1 Contraction Mapping

1.1 Prove that a closed subset of a complete space is a complete subspace, and any complete subspace of a metric space is closed.

Proof. Trivial.
1.2 (Newton's Method) Let $f \in C^{2}[a, b]$ and $\hat{x} \in(a, b)$ such that $f(\hat{x})=0$ and $f^{\prime}(\hat{x}) \neq 0$. Show that there exists a neighbourhood $U(\hat{x})$ such that for any $x_{0} \in U(\hat{x})$ the sequence defined by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=0,1,2, \ldots
$$

converges to \hat{x}.
Proof. Since $f^{\prime \prime}(x)$ is continuous on $[a, b]$, it is bounded by M_{2} on $[a, b]$ for some M_{2}. Besides, it follows from $f^{\prime}(\hat{x}) \neq 0$ that there exists $\delta_{1}>0$ such that $\left|f^{\prime}(x)\right| \geq M_{1}$ for all $x \in\left[\hat{x}-\delta_{1}, \hat{x}+\delta_{1}\right]$. Since $f(\hat{x})=0$, we can find $\delta<\delta_{1}$ such that $|f(x)|<M_{1}^{2} /\left(2 M_{2}\right)$ for all $x \in[\hat{x}-\delta, \hat{x}+\delta]$. More strongly, we can find δ small enough such that $f(x) \neq 0$ for all $x \in[\hat{x}-\delta, \hat{x}+\delta] \backslash\{\hat{x}\}$, because $f^{\prime}(\hat{x}) \neq 0$. Let $U(\hat{x})=(\hat{x}-\delta, \hat{x}+\delta)$.
Let $g(x)=x-f(x) / f^{\prime}(x)$ and we prove that $g(x)$ is a contraction mapping, and this is clear, because $g^{\prime}(x)=$ $\left|f(x) f^{\prime \prime}(x) / f^{\prime}(x)^{2}\right|<M_{1}^{2} /\left(2 M_{2}\right) \cdot M_{2} / M_{1}^{2}=1 / 2$. Therefore, $\left\{x_{n}\right\}$ would converge and denote the limit point by $x_{0} \in[\hat{x}-\delta, \hat{x}+\delta]$. Take limit in the both sides of the recursive formula, we obtain that $x_{0}=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)$, which implies that $f\left(x_{0}\right)=0$. From the construction of $U(\hat{x})$ we have seen that x is the only zero of f in $[\hat{x}-\delta, \hat{x}+\delta]$, whence it must hold $x_{0}=\hat{x}$.
1.3 Let (\mathscr{X}, ρ) be a metric space and $T: \mathscr{X} \rightarrow \mathscr{X}$ be a mapping which satisfies that $\rho(T x, T y)<\rho(x, y)$ for all $x \neq y$ and has a fixed point. Show that the fixed point is unique.

Proof. Suppose x_{1} and x_{2} are two distinct fixed points of T. Then it follows from the assumption that $\rho\left(T x_{1}, T x_{2}\right)<$ $\rho\left(x_{1}, x_{2}\right)$. However, $\rho\left(T x_{1}, T x_{2}\right)$ is exactly $\rho\left(x_{1}, x_{2}\right)$, which leads us to a contradiction.
1.4 Let T be a contraction mapping on a metric space. Show that T is continuous.

Proof. Trivial.
1.5 Let T be a contraction mapping. Show that $T^{n}(n \in \mathbb{N})$ is also a contraction mapping and the converse proposition may not hold.

Proof. Prove by induction. The statement is true when $n=1$ and suppose the contraction coefficient is $\alpha_{1} \in$ $(0,1)$. Suppose the statement holds for $n=k$ with contraction coefficient $\alpha_{k} \in(0,1)$, then $\rho\left(T^{k+1} x, T^{k+1} y\right) \leq$ $\alpha_{1} \rho\left(T^{k} x, T^{k} y\right) \leq \alpha_{1} \alpha_{k} \rho(x, y)$, whence the statement holds for $n=k+1$. Therefore, T^{n} is a contradiction mapping for all $n \geq 0$.
Define $T: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
T(x)= \begin{cases}1 / x, & 0<|x|<1 \\ 0, & \text { otherwise }\end{cases}
$$

Then $T(x)$ is not a conformal mapping while $T^{2}(x)$ is.
1.6 Let M be a bounded closed set in $\left(\mathbb{R}^{n}, \rho\right)$ and $T: M \rightarrow M$ satisfy $\rho(T x, T y)<\rho(x, y)$ for all $x \neq y$. Show that T has a unique fixed point in M.

Proof. It suffices to show the existence of fixed point and the uniqueness follows from Exercise 1.1.3.
Define $g(x)=\rho(x, f(x))$. From $\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right| \leq \rho\left(x_{1}, x_{2}\right)+\rho\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)<2 \rho\left(x_{1}, x_{2}\right)$ it follows that $g(x)$ is continuous thus it attains its minimum value at some point, say x_{0}, in M (which is a compact set). Hence $g\left(x_{0}\right) \leq g\left(f\left(x_{0}\right)\right)$. If $x_{0} \neq f\left(x_{0}\right)$, then we have $g\left(f\left(x_{0}\right)\right)=\rho\left(f\left(x_{0}\right), f\left(f\left(x_{0}\right)\right)\right)<\rho\left(x_{0}, f\left(x_{0}\right)\right)=g\left(x_{0}\right)$ which is a contradiction. Therefore, it must hold that $x_{0}=f\left(x_{0}\right)$.
1.7 Show that the integral equation

$$
x(t)-\lambda \int_{0}^{1} e^{t-s} x(s) d s=y(t)
$$

has a unique solution $x(t) \in C[0,1]$, where $y(t) \in C[0,1]$ and $|\lambda|<1$.
Proof. Multiply both sides by e^{-t}, it suffices to show that

$$
x(t)-\lambda \int_{0}^{1} x(s) d s=y(t)
$$

has a unique solution. Define $T: C[0,1] \rightarrow C[0,1]$ as

$$
(T f)(t)=y(t)+\lambda \int_{0}^{1} f(s) d s
$$

and it follows that T is a contraction mapping from

$$
\|T f-T g\|=|\lambda|\left\|\int_{0}^{1}(f(s)-g(s)) d s\right\| \leq|\lambda|\|f-g\| .
$$

And the unique fixed point is exactly the solution.

2 Completion

2.1 (Space S) Let S be the set consisting of all sequences

$$
x=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots\right)
$$

of real(complex) numbers. Define metric in S as

$$
\rho(x, y)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|\xi_{k}-\eta_{k}\right|}{1+\left|\xi_{k}-\eta_{k}\right|}
$$

where $x=\left(\xi_{1}, \ldots, x_{k}, \ldots\right)$ and $y=\left(\eta_{1}, \ldots, \eta_{k}, \ldots\right)$. Show that S is a complete metric space.
Proof. It is easy to verify that $\rho(x, y)$ is a metric indeed. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in S and $x_{n}=\left(x_{n_{1}}, \ldots, x_{n_{k}}, \ldots\right)$. Then for any $\epsilon>0$, there exists N such that

$$
\rho\left(x_{m}, x_{n}\right)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|x_{m_{k}}-x_{n_{k}}\right|}{1+\left|x_{m_{k}}-x_{n_{k}}\right|}<\frac{\epsilon}{1-\epsilon}
$$

for all $m>n>N$, which implies that

$$
\sup _{k} \frac{\left|x_{m_{k}}-x_{n_{k}}\right|}{1+\left|x_{m_{k}}-x_{n_{k}}\right|}<\frac{\epsilon}{1-\epsilon}
$$

or,

$$
\left|x_{m_{k}}-x_{n_{k}}\right|<\epsilon, \quad \forall k \geq 0, \forall m, n \geq N
$$

It follows that $\left\{x_{n_{k}}\right\}_{n=1}^{\infty}$ is a Cauchy sequence for a fixed k, thus it converges to some x_{k}^{*}, and the convergence is uniform with regard to k. Therefore, $x_{n} \rightarrow x^{*}=\left(x_{1}^{*}, \ldots, x_{k}^{*}, \ldots\right)$, and S is complete.
2.2 Let (\mathscr{X}, ρ) be a metric space. Show that a Cauchy sequence is convergent iff it has a convergent subsequence.

Proof. 'Only if' part is obvious and we shall prove `if' part below. Let $\left\{x_{n}\right\}$ be a Cauchy sequence and $x_{n_{k}} \rightarrow x^{*}$ as $k \rightarrow \infty$, where $\left\{n_{k}\right\}$ is strictly increasing. Given $\epsilon>0$, there exists K such that $\left|x_{n_{K}}-x^{*}\right|<\epsilon / 2$. Since $\left\{x_{n}\right\}$ is a Cauchy sequence, there exists $N \geq n_{K}$ such that $\left|x_{n}-x_{n_{K}}\right|<\epsilon / 2$ for all $n>N$. Therefore, $\left|x_{n}-x^{*}\right| \leq$ $\left|x_{n}-x_{n_{K}}\right|+\left|x_{n_{K}}-x^{*}\right|<\epsilon$, which implies that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.
2.3 Let F be the set consisting of sequences of real numbers each of which has only finitely many nonzero items. In F the metric is defined as

$$
\rho(x, y)=\sup _{k \geq 1}\left|\xi_{k}-\eta_{k}\right|,
$$

where $x=\left\{\xi_{k}\right\} \in F$ and $y=\left\{\eta_{k}\right\} \in F$. Show that (F, ρ) is not complete and points out its completion.
Proof. It is easy to verify that (F, ρ) is metric space. Let $x_{n}=(1,1 / 2, \ldots, 1 / n, 0,0, \ldots)$, then $\rho\left(x_{n}, x_{m}\right)=$ $1 /(n+1)$ and $\left\{x_{n}\right\}$ is a Cauchy sequence, but it does not converge in F, because for any $y \in F$ with $y_{k}=0$ for $k>N_{y}$ we have $\rho\left(x_{n}, y\right) \geq 1 / N_{y}$ for all $n>N_{y}$, indicating that y is not the limit point of $\left\{x_{n}\right\}$. The completion of F is the space consisting of all sequences of the reals.
2.4 Prove that the space of all polynomials on $[0,1]$ under the metric

$$
\rho(p, q)=\int_{0}^{1}|p(x)-q(x)| d x
$$

is not complete. Points out its completion.
Proof. Because any continuous function on $[0,1]$ can be uniformly approximated by a sequence of polynomials, hence the space said above is incomplete. Its completion is $L^{1}[0,1]$.
2.5 Let $\left\{x_{n}\right\}$ be a sequence of points in metric space (\mathscr{X}, ρ). If for any $\epsilon>0$, there exists Cauchy sequence $\left\{y_{n}\right\}$ such that

$$
\rho\left(x_{n}, y_{n}\right)<\epsilon
$$

then $\left\{x_{n}\right\}$ is convergent.
Proof. It suffices to show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Given $\epsilon>0$, there exists $\left\{y_{n}\right\}$ such that $\rho\left(x_{n}, y_{n}\right)<\epsilon / 3$ and N such that $\rho\left(y_{n}, y_{m}\right)<\epsilon / 3$ for all $n, m>N$. Hence for $n, m>N$ it holds that $\rho\left(x_{n}, x_{m}\right) \leq \rho\left(x_{n}, y_{n}\right)+$ $\rho\left(y_{n}, y_{m}\right)<\rho\left(y_{m}, x_{m}\right)<\epsilon$.

3 Sequentially Compact Sets

3.1 Show that a subset A of a complete metric space is sequentially compact iff for any $\epsilon>0$ there exists a sequentially compact ϵ-net of A.

Proof. The `only if' part is obvious, because the sequentially compactness of A implies that there exist a finite ϵ-net, thus the net must be sequentially compact. Now we prove the 'if' part.
Given $\epsilon>0$, and A has a sequentially compact $\epsilon / 2$-net B and B is totally bounded, thus has a finite $\epsilon / 2$-net C. Let $a \in A$, there exists $b \in B$ such that $\rho(a, b)<\epsilon / 2$ and $c \in C$ such that $\rho(b, c)<\epsilon / 2$, so $\rho(a, c) \leq \rho(a, b)+\rho(b, c) \epsilon$, which implies that C is a finite ϵ-net of A. Hence A is totally bounded.
3.2 Show that a continuous function over a compact set in a metric space is bounded and it can attain its supremum and infimum.

Proof. See the proof of Proposition 1.3.12.
3.3 Prove a totally bounded set in a metric space is bounded. Consider a subset $E=\left\{e_{k}\right\}$ of l^{2} with

$$
e_{k}=\{0,0, \ldots, \underbrace{1}_{k^{\mathrm{b} \text { item }}}, 0, \ldots\}
$$

to show that the converse proposition may not be true.
Proof. Let A be a totally bounded set, then it has a finite 1-net $\left\{a_{1}, \ldots, a_{n}\right\}$. Let $d=\max _{j} \rho\left(a_{1}, a_{j}\right)$ Obviously A is contained in $\left(a_{1}, d+1\right)$ thus bounded.
It is clear that $\left\|e_{k}\right\|=1$ thus $\left\{e_{k}\right\}$ is bounded. However,

$$
\left\|e_{i}-e_{j}\right\|=\sqrt{2}
$$

for all $i \neq j$, implying that $\left\{e_{k}\right\}$ is not totally bounded.
3.4 Let (\mathscr{X}, ρ) be a metric space and F_{1}, F_{2} be two compact subsets. Show that there exist $x_{1} \in F_{1}$ and $x_{2} \in F_{2}$ such that $\rho\left(F_{1}, F_{2}\right)=\rho\left(x_{1}, x_{2}\right)$, where

$$
\rho\left(F_{1}, F_{2}\right)=\inf \left\{\rho(x, y): x \in F_{1}, y \in F_{2}\right\} .
$$

Proof. Let $f(x)=\rho\left(x, F_{1}\right)$ then f is continuous, from Exercise 1.3.2, it follows that there exists $x_{2} \in F_{2}$ such that $f\left(x_{2}\right)=\min _{x \in F_{2}} f(x)$. Now we define $g(x)=\rho\left(x_{2}, x\right)$ on F_{1}. Since $g(x)$ is continuous, there exists $x_{1} \in F_{1}$ such that $g\left(x_{1}\right)=\rho\left(x_{2}, F_{1}\right)$. We claim that x_{1}, x_{2} satisfy the condition.
Let $x \in F_{1}$ and $y \in F_{2}$, we have $\rho\left(x_{1}, x_{2}\right)=\rho\left(x_{2}, F_{1}\right) \leq \rho\left(y, F_{1}\right) \leq \rho(y, x)$, so $\rho\left(x_{1}, x_{2}\right) \leq \rho\left(F_{1}, F_{2}\right)$. Also it is obvious that $\rho\left(F_{1}, F_{2}\right) \leq \rho\left(x_{1}, x_{2}\right)$ and the conclusion follows.
3.5 Let M be a bounded set in $C[a, b]$. Show that the set

$$
E=\left\{F(x)=\int_{a}^{x} f(x) d t \mid f \in M\right\}
$$

is sequentially compact.
Proof. It is sufficient to show that E is uniformly bounded and uniformly equicontinuous. Suppose $M \subset B(0, r)$, then for any $F(x) \in E$, it holds that $\|F\| \leq(b-a) r$, indicating that F is uniformly bounded. We have also $\left|F\left(x_{1}\right)-F\left(x_{2}\right)\right| \leq r\left(x_{2}-x_{1}\right)$, whence it follows that F is uniformly equicontinuous.
3.6 Let $E=\{\sin n t\}_{n=1}^{\infty}$, show that E is not sequentially compact in $C[0, \pi]$.

Proof. Take $\epsilon=1 / 2$, for any n, we have $|\sin (n \cdot \pi /(2 n))-\sin 0|=1>\epsilon$, and $\pi /(2 n) \rightarrow 0$ as $n \rightarrow \infty$. Therefore, E is not uniformly equicontinuous.
3.7 Prove that a subset A of S (see definition in Exercise 1.2.1) is sequentially compact iff for any n there exists $C_{n}>0$ such that for every $x=\left(\xi_{1}, \ldots, \xi_{n}, \ldots\right) \in A$ it holds that $\left|\xi_{n}\right| \leq C_{n}$.

Proof. 'Only if': Since S is complete, A must be totally bounded. Let x_{1}, \ldots, x_{m} be a finite $1 / 2$-net of $A\left(x_{i}=\right.$ $\left.\left\{x_{i 1}, \ldots, x_{i n}, \ldots\right\}\right)$. For any $x=\left(\xi_{1}, \ldots, \xi_{n}, \ldots\right) \in A$, there exists x_{i} for some i such that $\rho\left(x_{i}, x\right)<1 / 2$, which implies that $\left|x_{i k}-\xi_{k}\right| /\left(1+\left|x_{i k}-\xi_{k}\right|\right)<1 / 2$, or, $\left|x_{i k}-\xi_{k}\right|<1$ for all k. Hence $\left|\xi_{k}\right| \leq \max \left\{\left|x_{1 k}\right|, \ldots,\left|x_{n k}\right|\right\}+1$. 'If': Let $\left\{x_{n}\right\} \subseteq S$. Since $x_{n, 1}$ is bounded, hence it has a convergent subsequence, say $\left\{x_{n_{1 i}}\right\}_{i=1}^{\infty}$ converging to x_{1}. We also have $x_{n_{1 i}, 2}$ bounded, so it has a subsequence $\left\{x_{n_{2 i}}\right\}$ converging to x_{2}. In this way, we have that $\left\{x_{n_{m, i}}\right\} \subseteq$ $\left\{x_{n_{m-1, i}}\right\}$ and $\left\{x_{n_{m, i}, i}\right\}$ is convergent to x_{m} for each m. It is easy to see that $\left\{x_{n_{m m}}\right\}_{m=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}$ and we shall show that it is convergent. It is clear that $x_{n_{m m} k} \rightarrow x_{k}$ as $m \rightarrow \infty$ for each k, because $\left\{x_{n_{m m}}\right\}_{m=k}^{\infty}$ is a subsequence of $\left\{x_{n_{k i}}\right\}_{i=1}^{\infty}$. Then it is not difficult to show that $x_{n_{m m}} \rightarrow x=\left(x_{1}, \ldots, x_{k}, \ldots\right)$ in norm.
3.8 Let (\mathscr{X}, ρ) be a metric space and M be a sequentially compact set in \mathscr{X}. If map $f: \mathscr{X} \rightarrow M$ satisfies

$$
\rho\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)<\rho\left(x_{1}, x_{2}\right), \quad x_{1} \neq x_{2}
$$

then it has a unique fixed point in \mathscr{X}.
Proof. Consider the closure of M and see Exercise 1.1.6.
3.9 Let (M, ρ) be a compact metric space and $E \subseteq C(M)$ is uniformly bounded and satisfies Hölder condition

$$
\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right| \leq C \rho\left(t_{1}, t_{2}\right)^{\alpha}, \quad \forall x \in E, \forall t_{1}, t_{2} \in M
$$

where $0<a \leq 1$ and $C>0$, show that E is sequentially compact in $C(M)$.
Proof. It is obvious that E is uniformly equicontinuous. Together with the uniform boundedness, it follows that E is sequentially compact.

4 Normed Linear Space

4.1 For $z=(x, y) \in \mathbb{R}^{2}$, define

$$
\|z\|_{1}=|x|+|y| ;\|z\|_{2}=\sqrt{x^{2}+y^{2}} ;\|z\|_{3}=\max (|x|,|y|) ;\|z\|_{4}=\left(x^{4}+y^{4}\right)^{1 / 4}
$$

(1) Show that all of $\|\cdot\|_{i}$ are norms of \mathbb{R}^{2} for $i=1,2,3,4$;
(2) Draw the unit sphere in $\left(\mathbb{R}^{2},\|\cdot\|_{i}\right)$.
(3) Find the lengths of three sides of the triangle with vertices $O(0,0), A(1,0), B(0,1)$ under the four different norms.
4.2 Let $c(0,1]$ denote the set of continuous and bounded functions on $(0,1]$. Let $\|x\|=\sup _{0<t \leq 1}|x(t)|$. Show that
(1) $\|\cdot\|$ is a norm on $c(0,1]$;
(2) l^{∞} is isometric to $c(0,1]$.

Proof. (1) Trivial.
(2) Define $F: l^{\infty} \rightarrow c(0,1]$ as

$$
x=\left(x_{1}, \ldots, x_{k}, \ldots\right) \mapsto f(x)=\left\{\begin{array}{ll}
x_{k}, & x=\frac{1}{k} ; \\
x_{k+1}+\left(x_{k}-x_{k+1}\right) k((k+1) x-1), & \frac{1}{k+1}<x<\frac{1}{k}
\end{array} .\right.
$$

Then F is an isometry.
4.3 In $C^{1}[a, b]$ define

$$
\|f\|_{1}=\left(\int_{a}^{b}\left(|f|^{2}+\left|f^{\prime}\right|^{2}\right) d x\right)^{\frac{1}{2}}, \quad \forall f \in C^{1}[a, b]
$$

(1) Prove that $\|\cdot\|_{1}$ is a norm on $C^{1}[a, b]$;
(2) Is $\left(C^{1}[a, b],\|\cdot\|_{1}\right)$ complete?

Proof. (1) Trivial.
(2) No. Take $[a, b]=[-1,1]$ and $f_{n}=\sqrt{x^{2}+n^{2}}$, we have

$$
\left\|f_{n}\right\|_{1}=\frac{8}{3}+\frac{2}{n^{2}}-\frac{2 \arctan n}{n} \rightarrow 0
$$

as $n \rightarrow \infty$, hence $\left\{f_{n}\right\}$ is a Cauchy sequence in $\left(C^{1}[a, b],\|\cdot\|_{1}\right)$. It is clear that $f_{n} \rightarrow|x|$ and we shall prove that if $\left\{f_{n}\right\}$ converges to some continuous f in norm, then it must hold that $f(x)=|x|$. If $f_{n} \rightarrow f$ in norm, then $\int\left|f_{n}-f\right|^{2} \rightarrow 0$ thus $f_{n} \rightarrow f$ in measure. Also $f_{n}(x) \rightarrow|x|$ in measure hence $f(x)$ and $|x|$ differ at most in a set of measure zero, since f is continuous, it follows that $f(x)=|x| \notin C^{1}[a, b]$, indicating that $\left\{f_{n}\right\}$ does not converge in ($C^{1}[a, b],\|\cdot\|_{1}$).
4.4 In $C[0,1]$ define

$$
\|f\|_{1}=\left(\int_{0}^{1}|f|^{2} d x\right)^{\frac{1}{2}} ;\|f\|_{2}=\left(\int_{0}^{1}(1+x)|f(x)|^{2} d x\right)^{\frac{1}{2}}
$$

for every $f \in C[0,1]$. Show that $\|\cdot\|_{1}$ is equivalent to $\|\cdot\|_{2}$.
Proof. It is easy to verify that $\|f\|_{1} \leq\|f\|_{2} \leq \sqrt{2}\|f\|_{1}$.
4.5 Let $B C[0, \infty)$ be the set of continuous and bounded functions on $[0, \infty)$ and $a>0$. Define

$$
\|f\|_{a}=\left(\int_{0}^{\infty} e^{-a x}|f(x)|^{2} d x\right)^{\frac{1}{2}}
$$

(1) Show that $\|\cdot\|_{a}$ is a norm on $B C[0, \infty)$.
(2) Prove that $\|\cdot\|_{a}$ is not equivalent to $\|\cdot\|_{b}$ for all $a \neq b$.

Proof. (1) Trivial.
(2) Suppose $a<b$. For any $C>1$, take $f=e^{-\lambda x}$ where $\lambda=\left(b-a C^{2}\right) /\left(C^{2}-1\right)$, we have $\|f\|_{a}=1 / \sqrt{a+\lambda}$ and thus $\|f\|_{a}=C\|f\|_{b}$.
4.6 Let \mathscr{X}_{1} and \mathscr{X}_{2} be two B^{*} spaces and $\mathscr{X}=\mathscr{X}_{1} \times \mathscr{X}_{2}$ with norm

$$
\|x\|=\max \left\{\left\|x_{1}\right\|_{1},\left\|x_{2}\right\|_{2}\right\}
$$

where $x=\left(x_{1}, x_{2}\right), x_{i} \in \mathscr{X}_{i}$ and $\left\|x_{i}\right\|$ is the norm of $\mathscr{X}_{i}(i=1,2)$. Show that if \mathscr{X}_{1} and \mathscr{X}_{2} are Banach spaces, so is \mathscr{X}.

Proof. It suffices to show that \mathscr{X} is complete. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in \mathscr{X} and $x_{n}=\left(x_{n 1}, x_{n 2}\right)$. If follows immediately that $\left\{x_{n 1}\right\}$ and $\left\{x_{n 2}\right\}$ are both Cauchy sequences in \mathscr{X}_{1} and \mathscr{X}_{2}, respectively. Since \mathscr{X}_{i} is complete, there exists $x_{i}^{*} \in \mathscr{X}_{i}$ such that $x_{n i} \rightarrow x_{i}^{*}$. Therefore, $x_{n} \rightarrow\left(x_{1}^{*}, x_{2}^{*}\right) \in \mathscr{X}$ and \mathscr{X} is complete.
4.7 Let \mathscr{X} be a B^{*} space. Show that \mathscr{X} is a Banach space iff for any $\left\{x_{n}\right\} \subset \mathscr{X}, \sum_{n=1}^{\infty} x_{n}$ is convergent whenever $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ is convergent.

Proof. 'Only if': Let $\left\{x_{n}\right\} \subset \mathscr{X}$ satisfying that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ is convergent. Let $y_{n}=\sum_{k=1}^{n} x_{k}$, we shall prove that $\left\{y_{n}\right\}$ is a Cauchy sequence. This is because

$$
\left\|y_{n}-y_{m}\right\| \leq \sum_{k=m}^{n}\left\|x_{k}\right\|, \quad \forall n>m
$$

'If': Let $\left\{x_{n}\right\}$ be a Cauchy sequence in \mathscr{X}. We can choose $1 \leq n_{1}<n_{2}<\cdots<n_{k}<\cdots$ such that

$$
\left\|x_{m}-x_{n_{k}}\right\|<\frac{1}{2^{k}}
$$

for all $m>n_{k}$. Let $y_{n}=x_{n_{k+1}}-x_{n_{k}}(n \geq 1)$ and $y_{1}=x_{n_{1}}$ then $\sum\left\|y_{n}\right\|$ is convergent, thus $x=\sum y_{n}$ exists. From

$$
\left\|x_{n}-x\right\| \leq\left\|x_{n}-x_{n_{k}}\right\|+\left\|x_{n_{k}}-x\right\|=\left\|x_{n}-x_{n_{k}}\right\|+\left\|\sum_{k=1}^{n-1} y_{k}-x\right\|
$$

it follows that $x_{n} \rightarrow x$.
4.8 Let P_{n} be the set of polynomials on $[a, b]$ with degree less than or equal to n. Prove that for any $f(x) \in C[a, b]$ there exists $P_{0}(x) \in P_{n}$ such that

$$
\max _{a \leq x \leq b}\left|f(x)-P_{0}(x)\right|=\min _{P \in P_{n}} \max _{a \leq x \leq b}|f(x)-P(x)| .
$$

That is, if we use elements in P_{n} to approximate $f(x)$ uniformly, $P_{0}(x)$ is the optimal one.
Proof. This is a direct corollary of Theorem 1.4.23, where $e_{i}=x^{i}$.
4.9 In \mathbb{R}^{2} we define $\|x\|=\max \left\{\left|x_{1}\right|, \| x_{2} \mid\right\}$ for $x=\left(x_{1}, x_{2}\right)$. Let $e_{1}=(1,0)$ and $x_{0}=(0,1)$. Find $a \in \mathbb{R}$ such that

$$
\left\|x_{0}-a e_{1}\right\|=\min _{\lambda \in \mathbb{R}}\left\|x_{0}-\lambda e_{1}\right\|
$$

and is such a unique? Give a geometric explanation.
Proof. We have that $x_{0}-\lambda e_{1}=(-\lambda, 1)$, so $\left\|x_{0}-\lambda e_{1}\right\|$ reaches the minimum value 1 when $|\lambda| \leq 1$.
4.10 Prove the strict convexity of norm is equivalent to

$$
\|x+y\|=\|x\|+\|y\|(\forall x \neq 0, y \neq 0) \Rightarrow x=c y(c>0)
$$

Proof. Assume the convexity (as in Definition 1.4.24) first. Let $x \neq 0$ and $y \neq 0, x^{\prime}=x /\|x\|$ and $y^{\prime}=y /\|x\|$, $\alpha=\|x\| /(\|x\|+\|y\|)$ and $\beta=\|y\| /(\|x\|+\|y\|)$ then $\left\|x^{\prime}\right\|=\left\|y^{\prime}\right\|=1$. Thus from the convexity of the norm it holds that $\left\|\alpha x^{\prime}+\beta y^{\prime}\right\|<1$, i.e., $\|x+y\|<\|x\|+\|y\|$, if $x^{\prime} \neq y^{\prime}$. Therefore, we must have $x^{\prime}=y^{\prime}$, and $x=c y$ for some $c>0$.
On the contrary, let $\|x\|=\|y\|=1(x \neq y)$ and $\alpha+\beta=1$. It is clear that $\|\alpha x+\beta y\| \leq \alpha\|x\|+\beta\|y\|=1$, but the equality holds iff $\alpha x=C \beta y$ for some $C>0$, or, $x=(C \beta / \alpha) y$. But $\|x\|=\|y\|$ hence $C \beta / \alpha=1$, resulting in $x=y$ which is a contradiction. Hence the equality cannot hold and it must hold the strict inequality.
4.11 Let \mathscr{X} be a normed linear space. A function $\phi: \mathscr{X} \rightarrow \mathbb{R}$ is said convex if it holds

$$
\phi(\lambda x+(1-\lambda) y) \leq \lambda \phi(x)+(1-\lambda) \phi(y)
$$

for all $0 \leq \lambda \leq 1$. Prove that a local minimum of a convex function is also a global minimum.
Proof. Suppose x is a local minimum of a convex function f. For any y, let λ be close to 1 enough, we have $\lambda x+(1-\lambda) y$ close to x enough, thus

$$
f(x) \leq \phi(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

or

$$
f(x) \leq f(y)
$$

which implies that x is also a global minimum.
4.12 Let $(\mathscr{X},\|\cdot\|)$ be a normed linear space and M is a finite dimensional subspace of \mathscr{X} with a basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Given $g \in \mathscr{X}$, define $F: \mathbb{K}^{n} \rightarrow \mathbb{R}$ as

$$
F\left(c_{1}, \ldots, c_{n}\right)=\left\|\sum_{i=1}^{n} c_{i} e_{i}-g\right\| .
$$

(1) F is convex;
(2) If F attains minimum value at $c=\left(c_{1}, \ldots, c_{n}\right)$ then

$$
f=\sum_{i=1}^{n} c_{i} e_{i}
$$

is the best approximation of g in M.
Proof. (1) Trivial.
(2) This is exactly the definition of 'best approximation'.
4.13 Let \mathscr{X} be a B^{*} space and \mathscr{X}_{0} a linear subspace of \mathscr{X}. Suppose there exists $c \in(0,1)$ such that

$$
\inf _{x \in \mathscr{X}_{0}}\|y-x\| \leq c\|y\|, \forall y \in \mathscr{X}
$$

show that \mathscr{X}_{0} is dense in \mathscr{X}.
Proof. Let $y \in \mathscr{X} \backslash \mathscr{X}_{0}$ and $\epsilon>0$. There exists $x_{1} \in \mathscr{X}_{0}$ such that $\left\|y-x_{1}\right\| \leq c\|y\|+\epsilon / 2$, then there exists $x_{2} \in X_{0}$ such that $\left\|y-x_{1}-x_{2}\right\| \leq c\left\|y-x_{1}\right\|+\epsilon / 4 \leq c^{2}\|y\|+c \epsilon / 2+\epsilon / 4<c^{2}\|y\|+\epsilon / 2+\epsilon / 4$. Continue this process, for each n we have $x_{n} \in \mathscr{X}_{0}$ such that

$$
\left\|y-x_{1}-\cdots-x_{n}\right\| \leq c^{n}\|y\|+\frac{\epsilon}{2}+\frac{\epsilon}{2^{2}}+\cdots+\frac{\epsilon}{2^{n}}<c^{n}\|y\|+\epsilon
$$

It follows that $\left\{\sum_{k=1}^{n} x_{k}\right\} \subseteq \mathscr{X}_{0}$ is a sequence of points converging to y, and hence \mathscr{X}_{0} is dense.
4.14 Let C_{0} be the set of sequences of real numbers converging to 0 , and define the norm in C_{0} as $\|x\|=\max _{n \geq 1}\left|\xi_{n}\right| \quad \forall x=$ $\left(\xi_{1}, \ldots, \xi_{n}, \ldots\right) \in C_{0}$. Let $M=\left\{x=\left\{\xi_{n}\right\} \in C_{0}: \sum_{n=1}^{\infty} \xi_{n} / 2^{n}=0\right\}$.
(1) Show that M is a closed sybspace of C_{0};
(2) Let $x_{0}=(2,0, \ldots, 0, \ldots)$, show that $\inf _{Z \in M}\left\|x_{0}-Z\right\|=1$ but $\left\|x_{0}-y\right\|>1$ for all $y \in M$.
(Remark: This problem provides an example indicating that the best approximation may not exist for infinitedimensional subspace)

Proof. (1) Let $x \in M$, it is clear that $\sum\left|\xi_{k}\right| / 2^{k}$ converges, since $\left\|\xi_{k}\right\| \leq\|x\|$. Then it is trivial to verify that M is a subspace. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $M, x_{n}=\left\{\xi_{n 1}, \ldots, \xi_{n k}, \ldots\right\}$. Then for any $\epsilon>0$, there exists N such that $\left\|x_{n}-x_{m}\right\|<\epsilon$ for all $n, m>N$, thus for all $k,\left\|\xi_{n k}-\xi_{m k}\right\|<\epsilon$, and therefore $\left\{\xi_{n k}\right\}$ (with respect to n) is a Cauchy sequence and suppose it converges to ξ_{k} uniformly. Therefore, $\left\{x_{n}\right\}$ converges to some $x \in C_{0}$. Note that $\left|\xi_{k}-\xi_{n k}\right|<\epsilon$ for n large enough, we have $\left|\sum \xi_{k} / 2^{k}\right|<\sum\left|\xi_{k}-\xi_{n k}\right| / 2^{k}+\left|\sum \xi_{n k} / 2^{k}\right|<\epsilon$. Therefore we know that $x \in M$ and M is closed.
(2) First we show that $\left\|x_{0}-y\right\|>1$ for all $y \in M$. Let $y=\left(y_{1}, \ldots, y_{k}\right)$. If $y_{1}<1$ or $\left|y_{k}\right|>1$ for some $k>1$ then $\left\|x_{0}-y\right\|>1$. Now assume $y_{1} \geq 1$ and $\left|y_{k}\right| \geq 1$ for $k \geq 2$, then $\sum y_{n} / 2^{n}>1 / 2+\sum_{n=2}^{\infty} y_{n} / 2^{n}$. Note that $\sum_{n=2}^{\infty}\left|y_{n}\right| / 2^{n} \leq 1 / 2$, hence $\sum y_{n} / 2^{n} \geq 0$, and the equality holds only if $y_{1}=1$ and $y_{k}=-1$ for all $k>1$, resulting in that $\left\{y_{k}\right\}$ does not converge to 0 , which contradicts with $y \in C_{0}$.
Now we show that $\inf \left\|x_{0}-y\right\|=1$. We shall prove that for any $\epsilon>0$, we can find $y \in M$ such that $\left\|x_{0}-y\right\| \leq 1+\epsilon$. Let $\delta=2(\epsilon+1) /(\epsilon+2), y_{1}=1-\epsilon$ and $y_{k}=-\delta^{k-1}$ for $k>1$. Then $\left\|x_{0}-y\right\| \leq 1+\epsilon$, $y_{n} \rightarrow 0$ and $\sum y_{i} / 2^{i}=0$.
4.15 Let \mathscr{X} be a B^{*} space and M a finite-dimensional proper subspace of \mathscr{X}. Show that there exists $y \in \mathscr{X}$ with $\|y\|=1$ such that $\|y-x\| \geq 1$ for all $x \in M$.

Proof. Let $z \in \mathscr{X} \backslash M$ and $z^{\prime} \in M$ be the best approximation of z. Let $d=\left\|z-z^{\prime}\right\|$ and $y=\left(z-z^{\prime}\right) / d$ then $\|y\|=1$, and $\|y-x\|=\left\|z-\left(z^{\prime}+d x\right)\right\| / d \geq d / d=1$ for all $x \in M$.
4.16 Let f be a complex-valued function defined on $[0,1]$ and define

$$
\omega_{\delta}(f)=\sup \{|f(x)-f(y)|: \forall x, y \in[0,1],|x-y| \leq \delta\}
$$

Let $0<\alpha \leq 1$. Define Lipschitz space $\operatorname{Lip} \alpha$ as the set of all functions f such that

$$
\|f\|=|f(0)|+\sup _{\delta>0}\left\{\delta^{-\alpha} \omega_{\delta}(f)\right\}<\infty
$$

and

$$
\operatorname{lip} \alpha=\left\{f \in \operatorname{Lip} \alpha: \lim _{\delta \rightarrow 0} \delta^{-\alpha} \omega_{\delta}(f)=0 .\right\}
$$

Show that $\operatorname{Lip} \alpha$ is a Banach space and $\operatorname{lip} \alpha$ a closed subspace of $\operatorname{Lip} \alpha$.
Proof. It is trivial that $\operatorname{Lip} \alpha$ is a normed linear space. Now we prove its completeness. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $\operatorname{Lip} \alpha$, then for any $\epsilon>0$ there exists N such that $\left|f_{n}(0)-f_{m}(0)\right|<\epsilon$ and $\sup _{\delta>0} \delta^{-\alpha} \omega_{\delta}\left(f_{n}-f_{m}\right)<\epsilon$ for all $n, m>N$. Hence $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon \delta^{\alpha}+\left|f_{n}(0)-f_{m}(0)\right|<\epsilon\left(\delta^{\alpha}+1\right)$ for all $n, m>N$, which implies that $\left\{f_{n}(x)\right\}$ is a Cauchy sequence in \mathbb{C} thus it converges to $f(x)$ for some f. We shall show that $f \in \operatorname{Lip} \alpha$. This is because

$$
\begin{equation*}
|f(x)-f(y)| \leq\left|\left(f(x)-f_{n}(x)\right)-\left(f(y)-f_{n}(y)\right)\right|+\left|f_{n}(x)-f_{n}(y)\right| \tag{1}
\end{equation*}
$$

and the uniform pointwise convergence of $f_{n} \rightarrow f$.
It is also trivial to see that lip α is a subspace. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $\operatorname{lip} \alpha$ and thus $f_{n} \rightarrow f$ uniformly pointwise for some $f \in \operatorname{Lip} \alpha$. It follows easily that $f \in \operatorname{lip} \alpha$ by (1).
4.17 (Quotient space) Let \mathscr{X} be a normed linear space and \mathscr{X}_{0} a closed linear subspace of \mathscr{X}. Define a equivalence relation \sim by $x \sim y$ iff $x-y \in \mathscr{X}_{0}$. The quotient space is X / X_{0}.
(1) Let $[x] \in \mathscr{X} / \mathscr{X}_{0}$ and $x \in \mathscr{X}$. Show that $x \in[x]$ iff $[x]=x+\mathscr{X}_{0}$.
(2) Define addition and scalar multiplication in $\mathscr{X} / \mathscr{X}_{0}$ as follows.

$$
\begin{gathered}
{[x]+[y]=x+y+\mathscr{X}_{0}, \quad \forall[x],[y] \in \mathscr{X} / \mathscr{X}_{0}} \\
\lambda[x]=\lambda x+\mathscr{X}_{0}, \quad \forall[x] \in \mathscr{X} / \mathscr{X}_{0}, \forall \lambda \in \mathbb{K},
\end{gathered}
$$

where x, y are arbitrary chosen from $[x],[y]$ respectively. Define the norm

$$
\|[x]\|_{0}=\inf _{x \in[x]}\|x\|, \quad \forall[x] \in \mathscr{X} / \mathscr{X}_{0}
$$

Show that $\left(\mathscr{X} / \mathscr{X}_{0},\|\cdot\|_{0}\right)$ is a B^{*} space.
(3) Let $[x] \in \mathscr{X} / \mathscr{X}_{0}$ show that for any $x \in[x]$ it holds that

$$
\inf _{Z \in \mathscr{X}_{0}}\|x-Z\|=\|[x]\|_{0}
$$

(4) Define the mapping $\phi: \mathscr{X} \rightarrow \mathscr{X} / \mathscr{X}_{0}$ as

$$
\phi(x)=[x]=x+\mathscr{X}_{0}, \forall x \in \mathscr{X},
$$

show that ϕ is a continuous linear mapping.
(5) Let $[x] \in \mathscr{X} / \mathscr{X}_{0}$. Show that there exist $x \in \mathscr{X}_{0}$ such that $\phi(x)=[x]$ and $\|x\| \leq 2\|[x]\|_{0}$.
(6) Suppose that $(\mathscr{X},\|\cdot\|)$ is complete. Show that $\left(\mathscr{X} / \mathscr{X}_{0},\|\cdot\|_{0}\right)$ is complete too.
(7) Let $\mathscr{X}=C[0,1], \mathscr{X}_{0}=\{f \in \mathscr{X}: f(0)=0\}$, show that $\mathscr{X} / \mathscr{X}_{0}$ is isometric to \mathbb{K}.

Proof. (1) Trivial. (Note that $0 \in \mathscr{X}_{0}$).
(2) Trivial.
(3) Let $x \in[x]$, then $[x]=x+\mathscr{X}_{0}$, hence $\|[x]\|_{0}=\inf _{z \in \mathscr{X}_{0}}\|x+z\|$. Since \mathscr{X}_{0} is a subspace, $\inf _{z \in \mathscr{X}_{0}}\|x+z\|=$ $\inf _{z \in \mathscr{X}_{0}}\|x-z\|$.
(4) It is trivial that f is linear. Now suppose that $x_{n} \rightarrow x$, then $\left\|\left[x_{n}\right]-[x]\right\|_{0}=\left\|\left[x_{n}-x\right]\right\|_{0}=\inf _{z \in \mathscr{X}_{0}} \| x_{n}-$ $x+z\|\leq\| x_{n}-x \|$, which implies that $f\left(x_{n}\right) \rightarrow f(x)$. Thus f is continuous.
(5) If $\|[x]\|_{0}=0$ then $x \in \mathscr{X}_{0}$ then we are done. Assume that $\|[x]\|_{0}>0$. Consider $x+\mathscr{X}_{0}=\left\{x-z: z \in \mathscr{X}_{0}\right\}$. Note that $\|[x]\|_{0}=\inf _{z \in \mathscr{X}_{0}}\|x-z\|$, there exists $z \in X_{0}$ such that $\|x-z\| \leq 2 \inf _{z \in \mathscr{X}_{0}}\|x-z\|$, and $x-z$ is what we desire.
(6) Use $\|[a]-[b]\|_{0}=\|[a-b]\|_{0} \leq\|a-b\|$.
(7) Let $f_{c}(x)=c$ denoting the constant function with value c. Then we claim that $g: x \mapsto\left[f_{x}\right]$ is an isometry between \mathbb{K} and $\mathscr{X} / \mathscr{X}_{0}$. Notice that $\left\|\left[f_{x}\right]-\left[f_{y}\right]\right\|=\left\|\left[f_{x}-f_{y}\right]\right\|=\left\|\left[f_{x-y}\right]\right\|$, it suffices to show that $\left\|\left[f_{a}\right]\right\|=$ $|a|$. On the one hand, $\left\|\left[f_{a}\right]\right\| \leq\left\|f_{a}\right\|=|a|$; on the other hand, for any $f \in\left[f_{a}\right],\|f\| \geq\|f(0)\|=|a|$.

5 Convex Sets and Fixed Points

5.1 Let \mathscr{X} be a B^{*} space and E be a convex proper set with an interior point 0 . Denote by P the Minkowski functional corresponding to E. Show that
(1) $x \in E^{\circ} \Longleftrightarrow P(x)<1$;
(2) $\overline{E^{\circ}}=\bar{E}$.

Proof. (1) " \Rightarrow " is obvious. Now we prove " \Leftarrow ". Suppose that $r \in(1,1 / P(x))$ and $B(0, \delta) \subseteq C$. Let $d=$ $\delta(1-1 / r)$ and we claim that $B(x, d) \subseteq C$. Suppose that $\|y-x\|<d$, then

$$
\frac{1}{r} \cdot r x+\left(1-\frac{1}{r}\right) \cdot \frac{r(y-x)}{r-1}=y .
$$

Note that $r(y-x) /(r-1)$ is in $B(0, \delta)$ and thus belongs to C, we have $y \in C$ and x is therefore an interior point of C.
(2) It suffices to show every $x \in E$ can be approximated by a sequence of points in E°. This is easy, because if $x \in E$ and $r x \in E$ for all $r \in(0,1)$ and $r x$ belongs to E^{c} since $P(r x)<1$ for $r \in(0,1)$.
5.2 Show that the convex hull of a sequentially compact set in a Banach space is also sequentially compact.

Proof. Let E be a sequentially compact set in a Banach space \mathscr{X} thus it is totally bounded. We shall show that co E is totally bounded too. Given $\epsilon>0$ and suppose that $\left\{a_{1}, \ldots, a_{n}\right\}$ is an ϵ-net of E. Let $x \in \operatorname{co} E$ and $x=\sum \lambda_{i} x_{i}$, where $\sum \lambda_{i}=1, x_{i} \in E$, thus we can find $a_{x, i}$ such that $\left\|a_{x, i}-x_{i}\right\|<\epsilon$. Hence it holds that $\left\|x-\sum \lambda_{i} a_{x, i}\right\| \leq \sum \lambda_{i}\left\|x-a_{x, i}\right\|<\epsilon$, which implies that $A=\left\{\sum \lambda_{i} a_{i}: \sum \lambda_{i}=1\right\}$ constitutes an ϵ-net of co E. Now we claim that A is sequentially compact, and the conclusion would follow from Exercise 1.3.1.
Given a sequence $\left\{x_{n}\right\}$, where $x_{n}=\sum \lambda_{n i} a_{i}$. Since $0 \leq \lambda_{k 1} \leq 1$, there exists a convergent subsequence $\lambda_{n_{1 j} 1} \subseteq$ $\left\{\lambda_{n 1}\right\}$. Then from $x_{n_{1 j} 2} \in[0,1]$, there exists a convergent subsequence $x_{n_{2 j} 2}$. Continue this for finitely many steps (note that $\left\{a_{i}\right\}$ is a finite set) and we will get a subsequence $\left\{x_{m_{k}}\right\}$ of $\left\{x_{n}\right\}$ with $\left\{\lambda_{m_{k}} i\right\}$ convergent for all i. Therefore, $\left\{x_{n}\right\}$ contains a convergent subsequence and A is sequentially compact.
5.3 Let C be a compact convex set in a B^{*} space \mathscr{X} and the mapping $T: C \rightarrow C$ be continuous. Show that T has a fixed point in C.

Proof. This is a direct corollary of Schauder's Fixed Point Theorem.
$5.4{ }^{1}$ Let C be a closed bounded convex set in Banach space \mathscr{X}. The maps $T_{i}: C \rightarrow \mathscr{X}(i=1,2)$ satisfies
(1) For all $x, y \in C$ we have $T_{1} x+T_{2} y \in C$;
(2) T_{1} is a contraction mapping and T_{2} is a compact mapping.

Show that $T_{1}+T_{2}$ has at least one fixed point in C.
Proof. Fix $y \in C$, it is not difficult to see that the map $x \mapsto T_{1} x+T_{2} y$ is a contraction mapping thus it has a unique fixed point $x_{y} \in C$. Define $T: C \rightarrow C$ as $y \mapsto x_{y}$, then $T x=T_{1}(T x)+T_{2} x$. We shall prove that T is continuous and compact, then a fixed point of T is also a fixed point of $T_{1}+T_{2}$.
It holds that

$$
\begin{aligned}
\left\|T x_{1}-T x_{2}\right\| & =\left\|\left(T_{1}\left(T x_{1}\right)+T_{2} x_{1}\right)-\left(T_{1}\left(T x_{2}\right)+T_{2} x_{2}\right)\right\| \\
& \leq\left\|\left(T_{1}\left(T x_{1}-T x_{2}\right)\right)\right\|+\left\|T_{2}\left(x_{1}-x_{2}\right)\right\| \\
& \leq \alpha\left\|T x_{1}-T x_{2}\right\|+\left\|T_{2}\left(x_{1}-x_{2}\right)\right\|,
\end{aligned}
$$

thus

$$
\left\|T x_{1}-T x_{2}\right\| \leq \frac{1}{1-\alpha}\left\|T_{2}\left(x_{1}-x_{2}\right)\right\|
$$

Since T_{2} is continuous and compact, it follows immediately that T is continuous and compact too.
5.5 Let A be n-by- n matrix with positive elements. Show that there exists λ and a vector $x \in \mathbb{R}^{n}$ such that $A x=\lambda x$ and the elements of x are all non-negative but not all zeroes.

Proof. Consider $C=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0(i=1, \ldots, n)\right\}$ then C is a compact convex set. Define a map $f: C \rightarrow C$ as $f(x)=(A x) / \sum_{i=1}^{\bar{n}}(A x)_{i}$. Now it suffices to show that $f(x)$ is continuous, which would imply that $T(C)$ is compact and the conclusion would follow from Schauder's Fixed Point Theorem.
Let $x \in C$, and we write $\sum_{i=1}^{n}(A x)_{i}=a^{T} x$, where $a \in \mathbb{R}^{n}$. Then from

$$
\left|\frac{A x}{a^{T} x}-\frac{A y}{a^{T} y}\right|=\frac{\left|a^{T} y A x-a^{T} x A y\right|}{a^{T} x a^{T} y} \leq \frac{\left|a^{T}(y-x)\right| \cdot|A x|}{a^{T} x a^{T} y}+\frac{a^{T} x|A(x-y)|}{a^{T} x a^{T} y}
$$

and

$$
a^{T} x a^{T} y=\left(a^{T} x\right)^{2}+\left(a^{T} x\right)\left(a^{T}(y-x)\right)
$$

we can see that when $|y-x|$ is small enough, $|f(x)-f(y)|$ is small.
5.6 Let $K(x, y)$ be positive-valued continuous function on $[0,1] \times[0,1]$. Define

$$
(T u)(x)=\int_{0}^{1} K(x, y) u(y) d y, \quad \forall u \in C[0,1]
$$

Prove that there exists $\lambda>0$ and continuous non-negative function $u \neq 0$ such that $T u=\lambda u$.

[^0]Proof. Consider the set

$$
C=\left\{u \in C[0,1]: u \geq 0, \int_{0}^{1} u(t) d t=1\right\}
$$

Then C is a closed convex set. Define $S: C \rightarrow C$ as $S u=T u / \int_{0}^{1} T u(t) d t$, and it is not difficult to see that S is continuous. We shall prove that $S(C)$ is sequentially compact, or, $S(C)$ is uniformly bounded and uniformly equicontinuous.
Suppose $0<m \leq K(x, y) \leq M$ on $[0,1] \times[0,1]$, then we have $\|S u\|=\|T u\| / \int_{0}^{1} T u(t) d t \leq M / m$. Thus $S(C)$ is uniformly bounded. On the other hand, we have

$$
\|(S u)(y)-(S u)(x)\|=\frac{\|(T u)(y)-(T u)(x)\|}{\int_{0}^{1} T u(t) d t} \leq \frac{\int_{0}^{1}|K(y, t)-K(x, t)| u(t) d t}{m}
$$

together with the uniform continuous of K the uniform equicontinuity follows.

6 Inner Product Space

6.1 (Polarization Identity) Let a be a sesquilinear function on a complex linear space \mathscr{X} and q the quadratic form induced by a. Show that for any $x, y \in \mathscr{X}$ it holds that

$$
a(x, y)=\frac{1}{4}\{q(x+y)-q(x-y)+i q(x+i y)-i q(x-i y)\} .
$$

Proof.

$$
\begin{aligned}
& \frac{1}{4}\{q(x+y)-q(x-y)+i q(x+i y)-i q(x-i y)\} \\
= & \frac{1}{4}\{a(x+y, x+y)-a(x-y, x-y)+i a(x+i y, x+i y)-i a(x-i y, x-i y)\} \\
= & \left.\frac{1}{4}\{2 a(x, y)+2 a(y, x)+2 i(a(x, i y)+a(i y, x))\}\right\} \\
= & \left.\frac{1}{4}\{2 a(x, y)+2 a(y, x)+2 i(-i a(x, y)+i a(y, x))\}\right\} \\
= & \frac{1}{4} \cdot 4 a(x, y)=a(x, y)
\end{aligned}
$$

6.2 Show that it is impossible to introduce an inner product (\cdot, \cdot) in $C[a, b]$ such that

$$
(f, f)^{\frac{1}{2}}=\max _{a \leq x \leq b}|f(x)|, \quad \forall f \in C[a, b]
$$

Proof. It is suffices that the parallelogram equality does not hold. Assume that $[a, b]=[0,1]$. Let $f(x)=x$ and $g(x)=x^{2}$ we have that $\|f+g\|^{2}+\|f-g\|^{2}=4+1 / 4$ while $2\left(\|f\|^{2}+\|g\|^{2}\right)=4$.
6.3 In $L^{2}[0, T]$ show that the function

$$
x \mapsto\left|\int_{0}^{T} e^{-(T-\tau)} x(\tau) d \tau\right|, \quad \forall x \in L^{2}[0, T]
$$

reaches its maximum value on the unit sphere, and find the maximum value with the point x at which it attains the maximum value.

Proof. Assume that $\int_{0}^{T}|x(\tau)|^{2} d \tau=1$, by Cauchy-Schwarz Inequality we have

$$
\left|\int_{0}^{T} e^{-(T-\tau)} x(\tau) d \tau\right| \leq\left(\int_{0}^{T} e^{-2(T-\tau)} d \tau\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left|x^{2}(\tau)\right| d x\right)^{\frac{1}{2}}=\sqrt{\frac{1-e^{-2 T}}{2}}
$$

where the equality holds iff $x(\tau)=\lambda e^{-(T-\tau)}$ for some λ. Combining with $\int_{0}^{T}|x(\tau)|^{2} d \tau=1$, we can obtain that $\lambda= \pm \sqrt{2} e^{T} / \sqrt{e^{2 T}-1}$. Therefore, the function attains the maximum value $\sqrt{1-e^{-2 T}} / \sqrt{2}$ at $x(\tau)=$ $\pm \sqrt{2} e^{\tau} / \sqrt{e^{T}-e^{-T}}$.
6.4 Let M, N be two subsets in an inner-product space. Prove that

$$
M \subseteq N \Rightarrow N^{\perp} \subseteq M^{\perp}
$$

Proof. Trivial.

6.5 Let M be a subset of Hilbert space \mathscr{X}, show that

$$
\left(M^{\perp}\right)^{\perp}=\overline{\operatorname{span} M}
$$

Proof. Firstly we prove that $M^{\perp}=\overline{\operatorname{span} M^{\perp}}$ and it suffices to show that $M^{\perp} \subseteq \overline{\operatorname{span} M^{\perp}}$. Let $x \in M^{\perp}$ and $y \in \overline{\operatorname{span} M}$. If $y \in \operatorname{span} M$, then $y=\sum a_{n} x_{n}$ with $x_{n} \in M$. Since $x \perp x_{n}$, we know that $x \perp y$. If $y \notin \operatorname{span} M$, then there exists $\left\{y_{n}\right\} \subseteq$ span M such that $y_{n} \rightarrow y$. We have that $x \perp y_{n}$, so $x \perp y$. Therefore, $M^{\perp} \subseteq \overline{\operatorname{span} M^{\perp}}$. Now we show that if A is a closed subspace of \mathscr{X} then $\left(A^{\perp}\right)^{\perp}=A$. It is clear that $A \subseteq\left(A^{\perp}\right)^{\perp}$. Now we shall prove that $\left(A^{\perp}\right)^{\perp} \subseteq A$. Suppose that $x \perp A^{\perp}$. Write $x=y+z$, where $y \in A$ and $z \in A^{\perp}$, hence $(x, z)=(y, z)+(z, z)$ with $(x, z)=(y, z)=0$, yielding that $(z, z)=0$ and $z=0$. Thus $x=y \in A$.
6.6 In $L^{2}[-1,1]$ what is the orthogonal complement of the set of even functions? Prove your result.

Proof. The orthogonal complement consists of such function which differs from some odd function on a set of measure zero. It is such a function is orthogonal to any even function, and we shall prove the converse, that is, if $\int_{-1}^{1} f \bar{g}=0$ for all even function g, then f differs from an odd function on a set of measure zero. Write $\int_{-1}^{1} f \bar{g}=$ $\int_{0}^{1}\left(f(x)+f(-x) \overline{g(x)} d x\right.$ and let $g(x)=f(x)+f(-x)$ on $[0,1]$, hence $\int_{0}^{1}|f(x)+f(-x)|^{2}=0$, which indicates that $f(x)+f(-x)=0$ almost everywhere on $[0,1]$ and thus on $[-1,1]$.
6.7 In $L^{2}[a, b]$ consider the set $S=\left\{e^{2 \pi i n x}\right\}_{n=-\infty}^{\infty}$.
(1) If $|b-a| \leq 1$ then $S^{\perp}=\{0\}$.
(2) If $|b-a|>1$ then $S^{\perp} \neq\{0\}$.

Proof. (1) If $|b-a|=1$, it is well-known that $S^{\perp}=\{0\}$. If $|b-a|<1$, if $u \in S^{\perp}$, we can extend u to some u^{\prime} on $[a, a+1]$ such that $\int_{a}^{b} u^{\prime} e^{2 \pi i n x} d x=0$ for all n. Thus $u^{\prime}=0$ on $[a, a+1]$ and accordingly $u=0$.
(2) Note that $\left\{e^{2 \pi i n x}\right\}$ is an orthonormal basis on $[b-1, b]$. So for any $u \in L^{2}[a, b-1](u \neq 0)$, we can extend it to a function u^{\prime} in $L^{2}[a, b]$ such that $u^{\prime} \in S^{\perp}$.
6.8 Denote by \mathscr{X} the set of all analytic functions on the closed unit circle. The inner product is defined as

$$
(f, g)=\frac{1}{i} \oint_{|z|=1} \frac{f(z) \overline{g(z)}}{z} d z, \quad \forall f, g \in \mathscr{X} .
$$

Show that $\left\{z^{n} / \sqrt{2 \pi}\right\}_{n=0}^{\infty}$ is an orthonormal set.

Proof. Let $z_{n}=z^{n} / \sqrt{2 \pi}$. First we show that $\left(z_{n}, z_{n}\right)=1$.

$$
\left(z_{n}, z_{n}\right)=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{z^{n} \bar{z}^{n}}{z} d z=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{|z|^{2 n}}{z} d z=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{d z}{z}=1
$$

Next we show that z_{n} and $z_{m}(n>m)$ are orthogonal.

$$
\left(z_{n}, z_{m}\right)=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{z^{n} \bar{z}^{m}}{z} d z=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{|z|^{2 m} z^{n-m}}{z} d z=\frac{1}{2 \pi i} \oint_{|z|=1} \quad z^{n-m-1} d z=0
$$

6.9 Let $\left\{e_{n}\right\}_{1}^{\infty}$ and $\left\{f_{n}\right\}_{1}^{\infty}$ be two orthonormal sets in Hilbert space \mathscr{X} and they satisfy that

$$
\sum_{i=1}^{\infty}\left\|e_{n}-f_{n}\right\|^{2}<1
$$

Show that the completeness of one of $\left\{e_{n}\right\}$ and $\left\{f_{n}\right\}$ implies that of the other.
Proof. Assume that $\left\{e_{n}\right\}$ is complete. If $\left\{f_{n}\right\}$ is not complete then there exists $x \neq 0$ such that $x \perp f_{n}$ for all n. It follows that

$$
\|x\|^{2}=\sum\left|\left(x, e_{n}\right)\right|^{2}=\sum\left|\left(x, e_{n}-f_{n}\right)\right|^{2} \leq\|x\|^{2} \sum\left\|e_{n}-f_{n}\right\|^{2}<\|x\|^{2}
$$

which is a contradiction. Therefore, $\left\{f_{n}\right\}$ must be complete.
6.10 Suppose that \mathscr{X} be a Hilbert space and \mathscr{X}_{0} a closed subspace of \mathscr{X}. Let $\left\{e_{n}\right\}$ and $\left\{f_{n}\right\}$ be orthonormal bases of \mathscr{X}_{0} and \mathscr{X}_{0}^{\perp}, respectively. Show that $\left\{e_{n}\right\} \cup\left\{f_{n}\right\}$ is an orthonormal basis of \mathscr{X}.

Proof. It is clear that $\left\{e_{n}\right\} \cup\left\{f_{n}\right\}$ is an orthonormal set. From the unique decomposition theorem this set is a basis of \mathscr{X}.
6.11 Let $H^{2}(D)$ an inner-product as defined in Example 1.6.28.
(1) Suppose the Taylor expansion of $u(z)$ is $u(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$, show that

$$
\sum_{k=0}^{\infty} \frac{\left|b_{k}\right|^{2}}{k+1}<\infty
$$

(2) Let $u(z), v(z) \in H^{2}(D)$ and

$$
u(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad v(z)=\sum_{k=0}^{\infty} b_{k} z^{k}
$$

show that

$$
(u, v)=\pi \sum_{k=0}^{\infty} \frac{a_{k} \overline{b_{k}}}{k+1}
$$

(3) Let $u(z) \in H^{2}(D)$, show that

$$
|u(z)| \leq \frac{\|u\|}{\sqrt{\pi}(1-|z|)}, \quad \forall|z|<1
$$

(4) Verify that $H^{2}(D)$ is a Hilbert space.

Proof. (1) From the definition of $H^{2}(D)$ we have

$$
\iint_{D}\left|\sum_{k=0}^{\infty} b_{k} z^{k}\right|^{2} d x d y=\iint_{D}\left(\sum_{k=0}^{\infty} b_{k} z^{k}\right)\left(\sum_{k=0}^{\infty} \overline{b_{k}} \bar{z}^{k}\right) d x d y=\iint_{D} \sum_{k \geq 0, l \geq 0} b_{k} \overline{b_{l}} z^{k} \bar{z}^{l} d x d y<\infty
$$

Since $\sum b_{k} z^{k}$ converges uniformly on $B(0, r)(0<r<1)$, it holds that

$$
\begin{aligned}
& \iint_{|z| \leq r} \sum_{k \geq 0, l \geq 0} b_{k} \overline{b_{l}} z^{k} \bar{z}^{l} d x d y \\
= & \sum_{k \geq 0, l \geq 0} \iint_{|z| \leq r} b_{k} \overline{b_{l}} z^{k} \bar{z}^{l} d x d y \\
= & \sum_{k \geq 0, l \geq 0} b_{k} \overline{b_{l}} \int_{0}^{r} s^{k+l+1} d s \int_{0}^{2 \pi}(\cos k \theta+i \sin k \theta)(\cos l \theta-i \sin l \theta) d \theta \\
= & \sum_{k \geq 0} b_{k} \overline{b_{k}} \cdot \frac{r^{2 k+2}}{2(k+1)} \cdot 2 \pi=\pi \sum_{k=0}^{\infty} \frac{\left|b_{k}\right|^{2}}{k+1} r^{2 k+2} .
\end{aligned}
$$

Since $\iint_{D}|u(z)|^{2} d x d y<\infty$, it holds that $\lim _{r \rightarrow 1^{-}} \iint_{|z| \leq r}|u(z)|^{2} d x d y=\iint_{D}|u(z)|^{2} d x d y$. We also have $\lim _{r \rightarrow 1^{-}} \sum\left|b_{k}\right|^{2} r^{2 k+2} /(k+1)=\sum\left|b_{k}\right|^{2} /(k+1)$, the conclusion follows immediately.
(2) The proof is very similar to the previous one.
(3) Let $r=1-|z|$ then $B(z, r) \subseteq D$. Note that $f(x, y)=u(x+i y)$ is harmonic, hence we have

$$
|u(z)|=\frac{1}{\pi r^{2}}\left|\iint_{B(z, r)} u(x+i y) d x d y\right| \leq \frac{1}{\sqrt{\pi} r}\left(\iint_{B(z, r)}|u(x+i y)|^{2} d x d y\right)^{\frac{1}{2}} \leq \frac{\|u\|}{\sqrt{\pi}(1-|z|)}
$$

(4) Everything is clear except completeness. Let $\left\{u_{n}\right\}$ be a Cauchy sequence. Then for all z on a circle $|z| \leq r$ we have from (3) that $\left|u_{n}(z)-u_{m}(z)\right| \leq\left\|u_{n}-u_{m}\right\| /(\sqrt{\pi}(1-r))$, hence $\left\{u_{n}(z)\right\}$ uniformly converges within $|z| \leq r$ to some $u(z)$. We know that $u(z)$ is holomorphic and $\iint_{u(z)} d x d y<\infty$ from Minkowski's Inequality.
6.12 Let \mathscr{X} be an inner-product space and $\left\{e_{n}\right\}$ be an orthonormal set. Show that

$$
\left|\sum_{n=1}^{\infty}\left(x, e_{n}\right) \overline{\left(y, e_{n}\right)}\right| \leq\|x\|\|y\|, \quad \forall x, y \in \mathscr{X} .
$$

Proof. We have

$$
\left|\sum_{n=1}^{\infty}\left(x, e_{n}\right) \overline{\left(y, e_{n}\right)}\right| \leq \sum_{n=1}^{\infty}\left|\left(x, e_{n}\right)\right|\left|\overline{\left(y, e_{n}\right)}\right| \leq\left(\sum_{n=1}^{\infty}\left|\left(x, e_{n}\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{\infty}\left|\left(y, e_{n}\right)\right|^{2}\right)^{\frac{1}{2}} \leq\|x\|\|y\|
$$

using Cauchy-Schwarz and Bessel Inequalities.
6.13 Let \mathscr{X} be an inner-product space. For any $x_{0} \in \mathscr{X}$ and any $r>0$, define

$$
C=\left\{x \in \mathscr{X}:\left\|x-x_{0}\right\|<r\right\} .
$$

(1) Show that C is a closed convex subset;
(2) For any $x \in \mathscr{X}$ define

$$
y= \begin{cases}x_{0}+r\left(x-x_{0}\right) /\left\|x-x_{0}\right\|, & x \notin C ; \\ x, & x \in C,\end{cases}
$$

Show that y is the best approximation of x in C.
Proof. (1) Trivial.
(2) If $x \in C$ then $\|y-x\|=0$ and thus y is obviously the best approximation. Now assume that $x \notin C$, then for any $c \in C$ we have

$$
\|y-x\|=\left\|x_{0}+r \frac{x-x_{0}}{\left\|x-x_{0}\right\|}-x\right\|=\left\|x-x_{0}\right\|-r \geq\left\|x-x_{0}\right\|-\left\|c-x_{0}\right\| \geq\|x-c\|
$$

6.14 Find $\left(a_{0}, a_{1}, a_{2}\right) \in \mathbb{R}^{3}$ which minimizes $\int_{0}^{1}\left|e^{t}-a_{0}-a_{1} t-a_{2} t^{2}\right|^{2} d t$.

Proof. This is to find the projection of e^{t} on $\operatorname{span}\left\{1, t, t^{2}\right\}$ in $L^{2}[0,1]$. According to the system of equations (1.6.4), we obtain that $a_{0}=39 e-105, a_{1}=-12(18 e-49)$ and $a_{2}=30(7 e-19)$.
6.15 Let $f(x) \in C^{2}[a, b]$ satisfying

$$
f(a)=f(b)=0, \quad f^{\prime}(a)=1, \quad f^{\prime}(b)=0 .
$$

Show that

$$
\int_{a}^{b}\left|f^{\prime \prime}(x)\right|^{2} d x \geq \frac{4}{b-a}
$$

Proof. The curve spline is a cubic function, say $g(x)=A x^{3}+B x^{2}+C x+D$. Then from $g(a)=g(b)=0$, $g^{\prime}(a)=1, g(b)=0$, we can obtain that $A=1 /(a-b)^{2}$ and $B=-(a+2 b) /(a-b)^{2}$. Then $\int_{a}^{b}\left|f^{\prime \prime}(x)\right|^{2} \geq$ $\int_{a}^{b}\left|g^{\prime \prime}(x)\right|^{2} d x=4 /(a-b)^{4} \cdot \int_{a}^{b}(a+2 b-3 x)^{2} d x=4 /(b-a)$.
6.16 (Variational Inequality) Let \mathscr{X} be a Hilbert space and $a(x, y)$ a Hermitian sesquilinear function on \mathscr{X}. Suppose that there exists $M>0$ and $\delta>0$ such that

$$
\delta\|x\|^{2} \leq a(x, x) \leq M\|x\|^{2}, \quad \forall x \in \mathscr{X} .
$$

Let $u_{0} \in \mathscr{X}$ and C be a closed convex subset on \mathscr{X}. Show that the function

$$
x \mapsto a(x, x)-\Re\left(u_{0}, x\right)
$$

attains minimum value at some x_{0} on C and the point x_{0} is unique and satisfies

$$
\Re\left(2 a\left(x_{0}, x-x_{0}\right)-\left(u_{0}, x-x_{0}\right)\right) \geq 0, \quad \forall x \in C .
$$

Proof. Denote the function by $f(x)$. We have $f(x) \geq \delta\|x\|^{2}-\left|\left(u_{0}, x\right)\right| \geq \delta\|x\|^{2}-\left\|u_{0}\right\|\|x\|$, which is bounded below, so we can suppose that $d=\inf _{x \in C} f(x)$, and $d<f\left(x_{n}\right)<d+1 / n$. We can write

$$
f(x)=a(x, x)+\frac{\left\|u_{0}-x\right\|^{2}-\|x\|^{2}-\left\|u_{0}\right\|^{2}}{2}
$$

We shall show that $\left\{x_{n}\right\}$ is convergent, that is, it is a Cauchy sequence. From parallelogram equality we have

$$
\begin{equation*}
\left\|x_{m}-x_{n}\right\|^{2}=2\left(\left\|x_{m}\right\|^{2}+\left\|x_{n}\right\|^{2}\right)-4\left\|\frac{x_{n}+x_{m}}{2}\right\|^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{aligned}
\left\|x_{m}-x_{n}\right\|^{2}= & \left\|\left(u_{0}-x_{m}\right)-\left(u_{0}-x_{n}\right)\right\|^{2} \\
= & 2\left(\left\|u_{0}-x_{m}\right\|^{2}+\left\|u_{0}-x_{n}\right\|^{2}\right)-4\left\|u_{0}-\frac{x_{n}+x_{m}}{2}\right\|^{2} \\
= & 2\left(2 f\left(x_{m}\right)-2 a\left(x_{m}, x_{m}\right)+\left\|x_{m}\right\|^{2}+\left\|u_{0}\right\|^{2}+2 f\left(x_{n}\right)-2 a\left(x_{n}, x_{n}\right)+\left\|x_{n}\right\|^{2}+\left\|u_{0}\right\|^{2}\right) \\
& -4\left(2 f\left(\frac{x_{n}+x_{m}}{2}\right)-2 a\left(\frac{x_{n}+x_{m}}{2}, \frac{x_{n}+x_{m}}{2}\right)+\left\|\frac{x_{n}+x_{m}}{2}\right\|^{2}+\left\|u_{0}\right\|^{2}\right) \\
= & 4\left(f\left(x_{m}\right)+f\left(x_{n}\right)-2 f\left(\frac{x_{m}+x_{n}}{2}\right)\right) \\
& +4\left(2 a\left(\frac{x_{n}+x_{m}}{2}, \frac{x_{n}+x_{m}}{2}\right)-a\left(x_{m}, x_{m}\right)-a\left(x_{n}, x_{n}\right)\right)+\left\|x_{m}-x_{n}\right\|^{2} \quad \text { (use (2)) }
\end{aligned}
$$

So it holds that

$$
\begin{aligned}
0= & 4\left(f\left(x_{m}\right)+f\left(x_{n}\right)-2 f\left(\frac{x_{m}+x_{n}}{2}\right)\right)+4\left(2 a\left(\frac{x_{n}+x_{m}}{2}, \frac{x_{n}+x_{m}}{2}\right)-a\left(x_{m}, x_{m}\right)-a\left(x_{n}, x_{n}\right)\right) \\
< & 4\left(\frac{1}{m}+\frac{1}{n}\right)+4\left(a\left(x_{m}+\frac{x_{n}-x_{m}}{2}, x_{m}+\frac{x_{n}-x_{m}}{2}\right)-a\left(x_{m}, x_{m}\right)\right) \\
& +4\left(a\left(x_{n}-\frac{x_{n}-x_{m}}{2}, x_{n}-\frac{x_{n}-x_{m}}{2}\right)-a\left(x_{n}, x_{n}\right)\right) \\
= & 4\left(\frac{1}{m}+\frac{1}{n}\right)+4\left(\Re a\left(x_{m}, x_{n}-x_{m}\right)+a\left(\frac{x_{n}-x_{m}}{2}, \frac{x_{n}-x_{m}}{2}\right)\right) \\
& +4\left(-\Re a\left(x_{n}, x_{n}-x_{m}\right)+a\left(\frac{x_{n}-x_{m}}{2}, \frac{x_{n}-x_{m}}{2}\right)\right) \\
= & 4\left(\frac{1}{m}+\frac{1}{n}\right)-4 \Re a\left(x_{m}-x_{n}, x_{m}-x_{n}\right)+2 a\left(x_{n}-x_{m}, x_{n}-x_{m}\right) \\
= & 4\left(\frac{1}{m}+\frac{1}{n}\right)-2 a\left(x_{n}-x_{m}, x_{n}-x_{m}\right) \leq 4\left(\frac{1}{m}+\frac{1}{n}\right)-2 \delta\left\|x_{n}-x_{m}\right\|^{2} .
\end{aligned}
$$

Therefore,

$$
\left\|x_{m}-x_{n}\right\|^{2}<\frac{2}{\delta}\left(\frac{1}{m}+\frac{1}{n}\right) \rightarrow 0, \quad m, n \rightarrow \infty
$$

Now we prove that the uniqueness. If $f(x)=f(y)=d$ and $x \neq y$, then similar to the process above, we have that $\|x-y\|^{2}<0$, which is a contradiction. Hence it must hold that $x=y$.
Suppose that $f\left(x_{0}\right)=d$, let $g_{x}(t)=f\left(t x+(1-t) x_{0}\right)$, then $g_{x}(t) \geq g_{x}(0)$ for all $x \in C$ and $t \in[0,1]$.

$$
\begin{aligned}
g_{x}(t) & =a\left(t\left(x-x_{0}\right)+x_{0}, t\left(x-x_{0}\right)+x_{0}\right)-\Re\left(u_{0}, t\left(x-x_{0}\right)+x_{0}\right) \\
& =t^{2} a\left(x-x_{0}, x-x_{0}\right)+2 t \Re a\left(x_{0},\left(x-x_{0}\right)\right)+a\left(x_{0}, x_{0}\right)-t \Re\left(u_{0}, x-x 0\right)-\Re\left(u_{0}, x_{0}\right)
\end{aligned}
$$

Hence $g_{x}^{\prime}(0)=2 \Re a\left(x_{0}, x-x_{0}\right)-\Re\left(u_{0}, x-x_{0}\right)$. Since $g_{x}(t)-g_{x}(0)=g_{x}^{\prime}(0) t+a\left(x-x_{0}, x-x_{0}\right) t^{2} \geq 0$, it follows that $g_{x}^{\prime}(0) \geq-a\left(x-x_{0}, x-x_{0}\right) t$ for all $t \in(0,1]$ and thus $g_{x}^{\prime}(0) \geq 0$.

[^0]: ${ }^{1}$ M. A. Krasnoselskii. Two Remarks on the Methods of Successive Approximations. Uspeckbi Mat. Nauk. 10(1955), 123--127.

