1 Contraction Mapping
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1.4

1.5

1.6

Prove that a closed subset of a complete space is a complete subspace, and any complete subspace of a metric space
is closed.

Proof. Trivial. ]

(Newton's Method) Let f € C?[a,b] and # € (a,b) such that f(#) = 0 and f’(Z) # 0. Show that there exists a
neighbourhood U (%) such that for any xg € U(Z) the sequence defined by

Tyl = Tp — , n=0,1,2,...
f(@n)

converges to .

Proof. Since f”(z) is continuous on [a, b], it is bounded by Mj on [a, b] for some My. Besides, it follows from
f(Z) # 0 that there exi$ts 61 > 0 such that | f'(z)| > M; forall x € [Z — §1, & + d1]. Since f(&) = 0, we can find
§ < 81 such that |f(x)| < M?/(2Ms) forall z € [& — 6,2 + ). More $trongly, we can find § small enough such
that f(z) #Oforallz € [& — 6,& + d] \ {#}, because f/(Z) # 0. Let U(&) = (& — 6, & + 9).

Let g(z) = x — f(x)/f'(x) and we prove that g(z) is a contraltion mapping, and this is clear, because ¢’(z) =
|[f(@)f"(z)/f (x)?] < M?/(2M3) - My/M? = 1/2. Therefore, {z,, } would converge and denote the limit point
by zo € [&—0, &+ 0]. Take limit in the both sides of the recursive formula, we obtain that zg = x¢ — f(x0)/ ' (x0),
which implies that f(z¢) = 0. From the con§tru&ion of U (&) we have seen that x is the only zero of f in [£—6, +4],
whence it must hold zg = Z. O

Let (£, p) be a metric space and T : 2~ — £ be a mapping which satisfies that p(Tz, Ty) < p(z,y) for all
x # y and has a fixed point. Show that the fixed point is unique.

Proof. Suppose x1 and x5 are two ditinét fixed points of T'. Then it follows from the assumption that p(T'z1, Tx2) <
p(x1,x2). However, p(Tx1, T'z2) is exaltly p(z1,x2), which leads us to a contradiction. O

Let T be a contrattion mapping on a metric space. Show that T is continuous.
Proof. Trivial. ]

Let T be a contraction mapping. Show that T (n € N) is also a contration mapping and the converse proposition
may not hold.

Proof. Prove by induttion. The §tatement is true when n = 1 and suppose the contraction coefficient is aq €
(0,1). Suppose the §tatement holds for n = k with contraction coefficient ay, € (0, 1), then p(T 1z, TH+1y) <
arp(TFx, T*y) < ajapp(x,y), whence the §tatement holds for n = k + 1. Therefore, T" is a contradiction
mapping for all n > 0.
Define T : R — Roas

1z, O< 2| <1,
T(z) = { 0, otherwise.

Then T'(z) is not a conformal mapping while 72(z) is. O

Let M be a bounded closed set in (R™, p) and T : M — M satisfy p(T'z, Ty) < p(z,y) for all z # y. Show that
T has a unique fixed point in M.



Proof It suflices to show the existence of fixed point and the uniqueness follows from Exercise 1.1.3.

Define g(z) = p(z, f(z)). From |g(z1) — g(x2)| < p(x1,22) + p(f(x1), f(22)) < 2p(z1,22) it follows that
g(x) is continuous thus it attains its minimum value at some point, say g, in M (which is a compact set). Hence
9(x0) < g(f(x0)). 10 # f(zo), then we have g(f(z0)) = p(f(z0), F(/(z0))) < plo, [(20)) = gl(zo) which
is a contradi¢tion. Therefore, it musét hold that zg = (). O

1.7 Show that the integral equation
1
x(t) — )\/ el ~Sx(s)ds = y(t)
0
has a unique solution z(t) € C[0, 1], where y(t) € C[0, 1] and |A| < 1.

Proof. Multiply both sides by e, it suffices to show that

has a unique solution. Define T': C[0,1] — C[0,1] as

(TH)(t) = (t) + A / £(s)ds,

and it follows that 7" is a contraction mapping from

1
s = 7ol = 1| [ (706) - stoyas] < s = .
And the unique fixed point is exaltly the solution. O
2 Completion
2.1 (Space S) Let S be the set consisting of all sequences
= (1,82, 6ns )
of real(complex) numbers. Define metric in S’ as
o 1 |& — ml
€, = ok 1 1 e
o) ;2k1+|£k_77k|
where ¢ = (§1,...,%,...) and y = (M1,..., M, - .. ). Show that S is a complete metric space.
Proof. Itis easy to verify that p(x, y) is a metricindeed. Let {z,, } bea Cauchysequencein Sandz,, = (2r,,...,Tn,,. -

'Then for any € > 0, there exists N such that

_ =01 [Ty, — Tn, | €

for all m > n > N, which implies that

sup |xmk - xnk| €
e L+ |Tm, —Tn,| 1—¢

Y

or,
| Ty, — @, | <€, Vk>0,Ym,n> N.

It follows that {z,,, }°2; is a Cauchy sequence for a fixed k, thus it converges to some x}, and the convergence is
uniform with regard to k. Therefore, z,, — z* = (27,...,z},...), and S is complete. O

).



2.2 Let (2, p) be a metric space. Show that a Cauchy sequence is convergent iff it has a convergent subsequence.

Proof. *Only if" part is obvious and we shall prove “if" part below. Let {z,, } be a Cauchy sequence and z,,, — =*
as k — oo, where {ny, } is &trictly increasing. Given € > 0, there exits K such that |z, — 2*| < €/2. Since {z,}
is a Cauchy sequence, there exists N > ny such that |z,, — 2, | < €/2 for all n > N. Therefore, |z, — 2*| <
|Zn, — Tpye | + |Tnx — 2| < €, which implies that z,, — x* as n — oo. O

2.3 Let F be the set consi§ting of sequences of real numbers each of which has only finitely many nonzero items. In F'
the metric is defined as

p(x,y) = sup |Ek — Mkl
k>1

where ¢ = {£} € F andy = {n;} € F. Show that (F, p) is not complete and points out its completion.

Proof. It is easy to verify that (F, p) is metric space. Let z, = (1,1/2,...,1/n,0,0,...), then p(z,,xm) =
1/(n+ 1) and {x,} is a Cauchy sequence, but it does not converge in F, because for any y € F with y = 0 for
k > N, we have p(z,,y) > 1/N, for all n > N,, indicating that y is not the limit point of {z, }. The completion
of F is the space consiéting of all sequences of the reals. O

2.4 Prove that the space of all polynomials on [0, 1] under the metric

1
0.0 = [ 1ple) — afo)ds
0
is not complete. Points out its completion.

Proof. Because any continuous funttion on [0,1] can be uniformly approximated by a sequence of polynomials,
hence the space said above is incomplete. Its completion is L'[0, 1]. O

2.5 Let {x,} be a sequence of points in metric space (2", p). If for any € > 0, there exists Cauchy sequence {y,, } such
that

P(l“myn) <e¢

then {x,,} is convergent.

Proof. It suffices to show that {x,, } is a Cauchy sequence. Given € > 0, there exi§ts {y,, } such that p(z,,, y,) < €/3
and N such that p(yn, ym) < €/3 for all n,m > N. Hence for n,m > N it holds that p(x, Tm) < p(Tn, yn) +

p(ynaym) < p(ym»xm) <e. O

3 Sequentially Compact Sets

3.1 Show that a subset A of a complete metric space is sequentially compact iff for any € > 0 there exists a sequentially
compact e-net of A.

Proof. 'The “only if" part is obvious, because the sequentially compatness of A implies that there exist a finite e-net,
thus the net mu$t be sequentially compact. Now we prove the “if' part.

Given € > 0, and A has a sequentially compact €/2-net B and B is totally bounded, thus has a finite ¢/2-net C. Let
a € A, there exi§ts b € B such that p(a,b) < ¢/2 and ¢ € C such that p(b, ¢) < €/2, so p(a,c) < p(a,b)+ p(b, ¢)e,
which implies that C' is a finite e-net of A. Hence A is totally bounded.

O

3.2 Show that a continuous function over a compact set in a metric space is bounded and it can attain its supremum and
infimum.



3.3

3.4

3.5

3.6

3.7

Proof- See the proof of Proposition 1.3.12. O

Prove a totally bounded set in a metric space is bounded. Consider a subset E = {e}} of [? with

er=1{0,0,..., 1 .0,...}

kthitem

to show that the converse proposition may not be true.

Proof: Let A be a totally bounded set, then it has a finite 1-net {a, ..., a,}. Let d = max; p(ai, a;) Obviously A
is contained in (a,d + 1) thus bounded.

It is clear that |leg|| = 1 thus {e;} is bounded. However,
lei — esll = V3
for all i # j, implying that {e;,} is not totally bounded. O

Let (27, p) be a metric space and F1, F be two compact subsets. Show that there exist 1 € Fy and 22 € F; such
that p(F17 FQ) = p(xh .’172), where

p(F1, Fy) = inf{p(x,y) : x € F1,y € Fp}.

Proof. Let f(x) = p(z, F1) then f is continuous, from Exercise 1.3.2, it follows that there exists x5 € F; such that
f(z2) = mingep, f(x). Now we define g(z) = p(x2,z) on Fy. Since g(x) is continuous, there exists z; € F
such that g(x1) = p(x2, F1). We claim that z1, x4 satisfy the condition.

Letx € Fy and y € Fy, we have p(x1,x2) = p(x2, F1) < p(y, F1) < p(y, ), so p(x1,z2) < p(F1, Fy). Also itis
obvious that p(F1, F3) < p(x1,x2) and the conclusion follows. O

Let M be a bounded set in C|a, b]. Show that the set

E= {F(x) :/ f(a:)dt’f € M}
is sequentially compact.

Proof. It is sufficient to show that E is uniformly bounded and uniformly equicontinuous. Suppose M C B(0,r),
then for any F(z) € E, it holds that |F|| < (b — a)r, indicating that F is uniformly bounded. We have also
|F (1) — F(z2)| < r(z2 — 1), whence it follows that F' is uniformly equicontinuous. O

Let E = {sinnt}>2 , show that E is not sequentially compa& in C'[0, 7].

Proof. Take € = 1/2, for any n, we have | sin(n-7/(2n)) —sin0| = 1 > ¢, and 7/(2n) — 0 as n — oo. Therefore,
E is not uniformly equicontinuous. O

Prove that a subset A of S (see definition in Exercise 1.2.1) is sequentially compact iff for any n there exists C), > 0
such that for every z = (§1,...,&n,...) € Aitholds that |£,| < C,,.

Proof. *Only if": Since S is complete, A must be totally bounded. Let x1, ..., ,, be a finite 1/2-net of A (z; =
{zi1,.. . Tin,... }). Foranyx = (&1,...,&n, ... ) € A, there exifts x; for some i such that p(x;, ) < 1/2, which
implies that |z, — k| /(14 |z — Ekl) < 1/2, or, |24 — k| < 1forall k. Hence [€| < max{|z1x|, ..., |Tnk|}+1.

“If": Let {x,,} C S. Since z,, 1 is bounded, hence it has a convergent subsequence, say {z,, } 21 converging to x.
We also have x,,,, 2 bounded, so it has a subsequence {,,, } converging to 3. In this way, we have that {x, , .} C
{zn,,_, . }and {z,,, i} is convergent to x,, for each m. Itis easy to see that {x,,,,, }oo— is a subsequence of {z,, }
and we shall show that it is convergent. It is clear that z,,, r — % as m — oo for each k, because {zy,,,, }7°_,
is a subsequence of {x,,, }32;. Then it is not difficult to show that x,,,,, — = = (z1,...,Zk,...) innorm. O



3.8 Let (&£, p) be a metric space and M be a sequentially compact setin 2. If map f : & — M satisfies
p(f (1), fa2)) < p(x1,22), @1 # @2

then it has a unique fixed point in 2.

Proof. Consider the closure of M and see Exercise 1.1.6. O
3.9 Let (M, p) be a compa& metric space and £ C C(M) is uniformly bounded and satisfies Holder condition

|z(t1) — z(t2)| < Cp(t1,t2)®, Va € E,\Vit1,ta € M

where 0 < @ < 1 and C > 0, show that E is sequentially compact in C'(M).

Proof- It is obvious that E is uniformly equicontinuous. Together with the uniform boundedness, it follows that F

is sequentially compact. O

4 Normed Linear Space
4.1 For z = (x,y) € R?, define
Izl = [+ lyl; I2ll2 = V&2 +y2;||2lls = max(|a], ly]); [|2]la = (z* +y*)"/*.

(1) Show that all of || - ||; are norms of R? fori = 1,2, 3, 4;
(2) Draw the unit sphere in (R2, || - [|;).
(3) Find the lengths of three sides of the triangle with vertices O(0,0), A(1,0), B(0, 1) under the four different

norms.
4.2 Let ¢(0, 1] denote the set of continuous and bounded fun&ions on (0, 1]. Let ||z|| = sup |x(t)|. Show that
0<t<1
(1) || - || is a norm on ¢(0, 1];
(2) I°° is isometric to ¢(0, 1].
Proof: (1) Trivial.
(2) Define F: 1> — ¢(0,1] as
x=(x x )= f(z) = Tk x:%;
= I PIEIIPRY ) SR = $k+1+(zk—$k+1)k((k+1),’1}—1)’ %_H<(L‘<%
Then F' is an isometry. O

4.3 In C[a, b] define

b
||f1=</ (|f|2+|f’|2)dw> . Vi eCat)

(1) Prove that || - ||; is a norm on C'[a, b];
(2) Is (C'a, b, || - ||1) complete?

Proof. (1) Trivial.



4.4

4.5

4.6

4.7

(2) No. Take [a,b] = [-1,1] and f,, = V&% 4+ n?, we have

ol 7§+£ _ 2arctann
mit T3 T g2 n
as n — 00, hence {f,, } is a Cauchy sequence in (C*[a, b], || - [|1). It is clear that f,, — || and we shall prove

that if { f,,} converges to some continuous f in norm, then it mu$t hold that f(z) = |z|. If f,, — f in norm,
then [ |fn, — f|* — 0 thus f, — f in measure. Also f, () — |z| in measure hence f(z) and |z| differ at
mo#t in a set of measure zero, since f is continuous, it follows that f(z) = |x| & C'[a, b], indicating that { f,, }
does not converge in (C'[a, b], || - ||1)- O

In C]0, 1] define

1Al = (/ |f|2dw>é; 1112 = (/01(1+:c)|f(w)2dw>2

for every f € C[0,1]. Show that || - || is equivalent to || - ||2.

Proof. It is easy to verify that || f[|1 < || f]l2 < V2| f]l1- O

Let BC[0, 00) be the set of continuous and bounded funétions on [0, 00) and a > 0. Define

1flle = (/oo e () d:fc)é

(1) Show that || - ||, is 2 norm on BC|[0, o).
(2) Prove that || - ||4 is not equivalent to || - || for all a # b.

Proof: (1) Trivial.
(2) Suppose a < b. Forany C' > 1, take f = e~ where A = (b — aC?)/(C? — 1), we have || f|lo = 1/va + A
and thus [| f[la = C|f]s- O
Let 27 and 25 be two B* spaces and 2" = 27 x £ with norm

[l = max{{lz1 |1, [[z2]l2},

where x = (z1,22), ; € Z; and ||x;|| is the norm of Z; (i = 1,2). Show that if 27 and 25 are Banach spaces,
sois Z .

Proof. It suffices to show that 2~ is complete. Let {z,,} be a Cauchy sequence in 2" and x,, = (zp1,Tp2). If
follows immediately that {z,1} and {z,2} are both Cauchy sequences in 27 and 23, respetively. Since % is
complete, there exists x} € 2 such that x,,; — 2. Therefore, z,, — (z7,2%) € 2 and 2" is complete. O

Let 2 be a B* space. Show that 2 is a Banach space iff for any {x,,} C 27, Y7 | x,, is convergent whenever
>0 1 |lwn || is convergent.

Proof “Onlyif': Let {z,,} C 2 satisfying that > | ||z,,|| is convergent. Let y,, = >, _, @, we shall prove that

{yn} is a Cauchy sequence. This is because

n
Yn = Ymll < Z |lzkll, Vn>m.

k=m



4.8

4.9

4.10

4.11

“If": Let {x,, } be a Cauchy sequence in 2. We can choose 1 < nq < ng < --- <ny < --- such that

1
[#m — @n, || < 9k
for all m > ny. Let y, = p,,, — Tn, (n > 1) and y1 = @, then ) ||y, || is convergent, thus x = " y,, exits.

From
n—1

Zyk—x

k=1

|20 — 2| < T — Znp | + [Ty, — 2] = |20 — Zn, || +

it follows that z,, — . O

Let P, be the set of polynomials on [a, b] with degree less than or equal to n. Prove that for any f(x) € Cla, b
there exists Py(z) € P, such that

max |f(x) ~ Pofw)] = min max |f(z) - P(o)]

'That is, if we use elements in P, to approximate f(z) uniformly, Py () is the optimal one.
Proof: 'This is a direct corollary of Theorem 1.4.23, where e; = z°. O

In R? we define ||z|| = max{|z1|,||z2|} for z = (21, x2). Lete; = (1,0) and 2o = (0, 1). Find a € R such that

lzo — ae1]| = min||zo — Ae]|,
AER
and is such a unique? Give a geometric explanation.
Proof. We have that g — Ae; = (=X, 1), so ||zg — Aeq || reaches the minimum value 1 when |A| < 1. O

Prove the §trict convexity of norm is equivalent to
lz +yll = [lzll + [lyl|(Vz # 0,y # 0) = = = cy(c > 0).

Proof. Assume the convexity (as in Definition 1.4.24) fir§t. Let x # 0 and y # 0, 2’ = z/||z| and ¢’ = y/|z|,
o = |lall /(]| + iyl and B = lyll/ (]l + ly]) then |}a”]| = [l = 1. Thus from the convesxity of the norm it
holds that ||az’ + BY'|| < 1, ie., ||z + y|| < ||z|| + ||lyll, if 2" # v'. Therefore, we must have 2’ = ¢/, and z = cy
for some ¢ > 0.

On the contrary, let ||z|| = ||ly|| = 1(z # y) and o + 5 = 1. Itis clear that ||ax + By|| < o|lz|| + Sly|| = 1, but
the equality holds iff ax = CBy for some C' > 0, or, z = (C3/a)y. But ||z|| = ||y|| hence C3/a = 1, resulting
in ¢ = y which is a contradi¢tion. Hence the equality cannot hold and it muét hold the §trict inequality. O

Let 2" be a normed linear space. A function ¢ : 2~ — R is said convex if it holds
¢z + (1= N)y) < Ap(x) + (1 = N)o(y)

forall 0 < A\ < 1. Prove that a local minimum of a convex funé¢tion is also a global minimum.

Proof: Suppose x is a local minimum of a convex function f. For any y, let X be close to 1 enough, we have
Az + (1 — A)y close to = enough, thus

flz) <oz + (1= Ny) < Af(z) + (1 =N f(y),

flx) < f(y),

which implies that z is also a global minimum. O



4.12 Let (Z,] - ||) be a normed linear space and M is a finite dimensional subspace of Z” with a basis {e1, ..., e}
Given g € 27, define F': K — R as

oY)
)

F(eyy...,cp) =

n
E Ci€; — g|| -
i=1

F' is convex;

If F attains minimum value at ¢ = (cy, ..., ¢,) then

n
f= Z Ci€;
i=1

is the best approximation of g in M.

Proof. (1) Trivial.

)

This is exactly the definition of “be$t approximation'. O

4.13 Let 2 be a B* space and 2 a linear subspace of :Z". Suppose there exists ¢ € (0, 1) such that

inf |ly — x| <cllyll,Vy € 2,
z€Zo

show that 2 is dense in 2.

Proof. Lety € &\ £ and € > 0. There exi§ts z1 € 2y such that ||y — 21|| < cfly|| + €/2, then there exists
xy € Xg such that ||y — 21 — z2|| < c|ly — 21| +€/4 < A||y|| + ce/2 + €/4 < 2||y|| + €/2 + €/4. Continue this
process, for each n we have x,, € Zp such that

€ € €
ly =21 = =@l <yl + 5+ 55+ + 57 <yl +e
22 2n
It follows that {>°;_, 1} C 27 is a sequence of points converging to y, and hence 27 is dense. O

4.14 Let Cj be the set of sequences of real numbers converging to 0, and define the norm in Cy as || z|| = max,,>1 £, Vz

(&,

1)
)

cbns ) EC) Let M ={z={&} €Cy:> " & /2" =0}
Show that M is a closed sybspace of Cp;
Letzg = (2,0,...,0,...), show that infzcps ||xo — Z|| = 1 but ||xg — y|| > 1 forally € M.

(Remark: This problem provides an example indicating that the be§t approximation may not exiét for infinite-
dimensional subspace)

Proof (1) Letw € M, itis clear that Y |£x| /2" converges, since ||€x|| < ||z||. Then it is trivial to verify that M isa

)

subspace. Let {z, } be a Cauchy sequencein M, z,, = {&n1, - - -, &nk, - - - ;- Then for any € > 0, there exists N
such that ||z, — 2, || < eforalln,m > N, thusforall &, ||, —Emk|| < €, and therefore {&,,1 } (with respect to
n) is a Cauchy sequence and suppose it converges to &, uniformly. Therefore, {x,, } converges to some z € C.
Note that |¢x — &k < € for n large enough, we have |3 & /25| < 30 (& — &l /28 + |2 &un /28] < e
Therefore we know that x € M and M is closed.

Fir§t we show that ||zg — y|| > 1 forally € M. Lety = (y1,...,yx)- If y1 < 1or |yg| > 1 for some k > 1
then ||z —y|| > 1. Now assume y; > 1 and |y;| > 1fork > 2, then >y, /2" > 1/2+ >, y,/2". Note
that >, |yn|/2™ < 1/2, hence Yy, /2™ > 0, and the equality holds only if y; = 1 and y = —1 for all
k > 1, resulting in that {y; } does not converge to 0, which contradicts with y € Cj.

Now we show that inf||zg — y|| = 1. We shall prove that for any € > 0, we can find y € M such that
lzo—yl| <1+e Lets =2(e+1)/(e+2),y1 =1 —eand yp = —0* L fork > 1. Then ||zg —y| < 1+¢,
Yn — 0and > y;/2" = 0. O



415 Let 2 be a B* space and M a finite-dimensional proper subspace of Z". Show that there exifts y € 2~ with
lyll = 1 such that ||y — 2| > 1 forallz € M.

Proof Let z € 2"\ M and 2’ € M be the best approximation of z. Let d = ||z — 2’| and y = (2 — 2’)/d then
lyll = 1,and ||y — z| = ||z — (¢’ + dz)|/d > d/d = 1 forall 2 € M. O

4.16 Let f be a complex-valued fun&tion defined on [0, 1] and define

ws(f) = sup{|f(z) — f()| : Va,y € [0,1], [ — y| < 0}

Let 0 < a < 1. Define Lipschitz space Lip a as the set of all functions f such that

A1 = 1 O)] + sup{d™“ws (f)} < o0
>0
and
lipaa={f € Lipa: lim 6 %ws(f) = 0.}
6—0
Show that Lip « is a Banach space and lip @ a closed subspace of Lip cv.

Proof. It is trivial that Lip o is a normed linear space. Now we prove its completeness. Let {f,,} be a Cauchy
sequence in Lip c, then for any € > 0 there exists NV such that | f,,(0) — f,(0)| < eand sups_, 0~ ws(frn— fm) < €
foralln,m > N. Hence |f, () — fm(z)] < €6* + | fn(0) — frn(0)] < (6% + 1) for all n,m > N, which implies
that { f,,(x)} is a Cauchy sequence in C thus it converges to f(z) for some f. We shall show that f € Lip a.. This
is because

[f(@) = fW)l <[(f(@) = fu(@)) = (f (W) = fa(®))] + [fu(2) = fu(y)] 1)

and the uniform pointwise convergence of f,, — f.

It is also trivial to see that lip o is a subspace. Let { f,,} be a Cauchy sequence in lip @ and thus f,, — f uniformly
pointwise for some f € Lip a. It follows easily that f € lip a by (1). O

4.17 (Quotient space) Let 2" be a normed linear space and £ a closed linear subspace of :Z". Define a equivalence
relation ~ by x ~ y iff v — y € Zp. The quotient space is X / X.

(1) Let[x] € /%0 and x € 2. Show that x € [z] iff [z] = = + Zo.
(2) Define addition and scalar multiplication in 2"/ £ as follows.

[z] + [yl =z +y + 2o, VIl [y] € 27/ 20;
Az) = Ao+ 25, Vz]€ 22,V €K,

where x, y are arbitrary chosen from [z], [y] respe&ively. Define the norm

Ifello = inf [l ¥ls] € 27/ 20,

Show that (Z/ Zo, || - ||o) is a B* space.
(3) Let [x] € 2/ %0 show that for any = € [z] it holds that
ot lle = 21 = il
(4) Define the mapping ¢ : £ — £/ 2y as
d(x)=[z] =2+ Zo,Vr e £,

show that ¢ is a continuous linear mapping.



(5) Let [z] € 2"/ Zo. Show that there exi§t © € 25 such that ¢(z) = [z] and ||z|| < 2]/[z]]lo-
(6) Suppose that (2, || - ||) is complete. Show that (£"/ 20, || - ||o) is complete too.
(7) Let Z =C|0,1], Zo = {f € Z : f(0) = 0}, show that 2"/ Zj is isometric to K.

Progf. (1) Trivial. (Note that 0 € Z0).
(2) Trivial.
(3) Letx € [z], then [z] = x + Z0, hence ||[z]|lo = inf e 2, ||z + 2]|. Since 2y is a subspace, inf,c 2, ||z + 2| =
inf.c.z, o — 2.
(4) Itis trivial that f is linear. Now suppose that x,, — x, then ||[z,,] — [2]|lo = ||[xn — 2]|l0 = infrea; [|Tn —
x + z|| < ||z, — x|, which implies that f(z,,) — f(x). Thus f is continuous.

(5) If||[z]||o = O thenx € % then we are done. Assume that ||[z]|lo > 0. Considerx+ 2y = {x—2z: z € Zp}.
Note that ||[z]||o = infe 2, ||z — z||, there exifts z € X such that ||z — z|| < 2inf,c g, ||z — 2|, and x — 2
is what we desire.

(6) Use |[[a] = [b]llo = [[[a —b]llo < [la —b]|.

(7) Let f.(x) = c denoting the constant funétion with value ¢. Then we claim that g :  +— [f,] is an isometry
between K and 2/ Zo. Notice that ||[f] — [fy]ll = I[fz — fu]ll = [[[fe=y]|l, it suffices to show that ||[f,]]| =
|a|. On the one hand, ||[f.]l| < ||fall = |al; on the other hand, for any f € [f.], [|f]] > || f(0)]] = |al. O

5 Convex Sets and Fixed Points

5.1 Let Z bea B* space and E be a convex proper set with an interior point 0. Denote by P the Minkowski functional
corresponding to E. Show that

(1) xe E° <= P(z) < L

(2) E° =E.

Proof: (1) =" is obvious. Now we prove *<=". Suppose that r € (1,1/P(x)) and B(0,0) C C. Letd =
d(1 — 1/r) and we claim that B(z,d) C C. Suppose that ||y — z|| < d, then

1 —

T T r—1
Note that r(y — x)/(r — 1) is in B(0, ¢) and thus belongs to C, we have y € C and x is therefore an interior
point of C.

(2) It suffices to show every x € E can be approximated by a sequence of points in E°. This is easy, because if
x € Eandrx € Eforallr € (0,1) and rx belongs to E° since P(rz) < 1 forr € (0,1). O

5.2 Show that the convex hull of a sequentially compact set in a Banach space is also sequentially compact.

Proof: Let E be a sequentially compact set in a Banach space 2~ thus it is totally bounded. We shall show that
co F is totally bounded too. Given € > 0 and suppose that {a1,...,a,} is an e-net of E. Let x € co E and
xr = > Az, where Y- \; = 1, x; € E, thus we can find a,; such that |a,; — ;]| < e. Hence it holds that
lz — > Magqll < D Aillz — aszql| < € which implies that A = {3} \ja; : D A\; = 1} conStitutes an e-net of
co E. Now we claim that A is sequentially compact, and the conclusion would follow from Exercise 1.3.1.

Given a sequence {x,, }, where x,, = ) Ap;a;. Since 0 < Ay < 1, there exists a convergent subsequence A, ;1 C
{A\n1}. Then from z,,, 5 € [0,1], there exists a convergent subsequence z,,,o. Continue this for finitely many
§teps (note that {a;} is a finite set) and we will get a subsequence {z,,, } of {z,,} with {\,,,i} convergent for all .
Therefore, {z,,} contains a convergent subsequence and A is sequentially compact. O
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5.3

5.4

5.5

5.6

Let C be a compact convex set in a B* space 2" and the mapping T : C — C be continuous. Show that T has a
fixed point in C.

Proof. 'This is a dire¢t corollary of Schauder's Fixed Point Theorem. O

! Let C be a closed bounded convex set in Banach space 2. The maps T; : C — £ (i = 1,2) satisfies
(1) Forall z,y € C we have Ty x + Toy € C,
(2) T is a contraction mapping and 75 is a compa&t mapping.
Show that T} 4 T5 has at least one fixed point in C'.
Proof. Fixy € C, it is not difficult to see that the map x +— T2 + Toy is a contraction mapping thus it has a unique

fixed point z,, € C. Define T : C' — C as y — ), then Tx = T4 (T'x) 4+ Tox. We shall prove that T is continuous
and compact, then a fixed point of T is also a fixed point of T} + T.

It holds that
[Ty = Tas|| = [(To(T21) + Towr) — (T2 (Tw2) + Tows) |
ST Ty — Tao)) || + (| T2(21 — 22)|
< of|Tzy — Taof| + [|To (21 — 22)]),
thus )
1Ty = Taol| < = T2(21 — 22)]l.
Since T is continuous and compacdt, it follows immediately that 7" is continuous and compact too. O

Let A be n-by-n matrix with positive elements. Show that there exi$ts A and a vector z € R” such that Az = Az
and the elements of x are all non-negative but not all zeroes.

Proof. Consider C' = {(x1,...,2,) ER": > " 12, =1, 2, >0 (i =1,...,n)} then C is a compat convex set.
Defineamap f : C — Cas f(z) = (Az)/ >, (Az);. Now it suffices to show that f(z) is continuous, which
would imply that T'(C) is compact and the conclusion would follow from Schauder's Fixed Point Theorem.

Letz € C, and we write >, (Az); = a’z, where a € R™. Then from

Ax Ay | laTy Az — aT 2 Ay| < laT (y — x)| - |Az] N alz|A(z — y)|

aTz aTy aTzaTy - aTzaTy aTzaTy
and
a'zaly = (a")? + (a’z)(a” (y - @)
we can see that when |y — x| is small enough, | f(z) — f(y)| is small. O

Let K (x,y) be positive-valued continuous funcion on [0, 1] x [0, 1]. Define

(Tu)(z) = /0 K(z,y)u(y)dy, Yue C[0,1]

Prove that there exi§ts A > 0 and continuous non-negative function u # 0 such that Tu = Au.

IM. A. Krasnoselskii. Two Remarks on the Methods of Successive Approximations. Uspeckhi Mat. Nauk. 10(1955), 123--127.
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Proof: Consider the set
1
C= {uEC[OJ] tu >0, / u(t)dtzl}.
0

Then C is a closed convex set. Define S : C — C as Su = Tu/ fol Tu(t)dt, and it is not difficult to see that
S is continuous. We shall prove that S(C) is sequentially compa&, or, S(C) is uniformly bounded and uniformly

equicontinuous.

Suppose 0 < m < K(z,y) < M on [0, 1] x [0, 1], then we have ||Su|| = ||Tul||/ fol Tu(t)dt < M /m. Thus S(C)
is uniformly bounded. On the other hand, we have

|(Tw) () — (Cw@)] _ o 1K@, 1) — Kz Dlu()dt

1(Su)(y) = (Su)(2)]| = [ Tultyd < —

)

together with the uniform continuous of K the uniform equicontinuity follows. O

6 Inner Product Space

6.1 (Polarization Identity) Let a be a sesquilinear funétion on a complex linear space 2" and ¢ the quadratic form
induced by a. Show that for any =,y € 2" it holds that

a(z,y) = 3{4(3«" +y) — gz —y) +ig(x +iy) —ig(z —iy)}.

Proof:

i{q(w +y) —alz —y) +ig(z +iy) —iq(x —iy)}
= Halz + 9,2 +9) —alw — g,z —y) +iala +iy, 7 +iy) — ialz — iy, 7~ iy))
= {2a(z,y) + 20y, ) + 2i(a(a, iy) + aliy,))})
= {2a(z,y) + 2aly, ) + 2i(ia(x,y) + ia(y,2))}}
= T -da(e.y) = a(a.y)

4

6.2 Show that it is impossible to introduce an inner produét (-, -) in C|a, b] such that

(f,f)? = max |f(z)], VfeClab].

a<lz<b

Proof: 1t is suffices that the parallelogram equality does not hold. Assume that [a,b] = [0,1]. Let f(z) = « and
g(x) = a? we have that || f + g||* + [[f — g[|* = 4+ 1/4 while 2(|[ f]|* + [|g]|*) = 4. 0

6.3 In L2[0, T show that the function

T —

T
/ e~ T=y(r)dr|, Yz e L*[0,T]
0

reaches its maximum value on the unit sphere, and find the maximum value with the point « at which it attains the
maximum value.
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6.4

6.5

6.6

6.7

6.8

Progf. Assume that fOT |z(7)|* dr = 1, by Cauchy-Schwarz Inequality we have
1
2

T T 1 _ 6_2T
< / e 2= qr / |22(T)|dz | =4/ ——0,
0 0 2

where the equality holds iff 2(7) = Ae™(T~7) for some A\. Combining with fOT |z(7)|> d = 1, we can obtain
that A = iﬂeT/\/ e2T — 1. Therefore, the fun&ion attains the maximum value /1 — e—QT/\/§ at z(7) =
+v2e7 /v/eT —e T, O

1
2

T
/ ef(TfT)x(T)dT
0

Let M, N be two subsets in an inner-product space. Prove that
MCN=NtcMmM:
Proof. Trivial. O

Let M be a subset of Hilbert space 2, show that

(M*)* = span M.

Proof. Firstly we prove that M+ = span ]\4l and it suffices to show that M+ C span ML. Letz € M+ and
y € span M. If y € span M, theny = > a,x,, with z,, € M. Since z L x,,, we know that z L y. If y ¢ span M,

then there exists {y, } C span M such that y,, — y. We have that z | y,,, so x L y. Therefore, M+ C span M.

Now we show that if A is a closed subspace of 2 then (A+)+ = A. Itis clear that A C (A+)+. Now we shall prove
that (A+)1 C A. Suppose that z | A+. Write 7 = y+ 2, wherey € Aand 2 € AL, hence (2, 2) = (y, 2) +(z, 2)
with (z, z) = (y, z) = 0, yielding that (z,2) =0and 2 = 0. Thusx =y € A. O

In L?[—1, 1] what is the orthogonal complement of the set of even funétions? Prove your result.

Proof. 'The orthogonal complement consists of such function which differs from some odd funion on a set of
measure zero. It is such a function is orthogonal to any even function, and we shall prove the converse, that is, if

fil fg = 0 for all even fun&ion g, then f differs from an odd function on a set of measure zero. Write fil fg=
fol(f(x) + f(=x))g(z)dx and let g(x) = f(x)+ f(—z) on [0, 1], hence fol |f(x) + f(=)|? = 0, which indicates
that f(z) + f(—x) = 0 almoét everywhere on [0, 1] and thus on [—1, 1]. O

In L?[a, b] consider the set § = {e?™ne}2e

(1) If |b— a| < 1 then S+ = {0}.
(2) If |b— a| > 1 then S+ # {0}.

Proof (1) If |b — a| = 1, it is well-known that S+ = {0}. If |b — a| < 1, if u € S+, we can extend u to some u’
on [a,a + 1] such that fab u'e?™ % dy = 0 for all n. Thus u/ = 0 on [a, @ + 1] and accordingly u = 0.

(2) Note that {€2™"*} is an orthonormal basis on [b — 1,b]. So for any u € L?[a,b — 1] (u # 0), we can extend
it to a function v’ in L?[a, b] such that v’ € S+. O

Denote by 2 the set of all analytic funttions on the closed unit circle. The inner product is defined as
1 2)g(z
ro=1f T vrger
z|=1

Show that {z"/+/27}22  is an orthonormal set.
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Proof. Let z, = 2™ /v/2m. Fir§ we show that (2, z,) = 1.

1 nzn 1 2n 1 d
(vazn):f]{ szz:f,jé 2 dz:f,f{ —2:1
2mi Jiy =1 2 21 Ji=1 2 270 Jy=1 2

Next we show that z, and z,, (n > m) are orthogonal.

1 nzm 1 2m  n—m 1
(2 2m) = —7{ E e —7{ By, L Ml =0, O
|z|=1 |z|=1

2w z 2w z 2mi J|21=1

6.9 Let {e, }7° and {f,}1° be two orthonormal sets in Hilbert space £ and they satisfy that

Do llen = full® < 1.
i=1

Show that the completeness of one of {e,, } and { f,,} implies that of the other.

Proof: Assume that {e,, } is complete. If { f,, } is not complete then there exists  # 0 such that x L f,, for all n. It
follows that

z1? =D l(@,en)* =D l@,en = )P < M2 D llen — full* < ll2]1%,
which is a contradi¢tion. Therefore, { f,,} mu§t be complete. O

6.10 Suppose that 2" be a Hilbert space and £ a closed subspace of Z". Let {e,,} and {f,,} be orthonormal bases of
Zo and Zgh, respectively. Show that {e,, } U {f,} is an orthonormal basis of 2.

Proof. It is clear that {e, } U{f,} is an orthonormal set. From the unique decomposition theorem this set is a basis

of . O

6.11 Let H%(D) an inner-product as defined in Example 1.6.28.

(1) Suppose the Taylor expansion of u(z) is u(z) = 3 50  bz*, show that
PP Yy p k=0

k=0
(2) Letu(z),v(z) € H?(D) and
u(z) = Zakzk, v(z) = Zbkzk,
k=0 k=0
show that
o > ag bk
(u,v) =7 Z hl

(3) Letu(z) € H?(D), show that

(4) Verify that H2(D) is a Hilbert space.
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Proof. (1) From the definition of H?(D) we have

2 o0
// drdy = // <Z bkzk> (Z bz ) dxdy —/ Z bib 27 dxdy < oo.
D k=0 D \k=0

o0
E bkzk
— D p>o0,1>0

Since 3" by 2* converges uniformly on B(0,7) (0 < r < 1), it holds that

// Z b 2" 7 dxdy
121<7 k>0,1>0

// bl 2" 2 dxdy
k>0,1>0" 7 IzI<r

27
Z bkbl/ k'H'Hds/ (cos kO + isin kO)(cos 16 — isinlf)db
0

kE>0,1>0
r2k+2 0 b ‘2
_ k 2k+2
= bib
D bbe gy Z
k>0 k=0

Since [}, [u(z)*dzdy < oo, it holds that lim, ;- J) o< lu u(z)|?dedy = [[, |u(z)|*dzdy. We also have
lim, - > |0k |2r25*2/(k + 1) = Y [bi|?/(k + 1), the conclus10n follows immediately.
(2) The proof is very similar to the previous one.

(3) Letr =1 — |z| then B(z,r) C D. Note that f(x,y) = u(x + iy) is harmonic, hence we have

. 1 : : [[ull
u(x + 1y)dzdy| < // u(z + iy)|*dady < ————.
//B(z,r) (e Ve \ g ) V(L= T2])

(4) Everything is clear except completeness. Let {uy,,} be a Cauchy sequence. Then for all z on a circle |z| < r
we have from (3) that |u,(2) — um(2)] < ||un — un|l/(v/7(1 — 7)), hence {u,,(2)} uniformly converges
within |z| < 7 to some u(z). We know that u(z) is holomorphic and ffu(z) dxdy < oo from Minkowski's

Inequality. O

u(2)] =

mre

6.12 Let 2 be an inner-product space and {e,, } be an orthonormal set. Show that

oo

Z(xaen)(f%en)

n=1

< l=llllyll, Vz,ye 2.

Proof. We have

[N

o0 o0 % o0
> (een)lien] < S wsen) e < (Dxen ) <Z hren ) < Jlzl s
n=1 n=1 n=1
using Cauchy-Schwarz and Bessel Inequalities. O

6.13 Let Z be an inner-produtt space. For any 2o € £ and any r > 0, define
C={ze X :||lz—m| <r}

(1) Show that C is a closed convex subset;
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6.14

6.15

6.16

(2) Foranyx € 2 define
_J zo+r(@—=o)/llx —oll, z¢C;
vy= x, x € C,

Show that y is the best approximation of x in C.

Proof. (1) Trivial.

(2) If x € C then ||y — z|| = 0 and thus y is obviously the best approximation. Now assume that x ¢ C, then for
any ¢ € C we have

T — X0
rg+r——— — &

[l = o

ly —=ll = = [lz = @oll =7 = |l — ol| = lle = xol| = [lz = ¢f|. T

Find (ag, a1, az) € R3 which minimizes f01 let — ag — ayt — aot?|?dt.

Proof: 'This is to find the projection of e’ on span{1, ¢, ¢?} in L?[0, 1]. According to the sy§tem of equations (1.6.4),
we obtain that ap = 39e — 105, a; = —12(18¢ — 49) and as = 30(7e — 19). O

Let f(z) € C?*[a, b] satisfying

Show that
b " 2 4
doe > ——.
| @pde =

Proof: 'The curve spline is a cubic funétion, say g(z) = Az® + Ba? + Cz 4+ D. Then from g(a) = g(b) = 0,
g'(a) = 1, g(b) = 0, we can obtain that A = 1/(a — b)? and B = —(a + 2b)/(a — b)?. Then f: lf" (z)]? >
I 19" (@) Pdz = 4/(a — b)* - [(a + 20 — 3x)2da = 4/(b — a). O

(Variational Inequality) Let 2" be a Hilbert space and a(z, y) a Hermitian sesquilinear function on Z". Suppose
that there exists M > 0 and § > 0 such that

Sllz)|? < a(z,z) < M||z||?, Voe Z.
Let ug € 2 and C be a closed convex subset on 2". Show that the fun&ion
x — a(z,z) — R(ug, x)
attains minimum value at some 2o on C' and the point x¢ is unique and satisfies
R(2a(zo,z — z0) — (uo,x — x0)) >0, Ve C.

Proof. Denote the funéion by f(x). We have f(z) > &||z||* — |(uo, z)| > 6||z||* — ||uo| ||z||, which is bounded
below, so we can suppose that d = inf,cc f(x), and d < f(z,,) < d + 1/n. We can write

luo — =1 — Jl=[|* — ||uo|®

f(@) = alw,2) + .

We shall show that {xz,,} is convergent, that is, it is a Cauchy sequence. From parallelogram equality we have

2
Tp + Ty

llZm — In||2 = 2(”xm”2 + ”1'71”2) -4 9

)
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and

[#m — @all” = [(uo — Zm) — (uo — ) |1?
T + T ||
2

=2 (2f(zm) = 2a(xm, Tm) + 2w + lluoll* + 2f (20) — 2a(zn, 20) + ||zal* + [[uol|?)
Tn + Tm Ty + T Ty + T 2
—4<2f(2>—2a< TR >+ +||Uo|2>
=4 (Fan) + £ - 28 (P25

+4 (2(1 (x” +2 Tm T ;xm) — (@, @) — a(mn,xn)) [ — 2all? (use (2))

= 2([luo — wmll* + luo — w]|*) — 4|juo —

Tn + T
2

So it holds that

0=14 <f(50m) + f(wn) —2f <Im;rxn)> +4 <2a <l’n +2 Im, n J; 17m> = a(Tm, Tm) — a(xn,xn)>

1 1 n - 4m n - 4m
<4{—+—-)+4(a xm+x a 7x’m+x ’ —G/(Z‘m,xm)
—l—4(a <l‘n— xn;xm>$n_ xn;$m> _a(xmxn))

1 1 Tp —Tm Tp — Tm
=4 — — 4 my<dn — dm )
<m+n> + (%a(:ﬂ x x )—|—a< 5 5 >)

+4 (%a(xn,zn —xm) ta (xn 7$m7 In 'Im))

2 2
1 1
= 4 — ‘|‘ - — 4§Ra(~r7n —Tp,Tm — x’ﬂ) + 20’(‘];7'7/ — Tm,Tn — xm)
m n
1 1 1 1
m n m n
Therefore,
, 2/1 1
|Xm —zn]|* <= —+—=] =0, mn— .
d\m n

Now we prove that the uniqueness. If f(z) = f(y) = d and z # y, then similar to the process above, we have that
|z — y||> < 0, which is a contradiction. Hence it must hold that z = y.

Suppose that f(xg) = d, let g, (t) = f(tx + (1 — t)zp), then g, (t) > g,(0) forallz € C and t € [0, 1].

9:(t) = a(t(z — x0) + w0, t(z — 0) + T0) — R(u0, t(x — T0) + T0)

= t?a(x — 20,2 — o) + 2tRa(xo, (x — 20)) + a(wo, x0) — tR(ug, x — 20) — R(uo, o)

Hence ¢..(0) = 2Ra(z, — x0) — R(uo, x — x0). Since g, (t) — g.(0) = g, (0)t + a(x — xg,x — x0)t* > 0, it

x

follows that ¢/, (0) > —a(z — zg,x — xg)t for all t € (0, 1] and thus g¢’,(0) > 0. O
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