1 Contraction Mapping

1.1 Prove that a closed subset of a complete space is a complete subspace, and any complete subspace of a metric space is closed.

Proof. Trivial.

1.2 (Newton's Method) Let $f \in C^2[a, b]$ and $\hat{x} \in (a, b)$ such that $f(\hat{x}) = 0$ and $f'(\hat{x}) \neq 0$. Show that there exists a neighbourhood $U(\hat{x})$ such that for any $x_0 \in U(\hat{x})$ the sequence defined by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$$

converges to \hat{x} .

Proof. Since f''(x) is continuous on [a, b], it is bounded by M_2 on [a, b] for some M_2 . Besides, it follows from $f'(\hat{x}) \neq 0$ that there exists $\delta_1 > 0$ such that $|f'(x)| \ge M_1$ for all $x \in [\hat{x} - \delta_1, \hat{x} + \delta_1]$. Since $f(\hat{x}) = 0$, we can find $\delta < \delta_1$ such that $|f(x)| < M_1^2/(2M_2)$ for all $x \in [\hat{x} - \delta, \hat{x} + \delta]$. More strongly, we can find δ small enough such that $f(x) \neq 0$ for all $x \in [\hat{x} - \delta, \hat{x} + \delta] \setminus \{\hat{x}\}$, because $f'(\hat{x}) \neq 0$. Let $U(\hat{x}) = (\hat{x} - \delta, \hat{x} + \delta)$.

Let g(x) = x - f(x)/f'(x) and we prove that g(x) is a contraction mapping, and this is clear, because $g'(x) = |f(x)f''(x)/f'(x)^2| < M_1^2/(2M_2) \cdot M_2/M_1^2 = 1/2$. Therefore, $\{x_n\}$ would converge and denote the limit point by $x_0 \in [\hat{x} - \delta, \hat{x} + \delta]$. Take limit in the both sides of the recursive formula, we obtain that $x_0 = x_0 - f(x_0)/f'(x_0)$, which implies that $f(x_0) = 0$. From the construction of $U(\hat{x})$ we have seen that x is the only zero of f in $[\hat{x} - \delta, \hat{x} + \delta]$, whence it must hold $x_0 = \hat{x}$.

1.3 Let (\mathscr{X}, ρ) be a metric space and $T : \mathscr{X} \to \mathscr{X}$ be a mapping which satisfies that $\rho(Tx, Ty) < \rho(x, y)$ for all $x \neq y$ and has a fixed point. Show that the fixed point is unique.

Proof. Suppose x_1 and x_2 are two distinct fixed points of T. Then it follows from the assumption that $\rho(Tx_1, Tx_2) < \rho(x_1, x_2)$. However, $\rho(Tx_1, Tx_2)$ is exactly $\rho(x_1, x_2)$, which leads us to a contradiction.

1.4 Let T be a contraction mapping on a metric space. Show that T is continuous.

Proof. Trivial.

1.5 Let T be a contraction mapping. Show that $T^n (n \in \mathbb{N})$ is also a contraction mapping and the converse proposition may not hold.

Proof. Prove by induction. The statement is true when n = 1 and suppose the contraction coefficient is $\alpha_1 \in (0, 1)$. Suppose the statement holds for n = k with contraction coefficient $\alpha_k \in (0, 1)$, then $\rho(T^{k+1}x, T^{k+1}y) \leq \alpha_1 \rho(T^k x, T^k y) \leq \alpha_1 \alpha_k \rho(x, y)$, whence the statement holds for n = k + 1. Therefore, T^n is a contradiction mapping for all $n \geq 0$.

Define $T: \mathbb{R} \to \mathbb{R}$ as

$$T(x) = \begin{cases} 1/x, & 0 < |x| < 1; \\ 0, & \text{otherwise.} \end{cases}$$

Then T(x) is not a conformal mapping while $T^2(x)$ is.

1.6 Let M be a bounded closed set in (\mathbb{R}^n, ρ) and $T: M \to M$ satisfy $\rho(Tx, Ty) < \rho(x, y)$ for all $x \neq y$. Show that T has a unique fixed point in M.

Proof. It suffices to show the existence of fixed point and the uniqueness follows from Exercise 1.1.3.

Define $g(x) = \rho(x, f(x))$. From $|g(x_1) - g(x_2)| \le \rho(x_1, x_2) + \rho(f(x_1), f(x_2)) < 2\rho(x_1, x_2)$ it follows that g(x) is continuous thus it attains its minimum value at some point, say x_0 , in M (which is a compact set). Hence $g(x_0) \le g(f(x_0))$. If $x_0 \ne f(x_0)$, then we have $g(f(x_0)) = \rho(f(x_0), f(f(x_0))) < \rho(x_0, f(x_0)) = g(x_0)$ which is a contradiction. Therefore, it must hold that $x_0 = f(x_0)$.

1.7 Show that the integral equation

$$x(t) - \lambda \int_0^1 e^{t-s} x(s) ds = y(t)$$

has a unique solution $x(t)\in C[0,1],$ where $y(t)\in C[0,1]$ and $|\lambda|<1.$

Proof. Multiply both sides by e^{-t} , it suffices to show that

$$x(t) - \lambda \int_0^1 x(s)ds = y(t)$$

has a unique solution. Define $T: C[0,1] \rightarrow C[0,1]$ as

$$(Tf)(t) = y(t) + \lambda \int_0^1 f(s)ds,$$

and it follows that T is a contraction mapping from

$$||Tf - Tg|| = |\lambda| \left\| \int_0^1 (f(s) - g(s)) ds \right\| \le |\lambda| ||f - g||.$$

And the unique fixed point is exactly the solution.

2 Completion

2.1 (Space S) Let S be the set consisting of all sequences

$$x = (\xi_1, \xi_2, \dots, \xi_n, \dots)$$

of real(complex) numbers. Define metric in S as

$$\rho(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|},$$

where $x = (\xi_1, \ldots, x_k, \ldots)$ and $y = (\eta_1, \ldots, \eta_k, \ldots)$. Show that S is a complete metric space.

Proof. It is easy to verify that $\rho(x, y)$ is a metric indeed. Let $\{x_n\}$ be a Cauchy sequence in S and $x_n = (x_{n_1}, \ldots, x_{n_k}, \ldots)$. Then for any $\epsilon > 0$, there exists N such that

$$\rho(x_m, x_n) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_{m_k} - x_{n_k}|}{1 + |x_{m_k} - x_{n_k}|} < \frac{\epsilon}{1 - \epsilon}$$

for all m > n > N, which implies that

$$\sup_k \frac{|x_{m_k} - x_{n_k}|}{1 + |x_{m_k} - x_{n_k}|} < \frac{\epsilon}{1 - \epsilon},$$

or,

$$|x_{m_k} - x_{n_k}| < \epsilon, \quad \forall k \ge 0, \forall m, n \ge N,$$

It follows that $\{x_{n_k}\}_{n=1}^{\infty}$ is a Cauchy sequence for a fixed k, thus it converges to some x_k^* , and the convergence is uniform with regard to k. Therefore, $x_n \to x^* = (x_1^*, \ldots, x_k^*, \ldots)$, and S is complete.

2.2 Let (\mathscr{X}, ρ) be a metric space. Show that a Cauchy sequence is convergent iff it has a convergent subsequence.

Proof. `Only if' part is obvious and we shall prove `if' part below. Let $\{x_n\}$ be a Cauchy sequence and $x_{n_k} \to x^*$ as $k \to \infty$, where $\{n_k\}$ is strictly increasing. Given $\epsilon > 0$, there exists K such that $|x_{n_K} - x^*| < \epsilon/2$. Since $\{x_n\}$ is a Cauchy sequence, there exists $N \ge n_K$ such that $|x_n - x_{n_K}| < \epsilon/2$ for all n > N. Therefore, $|x_n - x^*| \le |x_n - x_{n_K}| + |x_{n_K} - x^*| < \epsilon$, which implies that $x_n \to x^*$ as $n \to \infty$.

2.3 Let F be the set consisting of sequences of real numbers each of which has only finitely many nonzero items. In F the metric is defined as

$$\rho(x,y) = \sup_{k \ge 1} |\xi_k - \eta_k|,$$

where $x = \{\xi_k\} \in F$ and $y = \{\eta_k\} \in F$. Show that (F, ρ) is not complete and points out its completion.

Proof. It is easy to verify that (F, ρ) is metric space. Let $x_n = (1, 1/2, \ldots, 1/n, 0, 0, \ldots)$, then $\rho(x_n, x_m) = 1/(n+1)$ and $\{x_n\}$ is a Cauchy sequence, but it does not converge in F, because for any $y \in F$ with $y_k = 0$ for $k > N_y$ we have $\rho(x_n, y) \ge 1/N_y$ for all $n > N_y$, indicating that y is not the limit point of $\{x_n\}$. The completion of F is the space consisting of all sequences of the reals.

2.4 Prove that the space of all polynomials on [0, 1] under the metric

$$\rho(p,q) = \int_0^1 |p(x) - q(x)| dx$$

is not complete. Points out its completion.

Proof. Because any continuous function on [0,1] can be uniformly approximated by a sequence of polynomials, hence the space said above is incomplete. Its completion is $L^1[0,1]$.

2.5 Let $\{x_n\}$ be a sequence of points in metric space (\mathscr{X}, ρ) . If for any $\epsilon > 0$, there exists Cauchy sequence $\{y_n\}$ such that

$$\rho(x_n, y_n) < \epsilon,$$

then $\{x_n\}$ is convergent.

Proof. It suffices to show that $\{x_n\}$ is a Cauchy sequence. Given $\epsilon > 0$, there exists $\{y_n\}$ such that $\rho(x_n, y_n) < \epsilon/3$ and N such that $\rho(y_n, y_m) < \epsilon/3$ for all n, m > N. Hence for n, m > N it holds that $\rho(x_n, x_m) \le \rho(x_n, y_n) + \rho(y_n, y_m) < \epsilon$.

3 Sequentially Compact Sets

3.1 Show that a subset A of a complete metric space is sequentially compact iff for any $\epsilon > 0$ there exists a sequentially compact ϵ -net of A.

Proof. The `only if' part is obvious, because the sequentially compactness of A implies that there exist a finite ϵ -net, thus the net must be sequentially compact. Now we prove the `if' part.

Given $\epsilon > 0$, and A has a sequentially compact $\epsilon/2$ -net B and B is totally bounded, thus has a finite $\epsilon/2$ -net C. Let $a \in A$, there exists $b \in B$ such that $\rho(a, b) < \epsilon/2$ and $c \in C$ such that $\rho(b, c) < \epsilon/2$, so $\rho(a, c) \le \rho(a, b) + \rho(b, c)\epsilon$, which implies that C is a finite ϵ -net of A. Hence A is totally bounded.

3.2 Show that a continuous function over a compact set in a metric space is bounded and it can attain its supremum and infimum.

Proof. See the proof of Proposition 1.3.12.

3.3 Prove a totally bounded set in a metric space is bounded. Consider a subset $E = \{e_k\}$ of l^2 with

$$e_k = \{0, 0, \dots, \underbrace{1}_{k^{\text{thitem}}}, 0, \dots\}$$

to show that the converse proposition may not be true.

Proof. Let A be a totally bounded set, then it has a finite 1-net $\{a_1, \ldots, a_n\}$. Let $d = \max_j \rho(a_1, a_j)$ Obviously A is contained in $(a_1, d+1)$ thus bounded.

It is clear that $||e_k|| = 1$ thus $\{e_k\}$ is bounded. However,

$$||e_i - e_j|| = \sqrt{2}$$

for all $i \neq j$, implying that $\{e_k\}$ is not totally bounded.

3.4 Let (\mathscr{X}, ρ) be a metric space and F_1, F_2 be two compact subsets. Show that there exist $x_1 \in F_1$ and $x_2 \in F_2$ such that $\rho(F_1, F_2) = \rho(x_1, x_2)$, where

$$\rho(F_1, F_2) = \inf\{\rho(x, y) : x \in F_1, y \in F_2\}.$$

Proof. Let $f(x) = \rho(x, F_1)$ then f is continuous, from Exercise 1.3.2, it follows that there exists $x_2 \in F_2$ such that $f(x_2) = \min_{x \in F_2} f(x)$. Now we define $g(x) = \rho(x_2, x)$ on F_1 . Since g(x) is continuous, there exists $x_1 \in F_1$ such that $g(x_1) = \rho(x_2, F_1)$. We claim that x_1, x_2 satisfy the condition.

Let $x \in F_1$ and $y \in F_2$, we have $\rho(x_1, x_2) = \rho(x_2, F_1) \le \rho(y, F_1) \le \rho(y, x)$, so $\rho(x_1, x_2) \le \rho(F_1, F_2)$. Also it is obvious that $\rho(F_1, F_2) \le \rho(x_1, x_2)$ and the conclusion follows.

3.5 Let M be a bounded set in C[a, b]. Show that the set

$$E = \left\{ F(x) = \int_{a}^{x} f(x)dt \Big| f \in M \right\}$$

is sequentially compact.

Proof. It is sufficient to show that E is uniformly bounded and uniformly equicontinuous. Suppose $M \subset B(0, r)$, then for any $F(x) \in E$, it holds that $||F|| \leq (b-a)r$, indicating that F is uniformly bounded. We have also $|F(x_1) - F(x_2)| \leq r(x_2 - x_1)$, whence it follows that F is uniformly equicontinuous. \Box

3.6 Let $E = {\sin nt}_{n=1}^{\infty}$, show that E is not sequentially compact in $C[0, \pi]$.

Proof. Take $\epsilon = 1/2$, for any n, we have $|\sin(n \cdot \pi/(2n)) - \sin 0| = 1 > \epsilon$, and $\pi/(2n) \to 0$ as $n \to \infty$. Therefore, E is not uniformly equicontinuous.

3.7 Prove that a subset A of S (see definition in Exercise 1.2.1) is sequentially compact iff for any n there exists $C_n > 0$ such that for every $x = (\xi_1, \ldots, \xi_n, \ldots) \in A$ it holds that $|\xi_n| \leq C_n$.

Proof. `Only if': Since S is complete, A must be totally bounded. Let x_1, \ldots, x_m be a finite 1/2-net of A ($x_i = \{x_{i1}, \ldots, x_{in}, \ldots\}$). For any $x = (\xi_1, \ldots, \xi_n, \ldots) \in A$, there exists x_i for some i such that $\rho(x_i, x) < 1/2$, which implies that $|x_{ik} - \xi_k|/(1 + |x_{ik} - \xi_k|) < 1/2$, or, $|x_{ik} - \xi_k| < 1$ for all k. Hence $|\xi_k| \leq \max\{|x_{1k}|, \ldots, |x_{nk}|\} + 1$. `If': Let $\{x_n\} \subseteq S$. Since $x_{n,1}$ is bounded, hence it has a convergent subsequence, say $\{x_{n_{1i}}\}_{i=1}^{\infty}$ converging to x_1 . We also have $x_{n_{1i},2}$ bounded, so it has a subsequence $\{x_{n_{2i}}\}$ converging to x_2 . In this way, we have that $\{x_{n_{m,i}}\} \subseteq \{x_{n_{m-1,i}}\}$ and $\{x_{n_{m,i},i}\}$ is convergent to x_m for each m. It is easy to see that $\{x_{n_{mm}}\}_{m=1}^{\infty}$ is a subsequence of $\{x_n\}$ and we shall show that it is convergent. It is clear that $x_{n_{mm}k} \to x_k$ as $m \to \infty$ for each k, because $\{x_{n_{mm}}\}_{m=k}^{\infty}$ is a subsequence of $\{x_{n_{ki}}\}_{i=1}^{\infty}$. Then it is not difficult to show that $x_{n_{mm}} \to x = (x_1, \ldots, x_k, \ldots)$ in norm.

3.8 Let (\mathscr{X}, ρ) be a metric space and M be a sequentially compact set in \mathscr{X} . If map $f : \mathscr{X} \to M$ satisfies

$$\rho(f(x_1), f(x_2)) < \rho(x_1, x_2), \quad x_1 \neq x_2$$

then it has a unique fixed point in \mathscr{X} .

Proof. Consider the closure of M and see Exercise 1.1.6.

3.9 Let (M, ρ) be a compact metric space and $E \subseteq C(M)$ is uniformly bounded and satisfies Hölder condition

 $|x(t_1) - x(t_2)| \le C\rho(t_1, t_2)^{\alpha}, \quad \forall x \in E, \forall t_1, t_2 \in M$

where $0 < a \le 1$ and C > 0, show that E is sequentially compact in C(M).

Proof. It is obvious that E is uniformly equicontinuous. Together with the uniform boundedness, it follows that E is sequentially compact.

4 Normed Linear Space

4.1 For $z = (x, y) \in \mathbb{R}^2$, define

$$||z||_1 = |x| + |y|; ||z||_2 = \sqrt{x^2 + y^2}; ||z||_3 = \max(|x|, |y|); ||z||_4 = (x^4 + y^4)^{1/4}.$$

- (1) Show that all of $\|\cdot\|_i$ are norms of \mathbb{R}^2 for i = 1, 2, 3, 4;
- (2) Draw the unit sphere in $(\mathbb{R}^2, \|\cdot\|_i)$.
- (3) Find the lengths of three sides of the triangle with vertices O(0,0), A(1,0), B(0,1) under the four different norms.

4.2 Let c(0,1] denote the set of continuous and bounded functions on (0,1]. Let $||x|| = \sup_{0 < t \le 1} |x(t)|$. Show that

(1) || · || is a norm on c(0, 1];
 (2) l[∞] is isometric to c(0, 1].

Proof. (1) Trivial.

(2) Define $F: l^{\infty} \to c(0, 1]$ as

$$x = (x_1, \dots, x_k, \dots) \mapsto f(x) = \begin{cases} x_k, & x = \frac{1}{k}; \\ x_{k+1} + (x_k - x_{k+1})k((k+1)x - 1), & \frac{1}{k+1} < x < \frac{1}{k} \end{cases}$$

Then F is an isometry.

4.3 In $C^1[a, b]$ define

$$||f||_1 = \left(\int_a^b (|f|^2 + |f'|^2) \, dx\right)^{\frac{1}{2}}, \quad \forall f \in C^1[a, b].$$

- (1) Prove that $\|\cdot\|_1$ is a norm on $C^1[a, b]$;
- (2) Is $(C^1[a, b], \|\cdot\|_1)$ complete?

Proof. (1) Trivial.

(2) No. Take [a, b] = [-1, 1] and $f_n = \sqrt{x^2 + n^2}$, we have

$$||f_n||_1 = \frac{8}{3} + \frac{2}{n^2} - \frac{2\arctan n}{n} \to 0$$

as $n \to \infty$, hence $\{f_n\}$ is a Cauchy sequence in $(C^1[a, b], \|\cdot\|_1)$. It is clear that $f_n \to |x|$ and we shall prove that if $\{f_n\}$ converges to some continuous f in norm, then it must hold that f(x) = |x|. If $f_n \to f$ in norm, then $\int |f_n - f|^2 \to 0$ thus $f_n \to f$ in measure. Also $f_n(x) \to |x|$ in measure hence f(x) and |x| differ at most in a set of measure zero, since f is continuous, it follows that $f(x) = |x| \notin C^1[a, b]$, indicating that $\{f_n\}$ does not converge in $(C^1[a, b], \|\cdot\|_1)$. \Box

4.4 In C[0,1] define

$$||f||_1 = \left(\int_0^1 |f|^2 \, dx\right)^{\frac{1}{2}}; \ ||f||_2 = \left(\int_0^1 (1+x)|f(x)|^2 \, dx\right)^{\frac{1}{2}}$$

for every $f \in C[0, 1]$. Show that $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$.

Proof. It is easy to verify that $||f||_1 \leq ||f||_2 \leq \sqrt{2} ||f||_1$.

4.5 Let $BC[0,\infty)$ be the set of continuous and bounded functions on $[0,\infty)$ and a > 0. Define

$$||f||_{a} = \left(\int_{0}^{\infty} e^{-ax} |f(x)|^{2} dx\right)^{\frac{1}{2}}$$

- (1) Show that $\|\cdot\|_a$ is a norm on $BC[0,\infty)$.
- (2) Prove that $\|\cdot\|_a$ is not equivalent to $\|\cdot\|_b$ for all $a \neq b$.

Proof. (1) Trivial.

(2) Suppose a < b. For any C > 1, take $f = e^{-\lambda x}$ where $\lambda = (b - aC^2)/(C^2 - 1)$, we have $||f||_a = 1/\sqrt{a + \lambda}$ and thus $||f||_a = C||f||_b$.

4.6 Let \mathscr{X}_1 and \mathscr{X}_2 be two B^* spaces and $\mathscr{X} = \mathscr{X}_1 \times \mathscr{X}_2$ with norm

$$||x|| = \max\{||x_1||_1, ||x_2||_2\},\$$

where $x = (x_1, x_2)$, $x_i \in \mathscr{X}_i$ and $||x_i||$ is the norm of \mathscr{X}_i (i = 1, 2). Show that if \mathscr{X}_1 and \mathscr{X}_2 are Banach spaces, so is \mathscr{X} .

Proof. It suffices to show that \mathscr{X} is complete. Let $\{x_n\}$ be a Cauchy sequence in \mathscr{X} and $x_n = (x_{n1}, x_{n2})$. If follows immediately that $\{x_{n1}\}$ and $\{x_{n2}\}$ are both Cauchy sequences in \mathscr{X}_1 and \mathscr{X}_2 , respectively. Since \mathscr{X}_i is complete, there exists $x_i^* \in \mathscr{X}_i$ such that $x_{ni} \to x_i^*$. Therefore, $x_n \to (x_1^*, x_2^*) \in \mathscr{X}$ and \mathscr{X} is complete. \Box

4.7 Let \mathscr{X} be a B^* space. Show that \mathscr{X} is a Banach space iff for any $\{x_n\} \subset \mathscr{X}$, $\sum_{n=1}^{\infty} x_n$ is convergent whenever $\sum_{n=1}^{\infty} \|x_n\|$ is convergent.

Proof. Only if: Let $\{x_n\} \subset \mathscr{X}$ satisfying that $\sum_{n=1}^{\infty} ||x_n||$ is convergent. Let $y_n = \sum_{k=1}^{n} x_k$, we shall prove that $\{y_n\}$ is a Cauchy sequence. This is because

$$||y_n - y_m|| \le \sum_{k=m}^n ||x_k||, \quad \forall n > m$$

If: Let $\{x_n\}$ be a Cauchy sequence in \mathscr{X} . We can choose $1 \leq n_1 < n_2 < \cdots < n_k < \cdots$ such that

$$||x_m - x_{n_k}|| < \frac{1}{2^k}$$

for all $m > n_k$. Let $y_n = x_{n_{k+1}} - x_{n_k} (n \ge 1)$ and $y_1 = x_{n_1}$ then $\sum \|y_n\|$ is convergent, thus $x = \sum y_n$ exists. From ||n-1|

$$||x_n - x|| \le ||x_n - x_{n_k}|| + ||x_{n_k} - x|| = ||x_n - x_{n_k}|| + \left\|\sum_{k=1}^{n-1} y_k - x\right\|$$

it follows that $x_n \to x$.

4.8 Let P_n be the set of polynomials on [a, b] with degree less than or equal to n. Prove that for any $f(x) \in C[a, b]$ there exists $P_0(x) \in P_n$ such that

$$\max_{x \le x \le b} |f(x) - P_0(x)| = \min_{P \in P_n} \max_{a \le x \le b} |f(x) - P(x)|$$

That is, if we use elements in P_n to approximate f(x) uniformly, $P_0(x)$ is the optimal one.

Proof. This is a direct corollary of Theorem 1.4.23, where $e_i = x^i$.

4.9 In \mathbb{R}^2 we define $||x|| = \max\{|x_1|, ||x_2|\}$ for $x = (x_1, x_2)$. Let $e_1 = (1, 0)$ and $x_0 = (0, 1)$. Find $a \in \mathbb{R}$ such that

$$||x_0 - ae_1|| = \min_{\lambda \in \mathbb{R}} ||x_0 - \lambda e_1||,$$

and is such a unique? Give a geometric explanation.

Proof. We have that
$$x_0 - \lambda e_1 = (-\lambda, 1)$$
, so $||x_0 - \lambda e_1||$ reaches the minimum value 1 when $|\lambda| \le 1$.

4.10 Prove the strict convexity of norm is equivalent to

$$||x + y|| = ||x|| + ||y|| (\forall x \neq 0, y \neq 0) \Rightarrow x = cy(c > 0).$$

Proof. Assume the convexity (as in Definition 1.4.24) first. Let $x \neq 0$ and $y \neq 0$, x' = x/||x|| and y' = y/||x||, $\alpha = \|x\|/(\|x\| + \|y\|)$ and $\beta = \|y\|/(\|x\| + \|y\|)$ then $\|x'\| = \|y'\| = 1$. Thus from the convexity of the norm it holds that $\|\alpha x' + \beta y'\| < 1$, i.e., $\|x + y\| < \|x\| + \|y\|$, if $x' \neq y'$. Therefore, we must have x' = y', and x = cyfor some c > 0.

On the contrary, let ||x|| = ||y|| = 1 ($x \neq y$) and $\alpha + \beta = 1$. It is clear that $||\alpha x + \beta y|| \le \alpha ||x|| + \beta ||y|| = 1$, but the equality holds iff $\alpha x = C\beta y$ for some C > 0, or, $x = (C\beta/\alpha)y$. But ||x|| = ||y|| hence $C\beta/\alpha = 1$, resulting in x = y which is a contradiction. Hence the equality cannot hold and it must hold the strict inequality.

4.11 Let \mathscr{X} be a normed linear space. A function $\phi : \mathscr{X} \to \mathbb{R}$ is said convex if it holds

$$\phi(\lambda x + (1 - \lambda)y) \le \lambda \phi(x) + (1 - \lambda)\phi(y)$$

for all $0 \le \lambda \le 1$. Prove that a local minimum of a convex function is also a global minimum.

Proof. Suppose x is a local minimum of a convex function f. For any y, let λ be close to 1 enough, we have $\lambda x + (1 - \lambda)y$ close to x enough, thus

$$f(x) \le \phi(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y),$$

or

$$f(x) \le f(y),$$

which implies that x is also a global minimum.

4.12 Let $(\mathscr{X}, \|\cdot\|)$ be a normed linear space and M is a finite dimensional subspace of \mathscr{X} with a basis $\{e_1, \ldots, e_n\}$. Given $g \in \mathscr{X}$, define $F : \mathbb{K}^n \to \mathbb{R}$ as

$$F(c_1,\ldots,c_n) = \left\|\sum_{i=1}^n c_i e_i - g\right\|.$$

(1) F is convex;

(2) If F attains minimum value at $c = (c_1, \ldots, c_n)$ then

$$f = \sum_{i=1}^{n} c_i e_i$$

is the best approximation of g in M.

Proof. (1) Trivial.

(2) This is exactly the definition of `best approximation'.

4.13 Let \mathscr{X} be a B^* space and \mathscr{X}_0 a linear subspace of \mathscr{X} . Suppose there exists $c \in (0,1)$ such that

$$\inf_{x \in \mathscr{X}_0} \|y - x\| \le c \|y\|, \forall y \in \mathscr{X},$$

show that \mathscr{X}_0 is dense in \mathscr{X} .

Proof. Let $y \in \mathscr{X} \setminus \mathscr{X}_0$ and $\epsilon > 0$. There exists $x_1 \in \mathscr{X}_0$ such that $||y - x_1|| \le c||y|| + \epsilon/2$, then there exists $x_2 \in X_0$ such that $||y - x_1 - x_2|| \le c||y - x_1|| + \epsilon/4 \le c^2||y|| + c\epsilon/2 + \epsilon/4 < c^2||y|| + \epsilon/2 + \epsilon/4$. Continue this process, for each n we have $x_n \in \mathscr{X}_0$ such that

$$||y - x_1 - \dots - x_n|| \le c^n ||y|| + \frac{\epsilon}{2} + \frac{\epsilon}{2^2} + \dots + \frac{\epsilon}{2^n} < c^n ||y|| + \epsilon.$$

It follows that $\{\sum_{k=1}^{n} x_k\} \subseteq \mathscr{X}_0$ is a sequence of points converging to y, and hence \mathscr{X}_0 is dense.

- 4.14 Let C_0 be the set of sequences of real numbers converging to 0, and define the norm in C_0 as $||x|| = \max_{n\geq 1} |\xi_n| \quad \forall x = (\xi_1, \ldots, \xi_n, \ldots) \in C_0$. Let $M = \{x = \{\xi_n\} \in C_0 : \sum_{n=1}^{\infty} \xi_n/2^n = 0\}$.
 - (1) Show that M is a closed sybspace of C_0 ;
 - (2) Let $x_0 = (2, 0, \dots, 0, \dots)$, show that $\inf_{Z \in M} ||x_0 Z|| = 1$ but $||x_0 y|| > 1$ for all $y \in M$.

(Remark: This problem provides an example indicating that the best approximation may not exist for infinitedimensional subspace)

- *Proof.* (1) Let $x \in M$, it is clear that $\sum |\xi_k|/2^k$ converges, since $||\xi_k|| \le ||x||$. Then it is trivial to verify that M is a subspace. Let $\{x_n\}$ be a Cauchy sequence in M, $x_n = \{\xi_{n1}, \ldots, \xi_{nk}, \ldots\}$. Then for any $\epsilon > 0$, there exists N such that $||x_n x_m|| < \epsilon$ for all n, m > N, thus for all $k, ||\xi_{nk} \xi_{mk}|| < \epsilon$, and therefore $\{\xi_{nk}\}$ (with respect to n) is a Cauchy sequence and suppose it converges to ξ_k uniformly. Therefore, $\{x_n\}$ converges to some $x \in C_0$. Note that $|\xi_k \xi_{nk}| < \epsilon$ for n large enough, we have $|\sum \xi_k/2^k| < \sum |\xi_k \xi_{nk}|/2^k + |\sum \xi_{nk}/2^k| < \epsilon$. Therefore we know that $x \in M$ and M is closed.
 - (2) First we show that $||x_0 y|| > 1$ for all $y \in M$. Let $y = (y_1, \ldots, y_k)$. If $y_1 < 1$ or $|y_k| > 1$ for some k > 1then $||x_0 - y|| > 1$. Now assume $y_1 \ge 1$ and $|y_k| \ge 1$ for $k \ge 2$, then $\sum y_n/2^n > 1/2 + \sum_{n=2}^{\infty} y_n/2^n$. Note that $\sum_{n=2}^{\infty} |y_n|/2^n \le 1/2$, hence $\sum y_n/2^n \ge 0$, and the equality holds only if $y_1 = 1$ and $y_k = -1$ for all k > 1, resulting in that $\{y_k\}$ does not converge to 0, which contradicts with $y \in C_0$.

Now we show that $\inf ||x_0 - y|| = 1$. We shall prove that for any $\epsilon > 0$, we can find $y \in M$ such that $||x_0 - y|| \le 1 + \epsilon$. Let $\delta = 2(\epsilon + 1)/(\epsilon + 2)$, $y_1 = 1 - \epsilon$ and $y_k = -\delta^{k-1}$ for k > 1. Then $||x_0 - y|| \le 1 + \epsilon$, $y_n \to 0$ and $\sum y_i/2^i = 0$.

4.15 Let \mathscr{X} be a B^* space and M a finite-dimensional proper subspace of \mathscr{X} . Show that there exists $y \in \mathscr{X}$ with ||y|| = 1 such that $||y - x|| \ge 1$ for all $x \in M$.

Proof. Let $z \in \mathscr{X} \setminus M$ and $z' \in M$ be the best approximation of z. Let d = ||z - z'|| and y = (z - z')/d then ||y|| = 1, and $||y - x|| = ||z - (z' + dx)||/d \ge d/d = 1$ for all $x \in M$.

4.16 Let f be a complex-valued function defined on [0, 1] and define

$$\omega_{\delta}(f) = \sup\{|f(x) - f(y)| : \forall x, y \in [0, 1], |x - y| \le \delta\}.$$

Let $0 < \alpha \leq 1$. Define Lipschitz space Lip α as the set of all functions f such that

$$||f|| = |f(0)| + \sup_{\delta > 0} \{\delta^{-\alpha} \omega_{\delta}(f)\} < \infty$$

and

$$\lim \alpha = \{ f \in \operatorname{Lip} \alpha : \lim_{\delta \to 0} \delta^{-\alpha} \omega_{\delta}(f) = 0. \}$$

Show that $\operatorname{Lip} \alpha$ is a Banach space and $\operatorname{lip} \alpha$ a closed subspace of $\operatorname{Lip} \alpha$.

Proof. It is trivial that $\operatorname{Lip} \alpha$ is a normed linear space. Now we prove its completeness. Let $\{f_n\}$ be a Cauchy sequence in $\operatorname{Lip} \alpha$, then for any $\epsilon > 0$ there exists N such that $|f_n(0) - f_m(0)| < \epsilon$ and $\sup_{\delta > 0} \delta^{-\alpha} \omega_{\delta}(f_n - f_m) < \epsilon$ for all n, m > N. Hence $|f_n(x) - f_m(x)| < \epsilon \delta^{\alpha} + |f_n(0) - f_m(0)| < \epsilon (\delta^{\alpha} + 1)$ for all n, m > N, which implies that $\{f_n(x)\}$ is a Cauchy sequence in \mathbb{C} thus it converges to f(x) for some f. We shall show that $f \in \operatorname{Lip} \alpha$. This is because

$$|f(x) - f(y)| \le |(f(x) - f_n(x)) - (f(y) - f_n(y))| + |f_n(x) - f_n(y)|$$
(1)

and the uniform pointwise convergence of $f_n \to f$.

It is also trivial to see that $\lim \alpha$ is a subspace. Let $\{f_n\}$ be a Cauchy sequence in $\lim \alpha$ and thus $f_n \to f$ uniformly pointwise for some $f \in \operatorname{Lip} \alpha$. It follows easily that $f \in \lim \alpha$ by (1).

- 4.17 (Quotient space) Let \mathscr{X} be a normed linear space and \mathscr{X}_0 a closed linear subspace of \mathscr{X} . Define a equivalence relation \sim by $x \sim y$ iff $x y \in \mathscr{X}_0$. The quotient space is X/X_0 .
 - (1) Let $[x] \in \mathscr{X}/\mathscr{X}_0$ and $x \in \mathscr{X}$. Show that $x \in [x]$ iff $[x] = x + \mathscr{X}_0$.
 - (2) Define addition and scalar multiplication in $\mathscr{X}/\mathscr{X}_0$ as follows.

$$\begin{split} & [x] + [y] = x + y + \mathscr{X}_0, \quad \forall [x], [y] \in \mathscr{X} / \mathscr{X}_0; \\ & \lambda[x] = \lambda x + \mathscr{X}_0, \quad \forall [x] \in \mathscr{X} / \mathscr{X}_0, \forall \lambda \in \mathbb{K}, \end{split}$$

where x, y are arbitrary chosen from [x], [y] respectively. Define the norm

$$\|[x]\|_0 = \inf_{x \in [x]} \|x\|, \quad \forall [x] \in \mathscr{X}/\mathscr{X}_0,$$

Show that $(\mathscr{X}/\mathscr{X}_0, \|\cdot\|_0)$ is a B^* space.

(3) Let $[x] \in \mathscr{X}/\mathscr{X}_0$ show that for any $x \in [x]$ it holds that

$$\inf_{Z \in \mathscr{X}_0} \|x - Z\| = \|[x]\|_0$$

(4) Define the mapping $\phi : \mathscr{X} \to \mathscr{X}/\mathscr{X}_0$ as

$$\phi(x) = [x] = x + \mathscr{X}_0, \forall x \in \mathscr{X},$$

show that ϕ is a continuous linear mapping.

- (5) Let $[x] \in \mathscr{X}/\mathscr{X}_0$. Show that there exist $x \in \mathscr{X}_0$ such that $\phi(x) = [x]$ and $||x|| \le 2||[x]||_0$.
- (6) Suppose that $(\mathscr{X}, \|\cdot\|)$ is complete. Show that $(\mathscr{X}/\mathscr{X}_0, \|\cdot\|_0)$ is complete too.
- (7) Let $\mathscr{X} = C[0,1], \mathscr{X}_0 = \{f \in \mathscr{X} : f(0) = 0\}$, show that $\mathscr{X}/\mathscr{X}_0$ is isometric to \mathbb{K} .

Proof. (1) Trivial. (Note that $0 \in \mathscr{X}_0$).

- (2) Trivial.
- (3) Let $x \in [x]$, then $[x] = x + \mathscr{X}_0$, hence $\|[x]\|_0 = \inf_{z \in \mathscr{X}_0} \|x + z\|$. Since \mathscr{X}_0 is a subspace, $\inf_{z \in \mathscr{X}_0} \|x + z\| = \inf_{z \in \mathscr{X}_0} \|x z\|$.
- (4) It is trivial that f is linear. Now suppose that $x_n \to x$, then $||[x_n] [x]||_0 = ||[x_n x]||_0 = \inf_{z \in \mathscr{X}_0} ||x_n x + z|| \le ||x_n x||$, which implies that $f(x_n) \to f(x)$. Thus f is continuous.
- (5) If $||[x]||_0 = 0$ then $x \in \mathscr{X}_0$ then we are done. Assume that $||[x]||_0 > 0$. Consider $x + \mathscr{X}_0 = \{x z : z \in \mathscr{X}_0\}$. Note that $||[x]||_0 = \inf_{z \in \mathscr{X}_0} ||x - z||$, there exists $z \in X_0$ such that $||x - z|| \le 2 \inf_{z \in \mathscr{X}_0} ||x - z||$, and x - z is what we desire.
- (6) Use $||[a] [b]||_0 = ||[a b]||_0 \le ||a b||$.
- (7) Let $f_c(x) = c$ denoting the constant function with value c. Then we claim that $g: x \mapsto [f_x]$ is an isometry between \mathbb{K} and $\mathscr{X}/\mathscr{X}_0$. Notice that $\|[f_x] [f_y]\| = \|[f_x f_y]\| = \|[f_{x-y}]\|$, it suffices to show that $\|[f_a]\| = |a|$. On the one hand, $\|[f_a]\| \le \|f_a\| = |a|$; on the other hand, for any $f \in [f_a]$, $\|f\| \ge \|f(0)\| = |a|$. \Box

5 Convex Sets and Fixed Points

- 5.1 Let \mathscr{X} be a B^* space and E be a convex proper set with an interior point 0. Denote by P the Minkowski functional corresponding to E. Show that
 - (1) $x \in E^{\circ} \iff P(x) < 1;$
 - (2) $\overline{E^{\circ}} = \overline{E}$.
 - *Proof.* (1) `` \Rightarrow " is obvious. Now we prove `` \Leftarrow ". Suppose that $r \in (1, 1/P(x))$ and $B(0, \delta) \subseteq C$. Let $d = \delta(1-1/r)$ and we claim that $B(x, d) \subseteq C$. Suppose that ||y x|| < d, then

$$\frac{1}{r} \cdot rx + \left(1 - \frac{1}{r}\right) \cdot \frac{r(y-x)}{r-1} = y.$$

Note that r(y-x)/(r-1) is in $B(0,\delta)$ and thus belongs to C, we have $y \in C$ and x is therefore an interior point of C.

- (2) It suffices to show every $x \in E$ can be approximated by a sequence of points in E° . This is easy, because if $x \in E$ and $rx \in E$ for all $r \in (0, 1)$ and rx belongs to E^{c} since P(rx) < 1 for $r \in (0, 1)$.
- 5.2 Show that the convex hull of a sequentially compact set in a Banach space is also sequentially compact.

Proof. Let E be a sequentially compact set in a Banach space \mathscr{X} thus it is totally bounded. We shall show that co E is totally bounded too. Given $\epsilon > 0$ and suppose that $\{a_1, \ldots, a_n\}$ is an ϵ -net of E. Let $x \in \operatorname{co} E$ and $x = \sum \lambda_i x_i$, where $\sum \lambda_i = 1$, $x_i \in E$, thus we can find $a_{x,i}$ such that $||a_{x,i} - x_i|| < \epsilon$. Hence it holds that $||x - \sum \lambda_i a_{x,i}|| \le \sum \lambda_i ||x - a_{x,i}|| < \epsilon$, which implies that $A = \{\sum \lambda_i a_i : \sum \lambda_i = 1\}$ constitutes an ϵ -net of co E. Now we claim that A is sequentially compact, and the conclusion would follow from Exercise 1.3.1.

Given a sequence $\{x_n\}$, where $x_n = \sum \lambda_{ni}a_i$. Since $0 \le \lambda_{k1} \le 1$, there exists a convergent subsequence $\lambda_{n_{1j}1} \subseteq \{\lambda_{n1}\}$. Then from $x_{n_{1j}2} \in [0, 1]$, there exists a convergent subsequence $x_{n_{2j}2}$. Continue this for finitely many steps (note that $\{a_i\}$ is a finite set) and we will get a subsequence $\{x_{m_k}\}$ of $\{x_n\}$ with $\{\lambda_{m_k}i\}$ convergent for all *i*. Therefore, $\{x_n\}$ contains a convergent subsequence and *A* is sequentially compact.

5.3 Let C be a compact convex set in a B^* space \mathscr{X} and the mapping $T: C \to C$ be continuous. Show that T has a fixed point in C.

Proof. This is a direct corollary of Schauder's Fixed Point Theorem.

- 5.4 ¹ Let C be a closed bounded convex set in Banach space \mathscr{X} . The maps $T_i: C \to \mathscr{X}$ (i = 1, 2) satisfies
 - (1) For all $x, y \in C$ we have $T_1x + T_2y \in C$;
 - (2) T_1 is a contraction mapping and T_2 is a compact mapping.

Show that $T_1 + T_2$ has at least one fixed point in C.

Proof. Fix $y \in C$, it is not difficult to see that the map $x \mapsto T_1 x + T_2 y$ is a contraction mapping thus it has a unique fixed point $x_y \in C$. Define $T : C \to C$ as $y \mapsto x_y$, then $Tx = T_1(Tx) + T_2 x$. We shall prove that T is continuous and compact, then a fixed point of T is also a fixed point of $T_1 + T_2$. It holds that

$$\begin{aligned} \|Tx_1 - Tx_2\| &= \|(T_1(Tx_1) + T_2x_1) - (T_1(Tx_2) + T_2x_2)\| \\ &\leq \|(T_1(Tx_1 - Tx_2))\| + \|T_2(x_1 - x_2)\| \\ &\leq \alpha \|Tx_1 - Tx_2\| + \|T_2(x_1 - x_2)\|, \end{aligned}$$

thus

$$||Tx_1 - Tx_2|| \le \frac{1}{1 - \alpha} ||T_2(x_1 - x_2)||.$$

Since T_2 is continuous and compact, it follows immediately that T is continuous and compact too.

5.5 Let A be *n*-by-*n* matrix with positive elements. Show that there exists λ and a vector $x \in \mathbb{R}^n$ such that $Ax = \lambda x$ and the elements of x are all non-negative but not all zeroes.

Proof. Consider $C = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, x_i \ge 0 \ (i = 1, \ldots, n)\}$ then C is a compact convex set. Define a map $f : C \to C$ as $f(x) = (Ax) / \sum_{i=1}^n (Ax)_i$. Now it suffices to show that f(x) is continuous, which would imply that T(C) is compact and the conclusion would follow from Schauder's Fixed Point Theorem. Let $x \in C$, and we write $\sum_{i=1}^n (Ax)_i = a^T x$, where $a \in \mathbb{R}^n$. Then from

$$\left|\frac{Ax}{a^Tx} - \frac{Ay}{a^Ty}\right| = \frac{|a^TyAx - a^TxAy|}{a^Txa^Ty} \le \frac{|a^T(y - x)| \cdot |Ax|}{a^Txa^Ty} + \frac{a^Tx|A(x - y)|}{a^Txa^Ty} + \frac{a^Tx}{a^Txa^Ty} + \frac{a^Tx}{a^Tx} + \frac{a^Tx}{a^Tx} + \frac{a^Tx}{a^Tx} + \frac{a^Tx}{a^Tx} + \frac{a^Tx}{a^$$

and

$$a^{T}xa^{T}y = (a^{T}x)^{2} + (a^{T}x)(a^{T}(y-x))$$

we can see that when |y - x| is small enough, |f(x) - f(y)| is small.

5.6 Let K(x, y) be positive-valued continuous function on $[0, 1] \times [0, 1]$. Define

$$(Tu)(x) = \int_0^1 K(x, y)u(y)dy, \quad \forall u \in C[0, 1]$$

Prove that there exists $\lambda > 0$ and continuous non-negative function $u \neq 0$ such that $Tu = \lambda u$.

 \square

¹M. A. Krasnoselskii. Two Remarks on the Methods of Successive Approximations. Uspeckhi Mat. Nauk. 10(1955), 123--127.

Proof. Consider the set

$$C = \left\{ u \in C[0,1] : u \ge 0, \ \int_0^1 u(t)dt = 1 \right\}.$$

Then C is a closed convex set. Define $S : C \to C$ as $Su = Tu / \int_0^1 Tu(t) dt$, and it is not difficult to see that S is continuous. We shall prove that S(C) is sequentially compact, or, S(C) is uniformly bounded and uniformly equicontinuous.

Suppose $0 < m \le K(x, y) \le M$ on $[0, 1] \times [0, 1]$, then we have $||Su|| = ||Tu|| / \int_0^1 Tu(t) dt \le M/m$. Thus S(C) is uniformly bounded. On the other hand, we have

$$\|(Su)(y) - (Su)(x)\| = \frac{\|(Tu)(y) - (Tu)(x)\|}{\int_0^1 Tu(t)dt} \le \frac{\int_0^1 |K(y,t) - K(x,t)|u(t)dt}{m}$$

together with the uniform continuous of K the uniform equicontinuity follows.

6 Inner Product Space

6.1 (Polarization Identity) Let a be a sesquilinear function on a complex linear space \mathscr{X} and q the quadratic form induced by a. Show that for any $x, y \in \mathscr{X}$ it holds that

$$a(x,y) = \frac{1}{4} \{ q(x+y) - q(x-y) + iq(x+iy) - iq(x-iy) \}.$$

Proof.

$$\begin{aligned} &\frac{1}{4} \{q(x+y) - q(x-y) + iq(x+iy) - iq(x-iy)\} \\ &= \frac{1}{4} \{a(x+y,x+y) - a(x-y,x-y) + ia(x+iy,x+iy) - ia(x-iy,x-iy)\} \\ &= \frac{1}{4} \{2a(x,y) + 2a(y,x) + 2i(a(x,iy) + a(iy,x))\}\} \\ &= \frac{1}{4} \{2a(x,y) + 2a(y,x) + 2i(-ia(x,y) + ia(y,x))\}\} \\ &= \frac{1}{4} \cdot 4a(x,y) = a(x,y) \end{aligned}$$

6.2 Show that it is impossible to introduce an inner product (\cdot, \cdot) in C[a, b] such that

$$(f, f)^{\frac{1}{2}} = \max_{a \le x \le b} |f(x)|, \quad \forall f \in C[a, b].$$

Proof. It is suffices that the parallelogram equality does not hold. Assume that [a, b] = [0, 1]. Let f(x) = x and $g(x) = x^2$ we have that $||f + g||^2 + ||f - g||^2 = 4 + 1/4$ while $2(||f||^2 + ||g||^2) = 4$.

6.3 In $L^2[0,T]$ show that the function

$$x \mapsto \left| \int_0^T e^{-(T-\tau)} x(\tau) d\tau \right|, \quad \forall x \in L^2[0,T]$$

reaches its maximum value on the unit sphere, and find the maximum value with the point x at which it attains the maximum value.

Proof. Assume that $\int_0^T |x(\tau)|^2 d\tau = 1$, by Cauchy-Schwarz Inequality we have

$$\left| \int_0^T e^{-(T-\tau)} x(\tau) d\tau \right| \le \left(\int_0^T e^{-2(T-\tau)} d\tau \right)^{\frac{1}{2}} \left(\int_0^T |x^2(\tau)| dx \right)^{\frac{1}{2}} = \sqrt{\frac{1-e^{-2T}}{2}},$$

where the equality holds iff $x(\tau) = \lambda e^{-(T-\tau)}$ for some λ . Combining with $\int_0^T |x(\tau)|^2 d\tau = 1$, we can obtain that $\lambda = \pm \sqrt{2}e^T/\sqrt{e^{2T}-1}$. Therefore, the function attains the maximum value $\sqrt{1-e^{-2T}}/\sqrt{2}$ at $x(\tau) = \pm \sqrt{2}e^{\tau}/\sqrt{e^T-e^{-T}}$.

6.4 Let M, N be two subsets in an inner-product space. Prove that

$$M \subseteq N \Rightarrow N^{\perp} \subseteq M^{\perp}.$$

Proof. Trivial.

6.5 Let M be a subset of Hilbert space \mathscr{X} , show that

$$(M^{\perp})^{\perp} = \overline{\operatorname{span} M}$$

Proof. Firstly we prove that $M^{\perp} = \overline{\operatorname{span} M}^{\perp}$ and it suffices to show that $M^{\perp} \subseteq \overline{\operatorname{span} M}^{\perp}$. Let $x \in M^{\perp}$ and $y \in \overline{\operatorname{span} M}$. If $y \in \operatorname{span} M$, then $y = \sum a_n x_n$ with $x_n \in M$. Since $x \perp x_n$, we know that $x \perp y$. If $y \notin \operatorname{span} M$, then there exists $\{y_n\} \subseteq \operatorname{span} M$ such that $y_n \to y$. We have that $x \perp y_n$, so $x \perp y$. Therefore, $M^{\perp} \subseteq \overline{\operatorname{span} M}^{\perp}$. Now we show that if A is a closed subspace of \mathscr{X} then $(A^{\perp})^{\perp} = A$. It is clear that $A \subseteq (A^{\perp})^{\perp}$. Now we shall prove that $(A^{\perp})^{\perp} \subseteq A$. Suppose that $x \perp A^{\perp}$. Write x = y + z, where $y \in A$ and $z \in A^{\perp}$, hence (x, z) = (y, z) + (z, z) with (x, z) = (y, z) = 0, yielding that (z, z) = 0 and z = 0. Thus $x = y \in A$.

6.6 In $L^2[-1,1]$ what is the orthogonal complement of the set of even functions? Prove your result.

Proof. The orthogonal complement consists of such function which differs from some odd function on a set of measure zero. It is such a function is orthogonal to any even function, and we shall prove the converse, that is, if $\int_{-1}^{1} f\bar{g} = 0$ for all even function g, then f differs from an odd function on a set of measure zero. Write $\int_{-1}^{1} f\bar{g} = \int_{0}^{1} (f(x) + f(-x))\overline{g(x)}dx$ and let g(x) = f(x) + f(-x) on [0, 1], hence $\int_{0}^{1} |f(x) + f(-x)|^2 = 0$, which indicates that f(x) + f(-x) = 0 almost everywhere on [0, 1] and thus on [-1, 1].

- 6.7 In $L^2[a,b]$ consider the set $S = \{e^{2\pi i nx}\}_{n=-\infty}^{\infty}$.
 - (1) If $|b-a| \le 1$ then $S^{\perp} = \{0\}$.
 - (2) If |b-a| > 1 then $S^{\perp} \neq \{0\}$.
 - *Proof.* (1) If |b-a| = 1, it is well-known that $S^{\perp} = \{0\}$. If |b-a| < 1, if $u \in S^{\perp}$, we can extend u to some u' on [a, a+1] such that $\int_a^b u' e^{2\pi i nx} dx = 0$ for all n. Thus u' = 0 on [a, a+1] and accordingly u = 0.
 - (2) Note that {e^{2πinx}} is an orthonormal basis on [b − 1, b]. So for any u ∈ L²[a, b − 1] (u ≠ 0), we can extend it to a function u' in L²[a, b] such that u' ∈ S[⊥].
- 6.8 Denote by \mathscr{X} the set of all analytic functions on the closed unit circle. The inner product is defined as

$$(f,g) = \frac{1}{i} \oint_{|z|=1} \frac{f(z)g(z)}{z} dz, \quad \forall f,g \in \mathscr{X}$$

Show that $\{z^n/\sqrt{2\pi}\}_{n=0}^\infty$ is an orthonormal set.

Proof. Let $z_n = z^n / \sqrt{2\pi}$. First we show that $(z_n, z_n) = 1$.

$$(z_n, z_n) = \frac{1}{2\pi i} \oint_{|z|=1} \frac{z^n \bar{z}^n}{z} dz = \frac{1}{2\pi i} \oint_{|z|=1} \frac{|z|^{2n}}{z} dz = \frac{1}{2\pi i} \oint_{|z|=1} \frac{dz}{z} = 1$$

Next we show that z_n and z_m (n > m) are orthogonal.

$$(z_n, z_m) = \frac{1}{2\pi i} \oint_{|z|=1} \frac{z^n \bar{z}^m}{z} dz = \frac{1}{2\pi i} \oint_{|z|=1} \frac{|z|^{2m} z^{n-m}}{z} dz = \frac{1}{2\pi i} \oint_{|z|=1} z^{n-m-1} dz = 0. \quad \Box$$

6.9 Let $\{e_n\}_1^\infty$ and $\{f_n\}_1^\infty$ be two orthonormal sets in Hilbert space \mathscr{X} and they satisfy that

$$\sum_{i=1}^{\infty} \|e_n - f_n\|^2 < 1.$$

Show that the completeness of one of $\{e_n\}$ and $\{f_n\}$ implies that of the other.

Proof. Assume that $\{e_n\}$ is complete. If $\{f_n\}$ is not complete then there exists $x \neq 0$ such that $x \perp f_n$ for all n. It follows that

$$||x||^{2} = \sum |(x, e_{n})|^{2} = \sum |(x, e_{n} - f_{n})|^{2} \le ||x||^{2} \sum ||e_{n} - f_{n}||^{2} < ||x||^{2},$$

which is a contradiction. Therefore, $\{f_n\}$ must be complete.

6.10 Suppose that \mathscr{X} be a Hilbert space and \mathscr{X}_0 a closed subspace of \mathscr{X} . Let $\{e_n\}$ and $\{f_n\}$ be orthonormal bases of \mathscr{X}_0 and \mathscr{X}_0^{\perp} , respectively. Show that $\{e_n\} \cup \{f_n\}$ is an orthonormal basis of \mathscr{X} .

Proof. It is clear that $\{e_n\} \cup \{f_n\}$ is an orthonormal set. From the unique decomposition theorem this set is a basis of \mathscr{X} .

- 6.11 Let $H^2(D)$ an inner-product as defined in Example 1.6.28.
 - (1) Suppose the Taylor expansion of u(z) is $u(z) = \sum_{k=0}^{\infty} b_k z^k$, show that

$$\sum_{k=0}^{\infty} \frac{|b_k|^2}{k+1} < \infty;$$

(2) Let $u(z), v(z) \in H^2(D)$ and

$$u(z) = \sum_{k=0}^{\infty} a_k z^k, \quad v(z) = \sum_{k=0}^{\infty} b_k z^k,$$

show that

$$(u,v)=\pi\sum_{k=0}^{\infty}\frac{a_k\overline{b_k}}{k+1};$$

(3) Let $u(z) \in H^2(D)$, show that

$$|u(z)| \le \frac{||u||}{\sqrt{\pi}(1-|z|)}, \quad \forall |z| < 1;$$

(4) Verify that $H^2(D)$ is a Hilbert space.

Proof. (1) From the definition of $H^2(D)$ we have

$$\iint_{D} \left| \sum_{k=0}^{\infty} b_{k} z^{k} \right|^{2} dx dy = \iint_{D} \left(\sum_{k=0}^{\infty} b_{k} z^{k} \right) \left(\sum_{k=0}^{\infty} \overline{b_{k}} \overline{z}^{k} \right) dx dy = \iint_{D} \sum_{k \ge 0, l \ge 0} b_{k} \overline{b_{l}} z^{k} \overline{z}^{l} dx dy < \infty.$$

Since $\sum b_k z^k$ converges uniformly on B(0,r) (0 < r < 1), it holds that

$$\begin{split} &\iint_{|z| \le r} \sum_{k \ge 0, l \ge 0} b_k \overline{b_l} z^k \overline{z}^l \, dx dy \\ &= \sum_{k \ge 0, l \ge 0} \iint_{|z| \le r} b_k \overline{b_l} z^k \overline{z}^l \, dx dy \\ &= \sum_{k \ge 0, l \ge 0} b_k \overline{b_l} \int_0^r s^{k+l+1} ds \int_0^{2\pi} (\cos k\theta + i \sin k\theta) (\cos l\theta - i \sin l\theta) d\theta \\ &= \sum_{k \ge 0} b_k \overline{b_k} \cdot \frac{r^{2k+2}}{2(k+1)} \cdot 2\pi = \pi \sum_{k=0}^\infty \frac{|b_k|^2}{k+1} r^{2k+2}. \end{split}$$

Since $\iint_D |u(z)|^2 dx dy < \infty$, it holds that $\lim_{r \to 1^-} \iint_{|z| \le r} |u(z)|^2 dx dy = \iint_D |u(z)|^2 dx dy$. We also have $\lim_{r \to 1^-} \sum |b_k|^2 r^{2k+2}/(k+1) = \sum |b_k|^2/(k+1)$, the conclusion follows immediately.

- (2) The proof is very similar to the previous one.
- (3) Let r = 1 |z| then $B(z, r) \subseteq D$. Note that f(x, y) = u(x + iy) is harmonic, hence we have

$$|u(z)| = \frac{1}{\pi r^2} \left| \iint_{B(z,r)} u(x+iy) dx dy \right| \le \frac{1}{\sqrt{\pi}r} \left(\iint_{B(z,r)} |u(x+iy)|^2 dx dy \right)^{\frac{1}{2}} \le \frac{\|u\|}{\sqrt{\pi}(1-|z|)} dx dy = \frac{1}{\sqrt{\pi}r} \left(\frac{1}{\sqrt{\pi}r} \left(\frac{1}{\sqrt{\pi}r} \frac{1}{\sqrt{\pi}r} \right)^{\frac{1}{2}} dx dy \right)^{\frac{1}{2}} \le \frac{\|u\|}{\sqrt{\pi}r} \left(\frac{1}{\sqrt{\pi}r} \left(\frac{1}{\sqrt{\pi}r} \frac{1}{\sqrt{\pi}r} \right)^{\frac{1}{2}} dx dy \right)^{\frac{1}{2}} \le \frac{1}{\sqrt{\pi}r} \left(\frac{1}{\sqrt{\pi}r} \frac{1}{\sqrt{\pi}r} \frac{1}{\sqrt{\pi}r} \frac{1}{\sqrt{\pi}r} \right)^{\frac{1}{2}} dx dy = \frac{1}{\sqrt{\pi}r} \left(\frac{1}{\sqrt{\pi}r} \frac{1}{\sqrt$$

- (4) Everything is clear except completeness. Let {u_n} be a Cauchy sequence. Then for all z on a circle |z| ≤ r we have from (3) that |u_n(z) u_m(z)| ≤ ||u_n u_m|/(√π(1 r)), hence {u_n(z)} uniformly converges within |z| ≤ r to some u(z). We know that u(z) is holomorphic and ∫∫_{u(z)} dxdy < ∞ from Minkowski's Inequality.
- 6.12 Let \mathscr{X} be an inner-product space and $\{e_n\}$ be an orthonormal set. Show that

$$\left|\sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)}\right| \le \|x\| \, \|y\|, \quad \forall x, y \in \mathscr{X}.$$

Proof. We have

$$\left|\sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)}\right| \le \sum_{n=1}^{\infty} |(x, e_n)| |\overline{(y, e_n)}| \le \left(\sum_{n=1}^{\infty} |(x, e_n)|^2\right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} |(y, e_n)|^2\right)^{\frac{1}{2}} \le \|x\| \|y\|$$

using Cauchy-Schwarz and Bessel Inequalities.

6.13 Let \mathscr{X} be an inner-product space. For any $x_0 \in \mathscr{X}$ and any r > 0, define

$$C = \{ x \in \mathscr{X} : ||x - x_0|| < r \}.$$

(1) Show that C is a closed convex subset;

(2) For any $x \in \mathscr{X}$ define

$$y = \begin{cases} x_0 + r(x - x_0) / ||x - x_0||, & x \notin C; \\ x, & x \in C, \end{cases}$$

Show that y is the best approximation of x in C.

Proof. (1) Trivial.

(2) If $x \in C$ then ||y - x|| = 0 and thus y is obviously the best approximation. Now assume that $x \notin C$, then for any $c \in C$ we have

$$\|y - x\| = \left\|x_0 + r\frac{x - x_0}{\|x - x_0\|} - x\right\| = \|x - x_0\| - r \ge \|x - x_0\| - \|c - x_0\| \ge \|x - c\|. \quad \Box$$

6.14 Find $(a_0, a_1, a_2) \in \mathbb{R}^3$ which minimizes $\int_0^1 |e^t - a_0 - a_1 t - a_2 t^2|^2 dt$.

Proof. This is to find the projection of e^t on span $\{1, t, t^2\}$ in $L^2[0, 1]$. According to the system of equations (1.6.4), we obtain that $a_0 = 39e - 105$, $a_1 = -12(18e - 49)$ and $a_2 = 30(7e - 19)$.

6.15 Let $f(x) \in C^2[a, b]$ satisfying

$$f(a) = f(b) = 0, \quad f'(a) = 1, \quad f'(b) = 0.$$

Show that

$$\int_a^b |f''(x)|^2 dx \geq \frac{4}{b-a}$$

Proof. The curve spline is a cubic function, say $g(x) = Ax^3 + Bx^2 + Cx + D$. Then from g(a) = g(b) = 0, g'(a) = 1, g(b) = 0, we can obtain that $A = 1/(a-b)^2$ and $B = -(a+2b)/(a-b)^2$. Then $\int_a^b |f''(x)|^2 \ge \int_a^b |g''(x)|^2 dx = 4/(a-b)^4 \cdot \int_a^b (a+2b-3x)^2 dx = 4/(b-a)$.

6.16 (Variational Inequality) Let \mathscr{X} be a Hilbert space and a(x, y) a Hermitian sesquilinear function on \mathscr{X} . Suppose that there exists M > 0 and $\delta > 0$ such that

$$\delta \|x\|^2 \le a(x,x) \le M \|x\|^2, \quad \forall x \in \mathscr{X}.$$

Let $u_0 \in \mathscr{X}$ and C be a closed convex subset on \mathscr{X} . Show that the function

$$x \mapsto a(x, x) - \Re(u_0, x)$$

attains minimum value at some x_0 on C and the point x_0 is unique and satisfies

$$\Re(2a(x_0, x - x_0) - (u_0, x - x_0)) \ge 0, \quad \forall x \in C.$$

Proof. Denote the function by f(x). We have $f(x) \ge \delta ||x||^2 - |(u_0, x)| \ge \delta ||x||^2 - ||u_0|| ||x||$, which is bounded below, so we can suppose that $d = \inf_{x \in C} f(x)$, and $d < f(x_n) < d + 1/n$. We can write

$$f(x) = a(x, x) + \frac{\|u_0 - x\|^2 - \|x\|^2 - \|u_0\|^2}{2}$$

We shall show that $\{x_n\}$ is convergent, that is, it is a Cauchy sequence. From parallelogram equality we have

$$\|x_m - x_n\|^2 = 2(\|x_m\|^2 + \|x_n\|^2) - 4\left\|\frac{x_n + x_m}{2}\right\|^2$$
(2)

and

$$\begin{aligned} \|x_m - x_n\|^2 &= \|(u_0 - x_m) - (u_0 - x_n)\|^2 \\ &= 2(\|u_0 - x_m\|^2 + \|u_0 - x_n\|^2) - 4 \left\| u_0 - \frac{x_n + x_m}{2} \right\|^2 \\ &= 2\left(2f(x_m) - 2a(x_m, x_m) + \|x_m\|^2 + \|u_0\|^2 + 2f(x_n) - 2a(x_n, x_n) + \|x_n\|^2 + \|u_0\|^2\right) \\ &- 4\left(2f\left(\frac{x_n + x_m}{2}\right) - 2a\left(\frac{x_n + x_m}{2}, \frac{x_n + x_m}{2}\right) + \left\|\frac{x_n + x_m}{2}\right\|^2 + \|u_0\|^2\right) \\ &= 4\left(f(x_m) + f(x_n) - 2f\left(\frac{x_m + x_n}{2}\right)\right) \\ &+ 4\left(2a\left(\frac{x_n + x_m}{2}, \frac{x_n + x_m}{2}\right) - a(x_m, x_m) - a(x_n, x_n)\right) + \|x_m - x_n\|^2 \quad (\text{use (2)}) \end{aligned}$$

So it holds that

$$\begin{aligned} 0 &= 4\left(f(x_m) + f(x_n) - 2f\left(\frac{x_m + x_n}{2}\right)\right) + 4\left(2a\left(\frac{x_n + x_m}{2}, \frac{x_n + x_m}{2}\right) - a(x_m, x_m) - a(x_n, x_n)\right) \\ &< 4\left(\frac{1}{m} + \frac{1}{n}\right) + 4\left(a\left(x_m + \frac{x_n - x_m}{2}, x_m + \frac{x_n - x_m}{2}\right) - a(x_m, x_m)\right) \\ &+ 4\left(a\left(x_n - \frac{x_n - x_m}{2}, x_n - \frac{x_n - x_m}{2}\right) - a(x_n, x_n)\right) \\ &= 4\left(\frac{1}{m} + \frac{1}{n}\right) + 4\left(\Re a(x_m, x_n - x_m) + a\left(\frac{x_n - x_m}{2}, \frac{x_n - x_m}{2}\right)\right) \\ &+ 4\left(-\Re a(x_n, x_n - x_m) + a\left(\frac{x_n - x_m}{2}, \frac{x_n - x_m}{2}\right)\right) \\ &= 4\left(\frac{1}{m} + \frac{1}{n}\right) - 4\Re a(x_m - x_n, x_m - x_n) + 2a(x_n - x_m, x_n - x_m) \\ &= 4\left(\frac{1}{m} + \frac{1}{n}\right) - 2a(x_n - x_m, x_n - x_m) \leq 4\left(\frac{1}{m} + \frac{1}{n}\right) - 2\delta \|x_n - x_m\|^2. \end{aligned}$$

Therefore,

$$||x_m - x_n||^2 < \frac{2}{\delta} \left(\frac{1}{m} + \frac{1}{n}\right) \to 0, \quad m, n \to \infty.$$

Now we prove that the uniqueness. If f(x) = f(y) = d and $x \neq y$, then similar to the process above, we have that $||x - y||^2 < 0$, which is a contradiction. Hence it must hold that x = y. Suppose that $f(x_0) = d$, let $g_x(t) = f(tx + (1 - t)x_0)$, then $g_x(t) \ge g_x(0)$ for all $x \in C$ and $t \in [0, 1]$.

$$g_x(t) = a(t(x - x_0) + x_0, t(x - x_0) + x_0) - \Re(u_0, t(x - x_0) + x_0)$$

= $t^2 a(x - x_0, x - x_0) + 2t \Re a(x_0, (x - x_0)) + a(x_0, x_0) - t \Re(u_0, x - x_0) - \Re(u_0, x_0)$

Hence $g'_x(0) = 2\Re a(x_0, x - x_0) - \Re(u_0, x - x_0)$. Since $g_x(t) - g_x(0) = g'_x(0)t + a(x - x_0, x - x_0)t^2 \ge 0$, it follows that $g'_x(0) \ge -a(x - x_0, x - x_0)t$ for all $t \in (0, 1]$ and thus $g'_x(0) \ge 0$.