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We study the Tukey layers and convex layers of a planar point set, which consists of n
points independently and uniformly sampled from a convex polygon with k vertices. We 
show that the expected number of vertices on the first t Tukey layers is O  (kt log(n/k))

and the expected number of vertices on the first t convex layers is O  
(
kt3 log(n/(kt2))

)
. 

We also show a lower bound of �(t log n) for both quantities in the special cases where 
k = 3, 4. The implications of those results in the average-case analysis of two computational 
geometry algorithms are then discussed.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The motivation of this work is to understand the combinatorial and geometric properties of random convex layers and 
Tukey layers of planar point sets X . The convex layers of X are a sequence of nested convex polygons whose vertices form 
a partition of X . The Tukey layers are the cells of a partition of X , in which each cell consists of all points in X of the same 
Tukey depth [1]. We refer the readers to Definitions 1 and 4 for precise definition. Each Tukey layer, as we shall prove in 
Lemma 1, is exactly the vertices of a convex polygon.

There has been a long research history on the expected size of the convex hull of a random point set [2–5], the relation 
between the expected size and the expected area of the convex hull [6,7], and the expected convex depth [8]. However, few 
of them study convex layers. In fact, the vertices on the first t convex layers, denoted by V [t](X), are closely related to the 
partial enclosing problem introduced by Atanassov et al. in [9]. The objective of this problem is to find the convex hull with 
the minimum area that encloses (n − t) of the n points in X . The t excluded points are regarded as outliers, as in many 
works that study the partial covering, for example [10], [11] and [12].

In [9], Atanassov et al. give an algorithm with the worst-case time complexity of O  
(

n log n + (4t
2t

)
(3t)tn

)
, where the n

in the second term 
(4t

2t

)
(3t)tn refers to the size 

∣∣V [t](X)
∣∣ in the worst case. However, the actual runtime seldom meets 

such worst cases. To give an overall measure on the efficiency of the algorithm, it makes more sense to study the average 
time complexity. Assuming that X is uniformly sampled from a convex k-gon as in [2,13,7,6,14,5,15], we shall prove in 
Section 4 that E

∣∣V [t](X)
∣∣ = O (kt3 log(n/(kt2))), which is o(n) when t = o((n/(k log(nk))1/3). As a consequence, the expected 
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Fig. 1. The boundary of the first three Tukey layers U1(X), U2(X) and U3(X) is plotted in solid, dashed, and dotted lines, respectively. The fourth Tukey 
layer U4(X) degenerates to a line segment, plotted in dashed dots. The vertices in each Tukey layer are in the convex positions.

complexity of Atanassov et al.’s algorithm in [9] is O (n log n + (4t
2t

)
(3t)tkt3 log(n/t2)). This explains the gap between the 

worst case complexity and the actual runtime.
In addition, we study the expected number of vertices on the first t Tukey layers U [t](X) as defined in Definition 4. This 

is also related to a partial shape fitting problem [16] in which the parallelogram rather than the convex polygon as in [9]
is concerned. The time complexity of the algorithm in [16] is O (n2t4 + n2 log n), where the n in the first term n2t4 refers 
to 

∣∣U [t](X)
∣∣ in the worst case. As we shall prove E

∣∣U [t](X)
∣∣ = O (kt log(n/k)) in Section 3, the expected time complexity is 

then O  
(
kt5n log(n/k) + n2 log n

)
, smaller than the worst-case complexity when � 

(
(n/k)1/5

) ≤ t ≤ O (n/(k log n)).
It is beneficial to study the convex hulls and Tukey layers together. Their close relation is shown in Lemma 2 that 

U [t](X) ⊆ V [t](X). An upper bound on 
∣∣V [t](X)

∣∣ is then automatically an upper bound on 
∣∣U [t](X)

∣∣ and a lower bound on ∣∣U [t](X)
∣∣ is automatically a lower bound on 

∣∣V [t](X)
∣∣.

1.1. Notation and definitions

We introduce the notation and definitions before reviewing the existing works. Let X be a planar point set and n = |X |
be its size. When X is a random point set, we use P to denote the convex polygon from which X is sampled, and k to 
denote the number of vertices of P . Throughout this work, the convex polygon P is always closed and, without loss of 
generality, we assume the area of P is 1. We now present the definition of the convex layer structure as in [17].

Definition 1 (Convex layer). Given a planar point set X , the first convex layer H1(X) is defined to be the convex hull H(X)

of the whole point set. The t-th convex layer Ht(X) is inductively defined to be the convex hull of the remaining points, 
after the points on the first (t − 1) convex layers have been removed from X .

Definition 2 (Convex depth). The convex depth of p ∈ X is said to be t if p is a vertex of Ht(X).

Next we define the Tukey layers, for which we need to introduce a classical notion known as the Tukey depth [1]. Instead 
of using the original definition, we use the following equivalent form for finite point sets.

Definition 3 (Tukey depth). Given a set X of planar points, the Tukey depth of a point p ∈ X is defined to be N(p) + 1, where 
N(p) is the minimum number of points in X that are contained in any open half-plane with p on its boundary.

Remark 1. For brevity, we use “one side of a line �” to refer to one of the two open half-planes induced by �. Hence, if a 
point p is on one side of a line �, the point p is in an open half-plane induced by �. Besides, when we say a point is above 
(below) a line, we do not include the line either.

Remark 2. Intuitively, if a point p has Tukey depth t , then for all lines � through p, there cannot be fewer than (t − 1)

points on either side of �. At the same time, there exists a line �0 through p such that there are exactly (t − 1) points on 
one side of �0.

Definition 4 (Tukey layer). For t ≥ 1, the subset Ut(X) of X is defined to be the set of points of Tukey depth t . The t-th 
Tukey layer, denoted by St(X), is defined to be convex hull of Ut(X). The size of St(X) is defined to be |Ut(X)|.

An illustration of Tukey layers is shown in Fig. 1. As we shall prove in Lemma 1, the points in Ut(X) are in the convex po-
sition and are thus exactly the vertices of St(X), hence our definition of the size of St(X) makes sense. The frequently used 
notations are listed in Table 1. Note that S1(X) = H(X) by definition. For convenience, we also let V [t](X) := ⋃t

i=1 V i(X)

and U [t](X) := ⋃t
i=1 Ui(X).
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Table 1
Notations used in this work.

Symbol Definition Symbol Definition

H(X) the convex hull of X Ht (X) the t-th convex layer of X
V (X) the vertices of H(X) Vt (X) the vertices of Ht (X)

St (X) the t-th Tukey layer of X
Ut (X) the vertices of St (X)

A(X) the area of H1(X) or S1(X) At (X) the area of St (X)

1.2. Related work

The main results in Section 3 and 4 are proved using the techniques developed for computing the expected convex hull 
size. We thus review the works that study the random convex hull, in terms of its area and the number of its vertices. Most 
of the research interests have been in their expectations, concentration bounds and asymptotic behaviors.

A fundamental result is that the expected size of a random convex hull is O (k log n), when a large number n of points 
are independently and uniformly sampled from a convex k-gon. The result was first stated by Rényi and Sulanke in [2] and 
a geometric proof was later provided by Har-Peled [5, Section 2]. By the relation E |V (X)| = n [1 −E A(X)] proposed in 
[13] (the area of the k-gon is assumed to be 1 without loss of generality), an upper bound on E |V (X)| will follow from a 
lower bound on E A(X). Thus in [5], the effort is devoted to deriving a lower bound on the expected area of the convex 
hull. A critical observation in [5, Section 2] is that, if p ∈ X is a vertex of the convex hull, then there exists a line � through 
p such that one side of � contains no points of X . This gives a necessary condition on p ∈ H(X), and a lower bound on the 
probability of the event p ∈ H(X) can then be obtained. Multiplying this lower bound by n immediately yields an lower 
bound on E A(X).

In addition, there have been a number of studies on the asymptotic behaviors of the convex hull size, such as [2,6,18–20]. 
Rényi and Sulanke proved that, given X uniformly sampled from a convex k-gon on a plane, the expected size of the convex 
hull E |V (X)| is asymptotically 2

3 k log n + O (1) as n → ∞, where the constant term depends on the polygon [2]. Affentranger 
and Wieacker generalized the result to higher dimensions and showed that, given that X is uniformly sampled from a 
simple polytope in Rd with k vertices, E |V (X)| = d

(d+1)d−1 k logd−1 n + O (logd−2 n) [6]. Masse proved that in the planar case, 

|V (X)|/( 2
3 k log n) converges to 1 in probability [19].

There are also studies that assume different underlying distribution for the point set. When the n points are sampled 
independently from a coordinate-wise independent distribution in Rd , it is proved by He et al. in [21] that the expected size 
of the t-th convex layer is O (td logd−1(n/td)). Some studies assume the point set is sampled independently and uniformly 
from other shapes rather than a convex polygon. In the case of a disc, the expected size of the convex hull is �(n1/3), due 
to Raynaud [22].

1.3. Our contribution

In this work, we introduce a new definition called Tukey layer and provide some fundamental properties of it. Then we 
study the expected size of the Tukey layers and convex layers when the point set X is uniformly sampled from a k-gon. 
We show that the expected number of vertices of the first t Tukey layers E

∣∣U [t](X)
∣∣ = O (kt log(n/k)) and that of the first 

t convex layers E
∣∣V [t](X)

∣∣ = O (kt3 log(n/kt2)). The first work to study the expected size of convex layers is [21] where 
He et al. proved that E |Vt(X)| = O (t2 log(n/t2)) when X follows a continuous component independent distribution. Their 
result can be extended to the cases when X is sampled from a square or more generally a parallelogram, and their bound 
O (t2 log(n/t2)) is better than ours O (t3 log(n/t2)) in such cases. On the other hand, the techniques developed in [21] are 
towards the continuous component independent distribution, and we find it hard to extend them to other polygonal shapes 
except square or parallelogram. We also prove a matching lower bound E

∣∣U [t](X)
∣∣ = �(t log n) when X is sampled from a 

triangle or a parallelogram, which, since U [t](X) ⊆ V [t](X), is also a lower bound for E
∣∣V [t](X)

∣∣ in the two special cases. 
Finally, we show that the two upper bounds are helpful in understanding the average case complexity of two partial shape 
fitting algorithms, both of which aim to enclose (n − t) of the n given points with a shape of the minimum area. One shape 
is parallelogram and the other is convex polygon.

1.4. Organization

In Section 2 we give the fundamental properties of convex layers and Tukey layers. In Section 3, we present the proof 
of the upper bound on the expected size of the first t Tukey layers, when the n points in X are sampled from a convex 
polygon. In Section 4, we prove the upper bound on the expected size of the first t convex layers under the same setting. 
In Section 5, we derive the lower bounds on the expected size of the first t Tukey layers for two special cases. Finally in 
Section 6, we apply our results to the average-case analysis of two shape fitting algorithms.
3
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2. Preliminaries

In this section, we prepare some fundamental facts on Tukey Layers and convex layers. The readers are recommended to 
have a look through the statements to get familiar with these properties. Nonetheless, we include the proofs for complete-
ness. To the best of our knowledge, the observations on Tukey layers are new and not found in the literature.

2.1. Convex layers, Tukey layers and their relation

The following lemma shows that the points in Ut(X) are exactly the vertices of the t-th Tukey layer St(X), which justifies 
referring the size of St(X) to |Ut(X)| as we mentioned after Definition 4.

Lemma 1. For a planar point set X, the points in the t-th Tukey layer of X are in the position of a convex polygon. Equivalently, Ut(X)

has only one convex layer.

Proof. Suppose there are at least two convex layers in Ut(X). Let V 1 denote the vertices of the convex hull of Ut(X), and 
V 2 := Ut(X) \ V 1. For any point p ∈ V 2, let � be the line through p such that there are exactly (t − 1) points on one side. 
Notice that � is through p and thus also through the interior of the convex hull of U1(X). Hence, on the side of � that 
contains (t − 1) points, there must exist a point q which belongs to V 1. This implies that for the line �′ through q and 
parallel to �, there are at most (t − 2) points on its one side. This contradicts the fact that q ∈ V 1 ⊆ Ut(X). Finally we 
conclude that there can be only one single convex layer in each Ut(X). �

The next lemma relates Tukey layers and convex layers.

Lemma 2. It holds that U [t](X) ⊆ V [t](X).

Proof. If a point p ∈ X \ V [t](X), then p can only lie on the (t + 1)-st or a deeper layer of X . On any side of any line 
passing through p, there must be at least one vertex from each previous layer, including the 1-st to the t-th. In total 
there are at least t points and by Definition 4 it holds that p /∈ U [t](X). In conclusion, U [t](X) ∩ (X \ V [t](X)) = ∅ and thus 
U [t](X) ⊆ V [t](X). �

The following lemma discusses the relative position of Tukey layers. It shows that the vertices on the first t Tukey layers 
are outside the (t + 1)-st Tukey layer.

Lemma 3. It holds that U [t](X) ∩ St+1(X) = ∅. As a consequence, St(X) ⊆ H
(

X \ U [t−1](X)
)
.

Proof. Suppose not. We let p ∈ U [t](X) ∩ St+1(X) and � be a line through p, on one side of which there are at most (t − 1)

points.
If � intersects the interior of St+1(X), then there must be a q ∈ Ut+1(X) on the side of � where there are at most (t − 1)

points. Let �′ denote the line through q and parallel to �. Then there are at most (t − 2) points on one side of �′ and this 
contradicts the fact that q ∈ Ut+1(X).

If � does not intersect the interior of St+1(X), then p must lie on a side rq of the boundary of St+1(X). Here r, q ∈
Ut+1(X) and the line segment rq must be on the line �. As there are at most (t − 1) points on one side of �, we then have 
r, q ∈ U [t](X), contradictory to the assumption that rq is a side of the boundary of St+1(X). �
Lemma 4. If X1 ∪ X2 = X, then U [t](X) ⊆ U [t](X1) ∪ U [t](X2).

Proof. For each point p ∈ U [t](X), there exists a line � through it, on one side of which there are at most (t − 1) points of 
X . Then there will be neither more than (t − 1) points of X1 nor more than (t − 1) points of X2 on the same side of �. Then 
we have p ∈ U [t](X1) when p ∈ X1, and p ∈ U [t](X2) when p ∈ X2. �

The following corollary is a generalization to k subsets.

Corollary 1. Given X = X1 ∪ X2 ∪ · · · ∪ Xk, we have

U [t](X) ⊆ U [t](X1) ∪ U [t](X2) ∪ · · · ∪ U [t](Xk).

The following lemma is an analogous result of Lemma 4 for V [t] .

Lemma 5. If X1 ∪ X2 = X, then Ht(X1) ∪ Ht(X2) ⊆ Ht(X) and V [t](X) ⊆ V [t](X1) ∪ V [t](X2).
4
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Proof. We prove the lemma by induction on t . The statement is well-known when t = 1. Assume it holds for t and we shall 
prove it for (t + 1). By the induction hypothesis, V [t](X) ⊆ V [t](X1) ∪ V [t](X \ X1), we then have

X \ V [t](X) ⊇ X1 \ V [t](X) ⊇ X1 \ (
V [t](X1) ∪ V [t](X \ X1)

) = X1 \ V [t](X1).

Further by Definition 1,

Ht+1(X1) = H
(

X1 \ V [t](X1)
) ⊆ H

(
X \ V [t](X)

) = Ht+1(X).

Similarly, Ht+1(X2) ⊆ Ht+1(X). Therefore Ht+1(X1) ∪ Ht+1(X2) ⊆ Ht+1(X).
Now we prove V [t+1](X) ⊆ V [t+1](X1) ∪ V [t+1](X2). For a point p ∈ V [t+1](X), p cannot be in the interior of Ht+1(X). We 

have already shown that Ht+1(X1) ∪ Ht+1(X2) ⊆ Ht+1(X), so p cannot be in the interior of either Ht+1(X1) or Ht+1(X2). If 
p ∈ X1, then p ∈ V [t+1](X1); otherwise p ∈ V [t+1](X2). �
Corollary 2. Given X = X1 ∪ X2 ∪ · · · ∪ Xk, we have

V [t](X) ⊆ V [t](X1) ∪ V [t](X2) ∪ · · · ∪ V [t](Xk).

2.2. Convex depth

The following lemma examines how the convex depth of a point p in X changes after an additional point q in added 
to X .

Lemma 6. Given a planar point set X and a point p ∈ X, the convex depth of p will either remain unchanged or increase at most by 1 
after an additional point q is added into X.

Proof. By the proof of [8, Lemma 3.1], we know that Vt(X) ⊆ Vt (X ∪ {q}) ∪ Vt+1 (X ∪ {q}). For p ∈ Vt(X), either p ∈
Vt (X ∪ {q}) or p ∈ Vt+1 (X ∪ {q}). In other words, the convex depth of p will either remain unchanged or increase by 1. �
2.3. Expected area and expected size of Tukey layers

The following lemma shows the relation between the expected size and the expected area of the Tukey layers.

Lemma 7. Let C ⊆R2 be a bounded and closed convex set of unit area and X be the set of n points chosen independently and uniformly 
from C. Then

E
∣∣U [t](X)

∣∣ ≤ n [1 −E A(St+1(X))] .

Proof. On the one hand, by Lemma 3, the points in U [t](X) must be outside St+1(X). On the other hand, there might be 
points of X \ U [t](X) not lying in St+1(X), either. Since those points not belonging to St+1(X) are uniform in C \ St+1(X), 
in expectation we have

E
∣∣U [t](X)

∣∣ ≤ nE [1 − A(St+1(X))] = n [1 −E A(St+1(X))] . �
2.4. Upper (lower) hull of Tukey layer

For a general convex polygon, let P1 be the vertex with the smallest x-coordinate and Q 1 the vertex with the largest 
x-coordinate, where we break the tie by choosing the point with the largest y-coordinate for both points. Then, the upper 
hull refers to the boundary of the polygon from P1 to Q 1 in the clockwise orientation. Similarly, let P2 be the vertex with 
the smallest x-coordinate and Q 2 the vertex of the largest x-coordinate of the polygon, where we break the tie by choosing 
the point with the smallest y-coordinate. It may happen that P1 = P2 and Q 1 = Q 2. The lower hull refers to the boundary 
from Q 2 to P2 in the clockwise orientation.

For a point P , if the ray ejecting vertically downwards (upwards) from P crosses the upper (lower) hull of the convex 
polygon, we shall say it is above (below) the upper (lower) hull.

3. Upper bound on expected size of Tukey layers

In this section, we prove E
∣∣U [t](X)

∣∣ = O (kt log(n/k)), when the n points of X are sampled independently and uniformly 
from a convex k-gon. Our proof is inspired by [5] in which Har-Peled considered the expected size of the convex hull of X
for X uniformly sampled from a triangle of unit area. He partitions the triangle into n ×n equal-area cells and gives a lower 
bound on the expected number of cells that are inside the convex hull. Dividing the lower bound by n2 would yield a lower 
5
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p

�

Fig. 2. The plane is divided into 4 open quadrants by the horizontal and vertical lines through p. The upper left and upper right quadrants are marked by 
dark gray and light gray color, respectively. Line � is an arbitrary non-vertical line through p.

bound on the expected area of the convex hull, denoted by E A(X). Then by E |V (X)| = n [1 −E A(X)] from [13], an upper 
bound on the expected size E |V (X)| of the convex hull follows. The case where X is uniformly sampled from a convex 
k-gon can be reduced to triangles by partitioning the k-gon into k triangles. Before proving our main results, we need the 
following auxiliary lemma.

Lemma 8. Given a point p ∈ X, the plane is partitioned into four open quadrants by the horizontal and vertical lines through p, as 
shown in Fig. 2. If both the upper-left and upper-right quadrants contain at least t points of X, then for any non-vertical line � through 
p, there must be at least t points of X above �. In other words, the point p cannot be above the upper hull of St(X).

Proof. For any non-vertical line � through p, either the upper-left or the upper-right quadrant is completely above �. Since 
both quadrants contain at least t points, there are always t points above �. By Definition 3, we know that p cannot be above 
the upper hull of the t-th Tukey layer. �

Since the points in X are chosen uniformly at random, we may assume that no three points are collinear and no two 
points have the same x or y coordinate, because such degenerate cases happen with zero probability. We decompose the 
convex hull into an upper hull and a lower hull, as defined in Section 2.4. Lemma 8 implies that

Pr (p is below the upper hull of Ut(X))

≥ Pr (p has at least t points in both upper-left and upper-right quadrants)

and similarly

Pr (p is above the lower hull of Ut(X))

≥ Pr (p has at least t points in both lower-left and lower-right quadrants) .

Then we can upper bound Pr
(

p ∈ X \ U [t](X)
)

as

Pr
(

p ∈ U [t](X)
)

= Pr (p is on or above the upper hull of Ut(X))

+ Pr (p is on or below the lower hull of Ut(X))

= (1 − Pr (p is below the upper hull of Ut(X)))

+ (1 − Pr (p is above the lower hull of Ut(X))),

whence an upper bound on Pr
(

p ∈ U [t](X)
)

would follow. Multiplying the upper bound by n would finally produce an upper 
bound on E

∣∣U [t](X)
∣∣.

Theorem 1. Let X be a set of n points sampled independently and uniformly from a triangle, then E
∣∣U [t−1](X)

∣∣ ≤ 4t ln n + 4t + 10.

Denote the triangle by T and, without loss of generality, assume that T has area 1. We partition T into n equal-area 
triangles by segments emanating from a fixed vertex. Each triangle is further partitioned into one triangle and (n − 1)

trapezoids with equal-area by line segments parallel to the opposite side. See Fig. 3 for an illustration. There are thus n2

cells in T , each has area 1/n2. Let Gi, j denote the cell in the i-th row and j-th column. We also define G[i1,i2],[ j1, j2] =⋃i2′
⋃ j2′ Gi′, j′ .
i =i1 j = j1

6
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col 1 col 2 col 3 col 4 col 5

row 5

row 4

row 3

row 2

row 1

9 10 19 20

7 8 17 18

5 6 15 16

3 4 13 14

1 2 11 12

25

24

23

22

21

Fig. 3. Partitioning of a triangle into n2 equal-area cells for n = 5. The cells are numbered for j = 3 by Eq. (1).

Proof of Theorem 1. We shall count the expected number of cells in each column that are above (resp. below) or intersect-
ing the upper (resp. lower) hull of St(X), the t-th Tukey layer. Summing up all those values will lead to an upper bound on 
the expected number of cells, and thus the expected area, outside St (X). Since in an n × n grid, the boundary of a convex 
polygon can intersect at most 4n cells in total, we only need to count how many cells in the j-th column are above the 
upper hull of St(X).

To count the expected number of cells above the upper hull of St (X), let Z j (1 < j < n) denote the maximum i such 
that Gij is above the upper hull of St(X) and we shall find an upper bound on E[Z j]. Let I1 (resp. I2) be the row index of 
the t-th point from top to bottom in G[1,n],[1, j−1] (resp. G[1,n],[ j+1,n]). Then for any Gi, j with i > max(I1, I2), there must be 
at least t points in its upper left quadrant and also t points in its upper right quadrant. By Lemma 8, such a point cannot 
be above the upper hull of St(X). Therefore, Z j ≤ max (I1, I2) ≤ I1 + I2 and thus E Z j ≤ E I1 + E I2. We can prove that 
E I1 ≤ tn

j−1 + 1 and E I2 ≤ tn
n− j + 1 (the proof is postponed to Lemma 9), then

E Z j ≤E I1 +E I2 ≤ tn

j − 1
+ tn

n − j
+ 2.

To count the expected number of cells below the lower hull of St(X), we analogously define Z ′
j to be the maximum i

such that Gn−i+1, j is below or intersects the lower hull of St(X). A similar argument to the above shows the same upper 
bound on E[Z ′

j], that is,

E Z ′
j ≤ tn

j − 1
+ tn

n − j
+ 2.

Note that the first and the last column each contains at most n cells outside St(X). The expected number of cells in T
which are outside St(X) is therefore at most

2n +
n−1∑
j=2

(
E Z j +E Z ′

j

)
≤ 2n + 2 ·

n−1∑
j=2

(
tn

j − 1
+ tn

n − j
+ 2

)

≤ 2n + 2 [2tn ln(n − 2) + 2tn + 2(n − 2)]

≤ 4tn lnn + 4tn + 6n,

together with the at most 4n cells that intersect the boundary of the t-th Tukey layer St(X), when n ≥ 4. It follows that

E A(St(X)) ≥ 1 − 4tn lnn + 4tn + 6n + 4n

n2
≥ 1 − 4t lnn + 4t + 10

n
.

By Lemma 7, we finally conclude that E
∣∣U [t−1]

∣∣ ≤ 4t ln n + 4t + 10 when n ≥ 4. When n < 4, this bound holds trivially since 
E

∣∣U [t−1]
∣∣ ≤ n. �

Lemma 9. Suppose that 1 < j < n. Let I1 (resp. I2) be the row indices of the t-th point from top to bottom in G[1,I1],[1, j−1] (resp. 
G[1,I2],[ j+1,n]), then E I1 ≤ tn

j−1 + 1 and E I2 ≤ tn
n− j + 1.

Proof. We prove E I1 ≤ tn
j−1 + 1 below, and a similar argument will give E I2 ≤ tn

n− j + 1. We number the n2 cells from 1 to 
n2 as follows. For a cell Gi,� , we define its number

idx(Gi,�) =

⎧⎪⎨
⎪⎩

( j − 1)(i − 1) + �, � < j;
( j − 1)n + (n − j)(i − 1) + �, � > j;
(n − 1)n + i, � = j.

(1)
7
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See Fig. 3 for an illustration. Intuitively, the triangle is split into three parts, left to the j-th column, right to the j-the 
column and the j-th column. In each part the cells are numbered one by one from left to right and from top to bottom; 
overall, the left part precedes the right part and the right part precedes the j-th column.

Now, we can refer to each cell by its number and denote the cells by G1, . . . , Gn2 , abusing the notation. Since all cells 
have the same area, a uniform random point in the triangle T can be generated by first choosing an integer in m ∈ {1, . . . , n2}
uniformly at random and then generating a uniform random point in Gm . Also we denote by |Gm| the number of points in 
X that are contained in Gm .

Let h be the integer such that 
∑h−1

i=1 |Gi | < t and 
∑h

i=1 |Gi | ≥ t . This is exactly the t-th smallest integer among n uniform 
samples from {1, . . . , n2}. Let ft(x) be the density function of the t-th smallest value among n independent uniform points 
in [0, 1]. Then

Eh =
1∫

0

�xn2� ft(x)dx ≤
1∫

0

(xn2 + 1) ft(x)dx = n2

1∫
0

xft(x)dx + 1

= n2 t

n + 1
+ 1

≤ t(n − 1) + 1

≤ tn.

Here we used the fact that 
∫ 1

0 xft(x)dx = t
n+1 . The integral is the expected value of the t-th smallest value among n inde-

pendent uniform points in [0, 1], and it is a classic result that this expected value is exactly t/(n + 1) (see, e.g., [23, Lemma 
8.3]).

When h ≤ n( j − 1), we have I1 = �h/( j − 1)�. When h > n( j − 1), it automatically holds that I1 ≤ n ≤ h/( j − 1). In both 
cases, we have I1 ≤ �h/( j − 1)�. Therefore,

E I1 ≤E

⌈
h

j − 1

⌉
≤ Eh

j − 1
+ 1 ≤ tn

j − 1
+ 1. �

Theorem 2. Let X be a set of n points sampled independently and uniformly from a convex k-gon. Then we have E
∣∣U [t−1](X)

∣∣ ≤
4tk ln(n/k) + 4tk + 10k.

Proof. Partition the convex k-gon into k triangles. Let X1, X2, . . . , Xk be the set of points of X in the triangles and ni = |Xi |
for i = 1, . . . , k. Note that n1, n2, . . . , nk are random numbers subject to 

∑k
i=1 ni = n. It follows from Corollary 1 that

E
[
U [t−1](X)|n1,n2, ...,nk

] ≤
k∑

i=1

E
[
U [t−1](Xi)|ni

] ≤
k∑

i=1

(4t lnni + 4t + 10)

= 4t
k∑

i=1

ln ni + 4tk + 10k

≤ 4tk ln(n/k) + 4tk + 10k. �
4. Upper bound on expected size of convex layers

In this section, we shall prove an upper bound O  
(

kt3 log n
kt2

)
on E 

∣∣V [t](X)
∣∣, when X is sampled uniformly from a 

convex k-gon. The proof is inspired by [7] and [21]. We first consider the case where the points in X are sampled uniformly 
from a triangle T and obtain an upper bound O  

(
kt3 log n

kt2

)
, which, by Corollary 2, implies an upper bound O  

(
kt3 log n

kt2

)
when X is sampled from a k-gon. The problem can be further reduced to finding an upper bound on the probability 
Pr

(
p ∈ V [t](X)

)
for a single point p ∈ X , which, multiplied by n, will be an upper bound on E 

∣∣V [t](X)
∣∣.

Theorem 3. Let X be a set of n points sampled independently and uniformly from a triangle T , then E 
∣∣V [t](X)

∣∣ = O  
(
t3 log(n/t2)

)
.

Proof. As the combinatorial properties of convex hulls are affine invariant, we may assume the vertices of T are (0, 0), 
(1, 0) and (0, 1). We partition T into three regions R1, R2, R3 with equal area by connecting the centroid 

( 1
3 , 1

3

)
to the 

midpoint of each edge (see Fig. 4). Then Pr
(

p ∈ V [t](X)|p ∈ Ri
)

are all equal for i = 1, 2, 3 and so
8
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R1 R2

R3

(0,0) (1,0)
( 1

2 ,0
)

(
0, 1

2

) ( 1
2 , 1

2

)

(0,1)

( 1
3 , 1

3

)

Fig. 4. The triangle is divided into three parts, by connecting the centroid to the midpoint of each edge.

p

(0,0) (1,0)

(0,1)

Fig. 5. By the horizontal line and the vertical line through a given point p, the triangle is divided into four quadrants.

Fig. 6. Partition of each quadrant of the triangle into cells when t = 4. In each single quadrant, the cells have the equal area. There are exactly t diagonal 
cells in each quadrant, marked in gray color.

Pr
(

p ∈ V [t](X)
) =

3∑
i=1

Pr
(

p ∈ V [t](X)|p ∈ Ri
)

Pr(p ∈ Ri)

=
3∑

i=1

Pr
(

p ∈ V [t](X)|p ∈ Ri
) · 1

3

= Pr
(

p ∈ V [t](X)|p ∈ R1
)
.

We turn to find an upper bound on Pr
(

p ∈ V [t](X)|p ∈ R1
)
. For this purpose, the triangle T is divided into four quadrants 

by a vertical and a horizontal line through p as shown in Fig. 5. Each quadrant is further partitioned into multiple cells 
as in Fig. 6. The triangular quadrant is partitioned into (2t + 1)t cells by (2t − 1) equally spaced horizontal lines and 
another (2t − 1) equally spaced vertical lines. Each of the other three quadrants are partitioned into t2 equal-area cells. This 
construction ensures exactly t diagonal cells in each of the four quadrants.

We claim that if p ∈ V [t](X), then at least one of the 4t diagonal cells must be empty. The proof of this claim is deferred 
to Lemma 10. By this observation, the probability of p ∈ V [t](X) is at most the probability that at least one of the 4t diagonal 
cells is empty, which we upper bound as follows. Let (p1, p2) denote the coordinates of p. When p ∈ R1, the area of each 
quadrant is at least 1

2 p1 p2 by [7, Section 2] and the probability mass (with respect to the uniform distribution on T ) of 
each quadrant is at least p1 p2. Therefore each diagonal cell has probability mass at least p1 p2

2 , and the expected number of 

4t

9



Z. Guo, Y. Li and S. Pei Computational Geometry: Theory and Applications 103 (2022) 101856
p

(0,0) (1,0)

(0,1)

Fig. 7. The diagonal cells are shaded. Connecting one point in the diagonal cell of the same order in each quadrant forms a convex layer, marked by a 
dashed polyline.

points in every single cell is at least np1 p2
4t2 . By the multiplicative form of Chernoff bound [23, Theorem 4.5], the probability 

that a diagonal cell is empty is at most exp
(
−np1 p2

16t2

)
. Further by a union bound, the probability that at least one of the 4t

diagonal cells is empty in triangle T is at most 4t exp
(
−np1 p2

16t2

)
. Therefore,

Pr
(

p ∈ V [t](X)|p1 p2 = y, p ∈ R1
) ≤ 4te

− ny
16t2 ,

whence we can show that

Pr
(

p ∈ V [t](X)|p ∈ R1
) ≤ 12t

1/9∫
0

e
− ny

16t2 log
1

y
dy = 12t · O

(
t2

n
log

n

t2

)
,

whose proof is postponed to Lemma 13 and Lemma 14. It follows that Pr
(

p ∈ V [t](X)
) = O  

(
t3

n log n
t2

)
for any p ∈ X and, 

finally, that E 
∣∣V [t](X)

∣∣ = O  
(

t3 log n
t2

)
. �

Now we are ready to prove the following main theorem.

Theorem 4. Let X be a set of n points sampled independently and uniformly from a convex k-gon, then we have E 
∣∣V [t](X)

∣∣ =
O  

(
kt3 log n

kt2

)
.

Proof. As in the proof of Theorem 2, we partition the k-gon into k triangles. Let n1, n2, . . . , nk denote the number of points 
in each triangle. It follows from Corollary 2 that

E
[
V [t](X)|n1,n2, . . . ,nk

] ≤
k∑

i=1

E
[
V [t](Xi)|ni

] ≤
k∑

i=1

O
(

t3 log
ni

t2

)

= O
(

kt3 log
n

kt2

)
,

where we used the AM-GM inequality and the fact that 
∑k

i=1 ni = n in the last step. �
In the rest of this section, we state and prove those lemmata used in the proof of Theorem 3. We denote the density 

and the cumulative distribution functions of the product p1 · p2 by ρp1 p2 (·) and F p1 p2 (·), respectively.

Lemma 10. If p ∈ V [t](X), there must be at least one empty diagonal cell.

Proof. If none of the 4t diagonal cells is empty, we can construct t convex layers enclosing p, where each layer consists 
of four points from the diagonal cells, one from each quadrant (see Fig. 7). The convex depth of p is thus at least (t + 1). 
Although there may be more than one point in each diagonal cell, we know from Lemma 6 that the convex depth of 
p cannot decrease after those additional points are included. This contradicts the assumption that p ∈ V [t](X). Therefore, 
some diagonal cell must be empty. �
10
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Lemma 11 ([7, Theorem 1]). F p1 p2 (y|p ∈ R1) ≤ 3F p1 p2 (y|p ∈ [0,1] × [0,1]).

Lemma 12 ([24, section I.8]). ρp1 p2 (y|p ∈ [0,1] × [0,1]) = log(1/y).

Lemma 13. If Pr
(

p ∈ V [t](X)|p1 p2 = y, p ∈ R1
) ≤ 4te

− ny
16t2 , then

Pr
(

p ∈ V [t](X)|p ∈ R1
) ≤ 12t

1/9∫
0

e
− ny

16t2 log
1

y
dy.

Proof. It is easy to prove that p1 p2 reaches its maximum value 1
9 at 

( 1
3 , 1

3

)
for p ∈ H1. Then we have

Pr
(

p ∈ V [t](X)|p ∈ R1
) =

1/9∫
0

Pr
(

p ∈ V [t](X)|p1 p2 = y, p ∈ R1
) · ρp1 p2 (y|p ∈ R1) dy

≤ 4t

1/9∫
0

e
− ny

16t2 · ρp1 p2 (y|p ∈ R1) dy

= 4t

1/9∫
0

e
− ny

16t2 dF p1 p2 (y|p ∈ R1) .

By Lemma 11 and Lemma 12,

1/9∫
0

e
− ny

16t2 dF p1 p2 (y|p ∈ R1) ≤ 3

1/9∫
0

e
− ny

16t2 dF p1 p2 (y|p ∈ [0,1] × [0,1])

= 3

1/9∫
0

e
− ny

16t2 log
1

y
dy.

Thus

Pr
(

p ∈ V [t](X)|p ∈ R1
) ≤ 12t

1/9∫
0

e
− ny

16t2 log
1

y
dy. �

Lemma 14. 
∫ 1/9

0 e
− ny

16t2 log 1
y dy = O  

(
t2

n log n
t2

)
.

Proof. Substituting y with z = ny
16t2 , we have

I =
1/9∫
0

e
− ny

16t2 log
1

y
dy

= 16t2

n

1/9∫
0

e−z
(

log
n

16t2
+ log

1

z

)
dz

≤ 16t2

n
log

n

16t2

∞∫
0

e−z dz + 16t2

n

∞∫
0

e−z log
1

z
dz.

Since both 
∫ ∞

0 e−zdz and 
∫ ∞

0 e−z log 1
z dz are constants, we conclude

1/9∫
e
− ny

16t2 log
1

y
dy = O

(
t2

n
log

n

t2

)
. �
0

11
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5. Lower bound of expected size of Tukey layers

We shall prove the lower bound on the expected size of U [t](X), the first t Tukey layers, for two special cases where X
is sampled from a parallelogram (Section 5.1) and a triangle (Section 5.2). We need the following lemma throughout this 
section.

Lemma 15 ([6, Section 3]). For all integer r, s ≥ 0 and for all c ∈ (0, 1] we have

1∫
0

1∫
0

(1 − cxy)n−s(xy)rdxdy = r!
cr+1 · logn

nr+1 + O

(
1

nr+1

)
, n → ∞.

5.1. Parallelogram

Without loss of generality, we may assume that the parallelogram is a unit square [0, 1] × [0, 1], because the combina-
torial properties would not change under an affine transformation. For each point p = (p1, p2) ∈ X , we now compute the 
probability that it is on the first t Tukey layers of X . For this purpose, we introduce the following definition.

Definition 5. Given a point p = (p1, p2) with 0 ≤ p1 < 1
2 and 0 ≤ p2 < 1

2 , the dividing line is defined to be

�0 : x

2p1
+ y

2p2
= 1.

The dividing line when p1 ≥ 1
2 or p2 ≥ 1

2 can be defined symmetrically.

The line divides the unit square into a triangle of area 2p1 p2 and a pentagon of area (1 − 2p1 p2). Notice that a sufficient 
condition for a point p to be on the first t Tukey layers is that, there are no more than (t − 1) points in the triangular part. 
We thus have the following theorem.

Theorem 5. Suppose that X consists of n independent and uniformly sampled points from a unit square. There exists an absolute con-
stant α > 0 such that whenever t ≤ α

√
n, it holds that E

∣∣U [t](X)
∣∣ = �(t log n) as n → ∞. Furthermore, when t = o((n/ log n)1/3), 

it holds that E
∣∣U [t](X)

∣∣ ≥ 2t log n + O (1) as n → ∞.

Proof.

Pr(p ∈ U [t]) ≥ Pr(no more than t points under the dividing line �0)

= 4

1
2∫

0

1
2∫

0

t−1∑
i=0

(
n − 1

i

)
(2p1 p2)

i(1 − 2p1 p2)
n−1−i dp1 dp2

= 4
t−1∑
i=0

(
n − 1

i

) 1
2∫

0

1
2∫

0

(2p1 p2)
i(1 − 2p1 p2)

n−1−i dp1 dp2

=
t−1∑
i=0

(
n − 1

i

) 1
2∫

0

1
2∫

0

(2p1 p2)
i(1 − 2p1 p2)

n−1−i d(2p1)d(2p2)

=
t−1∑
i=0

(
n − 1

i

) 1∫
0

1∫
0

( p1 p2

2

)i (
1 − p1 p2

2

)n−1−i
dp1 dp2

=
t−1∑
i=0

1

2i

(
n − 1

i

) 1∫
0

1∫
0

(p1 p2)
i
(

1 − 1

2
p1 p2

)n−1−i

dp1 dp2.

By Lemma 15, when n → ∞, we have

1∫
0

1∫
0

(p1 p2)
i
(

1 − 1

2
p1 p2

)n−1−i

dp1 dp2 = i!( 1
2

)i+1

log n

ni+1
+ O

(
1

ni+1

)
.

12
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Therefore, as n → ∞,

Pr(p ∈ U [t]) ≥
t−1∑
i=0

1

2i

(
n − 1

i

)[
i!( 1

2

)i+1

logn

ni+1
+ O

(
1

ni+1

)]

=
t−1∑
i=0

[
2 · (n − 1)!

(n − 1 − i)! · ni
· log n

n
+ O

(
1

2i i!n
)]

=
t−1∑
i=0

[
2 log n

n
·
(

1 − 1

n

)
·
(

1 − 2

n

)
· · · ·

(
1 − i

n

)
+ O

(
1

2i i!n
)]

≥
t−1∑
i=0

2 log n

n
·
(

1 − (i + 1)i

2n

)
+ O

(
1

n

)

≥
t−1∑
i=0

2 log n

n
·
(

1 − (t − 1)t

2n

)
+ O

(
1

n

)

≥ 2t log n

n

(
1 − t2

2n

)
+ O

(
1

n

)
.

Finally, the expected number of points on the first t Tukey layers

E
∣∣U [t]

∣∣ =
∑
p∈X

Pr(p ∈ U [t]) ≥ 2

(
1 − t2

2n

)
t log n + O (1).

The conclusions follow immediately. �
5.2. Triangle

Theorem 6. Suppose that X consists of n independent and uniformly sampled points from a triangle. There exists an absolute constant 
α > 0 such that whenever t ≤ α

√
n, it holds that E

∣∣U [t](X)
∣∣ = �(t log n) as n → ∞.

Proof. The proof is similar to that of Theorem 5. Without loss of generality, we assume that the vertices of the triangle 
are (0, 0), (0, 1) and (1, 0). Here we only consider those p where 0 ≤ p1 ≤ 1

2 and 0 ≤ p2 ≤ 1
2 . We now find a lower bound 

on Pr
(

p ∈ U [t],0 ≤ p1 ≤ 1
2 ,0 ≤ p2 ≤ 1

2

)
. Note that dividing line divides the triangle into a triangle of area 2p1 p2 and a 

quadrilateral of area 1
2 − 2p1 p2. Their probability masses are 4p1 p2 and 1 − 4p1 p2 respectively.

Pr(p ∈ U [t]) ≥ Pr

(
p ∈ U [t],0 ≤ p1 ≤ 1

2
,0 ≤ p2 ≤ 1

2

)
≥ Pr(no more than t points under the dividing line �0)

=
1
2∫

0

1
2∫

0

t−1∑
i=0

(
n − 1

i

)
(4p1 p2)

i(1 − 4p1 p2)
n−1−i dp1 dp2

= 1

4
·

1
2∫

0

1
2∫

0

t−1∑
i=0

(
n − 1

i

)
(2p1 · 2p2)

i(1 − 2p1 · 2p2)
n−1−i d(2p1)d(2p2)

= 1

4
·

t−1∑
i=0

(
n − 1

i

) 1∫
0

1∫
0

(p1 p2)
i(1 − p1 p2)

n−1−i dp1 dp2

By Lemma 15, as n → ∞,

1∫
0

1∫
0

(p1 p2)
i(1 − p1 p2)

n−1−i dp1 dp2 = i! log n

ni+1
+ O

(
1

ni+1

)
.

Therefore
13
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Pr(p ∈ U [t]) ≥ 1

4
·

t−1∑
i=0

[
(n − 1)!

ni(n − i − 1)!
log n

n
+ O

(
1

i!n
)]

= 1

4
·

t−1∑
i=0

[(
1 − 1

n

)
·
(

1 − 2

n

)
· · ·

(
1 − i

n

)
· log n

n
· +O

(
1

i!n
)]

≥ 1

4
·

t−1∑
i=0

[(
1 − (i + 1)i

2n

)
· logn

n
+ O

(
1

i!n
)]

≥ 1

4
·

t−1∑
i=0

[(
1 − (t − 1)t

2n

)
· log n

n
+ O

(
1

i!n
)]

≥ 1

4
· t logn

n
·
(

1 − t2

2n

)
+ O

(
1

n

)
.

Finally, the expected number of points on the first t Tukey layers

E
∣∣U [t]

∣∣ =
∑
p∈X

Pr(p ∈ U [t]) ≥ 1

4

(
1 − t2

2n

)
t log n + O (1).

The conclusions follow immediately. �
6. Applications

In this section, we discuss how our results in Sections 3 and 4 help in the average case analysis of two partial enclosing 
problems. The objective is to enclose (n − t) of the given n points in X by a specified shape such that the area of the 
shape is minimized. This kind of problem is known as partial shape fitting and is an important problem in computational 
geometry, see, e.g., [9,25,26,12,27]. The points that are not enclosed are referred to as outliers [9,26,12].

The average case complexity is another important measure in addition to the worst case complexity. As pointed out 
in [3], the average case analysis is desirable because the best-case and worst-case performance of an algorithm usually 
differs greatly, especially for output-sensitive algorithms. In such situation, the average case complexity seems to be a more 
accurate and fair measurement of an algorithm’s performance. A common scenario is that the input point set is drawn from 
some probability distribution and it is widely adopted by the computational geometry community to consider the uniform 
distribution in a convex polygon [6,14,15,7,13,5].

6.1. Enclosing parallelogram with minimum area

The algorithm given in [16] studies how to find a parallelogram with the minimum-area that encloses (n − t) of the n
given points. The time complexity of the algorithm is O  

(
t4τ 2 + n2 log n

)
, where τ is the number of points whose Tukey 

depth is at most (t + 1). Such points coincide with U [t+1](X) and so τ = ∣∣U [t+1](X)
∣∣. In the worst case, 

∣∣U [t+1](X)
∣∣ = n can 

be true and the worst case time complexity is thus O  
(
n2t4 + n2 log n

)
. However, on average, we have

E
[

O
(

t4
∣∣U [t](X)

∣∣2 + n2 log n
)]

≤ E
[

O
(

nt4
∣∣U [t](X)

∣∣ + n2 logn
)]

= O
(

kt5n log
n

k
+ n2 log n

)
,

when X is uniformly sampled from a k-gon. When t is between � 
(

log
1
4 n

)
and O  

(
n

k log n
k

)
, the average case complexity is 

smaller than the worst-case complexity. This explains why in many cases the actual runtime of the algorithm is faster than 
the worst-case complexity.

6.2. Minimum enclosing convex hull

Another application of our result is the algorithm for the minimum enclosing convex hull. Let X be a set of n points 
in R2. The problem asks to find a subset X ′ ⊂ X , |X ′| = t , such that area of Ht(X \ X ′) is minimized. In [9], Atanassov 
et al. provide an elegant solution to this problem with running time O  

(
n log n + (4t

2t

)
(3t)t |H[t](X)|

)
. In the worst case, 

|H[t](X)| = n, which happens when X has at most t layers. For the average case, Theorem 4 implies a time complexity of 
O  

(
n log n + k

(4t
2t

)
(3t)tt3 log n

kt2

)
, when X is uniformly distributed in convex k-gon. The average case is substantially better 

than the worst case when t = O  
((

n
k log(n/k)

)
)1/3

)
.
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7. Closing remarks

In this paper, we studied the expected size of the random convex layers and random Tukey layers of a point set X
consisting of n points drawn independently and uniformly from a convex k-gon.

For random Tukey layers, we showed that E |U [t](X)| = O  (kt log(n/k)) but only showed a matching lower bound of 
�(t log n) for triangles and parallelograms. We leave an open problem of obtaining a general lower bound of �(kt log n), 
for which a straightforward extension of our current technique of considering a line passing through a single point p in 
Section 5 seems inadequate. We also leave an open problem of obtaining a tight constant in the asymptotic results (which 
could depend on t); our constants are 4 in the upper bound and 2 in the lower bound, which are not tight since the tight 
constant is known to be 8/3 when t = 1 [2].

For random convex layers, we showed that E |V [t](X)| = O (kt3 log(n/(kt2))). However, when the points are from sam-
pled from a square, a better upper bound of O (t2 log(n/t2)) is known [21]. Thus, a natural question is whether it holds 
E |V [t](X)| = O (kt2 log(n/(kt2))) in general. Another interesting open problem is to obtain a lower bound with dependence 
on t , as existing lower bounds are only for t = 1 and there seem substantial difficulties to extend the existing techniques to 
a larger t .
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