\right)=1$ for some $\left\|x_{0}\right\|=d$. So it suffices to show that $\|f\| \leq 1 / d$, that is, $|f(x)| \leq\|x\| / d$. This is obvious true for those x such that $f(x)=0$. Assume $f(x) \neq 0$. Note that $f(x / f(x))=1$, then $\|x / f(x)\| \geq d$, yielding $|f(x)| \leq\|x\| / d$.
1.6 Let $f \in \mathscr{X}^{*}$, show that for any $\varepsilon>0$, there exists $x_{0} \in \mathscr{X}$ with $\left\|x_{0}\right\|<1+\varepsilon$ such that $f\left(x_{0}\right)=\|f\|$.

Proof. Let $\varepsilon>0$. From the definition of $\|f\|$, there exists x such that

$$
\frac{\|f\|}{1+\varepsilon}<\frac{|f(x)|}{\|x\|}
$$

Take $x_{0}=\frac{\|f\|}{|f(x)|} x$ as desired.
1.7 Let $T: \mathscr{X} \rightarrow \mathscr{Y}$ be a linear map and define

$$
N(T)=\{x \in \mathscr{X}: T x=0\} .
$$

(1) If $T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$, show that $N(T)$ is a closed subspace of \mathscr{X}.
(2) Does the condition that $N(T)$ is a closed subspace of \mathscr{X} imply that $T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$?
(3) If f is a linear functional, show that

$$
f \in \mathscr{X}^{*} \Longleftrightarrow N(f) \text { is a closed subspace. }
$$

Proof. (1) Trivial, as T is continuous.
(2) No. Let

$$
\mathscr{X}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left|\sum_{n=1}^{\infty}\right| x_{n} \mid<\infty\right\}
$$

Define the norm of $x=\left(x_{1}, \ldots, x_{n}, \ldots\right) \in \mathscr{X}$ as $\|x\|=\sup _{n \geq 1}\left|x_{n}\right|$. It is clear that \mathscr{X} is a linear space under the usual addition and scalar multiplication. It is also easy to verify that \mathscr{X} is complete, thus a Banach space. Define $f(x)=\sum_{i=1}^{\infty} x_{i}$. Let $a=(1,-1,0,0, \ldots) \in \mathscr{X}$ and define $T x=x-a f(x)$. Obviously $N(T)=\{0\}$ is closed.
We shall prove that T is unbounded. Suppose that T is bounded, then we have (note that $\|a\|=1$)

$$
|f(x)|=\|a f(x)\|=\|x-T x\| \leq\|x\|+\|T x\| \leq(1+\|T\|)\|x\|,
$$

which indicates that $|f(x)|$ is bounded. However, it is easy to see that f is unbounded. Contradiction. Therefore, T must be unbounded.
(3) ${ }^{\prime} \Rightarrow$ " follows from (1). Now we show the ${ }^{\prime} \Leftarrow$ " part. Suppose that f is unbounded, there exist $\left\{x_{n}\right\} \subset$ \mathscr{X} such that $\left\|f\left(x_{n}\right)\right\|>n\left\|x_{n}\right\|$. Let $y_{n}=x_{n} /\left\|x_{n}\right\|$ then $\left\|y_{n}\right\|=1$ and $\left|f\left(y_{n}\right)\right|>n$. Define

$$
z_{n}=\frac{y_{n}}{f\left(y_{n}\right)}-\frac{y_{1}}{f\left(y_{1}\right)}
$$

it holds that $f\left(z_{n}\right)=0$ and thus $z_{n} \in N(f)$. On the other hand, it follows from

$$
\left\|\frac{y_{n}}{f\left(y_{n}\right)}\right\|=\frac{1}{\left|f\left(y_{n}\right)\right|} \leq \frac{1}{n} \rightarrow 0, \quad n \rightarrow \infty
$$

that $z_{n} \rightarrow-y_{1} / f\left(y_{1}\right)$. But $f\left(-y_{1} / f\left(y_{1}\right)\right)=-1$, which contradicts with the closedness of $N(f)$.
1.8 Let f be a linear functional on \mathscr{X} and denote

$$
H_{f}^{\lambda}=\{x \in \mathscr{X} \mid f(x)=\lambda\}, \quad \forall \lambda \in \mathbb{K}
$$

If $f \in \mathscr{X}^{*}$ and $\|f\|=1$, show that
(1) $|f(x)|=\inf \left\{\|x-z\| \mid \forall z \in H_{f}^{0}\right\}, \forall x \in \mathscr{X}$;
(2) For any $\lambda \in \mathbb{K}$, the distance to H_{f}^{0} from any point $x \in H_{f}^{\lambda}$ is a constant. Give geometric explanation of (1) and (2) for $\mathscr{X}=\mathbb{R}^{2}, \mathbb{K}=\mathbb{R}^{1}$.

Proof. (1) Let $d=\inf \left\{\|x-z\| \mid \forall z \in H_{f}^{0}\right\}$. For any $\varepsilon>0$, there exists $z_{\varepsilon} \in H_{f}^{0}$ such that $\left\|x-z_{\varepsilon}\right\|<d+\varepsilon$. Then $|f(x)|=\left|f\left(x-z_{\varepsilon}\right)\right| \leq\|f\|\left\|x-z_{\varepsilon}\right\|<d+\varepsilon$, whence it holds that $|f(x)| \leq d$.
On the other hand, if $y \notin H_{f}^{0}$ then for all x it holds that $x^{\prime}=x-f(x) y / f(y) \in H_{f}^{0}$. Take norm on the both sides of $f(y)\left(x-x^{\prime}\right)=f(x) y$, we obtain that (notice that $\|y\| \neq 0$)

$$
\frac{|f(y)|}{\|y\|}\left\|x-x^{\prime}\right\|=|f(x)|
$$

For any $\varepsilon>0$, there exists y such that $|f(y)| /\|y\|>\|f\|-\varepsilon$, thus

$$
(\|f\|-\varepsilon) d \leq(\|f\|-\varepsilon)\left\|x-x^{\prime}\right\|<|f(x)| .
$$

It follows that $\|f\| d \leq|f(x)|$, or $d \leq|f(x)|$ from the arbitrariness of ε.
(2) Let $x \in H_{f}^{\lambda}$. It is implied by (1) that $d\left(x, H_{f}^{0}\right)=|f(x)|=|\lambda|$.

Geometric demonstration $\left(\mathscr{X}=\mathbb{R}^{2}, \mathbb{K}=\mathbb{R}^{1}\right)$. Let $e_{1}=(1,0), e_{2}=(0,1), f_{1}=f\left(e_{1}\right), f_{2}=f\left(e_{2}\right)$. Then for $x=(a, b), f(x)=a f_{1}+b f_{2},\|f\|=1$ implies that $\sqrt{f_{1}^{2}+f_{2}^{2}}=1$. Hence $|f(x)|=\left|a f_{1}+b f_{2}\right|$ gives the distance from point $x=(a, b)$ to the line $f_{1} x+f_{2} y=0$, or, $|f(x)|=d\left(x, H_{f}^{0}\right)$. Since H_{f}^{0} and H_{f}^{δ} are parallel lines, the distance between them is $|\lambda|$.
1.9 Let \mathscr{X} be a real normed linear space and f a non-zero real-valued linear functional on \mathscr{X}. Show that there does not exist an open ball $B\left(x_{0}, \delta\right)$ such that $f\left(x_{0}\right)$ is the maximum or minimum value of $f(x)$ in $B\left(x_{0}, \delta\right)$.

Proof. Notice that $f\left(\lambda x_{0}\right)=\lambda f\left(x_{0}\right)$. Given δ, there exists ϵ such that for all $\lambda \in(1-\epsilon, 1+\epsilon)$ it holds that $\lambda x_{0} \in B\left(x_{0}, \delta\right)$. Hence, if $f\left(x_{0}\right) \neq 0, f\left(x_{0}\right)$ can not be maximum or minimum value of f in $B\left(x_{0}, \delta\right)$.

2 Riesz Representation Theorem and Its Applications

(H refers to Hilbert space in this section)
2.1 Let f_{1}, \ldots, f_{n} be bounded linear functional over H, let

$$
M=\bigcap_{k=1}^{n} N\left(f_{k}\right), \quad N\left(f_{k}\right)=\left\{x \in H: f_{k}(x)=0\right\}, \quad k=1, \ldots, n .
$$

Let $x_{0} \in H$ and denote by y_{0} the orthogonal projection of x_{0} onto M. Show that there exists $y_{1}, \ldots, y_{k} \in H$ and $a_{1}, \ldots, a_{k} \in \mathbb{K}$ such that

$$
y_{0}=x_{0}-\sum_{k=1}^{n} a_{k} y_{k} .
$$

Proof. By Riesz Representation Theorem, there exists y_{k} for each k such that $f_{k}(x)=\left(x, y_{k}\right)$ for all $x \in H$. Since f is continuous, $N\left(f_{k}\right)$ is closed and so is M. Thus x_{0} has the unique decomposition $x_{0}=y_{0}+z_{0}$ where $y_{0} \in M$ and $z_{0} \in M^{\perp}$. Therefore it is sufficient to show that $M^{\perp}=\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\}$, i.e., $M=$ $\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\}^{\perp}$ (See Exercise 1.6.5). This is straight forward since $N\left(f_{k}\right)=\left(\operatorname{span} y_{k}\right)^{\perp}$ and M is their intersection.
2.2 Let l be a real-valued bounded linear functional and C is a closed convex set in H. Define

$$
f(v)=\frac{1}{2}\|v\|^{2}-l(v)
$$

(1) There exists $u^{*} \in H$ such that

$$
f(v)=\frac{1}{2}\left\|u^{*}-v\right\|^{2}-\frac{1}{2}\left\|u^{*}\right\|^{2} .
$$

(2) There exists unique $u_{0} \in C$ such that $f\left(u_{0}\right)=\inf _{v \in C} f(v)$.

Proof. (1) By Riesz Representation Theorem, there exists u^{*} such that $\left(v, u^{*}\right)=l(v)$ for all $v \in C$. This u^{*} is exactly our desire.
(2) Let $C^{\prime}=\left\{u^{*}\right\}-C$, then C^{\prime} is a closed convex set too. By Theorem 1.6.31, there exists $u^{\prime} \in C^{\prime}$, thus $u_{0} \in C$ such that $\left\|u^{\prime}\right\|=\left\|u^{*}-u_{0}\right\|=\inf _{u \in C}\left\|u^{*}-u\right\|$. The conclusion follows immediately.
2.3 Suppose the elements of H are complex-valued functions on S. For $x \in S$, the map $J_{x}(f)=f(x)(\forall f \in H)$ induces a continuous linear functional over H. Show that there exists $K: S \times S \rightarrow \mathbb{C}$ satisfying
(1) For any $y \in S, K(x, y)$ as a function of x belongs to H;
(2) $f(y)=(f, K(\cdot, y)), \forall f \in H, \forall y \in S$.
(A function $K(x, y)$ satisfying the two conditions above is called the reproducing kernel of H; and the second condition is called reproducing property)

Proof. By Riesz Representation Theorem, there exists $f_{x} \in H$ such that $J_{x}(f)=\left(f, f_{x}\right)=f(x)$ for all $x \in X$. Define $K(x, y)=f_{y}(x)$ and the two conditions are satisfied.
2.4 Prove that the reproducing kernel of $H^{2}(D)$ (See Example 1.6.28 for the definition) is

$$
K(z, w)=\frac{1}{\pi(1-z \bar{w})^{2}}, \quad z, w \in D
$$

Proof. First we verify that $K(z, w)=1 /\left(\pi(1-z \bar{w})^{2}\right)$ is a reproducing kernel of $H^{2}(D)$. Since $|1-z \bar{w}| \geq$ $1-|z \bar{w}| \geq 1-|w|$ (note that $|z|<1$), hence $K(z, w)$ is bounded over D and thus $K(z, w) \in H^{2}(D)$ as a function of z. On the other hand, let $f(z) \in H^{2}(D)$ with Taylor expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

it follows from

$$
K(z, w)=\sum_{n=0}^{\infty} \frac{n+1}{\pi} \bar{w}^{n} z^{n}
$$

and Exercise 1.6.11(b) that

$$
(f, K(\cdot, w))=\sum_{n=0}^{\infty} a_{k} w^{n}=f(w)
$$

which is exactly the reproducing property. Therefore, $K(z, w)=1 /\left(\pi(1-z \bar{w})^{2}\right)$ is a reproducing kernel of $H^{2}(D)$.
Now we prove that the reproducing kernel is unique. Suppose K and K^{\prime} are two reproducing kernels of H consisting of functions on S. Then $\left(K-K^{\prime}, K-K^{\prime}\right)=\left(K-K^{\prime}, K\right)-\left(K-K^{\prime}, K^{\prime}\right)=0$ due to the reproducing property.
2.5 Let L and M be two closed subspaces of H. Show that
(1) $L \perp M$ iff $P_{L} P_{M}=0$;
(2) $L=M^{\perp}$ iff $P_{L}+P_{M}=I$;
(3) $P_{L} P_{M}=P_{L \cap M}$ iff $P_{L} P_{M}=P_{M} P_{L}$.

Proof. (1) 'Only if' is obvious. Now we prove the 'if' part. It follows from $P_{L} P_{M}=0$ that $P_{L} x=0$ for all $x \in M$. Writing $x=y+z$, where $y \in L$ and $z \in L^{\perp}$, we see that $x \in L^{\perp}$ for all $x \in M$. Therefore $L \perp M$.
(2) 'Only if' is obvious. Now prove the 'if' part. Write $x=y+z$, where $y \in M$ and $z \in M^{\perp}$. Then $x=P_{L} x+P_{M} x=P_{L} x+y$, thus $P_{L} x=z \in M^{\perp}$ and $L \subseteq M^{\perp}$. On the other hand, take $x \in M^{\perp}$, then $x=P_{L} x+P_{M} x=P_{L} x \in L$, which implies that $M^{\perp} \subseteq L$.
(3) 'If': Noticing that $P_{L} P_{M} x \in L$ and $P_{M} P_{L} x \in M$, we know that $P_{L} P_{M} x \in L \cap M$. And it holds that

$$
\begin{equation*}
x=P_{L} x+P_{L^{\perp}} x=P_{L}\left(P_{M} x+P_{M^{\perp}} x\right)+P_{L^{\perp}} x=P_{L} P_{M} x+P_{L} P_{M^{\perp}} x+P_{L^{\perp}} x . \tag{1}
\end{equation*}
$$

It is obvious that $P_{L^{\perp}} x \in(L \cap M)^{\perp}$. Observing that $P_{L} P_{M^{\perp}}=P_{M^{\perp}}-P_{L^{\perp}} P_{M^{\perp}}$, it follows that $P_{L} P_{M^{\perp}} x \in(L \cap M)^{\perp}$. Hence, $P_{L} P_{M^{\perp}} x+P_{L^{\perp}} x$ is in $(L \cap M)^{\perp}$ and $P_{L} P_{M} x=P_{L \cap M} x$.
'Only if': It is well-known that if P is a projector then it holds $(P x, y)=(x, P y)$ for all $x, y \in H$. Since $P_{L} P_{M}=P_{L \cap M}$ we have

$$
\left(P_{M} P_{L} x, y\right)=\left(P_{L} x, P_{M} y\right)=\left(x, P_{L} P_{M} y\right)=\left(P_{L} P_{M} x, y\right)=\left(P_{M} x, P_{L} y\right)=\left(x, P_{M} P_{L} y\right)
$$

Write $x=y+z$, where $y \in L \cap M$ and $z \in(L \cap M)^{\perp}$. It is clear that $P_{M} P_{L} y=y$, and $\left(P_{M} P_{L} z, P_{M} P_{L} z\right)=\left(z, P_{M}\left(P_{L} P_{M}\right) P_{L} u\right)=\left(z, P_{L \cap M} z\right)=0$, hence $P_{M} P_{L} z=0$. Therefore $P_{M} P_{L} x=y=P_{L \cap M} x$.

3 Category and Open Mapping Theorem

3.1 Let \mathscr{X} be a Banach space and \mathscr{X}_{0} a closed subspace of \mathscr{X}. The map $\phi: \mathscr{X} \rightarrow \mathscr{X} / \mathscr{X}_{0}$ is defined as

$$
\phi: x \mapsto[x], \quad \forall x \in \mathscr{X},
$$

where $[x]$ is the quotient class of x (see Exercise 1.4.17). Show that ϕ is an open map.
Proof. From Exercise 1.4.17(6), $\mathscr{X} / \mathscr{X}_{0}$ is a Banach space. From (4), ϕ is continuous, thus $\phi \in \mathscr{L}\left(\mathscr{X}, \mathscr{X} / \mathscr{X}_{0}\right)$. It is obvious that ϕ is surjective. From open mapping theorem we know that ϕ is an open map.
3.2 Let \mathscr{X}, \mathscr{Y} be Banach spaces. The equations $U x=y$ has solution $x \in \mathscr{X}$ for all $y \in \mathscr{Y}$, where $U \in$ $\mathscr{L}(\mathscr{X}, \mathscr{Y})$, and there exists $m>0$ such that

$$
\|U x\| \geq m\|x\| \quad \forall x \in \mathscr{X} .
$$

Show that U has continuous inverse U^{-1} and $\left\|U^{-1}\right\| \leq 1 / m$.
Proof. It is clear that U is surjective, and we show that U is injective. Consider the equation $U x=0$. It has a solution $x=x_{0}$, thus $0=\left\|U x_{0}\right\| \geq m\left\|x_{0}\right\|$, which implies that $x_{0}=0$. Therefore, by Banach Inverse Mapping Theorem, we know that U^{-1} exists and $U^{-1} \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$.
Let $y \in \mathscr{Y},\|y\|=\left\|U\left(U^{-1} y\right)\right\| \geq m\left\|U^{-1} y\right\|$, it follows that $\left\|U^{-1} y\right\| /\|y\| \leq 1 / m$. Therefore, $\left\|U^{-1}\right\| \leq$ $1 / \mathrm{m}$.
3.3 Let H be a Hilbert space, $A \in \mathscr{L}(H)$ and $\exists m>0$ such that

$$
|(A x, x)| \geq m\|x\|^{2}, \quad \forall x \in H
$$

Show that $\exists A^{-1} \in \mathscr{L}(H)$.
Proof. Clearly, $A x=0$ implies that $x=0$, thus A is injective. Note that $\|A x\|\|x\| \geq|(A x, x)| \geq m\|x\|^{2}$, or, $\|A x\| \geq m\|x\|$, we have that $R(A)$ is a closed subspace of H. If $R(A) \subsetneq H$, there exists $x_{0} \neq 0$ such that $x_{0} \perp R(A)$, resulting in $0=\left|\left(A x_{0}, x_{0}\right)\right| \geq m\left\|x_{0}\right\|^{2}$, which contradicts with $x_{0} \neq 0$. Hence $R(A)=H$ and A is surjective. It follows from Inverse Mapping Theorem that A^{-1} is continuous.
3.4 Let X, Y be two normed linear spaces, D is a linear subspace of \mathscr{X} and $A: D \rightarrow \mathscr{Y}$ is a linear map. Show that
(1) If A is continuous and D is closed, then A is closed;
(2) If A is continuous and closed, then the completeness of \mathscr{Y} implies the closedness of D;
(3) If A is an injective closed map, then A^{-1} is also a closed map;
(4) If \mathscr{X} is complete, A is an injective closed operator, $R(A)$ is dense in \mathscr{Y} and A^{-1} is continuous, show that $R(A)=\mathscr{Y}$.

Proof. (1) Let $\left\{x_{n}\right\}$ be a sequence of points in D converging to x in norm, and $A x_{n} \rightarrow y$. Since D is closed, it holds that $x \in D$. As A is continuous we have that $A x_{n} \rightarrow A x$. Thus $A x=y$, and A is a closed map.
(2) Let $x \in \bar{D}$, there exists a sequence of points x_{n} converging to x in norm. Since A is continuous, A is bounded, thus $\left\|A x_{m}-A x_{n}\right\|=\left\|A\left(x_{m}-x_{n}\right)\right\| \leq\|A\|\left\|x_{m}-x_{n}\right\|$, which implies that $A x_{n}$ is a Cauchy sequence in \mathscr{Y}. Since \mathscr{Y} is complete, $A x_{n} \rightarrow y$ for some $y \in \mathscr{Y}$. From the definition of a closed map, we have $x \in D$ and $y=A x$. Therefore D is closed.
(3) It is clear that A^{-1} does exist. Suppose that $y_{n} \rightarrow y$ and $x_{n}=A^{-1} y_{n} \rightarrow x$. Since A is closed, we know that $x \in D$ and $y=A x$, thus $y \in R(A)$ and $x=A^{-1} y$, implying that A^{-1} is a closed map.
(4) Let $y \in \mathscr{Y}$ we have from the density of $R(A)$ in \mathscr{Y} that there exists $\left\{y_{n}\right\} \subset R(A)$ such that $y_{n} \rightarrow y$. Let $x_{n}=A^{-1} y_{n}$. Since A^{-1} is continuous and thus bounded, we have that

$$
\left\|x_{m}-x_{n}\right\|=\left\|A^{-1} y_{m}-A^{-1} y_{n}\right\|=\left\|A^{-1}\left(y_{m}-y_{n}\right)\right\| \leq\left\|A^{-1}\right\|\left\|y_{m}-y_{n}\right\|,
$$

which implies that $\left\{x_{n}\right\}$ is a Cauchy sequence, thus converging to some $x \in \mathscr{X}$ from the completeness of \mathscr{X}. Since A is a closed map, we have that $x \in D$ and $y=A x \in R(A)$. Therefore, $R(A)=\mathscr{Y}$.
3.5 Using Corollary 2.3.13, show that $\left(C[0,1],\|\cdot\|_{1}\right)$ is not a Banach space, where $\|f\|_{1}=\int_{0}^{1}|f(t)| d t(\forall f \in$ $C[0,1]$).

Proof. Suppose that $\left(C[0,1],\|\cdot\|_{1}\right)$ is a Banach space, then the norm $\|\cdot\|$ defined in Example 1.4.5 is stronger than $\|\cdot\|_{1}$. Corollary 2.3 .13 says that they are equivalent and thus there exists c such that $\|\cdot\| \leq c\|\cdot\|_{1}$. Take $f_{n}=x^{n},\left\|f_{n}\right\|=1$ but $\|f\|_{1}=\frac{1}{n+1} \rightarrow 0(n \rightarrow \infty)$. Contradiction. Therefore $\left(C[0,1],\|\cdot\|_{1}\right)$ is not a Banach space.
3.6 (Gelfand Lemma) Let \mathscr{X} be a Banach space, $p: \mathscr{X} \rightarrow \mathbb{R}^{1}$ satisfies
(1) $p(x) \geq 0 \quad(\forall x \in \mathscr{X})$
(2) $p(\lambda x)=\lambda p(x) \quad(\forall \lambda>0, \forall x \in \mathscr{X})$.
(3) $p\left(x_{1}+x_{2}\right) \leq p\left(x_{1}\right)+p\left(x_{2}\right) \quad\left(\forall x_{1}, x_{2} \in \mathscr{X}\right)$
(4) $\underline{\lim }_{n \rightarrow \infty} p\left(x_{n}\right) \geq p(x)$ as $x_{n} \rightarrow x$.

Show that $\exists M>0$, such that $p(x) \leq M\|x\|(\forall x \in \mathscr{X})$.
Proof. Define $\|x\|_{1}=\|x\|+p(x)+p(-x)$. It is easy to verify that $p(0)=0$ and $\|\cdot\|$ is a norm actually. Let $\left\{x_{n}\right\}$ be a Cauchy sequence with respect to $\|\cdot\|_{1}$, then it is also a Cauchy sequence with respect to $\|\cdot\|$, thus converges to some $x \in \mathscr{X}$ in norm $\|\cdot\|$. Also we have that $p\left(x_{n}-x_{m}\right) \leq \epsilon$ for all $n, m>N(\epsilon)$. It follows from (4) that $p\left(x-x_{m}\right) \leq \epsilon$, thus $p\left(x-x_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$ and similarly $p\left(x_{m}-x\right) \rightarrow 0$ too. Therefore $\left\{x_{n}\right\}$ converges to x in norm $\|\cdot\|_{1}$. It is obvious that $\|\cdot\|_{1}$ is stronger than $\|\cdot\|$, thus by Corollary 2.3.13 there exists M such that

$$
\|x\|_{1}=\|x\|+p(x)+p(-x) \leq M\|x\|
$$

whence we obtain that $p(x) \leq(M-1)\|x\|$.
3.7 Let \mathscr{X} and \mathscr{Y} be Banach spaces. $A_{n} \in \mathscr{L}(\mathscr{X}, \mathscr{Y})(n=1,2, \ldots)$, and for all $x \in \mathscr{X},\left\{A_{n} x\right\}$ is convergent in \mathscr{Y}. Show that $\exists A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$, such that

$$
A_{n} x \rightarrow A x(\forall x \in \mathscr{X}), \text { and }\|A\| \leq \underset{n \rightarrow \infty}{\lim _{n}}\left\|A_{n}\right\| .
$$

Proof. Since $\left\{A_{n} x\right\}$ converges in \mathscr{Y} for all $x \in \mathscr{X}$. we can define $A: \mathscr{X} \rightarrow \mathscr{Y}$ as $A x=\lim _{n \rightarrow \infty} A_{n} x$. It is easy to verify that A is linear. Suppose that $\left\{A_{n_{k}}\right\}$ satisfies $\lim _{k \rightarrow \infty}\left\|A_{n_{k}}\right\|=\underset{n \rightarrow \infty}{\lim _{n \rightarrow \infty}}\left\|A_{n}\right\|$. Then for all $\|x\| \neq 0$, we have $\|A x\|=\lim _{k \rightarrow \infty}\left\|A_{n_{k}} x\right\| \leq \lim _{k \rightarrow \infty}\left\|A_{n_{k}}\right\|\|x\|=\underset{n \rightarrow \infty}{\lim }\left\|A_{n}\right\|\|x\|$. It follows from uniform boundedness theorem that $\left\{\left\|A_{n}\right\|\right\}$ is bounded thus A is bounded.
3.8 Let $1<p<\infty$ with $1 / p+1 / q=1$. If the sequence $\left\{a_{k}\right\}$ makes $\sum_{k=1}^{\infty} a_{k} \xi_{k}$ convergent for all $x=\left\{\xi_{k}\right\} \in l^{p}$, show that $\left\{a_{k}\right\} \in l^{q}$. Define $f: l^{p} \rightarrow \mathbb{R}$ as $f(x) \sum_{k=1}^{\infty} a_{k} \xi_{k}$, show that

$$
\|f\|=\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{q}\right)^{\frac{1}{q}}
$$

We need the following lemma.
Lemma Suppose that $\left\{a_{k}\right\}_{k=1}^{n}$ satisfies $\sum\left|a_{k}\right|^{q}=1$, then there exists $\left\{b_{k}\right\}_{k=1}^{n}$ such that $\sum\left|b_{k}\right|^{p}=1$ and $\sum\left|a_{k} b_{k}\right|=1$.
Proof of Lemma Take $b_{k}=\left|a_{k}\right|^{q} / a_{k}$, and notice that $p(q-1)=q$.
Proof. Suppose that $\left\{a_{k}\right\} \notin l^{q}$, or $\sum_{k=1}^{\infty}\left|a_{k}\right|^{q}$ does not converge, then there exist $0=i_{1}<i_{2}<\ldots$ such that $S_{n}=\sum_{k=i_{n}+1}^{i_{n+1}}\left|a_{k}\right|^{q}>n^{2}$ for all n. Since

$$
\sum_{k=i_{n}+1}^{i_{n+1}}\left|\frac{a_{k}}{S_{n}^{1 / q}}\right|^{q}=1
$$

according to the lemma there exists $b_{k}\left(k=i_{n}+1, \ldots, i_{n+1}\right)$ such that

$$
\sum_{k=i_{n}+1}^{i_{n+1}}\left|b_{n}\right|^{p}=1, \quad \sum_{k=i_{n}+1}^{i_{n+1}}\left|\frac{a_{n} b_{n}}{S_{n}^{1 / q}}\right|=1 .
$$

Let $b_{k}^{\prime}=b_{n} / n^{2 / p}$ we have

$$
\sum_{k=i_{n}+1}^{i_{n+1}}\left|b_{n}^{\prime}\right|^{p}=\frac{1}{n^{2}}, \quad \sum_{k=i_{n}+1}^{i_{n+1}}\left|a_{n} b_{n}^{\prime}\right|=\frac{S_{n}^{1 / q}}{n^{2}}>n^{\frac{2}{q}-1}
$$

We have obtained a sequence $\left\{b_{n}\right\}^{\prime} \subseteq l^{p}$, however,

$$
\sum_{k=1}^{\infty}\left|a_{k} b_{k}\right|>\sum_{n=1}^{\infty} n^{\frac{2}{q}-1}=\infty \quad\left(\text { since } \frac{2}{q}-1<1\right)
$$

which is a contradiction, and therefore $\left\{a_{k}\right\}$ must be in l^{q}.

It is easy to verify that f is linear. By Hölder's inequality,

$$
|f(x)| \leq \sum_{k=1}^{\infty}\left|a_{k} \xi_{k}\right|=\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{q}\right)^{\frac{1}{q}}\left(\sum_{k=1}^{\infty}\left|\xi_{k}\right|^{p}\right)^{\frac{1}{p}}=\|a\|_{q}\|x\|_{p}
$$

whence we see that $\|f\| \leq\|a\|_{q}$. If $f=0$, then $a_{k}=0$ for all k and it holds automatically that $\|f\|=\|a\|_{q}$. Assume $f \neq 0$, then a_{k} are not all zeroes. Define $x_{n}=\left(\xi_{1}^{(n)}, \xi_{2}^{(n)}, \xi_{3}^{(n)}, \ldots\right)$, where

$$
x_{k}^{(n)}= \begin{cases}\left|a_{n}\right|^{q} / a_{n}, & k \leq n, a_{k} \neq 0 \\ 0, & k>n, \text { or } a_{k}=0\end{cases}
$$

Notice that $p(q-1)=q$, it holds that

$$
\left\|x_{n}\right\|_{p}=\left(\sum_{k=1}^{n}\left(\left|a_{k}\right|^{q-1}\right)^{p}\right)^{\frac{1}{p}}=\left(\sum_{k=1}^{n}\left|a_{k}\right|^{q}\right)^{\frac{1}{p}}
$$

and

$$
f\left(x_{n}\right)=\sum_{k=1}^{\infty} a_{k} \xi_{k}^{(n)}=\sum_{k=1}^{n}\left|a_{k}\right|^{q}
$$

Hence

$$
\|f\| \geq \lim _{n \rightarrow \infty} \frac{\left|f\left(x_{n}\right)\right|}{\left\|x_{n}\right\|_{p}}=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n}\left|a_{k}\right|^{q}\right)^{1-\frac{1}{p}}=\|a\|_{q}
$$

3.9 Let $\left\{a_{k}\right\}$ be a sequence such that $\sum_{k=1}^{\infty} a_{k} \xi_{k}$ exists for every $x=\left\{\xi_{k}\right\} \in l^{1}$. Show that $\left\{a_{k}\right\} \in l^{\infty}$. Define $f: l^{1} \rightarrow \mathbb{R}$ as $f(x)=\sum_{k=1}^{\infty} a_{k} \xi_{k}$, show that $\|f\|=\sup _{k \geq 1}\left|a_{k}\right|$.

Proof. If $\left\{a_{k}\right\}$ is unbounded, we can find $i_{1}<i_{2}<\ldots$ such that $\left|a_{i_{k}}\right|>k$. Let $x=\left\{\xi_{k}\right\}$ where $\xi_{i_{k}}=\operatorname{sgn} a_{i_{k}} / k^{2}$ and $\xi_{n}=0$ otherwise. It is clear that $x \in l^{1}$, however, $\sum a_{k} \xi_{k}=\sum\left|a_{i_{k}}\right| / k^{2}>\sum 1 / k$, which is a contradiction. Therefore it must hold that $\left\{a_{k}\right\} \in l^{\infty}$.
Let $x \in l^{1}$, it holds that

$$
|f(x)| \leq \sum_{k=1}^{\infty}\left|a_{k} \xi_{k}\right| \leq \sup _{k \geq 1}\left|a_{k}\right| \sum_{k=1}^{\infty}\left|\xi_{k}\right|=\|a\|_{\infty}\|x\|_{1} .
$$

So $\|f\| \leq\|a\|_{\infty}$.
Let $x_{n}=\left(x_{n 1}, x_{n 2}, \ldots\right)$ where $x_{n n}=1$ and $x_{n k}=0$ for all $k \neq n$, then $\left\|x_{n}\right\|_{1}=1$ and $|f(x)|=\left|a_{n}\right|$. Hence

$$
\|f\| \geq \sup _{n} \frac{\left|f\left(x_{n}\right)\right|}{\left\|x_{n}\right\|}=\sup _{n}\left|a_{n}\right| .
$$

3.10 Prove uniform boundedness theorem by Gelfand lemma.

Proof. Suppose that $W \subset \mathscr{L}(\mathscr{X}, \mathscr{Y})$ and $\sup _{A \in W}\|A x\|<\infty$. Define $p(x)=\sup _{A \in W}\|A x\|$, and $p(x)$ satisfies all the conditions in the Gelfand lemma. Here we show fourth condition.
Suppose that $x_{n} \rightarrow x$. Let $q_{n}=\inf _{m \geq n} p\left(x_{m}\right)$. For every $A \in W$ we have $q_{n} \geq \inf _{m \geq n}\left\|A x_{m}\right\|$. Taking limits on both sides we have that $\lim _{n \rightarrow \infty} q_{n} \geq \underline{\lim }_{n \rightarrow \infty}\left|A x_{n}\right|=|A x|$. Therefore, $\underline{\lim }_{n \rightarrow \infty} p\left(x_{n}\right) \geq \sup _{A \in W}|A x|$.
Now we apply Gelfand's lemma that there exists M such that $p(x)=\sup _{A \in W}\|A x\| \leq M\|x\|$ for all $x \in \mathscr{X}$, indicating that $\|A\| \leq M$.
3.11 Let \mathscr{X}, \mathscr{Y} be Banach spaces, $A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$ is a surjection. Show that if $y_{n} \rightarrow y_{0}$ in \mathscr{Y}, then there exist $C>0$ and $x_{n} \rightarrow x_{0}$ such that $A x_{n}=y_{n}$ and $\left\|x_{n}\right\| \leq C\left\|y_{n}\right\|$.

Proof. Define $f: \mathscr{X} / N(A) \rightarrow \mathscr{Y}$ as $f:[x] \rightarrow A x$. This is well-defined and bijective. Exercise 1.4.17(5) claims that for all $[x] \in \mathscr{X} / N(A)$, there exists $x^{\prime} \in[x]$ such that $\left\|x^{\prime}\right\| \leq 2\|[x]\|$. It follows that

$$
\|f[x]\|=\left\|A x^{\prime}\right\| \leq\|A\|\left\|x^{\prime}\right\| \leq 2\|A\|\|[x]\|
$$

which implies that f is bounded. Thus f^{-1} is bounded too from Banach Inverse Mapping Theorem. Let $y_{n} \rightarrow y_{0}$ and $\left[z_{n}\right]=f^{-1}\left(y_{n}\right)$. And we can find $a_{n} \in N(A)$ such that $\left\|z_{n}-a_{n}\right\| \leq 2\left\|\left[z_{n}-a_{n}\right]\right\|=2\left\|\left[z_{n}\right]\right\|$. Let $x_{n}=z_{n}-a_{n}$, we have that $A x_{n}=A z_{n}=y_{n}, x_{n} \rightarrow x_{0}$ and $\left\|x_{n}\right\| \leq 2\left\|f^{-1}\right\|\|A\|\left\|y_{n}\right\|$.
3.12 Let \mathscr{X}, \mathscr{Y} be Banach spaces and T a closed linear map with $D(T) \subset \mathscr{X}$ and $R(T) \subset Y$. Let $N(T)=$ $\{x \in \mathscr{X}: T x=0\}$.
(1) Show that $N(T)$ is a closed subspace of \mathscr{X};
(2) Show that $N(T)=\{0\}$ and $R(T)$ is closed in \mathscr{Y} if and only if $\exists a>0$ such that $\|x\| \leq a\|T x\|$ for all $x \in D(T) ;$
(3) Denote by $d(x, N(T))$ the distance between $x \in \mathscr{X}$ and $N(T)$. Show that $R(T)$ is closed in \mathscr{Y} if and only if $\exists a>0$ such that $d(x, N(T)) \leq a\|T x\|$ for all $x \in D(T)$.

Proof. (1) Suppose that $\left\{x_{n}\right\} \subset N(T)$ with $x_{n} \rightarrow x_{0}$. Then $T x_{n}=0 \rightarrow 0$. Since T is closed, we have that $x_{0} \in D(T)$ and $T x_{0}=0$, thus $x_{0} \in N(T) . N(T)$ is closed.
(2) 'If': Let $y_{n}=T x_{n} \rightarrow y \in \mathscr{Y}$. If follows from $\left\|x_{m}-x_{n}\right\| \leq a\left\|y_{m}-y_{n}\right\|$ that $\left\{x_{n}\right\}$ is a Cauchy sequence, thus converges to some point $x \in \mathscr{X}$ since \mathscr{X} is complete. Since T is a closed map, we have that $x \in D(T)$ and $y=T x \in R(T)$, which implies that $R(T)$ is closed. Let $x \in N(T)$, then $\|x\| \leq a\|T x\|=0$, so $x=0$, and $N(T)=\{0\}$.
'Only if': Since $R(T)$ is closed, $(R(T),\|\cdot\|)$ is a Banach space. Since $N(T)=0, T$ is injective and there exists $T^{-1}: R(T) \rightarrow X$. According to Exercise 2.3.4(3), T^{-1} is a closed map. The closed graph theorem tells us that T^{-1} is continuous thus bounded, $\left\|T^{-1} x\right\| \leq a\|x\|$ for some a and $x \in D\left(T^{-1}\right)=$ $R(T)$, so $\|x\| \leq a\|T x\|$ for all $x \in D(T)$.
(3) From Exercise 1.4.17(6), we know that $\mathscr{X} / N(T)$ is a Banach space. Define $\widetilde{T}: \mathscr{X} / N(T) \rightarrow \mathscr{Y}$ as $\widetilde{T}[x]=T x$. We have $N(\widetilde{T})=[0]$ and $R(\widetilde{T})=R(T)$. We shall show that \widetilde{T} is a closed map.
Suppose that $\left[x_{n}\right] \rightarrow\left[x_{0}\right]$ and $\widetilde{T}\left[x_{n}\right] \rightarrow y$. According to Exercise 1.4.17(5), we can choose $x_{n}^{\prime} \in\left[x_{n}\right]$ such that $x_{n} \rightarrow x_{0}^{\prime}$, and thus $T x_{n}^{\prime} \rightarrow y$. Since T is a closed map, it holds that $x_{0}^{\prime} \in D(T)$ and $y=T x_{0}^{\prime}$. Hence $\left[x_{0}^{\prime}\right]$ is well-defined, $y=\widetilde{T}\left[x_{0}^{\prime}\right]$ and \widetilde{T} is a closed map. It follows from (2) that $R(T)$ is closed iff $d(x, N(T))=\|[x]\| \leq a\|\widetilde{T}[x]\|=a\|T x\|$ for some a.
3.13 Let $a(x, y)$ be a sesquilinear functional over a Hilbert space H, which satisfies that
(1) $\exists M>0$, such that $|a(x, y)| \leq M\|x\|\|y\| \quad \forall x, y \in H$;
(2) $\exists \delta>0$, such that $|a(x, x)| \geq \delta\|x\|^{2} \quad \forall x \in H$.

Prove that $\forall f \in H^{*}, \exists \mid y_{f} \in H$, such that

$$
a\left(x, y_{f}\right)=f(x) \quad(\forall x \in H)
$$

and y_{f} depends on f continuously.
Proof. Fix $y \in H$, define $T_{y}(x)=a(x, y)$ for $x \in H$. It is clear that T_{y} is a linear functional and $\left|T_{y}(x)\right|=$ $|a(x, y)| \leq M\|x\|\|y\|$, which implies that T_{y} is continuous and $\left\|T_{y}\right\| \leq M\|y\|$. By Riesz's Representation Theorem, there exists unique $Y(f)$ for every f such that

$$
(x, Y(f))=f(x), \forall x \in H
$$

We want to find unique y such that $T_{y}(x)=f(x)$ for all $x \in H$, or (because $Y: H^{*} \rightarrow H$ is injective), $Y\left(T_{y}\right)=Y(f)$.
Let $0<\rho<\delta / M^{2}$. Define $A: H \rightarrow H$ as

$$
A y=y-\rho\left(Y\left(T_{y}\right)-Y(f)\right), \quad y \in H
$$

then for all $y_{1}, y_{2} \in H$, denote $y=y_{1}-y_{2}$, it holds that

$$
\begin{aligned}
\left\|A y_{1}-A y_{2}\right\| & =\| y_{1}-y_{2}-\rho\left(Y\left(T_{y_{1}}\right)-Y\left(T_{y_{2}}\right)\right) \\
& =\left\|y-\rho Y\left(T_{y}\right)\right\| \\
& =\|y\|^{2}-2 \rho\left(y, Y\left(T_{y}\right)\right)+\rho^{2}\left\|Y\left(T_{y}\right)\right\|^{2} \\
& =\|y\|^{2}-2 \rho T_{y}(y)+\rho^{2} T_{y}\left(Y\left(T_{y}\right)\right) \\
& =\|y\|^{2}-2 \rho a(y, y)+\rho^{2} a\left(y, Y\left(T_{y}\right)\right) \\
& \leq\|y\|^{2}-2 \rho \delta\|y\|^{2}+\rho^{2} M\|y\|\left\|\left(T_{y}\right)\right\| \\
& \leq\left(1-2 \rho \delta+\rho^{2} M^{2}\right)\|y\|^{2} \quad\left(\text { because }\left\|Y\left(T_{y}\right)\right\|=\left\|T_{y}\right\|\right)
\end{aligned}
$$

Since $1-2 \rho \delta+\rho^{2} M^{2}<1, A$ is a contraction map, thus A has a unique fixed point, say y, and $\rho\left(Y\left(T_{y}\right)-\right.$ $Y(f))=0$ or $Y\left(T_{y}\right)=Y(f)$. This y is exactly the y_{f} we desire.
Now we show the continuity. Let $f, g \in H^{*}$, then

$$
\begin{aligned}
\delta\left\|y_{f}-y_{g}\right\|^{2} & \leq\left|a\left(y_{f}-y_{g}, y_{f}-y_{g}\right)\right| \\
& =\left|(f-g)\left(y_{f}-y_{g}\right)\right| \leq\|f-g\|\left\|y_{f}-y_{g}\right\|
\end{aligned}
$$

hence $\left\|y_{f}-y_{g}\right\| \leq\|f-g\| / \delta$, which indicates the continuity.
3.14 Suppose that Ω be a bounded open region with smooth boundary in \mathbb{R}^{2}. The map $\alpha: \Omega \rightarrow \mathbb{R}$ is bounded and measurable such that $0<\alpha_{0} \leq \alpha$. Let $f \in L^{2}(\Omega)$. Define

$$
\begin{gathered}
\alpha(u, v)=\int_{\Omega}(\nabla u \cdot \nabla v+\alpha u v) d x d y, \forall u, v \in H^{1}(\Omega) \\
F(v)=\int_{\Omega} f v d x d y, \forall v \in L^{2}(\Omega)
\end{gathered}
$$

Show that there exists unique $u \in H^{1}(\Omega)$ such that

$$
a(u, v)=F(v), \forall v \in H^{1}(\Omega)
$$

Proof. We verify the conditions in the previous problem are satisfied and the conclusion follows immediately. It is clear that $a(u, v)$ is bilinear. Suppose that $|\alpha(x, y)| \leq M(M \geq 1)$, then it holds that

$$
\begin{aligned}
|a(u, v)| & \leq M \int_{\Omega}(\|\nabla u\| \cdot\|\nabla v\|+|u| \cdot|v|) \\
& \leq M \int_{\Omega}\left(\|\nabla u\|^{2}+|u|^{2}\right)^{\frac{1}{2}}\left(\|\nabla v\|^{2}+|v|^{2}\right)^{\frac{1}{2}} \\
& \leq M\left[\int_{\Omega}\left(\|\nabla u\|^{2}+|u|^{2}\right)\right]^{\frac{1}{2}}\left[\int_{\Omega}\left(\|\nabla v\|^{2}+|v|^{2}\right)\right]^{\frac{1}{2}} \\
& =M\|u\|_{H^{1}}\|v\|_{H^{1}}
\end{aligned}
$$

and

$$
|a(u, u)|=\int_{\Omega}\left(\|\nabla u\|^{2}+\alpha|u|^{2}\right) \geq \min \left\{1, \alpha_{0}\right\} \int_{\Omega}\left(\|\nabla u\|^{2}+|u|^{2}\right)=\min \left\{1, \alpha_{0}\right\}\|u\|_{H^{1}}^{2} .
$$

4 Hahn-Banach Theorem

4.1 Let p be a sublinear functional on a real linear space \mathscr{X}, show that
(1) $p(0)=0$;
(2) $p(-x) \geq-p(x)$;
(3) Given $x_{0} \in \mathscr{X}$, there exists a real functional f on \mathscr{X} such that $f\left(x_{0}\right)=p\left(x_{0}\right)$ and $f(x) \leq p(x)$.

Proof. (1) $p(a \cdot 0)=a \cdot p(0)$ for $a>0$, hence $p(0)=0$.
(2) $0=p(0)=p(x+(-x)) \leq p(x)+p(-x)$, hence $p(-x) \geq-p(x)$.
(3) Consider $\mathscr{X}_{0}=\left\{\lambda x_{0} \mid \lambda \in \mathbb{R}\right\}$. It is a closed subspace, and we define $f_{0}\left(\lambda x_{0}\right)=\lambda p\left(x_{0}\right)$ for $\lambda>0$ and $f_{0}\left(\lambda x_{0}\right)=-\lambda f\left(-x_{0}\right)$ for $\lambda \leq 0$ on it. From real Hahn-Banach Theorem, we can extend f_{0} to f over entire \mathscr{X} such that $f(x) \leq p(x)$ and $f\left(x_{0}\right)=f_{0}\left(x_{0}\right)=p\left(x_{0}\right)$.
4.2 Let \mathscr{X} be a real linear space consisting of all real sequence $x=\left\{a_{n}\right\}$. The equality and operations over \mathscr{X} are defined coordinate-wise, and we define

$$
p(x)=\varlimsup_{n \rightarrow \infty} a_{n} \quad \forall x=\left\{a_{n}\right\} \in \mathscr{X}
$$

Show that $p(x)$ is a sublinear functional on \mathscr{X}.
Proof. Trivial.
4.3 Let X be a complex linear space and p a seminorm over \mathscr{X} satisfying that $p\left(x_{0}\right) \neq 0$ for all $x_{0} \in \mathscr{X}$. Show that there exists linear functional f on \mathscr{X} such that
(1) $f\left(x_{0}\right)=1$;
(2) $|f(x)| \leq p(x) / p\left(x_{0}\right), \quad \forall x \in \mathscr{X}$.

Proof. Consider $\mathscr{X}_{0}=\left\{\lambda x_{0} \mid \lambda \in \mathbb{R}\right\}$, which is a closed subspace. We define $f_{0}(x)=|\lambda|$ for $x=\lambda x_{0}$, then $\left|f_{0}(x)\right| \leq p(x) / p\left(x_{0}\right)$. According to Hahn-Banach Theorem, we can extend f_{0} to f over the entire \mathscr{X} such that $f(x) \leq p(x) / p\left(x_{0}\right)$ and $f\left(x_{0}\right)=f_{0}\left(x_{0}\right)=1$.
4.4 Let \mathscr{X} be a normed linear space and $\left\{x_{n}\right\} \subseteq \mathscr{X}$. If $\left\{f\left(x_{n}\right)\right\}$ is bounded for all $f \in \mathscr{X}^{*}$, show that $\left\{x_{n}\right\}$ is bounded in \mathscr{X}.

Proof. Let $g_{n}(f)=f\left(x_{n}\right)$, hence for every $f \in X^{*},\left\{g_{n}(f)\right\}$ is bounded, it follows from uniform boundedness theorem that $\left\{\left\|g_{n}\right\|\right\}$ is bounded.

$$
\left\|g_{n}\right\|=\sup _{f \in X^{*}} \frac{\left\|g_{n}(f)\right\|}{\|f\|}=\sup _{f \in X^{*}} \frac{\left|f\left(x_{n}\right)\right|}{\|f\|} .
$$

Since $f \in X^{*}$, the right-hand side $\leq\left\|x_{n}\right\|$, however, from Corollary 2.4.6 there exists $f \in X^{*}$ such that $f\left(x_{n}\right)=\left\|x_{n}\right\|$ and $\|f\|=1$, it follows that the right-hand side is exactly $\left\|x_{n}\right\|$. Therefore $\left\{x_{n}\right\}$ is bounded.
4.5 Let \mathscr{X}_{0} be a closed subspace of normed linear space \mathscr{X}. Show that

$$
\rho\left(x, \mathscr{X}_{0}\right)=\sup \left\{|f(x)|: f \in X^{*},\|f\|=1, f\left(\mathscr{X}_{0}\right)=0\right\}
$$

where $\rho\left(x, \mathscr{X}_{0}\right)=\inf _{y \in \mathscr{X}_{0}}\|x-y\|$.
Proof. The statement holds trivially for $\rho\left(x, \mathscr{X}_{0}\right)=0$. Assume $\rho\left(x, \mathscr{X}_{0}\right)>0$, for f with $\|f\|=1$ and $f\left(\mathscr{X}_{0}\right)=0$, it holds that

$$
|f(x)|=|f(x-y)| \leq\|f\|\|x-y\|=\|x-y\|, \quad y \in \mathscr{X}_{0}
$$

hence

$$
\sup \left\{|f(x)| \mid f \in X^{*},\|f\|=1, f\left(\mathscr{X}_{0}\right)=0\right\} \leq \inf _{y \in \mathscr{X}_{0}}\|x-y\|=\rho\left(x, \mathscr{X}_{0}\right)
$$

It follows from Theorem 2.4.7 that the equality does hold.
4.6 Let \mathscr{X} be a normed linear space and x_{1}, \ldots, x_{n} be n linearly independent vectors in \mathscr{X} and C_{1}, \ldots, C_{n} be n constants in \mathbb{K}. Suppose that $M>0$, show that there exists $f \in \mathscr{X}^{*}$ such that $f\left(x_{k}\right)=C_{k}$ and $\|f\| \leq M$ if and only if it holds that

$$
\left|\sum_{k=1}^{n} a_{k} C_{k}\right| \leq M\left\|\sum_{k=1}^{n} a_{k} x_{k}\right\|
$$

fir all $a_{1}, \ldots, a_{n} \in \mathbb{K}$.
Proof. The `only if' part is trivial. We shall prove the `if' part. Assume that for all $a_{1}, \ldots, a_{n} \in \mathbb{K}$ it holds that $\left|\sum_{k=1}^{n} a_{k} C_{k}\right| \leq M\left\|\sum_{k=1}^{n} a_{k} x_{k}\right\|$, then we can define a linear functional f_{0} on span $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $f_{0}\left(x_{k}\right)=C_{k}$ and it is clear that $\left\|f_{0}\right\| \leq M$. According to Hahn-Banach Theorem, we can extend f_{0} to a functional f over entire \mathscr{X} with $\|f\|=\left\|f_{0}\right\| \leq M$.
4.7 Given n linearly independent vectors x_{1}, \ldots, x_{n} in a normed linear space \mathscr{X}, show that there exist $f_{1}, \ldots, f_{n} \in$ \mathscr{X}^{*} such that

$$
\left\langle f_{i}, x_{j}\right\rangle=\delta_{i j}, \quad i, j=1,2, \ldots, n
$$

Proof. Given j, we can define a linear functional f_{0} over $\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ with $f_{0}\left(x_{k}\right)=1$ iff $k=j$. We shall show that $f_{0} \in X^{*}$ then Hahn-Banach Theorem states the existence of f_{j} as required. Let $x=$ $\sum_{i=1}^{n} \lambda_{i} x_{i}$ then $f_{0}(x)=\left|\lambda_{j}\right|$. Thus

$$
\left\|f_{0}\right\|=\sup \frac{\left|\lambda_{j}\right|}{\left\|\sum \lambda_{i} x_{i}\right\|}=\sup \frac{1}{\left\|\sum \frac{\lambda_{i}}{\left|\lambda_{j}\right|} x_{i}\right\|}
$$

it suffices to show that the norm of $\sum \lambda_{i} x_{i}$ (where $\lambda_{j}=1$) is not less than d for some $d>0$, or, $\rho\left(x_{j}, \mathscr{X}_{0}\right)>$ 0 , where $\mathscr{X}_{0}=\operatorname{span}\left\{x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right\}$. This is obviously true, as \mathscr{X}_{0} is closed and does not contain x_{j}.
4.8 Let \mathscr{X} be a linear space, show that M is the maximal linear subspace of $\mathscr{X} \operatorname{iff} \operatorname{dim}(\mathscr{X} / M)=1$.

Proof. `If': Assume that \(\operatorname{dim}(\mathscr{X} / M)=1\), then \(\mathscr{X} / M=\left\{\left[a x_{0}\right]: a \in \mathbb{K}\right\}\), where \(x_{0} \notin M\). Suppose that there is a linear space \(S \supsetneq M\). Take \(x_{0} \in S \backslash M\), we have that \(a x_{0} \in S\) and \(a x_{0}+M \subseteq S\) for all \(a \in \mathbb{K}\). Notice that the union of \(a x_{0}+M\) is exactly \(\mathscr{X}\), hence \(S=\mathscr{X}\), which implies that \(M\) is the maximal subspace. `Only if': Suppose that M is a maximal subspace. Take $x_{0} \notin M$. Since $\bigcup_{a \in \mathbb{K}}\left(a x_{0}+M\right)$ is a linear subspace and it must be \mathscr{X} due to the maximality of M. So $\operatorname{dim}(\mathscr{X} / M)=1$.
4.9 Let \mathscr{X} be a complex linear space, E an nonempty balanced set and f a linear functional on \mathscr{X}. Show that

$$
|f(x)| \leq \sup _{y \in E} \Re f(y), \quad \forall x \in E
$$

Proof. Let θ be the argument of $f(x)$, then $|f(x)|=e^{-i \theta} f(x)=f\left(e^{-i \theta} x\right)=\Re f\left(e^{-i \theta} x\right)$, and $e^{-i \theta} x \in E$ since E is balanced. The conclusion follows immediately.
4.10 Let \mathscr{X} be a normed linear space, E an nonempty balanced closed convex set and $x_{0} \in \mathscr{X} \backslash E$. Prove that there exists $f \in X^{*}$ and $a>0$ such that

$$
|f(x)|<a<\left|f\left(x_{0}\right)\right|, \quad \forall x \in E
$$

Proof. Since $x_{0} \notin E$ and E is closed, there exists δ such that $B\left(x_{0}, \delta\right) \subseteq E^{c}$. View \mathscr{X} as a real normed linear space and apply Theorem 2.4.15, there exists $s \in \mathbb{R}$ and a nonzero continuous linear functional g such that $g(x) \leq s$ for all $x \in E$ and $g(x) \geq s$ for all $x \in B\left(x_{0}, \delta\right)$. Define $f(x)=g(x)-i g(i x)$ then f is a complex linear functional, and $|f(x)|=g\left(e^{-i \theta} x\right)$, where $\theta=\arg f(x)$. Hence $|f(x)| \leq s$ for all $x \in E$, and $\left|f\left(x_{0}\right)\right| \geq \Re f\left(x_{0}\right)=g\left(x_{0}\right)>s$, because $g\left(x_{0}\right)$ can not be the minimum or maximum value of g in $B\left(x_{0}, \delta\right)$ (see Exercise 2.1.9).
4.11 Let \mathscr{X} be a normed linear space, E, F are two disjoint nonempty convex set in \mathscr{X}, where E is open and balanced. Show that there exists $f \in X^{*}$ such that

$$
|f(x)|<\inf _{y \in F}|f(y)|, \quad \forall x \in E
$$

Proof. View \mathscr{X} as real linear space and apply Theorem 2.4.15, we obtain $s \in \mathbb{R}$ and a nonzero continuous linear functional g such that $g(x) \leq s$ for all $x \in E$ and $g(x) \geq s$ for all $x \in F$. Let $f(x)=g(x)-i g(i x)$ then f is a complex linear functional, and $|f(x)|=g\left(e^{-i \theta} x\right) \leq s$, where $\theta=\arg f(x)$. Actually the inequality holds strictly because E is open. And for $y \in F,|f(y)| \geq \Re f(y)=g(y) \geq s$, hence inf $|f(y)| \geq$ s.
4.12 Let C be a convex set in a real normed linear space B^{*} and $x_{0} \in C^{\circ}, x_{1} \in \partial C, x_{2}=m\left(x_{1}-x_{0}\right)+x_{0}$ $(m>1)$. Show that $x_{2} \notin C$.

Proof. Suppose that $x_{2} \in C$. Since x_{0} is an interior point, there exists δ such that $B\left(x_{0}, \delta\right) \subseteq C$. Let $d=\delta\left(1-\frac{1}{m}\right)$. We shall show that $B\left(x_{1}, d\right) \subseteq C$ to meet a contradiction.
Let $z \in B\left(x_{1}, d\right)$ and $u=\left(z-\frac{1}{m} x_{2}\right) /\left(1-\frac{1}{m}\right)$, then $z=\frac{1}{m} x_{2}+\left(1-\frac{1}{m}\right) u$. It suffices to show that $\left\|u-x_{0}\right\|<\delta$, and in fact, we have

$$
\left\|u-x_{0}\right\|=\left\|\frac{z-\frac{1}{m} x_{2}}{1-\frac{1}{m}}-x_{0}\right\|=\left\|\frac{z-\left(\frac{1}{m} x_{2}+\left(1-\frac{1}{m}\right) x_{0}\right.}{1-\frac{1}{m}}\right\|=\left\|\frac{z-x_{1}}{1-\frac{1}{m}}\right\|<\frac{d}{1-\frac{1}{m}}=\delta
$$

4.13 Let M be a closed convex set in a normed linear space \mathscr{X}, show that for all $x \in \mathscr{X} \backslash M$ there exists $f_{1} \in \mathscr{X}^{*}$ satisfying $\left\|f_{1}\right\|=1$ and

$$
\sup _{y \in M} f_{1}(y) \leq f_{1}(x)-d(x)
$$

where $d(x)=\inf _{z \in M}\|x-z\|$.
Proof. Let $x_{0} \in M^{c}$, we see that $B\left(x_{0}, d(x)\right) \cap M=\emptyset$, then applying Theorem 2.4.15, there exists s and $g \in \mathscr{X}^{*}$ such that $g(x) \leq s$ for $x \in M$ and $g(x) \geq s$ for $x \in B\left(x_{0}, \delta\right)$. Let $f_{1}=g /\|g\|$, we have $f_{1}(x) \leq$ $s /\|g\|$ for $x \in M$ and $f_{1}(x) \geq s /\|g\|$ for all $x \in B\left(x_{0}, \delta\right)$. It suffices to show that $\inf _{x \in B\left(x_{0}, \delta\right)} f_{1}(x)=$ $f_{1}(x)-d(x)$. This is true, because

$$
\begin{aligned}
\inf _{x \in B\left(x_{0}, d(x)\right)} f_{1}(x) & =\inf _{y \in B(0,1)} f_{1}\left(x_{0}-d(x) y\right) \\
& =f_{1}\left(x_{0}\right)-d(x) \sup _{y \in B(0,1)} f_{1}(y) \\
& =f_{1}\left(x_{0}\right)-d(x)\left\|f_{1}\right\| .
\end{aligned}
$$

4.14 Let M be a closed convex set of real normed linear space \mathscr{X}. Show that

$$
\inf _{z \in M}\|x-z\|=\sup _{\substack{f \in \mathscr{X} * \\\|f\|=1}}\left\{f(x)-\sup _{z \in M} f(z)\right\}, \quad \forall x \in \mathscr{X} .
$$

Proof. Since $\|f\|=1$, we have that $f(x)-f(z) \leq\|x-z\|$. Take infimum on both sides, we obtain that $f(x)-\sup _{z \in M} f(z) \leq \inf _{z \in M}\|x-z\|$, and hence the right-hand side is not greater than the left one. If $x \notin M$, combining with the previous problem, we know the equality holds.
If $x \in M$, the proposition is false. Take the closed unit ball as M and $x=0$. The left-hand side is obviously 0 . Since $\|f\|=1$, that is, $\sup _{\|x\|=1}|f(x)|=1$, we must have that $\sup _{z \in M} f(z)=1$. Thus the right-hand side is -1 .
4.15 Let \mathscr{X} be a Banach space and $f: \mathscr{X} \rightarrow \overline{\mathbb{R}}$ is a continuous convex functional with $f(x) \not \equiv \infty$. Define $f^{*}: \mathscr{X}^{*} \rightarrow \overline{\mathbb{R}}$ as

$$
f^{*}\left(x^{*}\right)=\sup _{x \in \mathscr{X}}\left\{\left\langle x^{*}, x\right\rangle-f(x)\right\}, \quad \forall x^{*} \in \mathscr{X}^{*},
$$

show that $f^{*}\left(x^{*}\right) \not \equiv \infty$.
4.16 Let \mathscr{X} be a Banach space and $x(t):[a, b] \rightarrow \mathscr{X}$ is a continuous function. Denote by Δ a partition of $[a, b]:$

$$
a=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=b
$$

Define $\|\Delta\|=\max _{0 \leq i \leq n-1}\left\{\left|t_{i+1}-t_{i}\right|\right\}$. Show that the limit

$$
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=0}^{n-1} x\left(t_{i}\right)\left(t_{i+1}-t_{i}\right)
$$

exists in \mathscr{X}. (The limit is called the Riemann integral of function $x(t)$ over $[a, b]$)
4.17 Let \mathscr{X} be a Banach space and G an open domain with boundary (simple curve) L. If $x(z): \bar{G} \rightarrow \mathscr{X}$ is analytic within G and continuous on \bar{G}. Show that $\int_{L} x(z) d z=0$.
4.18 Prove that
(1) $|x|$ is convex on \mathbb{R};
(2) The subderivative of $|x|$ at $x=0$, namely, $\partial|x|(0)$, is $[-1,1]$.

Proof. (1) Trivial.
(2) From definition, we have that $\partial|x|(0)=\left\{x^{*} \in \mathbb{R}^{*}:\left\langle x^{*}, x\right\rangle \leq|x|(\forall x \in \mathbb{R})\right\}$. Let $x^{*} \in \partial|x|(0)$ and $\lambda=\left\langle x^{*}, 1\right\rangle$, then $|\lambda| \leq 1$ and $\left\langle x^{*}, y\right\rangle=\lambda y$. On the other hand, it is easy to verify that such x^{*} are subgradient of $|x|$. The conclusion follows immediately.

5 Conjugate Space, Weak Convergence and Reflexive Space

5.1 Show that $\left(l^{p}\right)^{*}=l^{q}, 1 \leq p<\infty, 1 / p+1 / q=1$.

Proof. Let $b=\left\{b_{k}\right\} \in l^{q}$, define $f_{b}(a)=\sum a_{k} b_{k}$ for $a \in l^{p}$ which is a linear functional. From Hölder's Inequality we have that $\left|\sum a_{k} b_{k}\right| \leq\|a\|\|b\|$ and thus the map $b \mapsto f_{b}$ is a map from l^{q} to $\left(l^{p}\right)^{*}$, denote it by F.
We show that F is a surjective isometry. Given $f \in\left(l^{p}\right)^{*}$ we shall find $b \in l^{q}$ such that $f_{b}=f$ and $\|b\|=\|f\|$. Let $z_{n}=\left(z_{n 1}, z_{n 2}, \ldots\right)$ where $z_{n k}=\delta_{n k}$, and $b_{k}=f\left(z_{k}\right)$. We shall prove that $b \in l^{q}$ based on the following two cases.
(1) Case $p>1$. Let $c_{k}=\left|b_{k}\right|^{q-2} b_{k}$, and $y_{n}=\left(c_{1}, \ldots, c_{n}, 0, \ldots\right)$, then we have $\left(\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right)=$ $\sum_{k=1}^{n} c_{k} b_{k}=f\left(y_{n}\right) \leq\|f\|\left\|y_{n}\right\|=\|f\|\left(\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right)^{\frac{1}{p}}$, hence $\left(\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right)^{\frac{1}{q}} \leq\|f\|$ for all n and $b \in l^{q}$.
(2) Case $p=1$. $\left|b_{k}\right|=\left|g\left(z_{n}\right)\right| \leq\|g\|\left\|z_{n}\right\|=\|g\|$, thus $b \in l^{\infty}$.

Then it is not difficult to show that $f(a)=\sum a_{k} b_{k}$ for all $a \in l^{p}$.
5.2 Let C be the set of all convergent sequences of numbers, and define

$$
\|\cdot\|:\left\{\xi_{k}\right\} \in C \mapsto \sup _{k \geq 1}\left|\xi_{k}\right|,
$$

show that $C^{*}=l^{1}$.
Proof. Let $a=\left\{a_{k}\right\} \in l^{1}$, define $f(a)=g_{a}: C \rightarrow \mathbb{R}$ as $g(x)=a_{1} \lambda+\sum_{k=1}^{\infty} a_{k+1} x_{k}$, where λ is the limit of $\left\{x_{n}\right\}$, then we have that $\left|g_{a}(x)\right| \leq|\lambda|\left|a_{1}\right|+\|x\| \sum_{k=2}^{\infty}\left|a_{k}\right| \leq\|a\|\|x\|$, thus $g_{A} \in C^{*}$ Furthermore, take $x=\left(\operatorname{sgn} a_{1}, \operatorname{sgn} a_{2}, \ldots\right)$ we have $\left|g_{a}(x)\right|=\|a\|$, hence $\left\|g_{a}\right\|=\|a\|$, and $f: l^{1} \rightarrow C^{*}$ is an isometry (it is obvious that f is injective).
It suffices to show that f is surjective. Let $g \in C^{*}$, let $a_{k+1}=g\left(x_{k}\right)$, where $x_{k}=\left(x_{k 1}, \ldots, x_{k j}, \ldots\right)$ and $x_{k j}=\delta_{k j}$. Let $z_{n}=\left(\operatorname{sgn} a_{2}, \operatorname{sgn} a_{3}, \ldots, \operatorname{sgn} a_{n}, 0, \ldots\right)$, then $\sum_{k=2}^{n}\left|a_{k}\right|=\left|g\left(z_{n}\right)\right| \leq\|g\|\left\|z_{n}\right\|=\|g\|$ for all n, hence $\sum_{k=2}^{\infty}\left|a_{k}\right|$ exists and we can define $a_{1}=g((1,1, \ldots))-\sum a_{k+1}$. It is easy to verify that $a=\left(a_{1}, a_{2}, \ldots\right)$ is what we desire. Therefore f is surjective.
5.3 Let C_{0} be the set of all sequences converging to 0 , and define

$$
\|\cdot\|:\left\{\xi_{k}\right\} \in C \mapsto \sup _{k \geq 1}\left|\xi_{k}\right|,
$$

show that $C_{0}^{*}=l^{1}$.

Proof. Let $a=\left\{a_{k}\right\} \in l^{1}$, define $f(a)=g_{a}: C \rightarrow \mathbb{R}$ as $g(x)=\sum a_{k} \xi_{k}$. It is clear that $g_{a}(x)$ exists since $\left\{\xi_{k}\right\}$ is bounded. And $\left|g_{a}(x)\right| \leq\|a\|\|x\|$, which implies that $\left\|g_{a}\right\| \leq\|a\|$. Let $y_{n}=$ $\left(\operatorname{sgn} a_{1}, \ldots, \operatorname{sgn} a_{n}, 0,0, \ldots\right)$, then $g_{a}\left(y_{n}\right)=\sum_{i=1}^{n}\left|a_{k}\right| \rightarrow\|a\|$ as $n \rightarrow \infty$, and $\left\|y_{n}\right\|=1$ for all n, hence $\left\|g_{a}\right\|=\|a\|$, and $f: l^{1} \rightarrow C^{*}$ is an isometry.
Now we shall show that f is surjective. Let $g \in C^{*}$, let $a_{k}=g\left(x_{k}\right)$, where $x_{k}=\left(x_{k 1}, \ldots, x_{k j}, \ldots\right)$ and $x_{k j}=\delta_{k j}$. Notice that if $x=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \in C$ then $\sum \lambda_{i} x_{i}$ converges to x in C_{0}, hence $g(x)=\sum a_{k} \lambda_{k}$. The last thing is to show that a is in l^{1} indeed. Take $z_{n}=\left(\operatorname{sgn} a_{1}, \ldots, \operatorname{sgn} a_{n}, 0, \ldots\right)$, then $\sum_{k=1}^{n}\left|a_{k}\right|=$ $\left|g\left(z_{n}\right)\right| \leq\|g\|\left\|z_{n}\right\|=\|g\|$ for all n. Hence $\sum\left|a_{k}\right|$ exists and f is therefore surjective.
5.4 Prove that a finite dimensional normed linear space is reflexive.

Proof. Suppose that e_{1}, \ldots, e_{n} be a basis of normed linear space \mathscr{X}. Since the natural map $T: \mathscr{X} \rightarrow$ $\mathscr{X}^{* *}$ is injective, $T e_{1}, \ldots, T e_{n}$ is a basis of $T(\mathscr{X})$, thus $\operatorname{dim} T(\mathscr{X})=n$. Now it suffices to show that the conjugate space of a n-dimensional space is also n-dimensional. Based on this, we would have that $\operatorname{dim} \mathscr{X}^{* *}=\operatorname{dim} \mathscr{X}^{*}=\operatorname{dim} \mathscr{X}=n$, whence it must hold that $T(\mathscr{X})=\mathscr{X}^{* *}$ and \mathscr{X} is reflexive.
To prove that $\operatorname{dim} \mathscr{X}^{*}=n$, we shall find a basis of \mathscr{X}^{*}. Take f_{1}, \ldots, f_{n} defined by $f_{i}\left(e_{j}\right)=\delta_{i j}$, it is easy to verify that $\left\{f_{i}\right\}$ is a basis.
5.5 Prove that a Banach space is reflexive iff its conjugate space is reflexive.

Proof. Denote the Banach space by \mathscr{X}, the natural map from \mathscr{X} to $\mathscr{X}^{* *}$ by T and the natural map from \mathscr{X}^{*} to $\mathscr{X}^{* * *}$ by U.
'Only if': Assume that \mathscr{X} is reflexive, or T is bijective. Let $y \in \mathscr{X}^{* * *}$ we need to find $f \in \mathscr{X}^{*}$ such that $U f=y$, or $y(X)=X(f)$ for all $X \in \mathscr{X}^{* *}$. Define $f: \mathscr{X} \rightarrow \mathbb{K}$ as $f(x)=y(T x)$, we shall show that f is exactly desired.
Let $X \in \mathscr{X}^{* *}$, then we have $X(f)=f\left(T^{-1} X\right)=y(X)$. And we also know that $f \in \mathscr{X}^{*}$, because $|f(x)|=|y(T x)| \leq\|y\|\|T x\|=\|y\|\|x\|$.
'If': Assume that \mathscr{X}^{*} is reflexive, hence $\mathscr{X}^{* *}$ is reflexive (this is the `only-if' part). Since \mathscr{X} is complete, $T \mathscr{X}$ is a closed subspace of $\mathscr{X}^{* *}$ thus reflexive (Pettis Theorem).
5.6 Let X be a normed linear space and T the natural map from X to $X^{* *}$. Show that $R(T)$ is closed iff \mathscr{X} is complete.

Proof. Trivial, as T is an isometry.
5.7 Define T over l^{1} as

$$
T:\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \mapsto\left(0, x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)
$$

Show that $T \in \mathscr{L}\left(l^{1}\right)$ and find T^{*}.
Proof. It is clear that $\|T x\|=\|x\|$ hence $T \in \mathscr{L}\left(l^{1}\right)$. For all $f \in\left(l^{1}\right)^{*}, T^{*} f(x)=f(T x)$. Note that f corresponds to $\left(b_{1}, b_{2}, \ldots\right)$ in l^{∞} as presented in Exercise 2.5.1. Thus $T^{*} f$ corresponds to $\left(b_{2}, b_{3}, \ldots\right)$. So $T^{*} f$ is the left shift operator in l^{∞}.
5.8 Define T over l^{2} as

$$
T:\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \mapsto\left(x_{1}, \frac{x_{2}}{2}, \ldots, \frac{x_{n}}{n}, \ldots\right)
$$

Show that $T \in \mathscr{L}\left(l^{2}\right)$ and find T^{*}.
Proof. $\|T x\|=\sum\left|x_{k}\right| / k^{2} \leq\left(\sum\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}\left(\sum 1 / k^{2}\right)^{\frac{1}{2}} \leq \sqrt{2}\|x\|$, hence T is a bounded operator. Suppose $f \in\left(l^{2}\right)^{*} \simeq l^{2}$ corresponds to $\left(b_{1}, b_{2}, \ldots\right) \in l^{2}$. Then $T^{*} f$ corresponds to $\left(b_{1}, b_{2} / 2, \ldots\right)$. Therefore $T^{*} f=f$.
5.9 Let H be a Hilbert space, $A \in \mathscr{L}(H)$ satisfies

$$
(A x, y)=(x, A y), \quad \forall x, y \in H
$$

Show that
(1) $A^{*}=A$;
(2) If $R(A)$ is dense in H, then function $A x=y$ has a unique solution for all $y \in R(A)$.

Proof. (1) Let $f \in H^{*}$, from Riesz Representation Theorem, there exists $y_{f} \in H$ such that $f(x)=$ $\left(x, y_{f}\right)$ and $\|f\|=\left\|y_{f}\right\|$. So $H^{*} \simeq H$, under the isometry $f \mapsto y_{f}$. Since it holds that $\left(x, y_{A^{*} f}\right)=$ $\left(A^{*} f\right)(x)=f(A x)=\left(A x, y_{f}\right)=\left(x, A y_{f}\right)$ for all x, we must have $y_{A^{*} f}=A y_{f}$ for all $f \in H^{*}$. A^{*} maps f to $A^{*} f$, corresponding with y_{f} to $y_{A^{*} f}=A y_{f}$ in H, therefore $A^{*}=A$.
(2) It suffices to show that $A x=0$ has unique solution $x=0$. Suppose y is a solution to $A x=0$ then $0=(x, A y)=(A x, y)$ for all x, hence y is orthogonal to every element in $R(A)$. Since $R(A)$ is dense, we have that y is orthogonal to every element in \mathscr{X}, and y must be 0 .
5.10 Let \mathscr{X} and \mathscr{Y} be normed linear spaces and $A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$. Suppose that A^{-1} exists and $A^{-1} \in \mathscr{L}(\mathscr{Y}, \mathscr{X})$, show that
(1) $\left(A^{*}\right)^{-1}$ exists and $\left(A^{*}\right)^{-1} \in \mathscr{L}\left(\mathscr{X}^{*}, \mathscr{Y}^{*}\right)$;
(2) $\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}$.

Proof. First we show that A^{*} is bijective. Suppose that $A^{*} f=0$, where $f \in \mathscr{Y}^{*}$. Then $f(A x)=A^{*} f(x)=$ 0 for all x. Since A is bijective and $A \mathscr{X}=\mathscr{X}$, we have that $f(x)=0$ for all $x \in \mathscr{X}$, i.e., $f=0$, which implies that A is injective. Let $f \in \mathscr{X}^{*}$, define g as $g(x)=f\left(A^{-1} x\right)$, then $g(A x)=f(x)$, indicating that $A^{*} g=f$, thus A^{*} is surjective. Therefore, $\left(A^{*}\right)^{-1}$ exists.
Let $f \in \mathscr{X}^{*}$ and $g=\left(A^{*}\right)^{-1} f$, then $f=A^{*} g$, thus $g(A x)=A^{*} g(x)=f(x)$, and $|g(x)|=\left|f\left(A^{-1} x\right)\right| \leq$ $\|f\|\|A\|\|x\|$, hence $\left\|\left(A^{*}\right)^{-1} f\right\| \leq\|f\|\left\|A^{-1}\right\|$, and $\left\|\left(A^{*}\right)^{-1}\right\| \leq\left\|A^{-1}\right\|$. So $\left(A^{*}\right)^{-1} \in \mathscr{L}\left(\mathscr{X}^{*}, \mathscr{Y}^{*}\right)$.
It follows from $\left(A^{*}\right)^{-1} f(x)=f\left(A^{-1} x\right)=\left(A^{-1}\right)^{*} f(x)$ that $\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}$.
Remark. It is known that $I^{*}=I$, hence $I=I^{*}=\left(A A^{-1}\right)^{*}=\left(A^{-1}\right)^{*} A^{*}$.
5.11 Let $\mathscr{X}, \mathscr{Y}, \mathscr{Z}$ be normed linear spaces, $B \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$ and $A \in \mathscr{L}(\mathscr{Y}, \mathscr{Z})$. Show that $(A B)^{*}=B^{*} A^{*}$.

Proof. Let $f \in \mathscr{X}^{*}$. It follows from $(A B)^{*} f(x)=f(A B x)=A^{*} f(B x)=B^{*} A^{*} f(x)$ that $(A B)^{*}=$ $B^{*} A^{*}$.
5.12 Let \mathscr{X}, \mathscr{Y} be Banach space and $T: \mathscr{X} \rightarrow \mathscr{Y}$ is a linear operator. For all $g \in \mathscr{Y}^{*}$ it holds that the map $x \mapsto g(T x)$ is in \mathscr{X}^{*}, show that T is continuous.

Proof. It suffices to show that T is a closed map and the conclusion follows from Closed Graph Theorem. Suppose that $x_{n} \rightarrow x$ and $T x_{n} \rightarrow y$. From the assumption we know that $g\left(T x_{n}\right) \rightarrow g(T x)$ for all $g \in Y^{*}$, thus $T x_{n} \rightharpoonup T x$. Hence $T x=y$.
5.13 Suppose that $\left\{x_{n}\right\} \subseteq C[a, b], x \in C[a, b]$ and $x_{n} \rightharpoonup x$. Show that $\lim x_{n}(t)=x(t)$ for all $x \in[a, b]$.

Proof. Fix t, define $f \in C[a, b]^{*}$ as $f(x)=x(t)(|f(x)| \leq\|x\|$ thus $\|f\| \leq 1)$. According to the definition of weak convergence, $\lim f\left(x_{n}\right)=f(x)$, which is exactly $\lim x_{n}(t)=x(t)$.
5.14 In a normed linear space holds $x_{n} \rightharpoonup x_{0}$. Show that $\liminf _{n \rightarrow \infty}\left\|x_{n}\right\| \geq\left\|x_{0}\right\|$.

Proof. It holds obviously if $x_{0}=0$. Now assume that $x_{0} \leq 0$. There exists a linear functional such that $f\left(x_{0}\right)=\left\|x_{0}\right\|$, and $\|f\|=1$. From $\lim f\left(x_{n}\right)=f\left(x_{0}\right)$ it follows that for any $\epsilon>0,\left\|x_{n}\right\| \geq\left|f\left(x_{n}\right)\right|>$ $\left|f\left(x_{0}\right)\right|-\epsilon=\left\|x_{0}\right\|-\epsilon$ when n is large enough, which implies that $\lim \inf \left\|x_{n}\right\| \geq\left\|x_{0}\right\|$.
5.15 Let H be a Hilbert space and $\left\{e_{n}\right\}$ an orthonormal basis. Show that $x_{n} \rightharpoonup x_{0}$ in H iff
(1) $\left\|x_{n}\right\|$ is bounded;
(2) $\left(x_{n}, e_{k}\right) \rightarrow\left(x_{0}, e_{k}\right)$ as $n \rightarrow \infty$ for all k.

Proof. 'If': Let $f \in H^{*}$, by Riesz Representation Theorem we have y_{f} such that $f(x)=\left(x, y_{f}\right)$ for all $x \in H$. Write $y_{f}=\sum_{k} y_{k} e_{k}$. Let $y_{f}^{n}=\sum_{k=1}^{n} y_{k} e_{k}$. Given $\epsilon>0$, there exists N such that $\left\|y_{f}-y_{f}^{n}\right\|<\epsilon$ for all $n>N$. For this y_{f}^{n}, we have $\left|\left(x_{n}-x_{0}, y_{f}^{n}\right)\right| \leq \sum_{k=1}^{n}\left|y_{k}\right|\left|\left(x_{n}-x_{0}, e_{k}\right)\right| \rightarrow 0$ from (2), and thus there exists $N_{1}>N$ such that $\left|\left(x_{n}-x_{0}, y_{f}^{n}\right)\right|<\epsilon$ for all $n>N_{1}$. Suppose that $\left\|x_{n}\right\| \leq M$ and from the previous problem we see that $\left\|x_{0}\right\| \leq M$. It follows that

$$
\begin{aligned}
\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| & =\left|\left(x_{n}-x_{0}, y_{f}\right)\right| \\
& \leq\left|\left(x_{n}-x_{0}, y_{f}^{n}\right)\right|+\left|\left(x_{n}-x_{0}, y_{f}-y_{f}^{n}\right)\right| \\
& \leq \epsilon+\left\|x_{n}-x_{0}\right\|\left\|y_{f}-y_{f}^{n}\right\| \\
& \leq(1+2 M) \epsilon
\end{aligned}
$$

which implies that $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.
'Only if': Assume that $x_{n} \rightharpoonup x_{0}$. Let $f \in H^{*}$ as $f(x)=\left(x, e_{k}\right)$, then (2) holds by the definition of weak convergence. For each n, define $T_{n} \in H^{* *}$ as $T_{n}(f)=f\left(x_{n}\right)$, then it can be shown that $\left\|T_{n}\right\|=\left\|x_{n}\right\|$. Then (1) follows from Uniform Boundedness Theorem.
5.16 Let T_{n} be a translation map in $L^{p}(\mathbb{R})$ as $\left(T_{n} u\right)(x)=u(x+n)$ for all $u \in L^{p}(\mathbb{R})$. Prove that $T_{n} \rightharpoonup 0$ but $\left\|T_{n} u\right\|_{p}=\|u\|_{p}$.

Proof. It is clear that $\left\|T_{n} u\right\|_{p}=\|u\|_{p}$. Let $f \in L^{p}(\mathbb{R})^{*}$, we shall show that $f\left(T_{n} u\right) \rightarrow f(0)$ for all u, or, equivalently, let $v \in L^{q}$, show that $\int_{\mathbb{R}} T_{n} u \cdot v \rightarrow 0$. Given $\epsilon>0$. Since $u \in L^{p}$ there exists X such that $\left(\int_{N}^{\infty}|u|^{p}\right)^{\frac{1}{p}}<\epsilon$, and since $u \in L^{q}$ there exists A such that $\left(\int_{-\infty}^{A}|v|^{q}\right)^{\frac{1}{q}}<\epsilon$. Thus there exists N such that $A+n \geq X$ for all $n>N$. And for those n, it holds that

$$
\begin{aligned}
\left|\int_{\mathbb{R}} T_{n} u \cdot v\right| & =\left|\int_{-\infty}^{A} u(x+n) v(x)\right|+\left|\int_{A}^{\infty} u(x+n) v(x)\right| \\
& \leq \epsilon\|v\|+\|u\| \epsilon=(\|u\|+\|v\|) \epsilon
\end{aligned}
$$

which implies that $\int T_{n} u \cdot v \rightarrow 0$.
5.17 Let S_{n} be an operator on $L^{p}(\mathbb{R})$ defined as

$$
\left(S_{n} u\right)(x)= \begin{cases}u(x), & |x| \leq n \\ 0, & |x|>n\end{cases}
$$

Show that S_{n} converges to I strongly but not uniformly.
Proof. Let $u \in L^{p}(\mathbb{R})$, then $\left\|\left(S_{n}-I\right)(u)\right\|=\left(\int_{n}^{\infty}|u|^{p}\right)^{\frac{1}{p}} \rightarrow 0$, hence $S_{n} \rightarrow I$ strongly. For a fixed $n>1$, take $u(x)=\chi_{|x|>n} 1 / x^{2}$ then $\left\|\left(S_{n}-I\right) u\right\|=\|u\|$, so $\left\|S_{n}-I\right\| \geq 1$. Therefore S_{n} does not converge to I uniformly.
5.18 Let H be a Hilbert space, $x_{n} \rightharpoonup x_{0}$ and $y_{n} \rightarrow y_{0}$. Show that $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)$.

Proof. The weak convergence of $\left\{x_{n}\right\}$ implies that for any $y \in H$ it holds that $\left(x_{n}, y\right) \rightarrow\left(x_{0}, y\right)$. Given ϵ, there exists N such that $\left|\left(x_{n}, y_{0}\right)-\left(x_{0}, y_{0}\right)\right|<\epsilon$ and $\left\|y_{n}-y_{0}\right\|<\epsilon$ for all $n>N$. And from the uniform boundedness priciple there exists M such that $\left\|x_{n}\right\| \leq M$ for all n. Therefore,

$$
\begin{aligned}
\left|\left(x_{n}, y_{n}\right)-\left(x_{0}, y_{0}\right)\right| & \leq\left|\left(x_{n}, y_{n}\right)-\left(x_{n}, y_{0}\right)\right|+\left|\left(x_{n}, y_{0}\right)-\left(x_{0}, y_{0}\right)\right| \\
& \leq\left\|x_{n}\right\|\left\|y_{n}-y_{0}\right\|+\epsilon \\
& \leq(M+1) \epsilon,
\end{aligned}
$$

implying that $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)$.
5.19 Let $\left\{e_{n}\right\}$ be an orthonormal set in Hilbert space H. Prove that $e_{n} \rightharpoonup 0$ and $e_{n} \nrightarrow 0$.

Proof. It follows from $\sum_{n=1}^{\infty}\left|\left(e_{n}, x\right)\right|^{2} \leq\|x\|^{2}$ that $\left(e_{n}, x\right) \rightarrow 0$ for all $x \in H$, thus $e_{n} \rightharpoonup 0$. It is obvious that $e_{n} \nrightarrow 0$ because $\left\|e_{n}\right\|=1$ for all n.
5.20 Let H be a Hilbert space. Show that $x_{n} \rightarrow x$ in H iff $\left\|x_{n}\right\| \rightarrow\|x\|$ and $x_{n} \rightharpoonup x$.

Proof. 'If': Given $\epsilon>0$. Since $x_{n} \rightharpoonup x$, there exists N such that $\left|\left(x_{n}-x, x\right)\right|<\epsilon$ and $\left|\left(x_{n}, x\right)-(x, x)\right|<\epsilon$ for all $n>N$. We can also require that $\left|\left\|x_{n}\right\|-\|x\|\right|<\epsilon$ for $n>N$. Then we have

$$
\begin{aligned}
\left|\left(x_{n}-x, x_{n}-x\right)\right| & \leq\left|\left(x_{n}-x, x_{n}\right)\right|+\left|\left(x_{n}-x, x\right)\right| \\
& <\left|\left\|x_{n}\right\|-\left(x_{n}, x\right)\right|+\epsilon \\
& <\left|\left\|x_{n}\right\|-\|x\|\right|+\left|\|x\|-\left(x_{n}, x\right)\right|+\epsilon \\
& <3 \epsilon,
\end{aligned}
$$

which shows that $\left\|x_{n}-x\right\| \rightarrow 0$, or $x_{n} \rightarrow x$.
`Only if': Trivial.
5.21 Show that the weak sequential compactness of a set in a reflexive Banach space is equivalent to the boundedness.

Proof. In the proof of Eberlein-Smulian Theorem, it has been proved that boundedness implies weak sequential compactness. Now we prove the converse. Assume that $A \subseteq \mathscr{X}$ is weak sequentially compact, we shall show that A is bounded.
If A is unbounded, then there exist $\left\{x_{n}\right\} \subseteq A$ such that $\left\|x_{n}\right\|>n$ and $x_{n} \rightharpoonup x_{0}$. View x_{n} as elements in $\mathscr{X}^{* *}$ and $\left\langle x_{n}, f\right\rangle \rightarrow\left\langle x_{0}, f\right\rangle$ for all $f \in X^{*}$. From uniform boundedness principle it follows that $\left\|x_{n}\right\|$ is bounded. We meet a contradiction and therefore A must be bounded.
5.22 Show that closed convex set in a normed linear space is weakly closed, that is, if M is a closed convex set, $\left\{x_{n}\right\} \subseteq M$ and $x_{n} \rightharpoonup x_{0}$ then $x_{0} \in M$.

Proof. From Mazur's Theorem and the closedness of M, it follows immediately that $x_{0} \in \overline{\operatorname{co}\left(\left\{x_{n}\right\}\right)} \subseteq$ M.
5.23 Let \mathscr{X} be a reflexive Banach space and M a bounded closed convex set in \mathscr{X}. Show that for every $f \in \mathscr{X}^{*}$, f attains maximum and minimum value on M.

Proof. It is clear that $\sup _{x \in M} f(x)$ exists, denote it by S. Then there exists $\left\{x_{n}\right\} \subseteq M$ such that $S \geq$ $f\left(x_{n}\right)>S-\frac{1}{n}$. From Eberlein-Smulian Theorem and the previous problem we know that there exists $x_{0} \in M$ such that $x_{n_{k}} \rightharpoonup x_{0}$, then $f\left(x_{0}\right)=\lim f\left(x_{n_{k}}\right)=S$. The proof of the minimum case is similar.
5.24 Let \mathscr{X} be a reflexive Banach space and M a nonempty closed convex set in \mathscr{X}. Show that there exists $x_{0} \in M$ such that $\left\|x_{0}\right\|=\inf \{\|x\|: x \in M\}$.

Proof. Let $d=\inf \{\|x\|: x \in M\}$ then there exists $\left\{x_{n}\right\} \subseteq M$ such that $d \leq\left\|x_{n}\right\|<d+\frac{1}{n}$. Thus $\left\{x_{n}\right\}$ is bounded, it follows from Eberlein-Smulian Theorem that there exists x_{0} such that $x_{n_{k}} \rightharpoonup x_{0}$. Moreover, from Exercise 2.5.22, we have that $x_{0} \in M$, thus $\left\|x_{0}\right\| \geq d$. On the other hand, there exists $f \in \mathscr{X}^{*}$ that $f\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\|f\|=1$. Thus $\left\|x_{0}\right\|=\left|f\left(x_{0}\right)\right|=\lim \left|f\left(x_{n_{k}}\right)\right| \leq \lim \sup \|f\|\left\|x_{n_{k}}\right\|=\lim \sup \left\|x_{n_{k}}\right\|=$ d. Therefore $\left\|x_{0}\right\|=d$.

6 Spectrum of Linear Operators

6.1 Let \mathscr{X} be a Banach space. Show that the set of all continuously invertible operators is an open subset of $\mathscr{L}(\mathscr{X})$.

Proof. First we have this fact: If A, B are invertible then $A B$ is invertible too and $(A B)^{-1}=B^{-1} A^{-1}$. Let A be an invertible operator in $\mathscr{L}(\mathscr{X})$. For any $B \in L(\mathscr{X})$ with $\|A-B\| \leq 1 /\left\|A^{-1}\right\|$, it holds that $\left\|(A-B) A^{-1}\right\|<1$ and thus from Lemma 2.6.6 we have that $I-\left((A-B) A^{-1}\right)=B A^{-1}$ is invertible. Therefore $B=(B A)^{-1} A$ is invertible.
6.2 Let A be a closed linear operator, $\lambda_{1}, \ldots, \lambda_{n} \in \sigma_{p}(A)$ are mutually distinct, x_{i} is an eigenvector of λ_{i}. Show that $\left\{x_{1}, \ldots, x_{n}\right\}$ are linearly independent.

Proof. Suppose that $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly dependent, then we can find a shortest equation ('shortest' means least number of items) with nontrivial coefficients as

$$
\begin{equation*}
c_{1} x_{k_{1}}+c_{2} x_{k_{2}}+\cdots c_{n} x_{k_{m}}=0 \tag{2}
\end{equation*}
$$

where $k_{i} \in\{1, \ldots, n\}$ and $c_{i} \neq 0$. Then we have

$$
c_{1} A x_{k_{1}}+c_{2} A x_{k_{1}}+\cdots+c_{n} A x_{k_{m}}=0
$$

or

$$
c_{1} \lambda_{1} x_{k_{1}}+c_{2} \lambda 2 x_{k_{2}} \cdots+c_{n} \lambda_{n} x_{k_{m}}=0
$$

On the other hand, we have

$$
c_{1} \lambda 1 x_{k_{1}}+c_{2} \lambda 1 x_{k_{2}}+\cdots+c_{n} \lambda_{1} x_{k_{m}}=0
$$

Thus

$$
c_{2}\left(\lambda 1-\lambda_{2}\right) x_{k_{2}}+\cdots+c_{n}\left(\lambda_{1}-\lambda_{n}\right) x_{k_{m}}=0
$$

which has nontrivial coefficients and less terms than has (2). This is a contradiction, and therefore $\left\{x_{1}, \ldots, x_{n}\right\}$ must be linearly independent.
6.3 In two-sided l^{2} space, the right shift operator A is defined as

$$
\begin{aligned}
x=\left(\ldots, \xi_{-n}, \xi_{-n+1}, \ldots, \xi_{-1}, \xi_{0}, \xi_{1}\right. & \left., \ldots, \xi_{n-1}, \xi_{n}, \ldots\right) \in l^{2} \\
& \mapsto A x=\left(\ldots, \eta_{-n}, \eta_{-n+1}, \ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \ldots, \eta_{n-1}, \eta_{n}, \ldots\right)
\end{aligned}
$$

where $\eta_{m}=\xi_{m-1}(m \in \mathscr{Z})$. Prove that $\sigma_{c}(A)=\sigma(A)=$ unit circle.

Proof. Since $\|A\|=1, \sigma(A)$ is contained within the unit disc. If $|\lambda|<1$, then $(\lambda I-A) x=B\left(\frac{I}{\lambda}-A\right) C x=$ $\frac{1}{\lambda} \cdot B(\lambda I-\lambda A) D x$, where B is the left-shift operator and D is the reverse operator $\left((D x)_{n}=x_{-n}\right)$. All of the three operators on the right-hand side is invertible and so is their product. Therefore, $\sigma(A) \subseteq C$, where C denotes the unit circle.
Consider $\lambda=1$. Since

$$
y=(I-A) x \Longleftrightarrow y_{k}=x_{k}-x_{k-1} \Longleftrightarrow x_{k}= \begin{cases}x_{0}+\sum_{j=1}^{k} y_{j}, & k>0 \\ x_{0}-\sum_{j=-k}^{-1} y_{j}, & k<0\end{cases}
$$

it holds that

$$
R(I-A)=\left\{y \in l^{2}: \sum_{k=1}^{\infty}\left(\left|x_{0}+\sum_{j=1}^{k} y_{j}\right|^{2}+\left|x_{0}-\sum_{j=-k}^{-1} y_{j}\right|^{2}\right)<\infty \text { for some } x_{0}\right\}
$$

It is obvious that $R(I-A) \neq \mathscr{X}$. Let $\xi \in l^{2}$, for any $\epsilon>0$, there exists N such that

$$
\sum_{k=N+1}^{\infty}\left|\xi_{k}\right|^{2}+\sum_{k=-\infty}^{k=-N-1}\left|\xi_{k}\right|^{2}<\frac{\epsilon^{2}}{6}
$$

Let $c=\sum_{k=-N}^{N} \xi_{k}$, find m such that $|c|^{2} / m<\epsilon^{2} / 3$, let

$$
y_{j}= \begin{cases}\xi_{j}, & |j| \leq N \\ -c / m, & N+1 \leq|j| \leq N+m \\ 0, & |j|>N+m\end{cases}
$$

then $y=\left(\ldots,-y_{n}, \ldots, y_{0}, \ldots, y_{n}\right) \in R(I-A)$ and $\|\xi-y\|<\epsilon$. Hence $R(I-A)$ is dense in \mathscr{X} and $1 \in \sigma_{c}(A)$. Moreover, the general case of $|\lambda|=1$ can be reduced to $\lambda=1$. In fact we have that

$$
\begin{aligned}
y=(\lambda I-A) x & \Longleftrightarrow y_{k}=\lambda x_{k}-x_{k-1} \\
& \Longleftrightarrow \lambda^{k-1} y_{k}=\lambda^{k} x_{k}-\lambda^{k-1} x_{k-1} \\
& \Longleftrightarrow \eta_{k}=\xi_{k}-\xi_{k-1},
\end{aligned}
$$

where $\eta_{k}=\lambda^{k-1} y_{k}$ and $\xi_{k}=\lambda^{k} y_{k}$, which reduces to $\lambda=1$. As a result, $C \subseteq \sigma_{c}(A)$. Finally we conclude that $\sigma_{c}(A)=\sigma(A)=C$.
6.4 Consider the left shift operator in l^{2}

$$
A:\left(\xi_{1}, \xi_{2}, \ldots\right) \mapsto\left(\xi_{2}, \xi_{3}, \ldots\right)
$$

Show that $\sigma_{p}(A)=\{\lambda:|\lambda|<1\}, \sigma_{c}(A)=\{\lambda:|\lambda|=1\}$, and $\sigma(A)=\sigma_{p}(A) \cup \sigma_{c}(A)$.
Proof. Since $\|A\|=1, \sigma(A)$ is contained within the unit disk. We discuss the following two cases.
(1) $|\lambda|<1$. Take $y=\left(1, \lambda, \lambda^{2}, \ldots\right)$ we have that $A y=\lambda y$, therefore $\lambda \in \sigma_{p}(A)$.
(2) $|\lambda|=1$. First it is clear that λ is not an eigenvalue.

First consider $\lambda=1$. Since

$$
y=(I-A) x \Longleftrightarrow y_{k}=x_{k}-x_{k+1} \Longleftrightarrow x_{k+1}=x_{1}-\sum_{j=1}^{k} y_{j}
$$

it holds that

$$
R(I-A)=\left\{y \in l^{2}: \sum_{k=1}^{\infty}\left|x_{1}-\sum_{j=1}^{k} y_{j}\right|^{2}<\infty \text { for some } x_{1}\right\}
$$

Obviously $R(I-A) \neq l^{2}$. Let $\xi \in l^{2}$, for any $\epsilon>0$, there exists N such that

$$
\sum_{k=N+1}^{\infty}\left|\xi_{k}\right|^{2}<\frac{\epsilon^{2}}{6}
$$

Let $c=\sum_{k=1}^{N} \xi_{k}$, find m such that $|c|^{2} / m<\epsilon^{2} / 6$, let

$$
\begin{cases}\xi_{j}, & j \leq N \\ -c / m, & N+1 \leq j \leq N+m \\ 0, & j>N+m\end{cases}
$$

Then we have that $y=\left(y_{1}, y_{2}, \ldots\right) \in R(I-A)$ (where $x_{1}=0$) and $\|\xi-y\|<\epsilon$, so $\overline{R(I-A)}=l^{2}$ and $1 \in \sigma_{c}(A)$. Moreover, the general case of $|\lambda|=1$ can be reduced to $\lambda=1$. In fact we have that

$$
\begin{aligned}
y=(\lambda I-A) x & \Longleftrightarrow y_{k}=\lambda x_{k}-x_{k+1} \\
& \Longleftrightarrow \lambda^{-k-1} y_{k}=\lambda^{-k} x_{k}-\lambda^{-k-1} x_{k+1} \\
& \Longleftrightarrow \eta_{k}=\xi_{k}-\xi_{k+1},
\end{aligned}
$$

where $\eta_{k}=\lambda^{-k-1} y_{k}$ and $\xi_{k}=\lambda^{-k} y_{k}$, which reduces to $\lambda=1$. As a result, $C \subseteq \sigma_{c}(A)$.
Finally we conclude that $\sigma_{c}(A)=C, \sigma_{p}(A)=\{z:|z|<1\}$ and $\sigma(A)=\sigma_{c}(A) \cup \sigma_{p}(A)$.
6.5 Consider the differential operator on $L^{2}(0, \infty)$

$$
A: x(t) \mapsto \frac{d x}{d t}, \quad D(A)=H^{1}(0, \infty)
$$

Show that
(1) $\sigma_{p}(A)=\{\lambda \in \mathbb{C}: \Re \lambda<0\}$;
(2) $\sigma_{c}(A)=\{\lambda \in \mathbb{C}: \Re \lambda=0\}$;
(3) $\sigma_{r}(A)=\emptyset$.

Proof. Consider the differential equation $(\lambda I-A) x=0$, or $\lambda x(t)=\frac{d x}{d t}$. It has solution $x(t)=K e^{\lambda t}$. Then it is easy to verity that $x \in H^{1}(0, \infty)$ when $\Re \lambda<0$ and in other cases $x(t)=0$ is the unique solution in $H^{1}(0, \infty)$. Therefore $\sigma_{p}(A)=\{\lambda \in \mathbb{C}: \Re \lambda<0\}$.
It is a well-known result (Paley-Wiener Theorem) that $L^{2}(0, \infty)$ is exactly the image of holomorphic fourier transform of Hardy space of the upper half-plane $H\left(\mathbb{C}^{+}\right)$, namely, $\mathcal{F}\left(H\left(\mathbb{C}^{+}\right)\right)=L^{2}(0, \infty)$.
Consider the equation

$$
(\lambda I-A) x=y, \quad x, y \in L^{2}(0, \infty)
$$

Let $x=\hat{f}$ and $y=\hat{g}$, where f, g are holomorphic on upper half-plane. Applying inverse Fourier transform on both sides, the above equation becomes

$$
\lambda f-i z f=g
$$

or

$$
\begin{equation*}
f(z)=\frac{g(z)}{\lambda-i z} . \tag{3}
\end{equation*}
$$

The right-hand side is well-defined over upper half-plane when $\Re \lambda>0$ and f is holomorphic on upperplane. It is clear that f is square-integrable (since $|\lambda-i z| \leq \Re \lambda$) and so is $i z f$ since $i z f=\lambda f-g$, hence \hat{f} admits weak derivative, that is, $x \in H^{1}(0, \infty)$. Therefore, $\{\lambda \in \mathbb{C}: \Re \lambda>0\} \subseteq \rho(A)$.
The above argument still applies to the case $\Re \lambda=0$, however, with further constraints. We see that $f(z)$ given by (3) may fail to be square-integrable (despite it is still holomorphic). Thus $R(\lambda I-A) \neq L^{2}(0, \infty)$.
 $\overline{R(\lambda I-A)}=L^{2}(0, \infty)$ and $\{\lambda \in \mathbb{C}: \Re \lambda=0\} \subseteq \sigma_{c}(A)$.

