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Abstract—We present a novel setting of active learning (AL) where multiple target models are simultaneously learned. This setting
arises in real-world applications where machine learning systems require training multiple models on the same labeled dataset to
accommodate diverse devices with varying computational resources. However, traditional AL methods are often limited by their model
dependence and non-transferability. In this paper, we address the question of whether an effective AL method can be designed for
multiple target models. We analyze the query complexity of active and passive learning in this setting and demonstrate the potential for
AL to achieve improved query complexity. Based on this insight, we further propose an agnostic AL sampling strategy which selects
examples located in the joint disagreement regions of different target models. Experimental evaluations on classification and
regression benchmarks validate the effectiveness of our approach over traditional AL methods.

Index Terms—Machine learning, active learning, query complexity.

1 INTRODUCTION

ATA labeling is usually expensive due to the involve-

ment of human annotators. Active learning (AL) is a
main approach to reduce the labeling cost [54]. It assumes
that different data have varying impacts on the model per-
formance, and thus, efficient model training can be achieved
by selectively labeling the informative examples. Active
learning evaluates the utility of the unlabeled data based on
the model to be learned, i.e., the target model, from various
aspects and actively queries the ground-truth labels for the
examples that would most benefit the model’s performance
improvement. Commonly used selection criteria include un-
certainty [19], diversity [34], representativeness [33], among
others. In the past decades, many works have validated the
great potential of active learning in reducing training data
while achieving the same performance across various tasks
[31], [62], [69].

Existing active learning methods typically aim to fit a
single specific target model with the fewest queries, such
as SVM [31], hidden Markov model [52], neural networks
with specific architectures [56]. However, in many real-
world applications, machine learning systems are required
to be deployed on multiple types of devices with differ-
ent resource constraints [9]. For example, speech recogni-
tion software needs to support a wide range of machines,
from high-performance workstations to mobile phones. Due
to differences in computational resources, the applicable
model architectures can vary considerably. A deep model
which performs well on the cloud server may not be suitable
for deployment on edge devices. As a result, it becomes nec-
essary to train multiple models with different complexities
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on the same labeled dataset to accommodate these diverse
devices.

Given multiple target models, it has become a practical
and challenging problem to improve them effectively with
the fewest labeled data. Conceivably, different models will
have different preferences on the training data, which has
been verified by many works showing that AL is usually
model-dependent and nontransferable [46], [49], [70], ie.,
the best query strategy for different target models can vary
significantly [71]. In other words, the data queried by one
model may be less effective when used to train another
model [46]. These observations indicate that the existing
active query strategies can hardly benefit all target models
simultaneously, highlighting the necessity and challenge of
designing AL algorithms for multi-model scenarios. This
raises a natural question: “Does there exist an active learning
method which can query a set of labeled data in such a way that
all the target models can be effectively trained using those data?”

In this paper, we formally define the problem of active
learning for multiple target models, where multiple hetero-
geneous models are learned on the same labeled dataset.
Our goal is to actively query the informative unlabeled
data that carry crucial information about the learning task
in order to improve the performances of all target models
simultaneously with the least possible queries. To verify the
rationality and solvability of the problem, and demonstrate
the potential improvement of AL under this novel set-
ting. Based on this insight, we further propose an agnostic
disagreement-based selection criterion for both classification
and regression tasks. we first define and analyze the query
complexity for both active and passive learning under the
setting of multiple target models. This query complexity
characterizes the number of labeled examples sufficient to
train an e-good classifier with probability at least 1 — 9 for
every target model. We establish that the query complexity
of multiple models can be upper bounded by that of an
appropriately designed single model in the realizable case
(i.e., the target concept which generates the ground truth is
contained in the hypothesis space), indicating the potential
improvement of AL under this setting. To further explore



the agnostic case, we propose an active selection method
called DIAM (i.e., DIsagreement-based AL for Multi-models)
to select the best examples beneficial to all target models. It
prefers the data located in the joint disagreement regions of
different models as they are expected to be more effective
in reducing the soft version space (i.e., the set of hypotheses
with lower errors). We provide a rigorous theoretical anal-
ysis of the DIAM method and propose efficient implemen-
tations for both deep classification and regression tasks. For
classification tasks, our implementation exploits the models
in the later training epochs to construct joint disagreement
regions and further considers the diversity criterion in data
querying to enable batch mode selection. For regression
tasks, we consider two problem definitions and demon-
strate that identifying the data in disagreement regions can
be efficiently solved using linear algebraic techniques. To
validate the importance of designing active query methods
for multiple target models and to evaluate the effectiveness
of our proposed approaches, we conduct experiments on
the benchmarks representative of tasks which are typically
required to support multiple types of devices. The first
task is Optical Character Recognition (OCR) used for deep
classification and the second is Facial Landmark Detec-
tion (FLD) used for regression. Our results show that the
DIAM method significantly outperforms traditional active
and passive learning methods for multiple models in terms
of reducing the number of queries required while achieving
higher mean accuracy.

We summarize the contributions of this work as follows.

1) We formally define the novel setting of active learn-
ing for multiple target models, which aims to reduce
the labeling cost for the application scenarios that
need to support a wide range of machines.

2) We establish that the query complexity of multiple
models can be upper bounded by that of an appro-
priately designed single model under the realizable
case, demonstrating the potential improvement of
AL in this setting.

3) We propose an agnostic active learning algorithm
for multiple target models, and provide theoretical
analysis on its superiority in terms of the query
complexity compared with the baseline methods.

4) We extend the proposed DIAM method for deep
classification. Our implementation exploits the
training process of neural networks to find disagree-
ment regions and introduces the diversity criterion
to enable batch mode selection.

5) We further extend the proposed DIAM method for
deep regression. We demonstrate that identifying
the data in disagreement regions in mean-squared
loss can be efficiently solved using linear algebraic
techniques.

6) Extensive experiments are conducted on the bench-
marks of OCR and FLD tasks. The results show
that the DIAM method can significantly outperform
the other baseline methods in terms of reducing
the number of queries required while achieving a
higher mean accuracy.

Note that, a preliminary version of this work has been
published in [61]. We summarize the updated contents as
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follows. i) We have improved the original DIAM query
strategy by introducing a diversity criterion to boost its
performance in batch mode querying. ii) We have extended
the proposed DIAM method for deep regression tasks with
efficient implementations using linear algebraic techniques.
iii) We have employed more classification and regression
benchmarks to validate the effectiveness of our method. iv)
We significantly improved the presentation of the paper.
The remainder of the paper is organized as follows.
Section 2 provides a review of related work. In Sec. 3,
we formally define the AL for the multiple target model
problem and present a general result which bridges the
query complexity between single and multiple models. Sec-
tion 4 explores the potential improvement of AL under this
novel setting. Next, in Section 5, we propose and analyze
an agnostic active selection criterion. Section 6 presents
the empirical studies conducted to evaluate the proposed
method. Finally, we conclude our work in Section 7.

2 RELATED WORK
2.1 Learning Multiple Target Models

As the complexity of deep models increases, many machine
learning systems need to learn light models to ensure user
experience on diverse devices with varying computational
constraints [47]. To achieve this goal, most studies aim
at reducing the size of a big model with high accuracy,
while minimizing the performance loss. This can usually be
implemented by knowledge distillation (KD) [22] and model
compression [12]. The former focuses on distilling knowl-
edge from a larger teacher model to a smaller student model.
Based on the types of knowledge being distilled, there are
primarily three categories of approaches, Response-Based
KD [4], [30], which regularizes the logits or soft predic-
tions of the teacher and student models, Feature-Based KD
[51], which transfers the intermediate representations, and
Relation-Based KD [68], which mines the relations between
different layers or data. The latter aims at pruning the less
important nodes or units from the model [24], [25], [42], or
quantizing the parameters and activations to low-precision
data types [35], [38] to reduce the model size and accelerate
the inference speed. The pruning-based methods calculate
the saliency score of different parameters to identify the
non-informative nodes, leading to less performance loss
after eliminating them. Quantisation-based methods usually
rescale, clamp, or transform the weights into fixed-point,
rather than floating-point, numbers to reduce memory oc-
cupation and improve efficiency.

Recently, Neural Architecture Search (NAS) [18] is ex-
tended to search hardware-aware models [9], [10], [29] to
support devices with different computational resources. For
example, He et al. [29] incorporate model compression into
the model search phase and employ reinforcement learning
to optimize both compression policy and model architec-
tures. Cai et al. [9] propose an efficient NAS method to
search different architectures for various devices with only
training the super-net once, so that small models can be
efficiently evaluated by pruning the super-net with weight
inheriting. All of the aforementioned methods address the
challenge of supporting devices with limited computational



resources from the model perspective. In this work, we aim
to tackle this challenge from a data perspective.

2.2 Active Learning

Active learning has been widely applied to address the
increasing demand for labeled data in training deep models
[50]. One of the tasks of AL is evaluating the potential
contribution of each candidate query to the performance
improvement of the target model. Most of the existing
selection criteria can be categorized into informativeness
and representativeness. The informativeness-based methods
[21], [36], [66] select the data which is close to the decision
boundary, while the representativeness-based methods [44],
[53], [57] impose the constraints to regularize the queried
data to be dissimilar with each other or conform to the
latent data distribution. Many works also try to combine
both criteria to achieve better performances [17], [59], [67].
Beyond these hand-crafted selection criteria, several meta-
active-learning query strategies [37], [48], [64] are proposed
to learn a generalizable query strategy across tasks. Most
of the existing AL query strategies target on improving one
specific target model.

From the theoretical view, one of the interested proper-
ties of an AL algorithm is the query complexity [26], [28],
which characterizes the number of queries needed to obtain
an e-good classifier with probability at least 1 — §. To bound
this value, disagreement coefficient [7], [8] and shattering
[11], [27] are two commonly used techniques. While most
works deal with the single model setting, Balcan et al. [6]
study the query complexity of the hypothesis space and its
subclasses, which sheds light on this work. However, they
mainly focus on how to construct subclasses to achieve a
certain query complexity, while we aim to find an effective
AL algorithm on the given hypothesis spaces.

Recently, some AL methods have addressed the scenario
where the target model has not been given before querying.
Instead, only a candidate set of models is available. In this
setting, these methods face the challenge of identifying the
most effective model from the candidate set for the current
task and fitting it with the fewest queries. To this end,
ALMS [1] maintains two sets of data: an unbiased labeled
set for evaluating candidate models and an informative
dataset for effective model learning. At each iteration, the
method computes a utility score to determine whether to
query based on expected error reduction or query randomly.
Active-iINAS [20], designed for the deep learning setting,
employs NAS to search for an optimal model architecture
iteratively while querying examples to enhance the perfor-
mance of the currently identified best network architecture.
Recently, Tang and Huang [60] propose a unified framework
to incorporate model selection and active data querying.
They employ truncated importance sampling to overcome
the data bias in model evaluation and select data based on
the inconsistency among the candidate models for querying.
While all these methods focus on identifying the most
effective model configurations from a set of target models,
our work tries to improve all target models simultaneously.
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3 QUERY COMPLEXITY OF SINGLE MODEL AND
MuLTIPLE MODELS

3.1 Notations and Definitions

Throughout the paper, X and Y denote the feature space
and the label space, respectively. A hypothesis is a mapping
from X to )V and there is an unknown target hypothesis
h*, which generates the ground-truth label y € Y for each
x € X. We assume that there is an unknown distribu-
tion Dx over X, from which the data are sampled. The
generalization error of a hypothesis h is then defined as
err(h) = Porpy (h(z) # h*(x)).

Consider a dataset of n data points which are sampled
randomly and independently from Dx. In active learn-
ing, the dataset usually consists of a small labeled set
L = {(x;,yi)};L, of size n;, which is used for model
initialization, and a large unlabeled set & = {z;}[1™ of
size n,, which is used for data querying. Here, n; < n,
and n = n; + n,,. The goal of an active learning algorithm is
to produce a hypothesis h of small generalization error by
querying the labels of data points in the unlabeled set I/ as
few times as possible.

More specifically, in the single model setting, we are
given a target model, i.e., a hypothesis space (e.g., SVM,
decision tree, multi-layer perceptron, etc.), which implicitly
define a set of hypotheses, namely, a hypothesis space, C
before querying. A learning algorithm seeks to output a
hypothesis h € C such that its generalization error err(h) is
close to the minimum error v = inf,¢cc err(h). When h* € C,
we say the learning task is realizable, which indicates that
v = 0. Otherwise, it is called agnostic learning.

Meanwhile, the active learning algorithm aims at min-
imizing the number of label queries for points in ¢{. This
is characterized and assessed through the notion of query
complexity [28]. Below is the definition of the query com-
plexity for the single target model.

Definition 1 (Query complexity for single target model,
[28]). Suppose that €,d € (0,1) and A is an active learning algo-
rithm. We say that A achieves query complexity A(A;e, 9, Dx)
on the hypothesis space C and distribution Dx if, for every query
budget t > A(A;Dx) and for every target hypothesis h*, the
algorithm A, using at most t queries, returns a hypothesis hy s
such that

P(err(his) <v+e)>1-4, 1)

where the probability is over the random samples drawn from Dx.
Moreover, we say that A achieves (distribution-independent)
query complexity
A (Av g, 5) = SupA(A; &, 57 DX)
Dx
on the hypothesis space C.

When € and 0 are clear from the context, we may omit them
and simply write A(A; Dx) and A(A).

In the multiple target models setting, there are k hy-
pothesis spaces Cy,...,C; and a learning algorithm seeks
to output k hypotheses hy,...,hj such that h; € C; and
err(h;) is close to the minimum error v; = infpcc, err(h) in
the i-th hypothesis space C;. Next is the formal definition
of query complexity of active learning for multiple target
models.



Definition 2 (Query complexity of multiple target models).

Suppose that ¢,§ € (0,1) and A is an active learning algorithm.

We say that A achieves query complexity A (A, e,8, Dx ) on the

hypothesis spaces C, . ..,Cy and distribution Dx if, for every

query budget t > A (A, Dx) and for every target hypothesis

h*, the algorithm A, using at most t queries, returns hypotheses
is€Ci(i=1,...,k)such that

P(err(his) <wvi+e)>1-06, Vi=1,....k (2

where the probability is over the random samples drawn from Dx.
Moreover, we say that A achieves (distribution-independent)
query complexity for multiple target models

A (A;e,0) =supA(A;e, 6, Dx)
Dx

on the hypothesis spaces Cy, . .., Cy.
When € and § _are clear from the context, we may omit them
and simply write A(A; Dx) and A(A).

Before presenting our main results, we introduce a func-
tion to evaluate the difference between hypotheses, which is
a pseudometric of hypotheses. This function plays a crucial
role in the proof of the theorem.

Definition 3. Given Dx, the probability of disagreement be-
tween two classifiers hy and ho is defined as d(hi,he) =
Py~ (h1(z) # ha(z)).

It is not difficult to verify that d(-,-) as defined above
is indeed a pseudometric; see, e.g., [26]. In particular, this
means that the triangle inequality holds.

Finally, given a labeled set £, we define the empir-
ical error of a hypothesis h on L to be e-errp(h) =
121 2 (epyec Lh(z) # y], where I[-] is the indicator function.
We also define Log(a) = max{In(a),1} for all a > 0.

3.2 Translating the Query Complexity of Single Model
to Multiple Models

Denote by A;(P) and A;(A) the query complexity on C;
achieved by passive learning P and a specific active learning
algorithm A4, respectively. When applying the existing algo-
rithms to multiple target models setting, passive learning
has a trivial query complexity for multiple models, namely,
A(P") < max; A;(P), where P’ queries data randomly
and outputs the empirical minimizer of each target model.
This bound follows from the definition of query complex-
ity of passive learning and is clearly tight without extra
assumptions. The query complexity of active learning for
multiple models, however, is much less understood. The
trivial upper bound, assumed to be obtained by algorithm
A which applies the AL algorithm A to each target model
individually, is much worse: A(A) < Y. A;(A). Our the-
orem below provides a possible direction to improve the
upper bound of query complexity for AL. It shows that
finding an e-good classifier from each hypothesis space
Ci,...,Cy is equivalent to finding an (£/2)-good classifier
in the combined hypothesis space C = C; U --- U Cj, in the
realizable case.

Theorem 1. Suppose thate,§ € (0,1), Cy, ..., Cy, are k hypoth-
esis spaces and h* € C = Ule C;. If there exists an active learn-
ing algorithm A which achieves query complexity A (A,e,?)
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on é, Then, there exists an acfive learning algorithm A’ which
achieves the query complexity A (A',e,6) = A (A, €/2,0).

Proof. Given A, we define an algorithm A’ as follows. First,
A’ runs the algorithm A on C to query t > A (A, ¢/2,6)
labels and outputs a classifier h 4. By definition, d(h4, h*) <
€/2 with probability at least 1 — §. Next, for each C;, the
algorithm A’ outputs the classifier lAzz € C;, which is given
by h; = argming, ec, d(hi, ha).

We claim that A" outputs the desired classifier for each
C;, that is, err(ﬁi) — v; < € holds with probability at least
1-94.

By Definition 3, bounding err(;) is equivalent to bound-
ing d(fzi, h*). Let hf = argming,ec, err(h;) so v; =
d(hf, h*). By the triangle inequality,

d(hiyh*) < d(hi,ha) + d(ha, h*). )
The first term can be bounded as
d(hi,ha) < d(h ha) < d(hE R*) +d(h* ha) (4

using the definition of h; and the triangle inequality. Com-
bining Eqs (3) and (4) yields that

d(hs, 1) < d(hE, h*) + 2d(ha, h*) < v; +2- % —vite
The proof is now complete. O

Remark 1. Theorem 1 provides a general guarantee, namely,
an algorithm A which achieves distribution-independent
query complexity A (A, e/2,J) on the combined hypothesis
space C derives an algorithm A’ to achieve query complexity
A (A’ e,8) onCy,...,Cy. This result enables the application
of traditional AL methods to solve the problem of AL for
multiple target models. Note that Theorem 1 also works for
multi-class classification, it is applicable for a wide range of
existing active learning algorithms, such as [7], [27].

By applying Theorem 1 and query complexity result in
finite VC dimension [6, Corollary 1], we can immediately
get the following corollary for multiple models in binary
classification.

Corollary 1. Consider binary classification tasks. Given k hy-
pothesis spaces Cy, . . . , Cy.. Suppose that h* € C = \Jr_, C;, and
C has a finite VC dimension d < co. Then, for any € € (0,1/2),
§ € (0,1/4), there exists an active learning algorithm A which
achieves the query complexity A (A,£,6,Dx) = o(1/e).

Remark 2. Corollary 1 gives a general result for AL for
multiple models in binary classification, suggesting a great
potential. Concretely, it establishes that even when the true
hypothesis may lie in any one of k different model classes, as
long as their union has finite VC-dimension, active learning
still enjoys a strictly sub-(1/¢) distribution-dependent query
complexity for multiple models. We note that, it is also
easy to derive a distribution-independent query complexity
for multiple target models using [28, Theorem 8.2] and
Theorem 1 with filtering trivial distributions.

In Sections 4 and 5, we will show the potential of active
learning in multiple models setting, and propose a more
effective algorithm.



4 POTENTIAL IMPROVEMENTS OF ACTIVE OVER
PASSIVE

In this section, we discuss the potential of AL under the
multiple models setting. Our discussion will be focused on
the realizable setting, leaving the agnostic setting for future
work.

We first introduce the notion of disagreement coefficient,
which roughly characterizes the behavior of the size of
disagreement region DIS(-) as a function of the hypothe-
ses within a radius r around the classifier h. The formal
definition is as follows.

Definition 4 (Disagreement region and coefficient). Suppose
that C is a set of hypotheses. Given the data distribution Dx, the
disagreement region of C is defined as

DIS(C) = {x € supp(Dx) | 3h,h’ € Cs.t. h(x) # h'(x)},

where supp(Dx ) is the support of Dx. Let h € C be a classifier
and ro > 0. The disagreement coefficient of h with respect to C
on Dx is defined as

Py [€ € DIS(Bc(h,7))] 1}

65 (ro) = sup max{ .

r>70
where Be(h,r) ={g € C|d(h,g) <r}.

For empirical risk minimization of binary classification,
upper bounds of the query complexity of passive learning
algorithms are known for single hypothesis space [28].

Lemma 1 ( [28]). Consider the binary classification problem with
a hypothesis space C of VC dimension d. The passive learning
algorithm ERM achieves a query complexity A(ERM) such that,
forany Dx and any ¢,§ € (0, 1),

A (ERM, ¢,6) < % (dLog(GC* (¢)) + Log %) (5)

in the realizable case and

vV+e c 1
= (d Log(0;.(v +¢)) + Log 5)

(6)

in the agnostic case, where 05. (-) is the disagreement coefficient.

A(ERM, v +¢,6) <

Consider the setting of h* € C but h* ¢ Cin---NCy.
We believe this scenario is more common in real-world
applications, as multiple models tend to exhibit diversity.
In this way, max; A;(ERM) has the form of Eq (6).

To show the potential of AL under this setting, we
take the CAL method [15] as an example, which is
a representative and well-analyzed approach in the ac-
tive learning literature [28]. CAL queries the examples
from the disagreement region of a set of consistent hy-
potheses, ie., DIS(V), where V. = {h € C|h(z) =
y,V(x,y) € L}. It achieves the query complexity of
A (CAL,&,6) < O(65.(g)log(1/2) log(65. () log(1/e))) in
the realizable case and binary classification task. Applying
Theorem 1 immediately yields the algorithm CAL’ which
achieves the following query complexity for the multiple
target models.

Corollary 2. Given target models Cy,...,Cy with h* € C =
Ule C;. Suppose C has VC dimension d < oo and €, € (0,1).
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Let CAL' be the algorithm that applies CAL on C to obtain ¢/2-
good classifier, then outputs h; = argminy, ec, d(hi,ha) for
1 =1,..., k. It holds in the binary classification that

A (CAL,¢,6) < 65.(/2) Log(2/e)
: (dLog(Qé* (¢/2)) + Log (Logf/g))) .

To illustrate the potential improvement, consider the
query complexity of passive learning, which is heavily
influenced by the worst hypothesis space, quantified by
max; minpec, err(h). Assuming that max; mingec, err(h) >
¢, Lemma 1 implies for passive learning a query complexity
upper bound, i.e., (1/¢), for multiple target models. On the
other hand, CAL’ has an upper bound of query complexity
(Log(1/¢)) by Corollary 2, leaving a huge room for im-
provement for active learning in this setting, which is an
intriguing area for future investigation. Now we proceed to
examine the agnostic case (i.e., h* ¢ C).

5 AN AGNOSTIC DISAGREEMENT-BASED AL
METHOD FOR MULTIPLE MODELS

Given a labeled set £ and multiple hypothesis spaces
Cr,...,Cp with h* ¢ C = U, C. Inspired by the
RobustCAL method [5], which is a disagreement-based AL
algorithm for the agnostic setting, we propose DIAM (i.e.,
DIsagreement-based AL for Multi-models) query strategy
for the multiple target models problem. Specifically, for each
C;, we define soft version space V; = {h € C; | e-errz(h) —
infgec, e-errp(g) < o;}, where o; is a constant. The soft
version space V; is analogous to the version space V;; it
is a set of classifiers that are largely consistent with the
labeled dataset, i.e., those with lower empirical errors. We
propose to query the examples located in the joint dis-
agreement regions, i.e., DIS(V;) N DIS(V2) N -+ - N DIS(V},),
located in as many disagreement regions of different target
models as possible, i.e., the examples of large values of
S Tj@ € DIS(V;)], and dynamically update the soft ver-
sion spaces by removing the hypotheses that have greater
errors. Finally, the algorithm outputs an arbitrary h; € V.
The motivation behind our method is that the data
located in the most possible disagreement regions of target
models have a greater potential to reduce the soft version
spaces Vi,..., V;, ultimately leading to fewer queries. In
Sec. 5.3, we will further demonstrate that selecting data
within these disagreement regions is akin to identifying the
data with the highest leverage score. This offers a unique
perspective in elucidating the effectiveness of our method.
Next, we propose a stream-based version of DIAM and
present the theoretical results in Sec. 5.1. The algorithm is
summarized in Algorithm 1. The hyperparameter ¢ in the al-
gorithm controls its level of conservativeness. A larger value
of ¢ leads to more rejections of less-informative unlabeled
data in the online setting. After that, we further propose
efficient implementations of DIAM for pool-based active
deep classification and regression settings in Sec. 5.2 and 5.3,
respectively, coupled with extensive empirical validation in
Sec. 6. Note that, in pool-based AL setting, we can directly
query the data by arg maxgey S.r_, Ij@ € DIS(V;)], rather
than tuning the hyperparameter ¢. In the following, we



theoretically and empirically demonstrate that such query
strategy has a greater potential to reduce the soft version
spaces V1, ..., V, resulting in fewer queries.

To simplify the theoretical analysis, we first propose an
online version of DIAM. It is summarized in Algorithm 1.
The hyperparameter ¢ in the algorithm controls its level of
conservativeness. A larger value of ¢ leads to more rejections
of less-informative unlabeled data in the online setting.

5.1

This section provides theoretical analysis of Algorithm 1.
Since we are considering the agnostic setting, it is necessary
to model the noise. Here we employ the commonly used
Tsybakov noise condition [63].

Theoretical Analysis

Condition 1 (Tsybakov noise, [63]). Let a € [1,00) and a €
[0, 1] be parameters. The Tsybakov noise condition refers to that

P(z: h(z) # f*(2)) < a(err(h) —err (£))°
for all h € C, where f* attains the infimum infp,cc err(h).

We assume that Condition 1 is satisfied for each tar-
get model C;. Consider a conservative situation where the
hyperparameter ¢ = 1, and choosing the constants o; in
the DIAM-online algorithm to be in the same form as in
the RobustCAL method [5], which takes into account the
properties of the noise, hypothesis space, and disagreement
coefficient. Note that, the confidence arguments o; vary
with m. Here, we follow the updating scheme in [28, Sec.
5.2] to update o;. We refer the readers to the reference for
the updating details. We establish the following result for
DIAM-online. The proof is deferred to the appendix.

Theorem 2. Consider binary classification tasks. Given target
models Cy,...,Cy, in which h* ¢ C and each C; has VC
dimensions d; < oo and satisfies Condition 1 with parameters
a; and o. Let hY = argming, ec, err(h;) and €, € (0,1).

Given data distribution Dy, the algorithm DIAM-online
outputs the desired classifier h; € C; with err(h;) < err(h}) +¢
for each C; with probability at least 1 — § with t > min{A1, A2}
queries, where

=1
L i 1

(di Log 65 (a;%") + Log (og(g/e))) Log —
-

and
k v? 1
A <SS 6% (v + ¢ <l+L 7>-
QN; }”(V ) g2 %82

(di Log&ﬁ’;; (vi +¢) + Log (LOgS/E))> .

Theorem 2 considers a general situation with arbitrary
target models and data distributions, even the unlabeled
data will never fall into the joint disagreement regions.
However, one may be more interested in the situation that
if we can always query the x such that if = falls in every
DIS(Vi). Next, we prove that in such an ideal situation,
DIAM-online will achieve a better query complexity than

6

applying Theorem 1 to CAL even under the setting of
h*ecC.

Theorem 3. Considering binary classification tasks. Given target
models Cy,...,Cy. Assume C has VC dimension d < oo and
h* € C, each C; has VC dimensions d; < oo and_satis-
fies Condition 1. Suppose that X satisfies that DIS(V;) =
... = DIS(V&). Suppose that & € (0,1), ¢ € (0,1/e) and
max; miny, ec, err(h;) < 2e. It then holds that

A(DIAM-online, ,8) < A(CAL',¢,6). (8)

The key in the proof is comparing the disagreement
coefficients defined on different functions and hypothesis
spaces, i.e., 021” and 6. . We defer the proof to the appendix.

5.2 Efficient DIAM Implementation for Deep Classifica-
tion

It is generally considered a non-trivial task to find disagreed
pairs of classifiers from a set of hypotheses for a given x.
Commonly used methods include random sampling func-
tions from the hypothesis space for validation and selecting
the data close to the decision boundary. However, they can
be expensive or inaccurate, especially in the deep learning
setting.

To estimate efficiently the disagreement regions for neu-
ral networks, we propose to exploit the predictions of
unlabeled data during later epochs in the training phase,
typically after the network converges. Recall the definition
of disagreement region DIS(V;), we should first identify the
hypotheses which are largely consistent with the labeled
data, and then determine whether there exists a pair of
hypotheses which disagree on the given unlabeled data. To
this end, we utilize the hypotheses obtained from the later
training epochs of the network, as they are more likely to
have converged and give consistent predictions. For the first
goal, we construct the set of well-performed hypotheses by
taking the hypotheses from the intermediate training epochs
whose training errors are relatively small. For the second
goal, we verify whether the example z falls into DIS(V;) by
examining whether some well-performed hypotheses have
inconsistent predictions on x.

More concretely, we assume that the minimum empir-
ical error infpec, e-errps(h) is attained by the hypothesis
trained in the last epoch of the training process. There-
fore, we heuristically select the hypotheses from the latter
half of the training epochs to form the well-performing
hypothesis set. This heuristic approach is based on the
observation that hypotheses in the latter training epochs,
according to the training loss curve, usually have smaller
empirical errors. For each i, let izf € C; be the hypothesis
obtained at training epoch j, then Vi can be defined as
(b |j= | Z],1Z] +1,...,T}, where T denotes the total
number of training epochs. To verify whether = € DIS(V;),
we can compare the predictions of the hypotheses in V;
on the unlabeled data. If an instance x receives different
predicted labels from the hypotheses in V;, it indicates that
x € DIS(V}).

We also note that training deep models is much more
expensive, thus the query batch size for deep models is
usually large. To avoid overmuch information redundancy,
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Algorithm 1 The DIAM-online Algorithm

Algorithm 2 The DIAM Algorithm for Deep Classification.

Input: hypothesis spaces C1, .. ., Cy, labeled set £, hyperpa-
rameters q; 04,1 =1,...,k; query budget B.
Output: hy,...,h;, where h; € V; fori=1,... k.

1 m< 0;ng < B
2 Vi C,Vi=1,...,k
3: while n, > 0and m < 2% do

4: m<<m+1
5: Request an unlabeled data x,,
6 if Y, I[z,, € DIS(V;)] > q then
7: Query h*(x,)
8: L+ LU{(Zm, " (xm))}
9: Ng < ng — 1
10: end if
11: if m is a power of 2 then
12: Vi < {h € Vile-errp(h) — inf . e-errz(g) <
O'i},Vi: 1,...,]{}.
13: Update o; following the procedures described in
RobustCAL
14: end if
15: end while .
16: return arbitrary h; € V; foreachi =1,...,k

we further consider the selection diversity in the batch
querying setting. Specifically, we minimize the similarities
of the selected data by adding a diversity term to the selec-
tion criterion along with the informativeness measurement.
However, one challenge here is that the example with high
diversity score for one model may not hold the score with
another model. Therefore, the traditional diversity measure-
ments can hardly be directly applied.

To tackle this problem, we propose to exploit the pow-
erful representation learning ability of deep models. Specif-
ically, note that the deep models will implicitly learn the
representation during the training process, and different
feature representations for the same data will be extracted
by the multiple networks, i.e., the output of the penultimate
layer. In this case, we can try to identify those examples with
high diversity scores for most of the models. To achieve this
goal, we minimize the information redundancy under each
target model, which can be formulated as

. T @i T
min ;b S'b+ b’ v

©)

st. be{0,1}".
Here, 8 < 0 is the trade-off parameter, v =
[v1,v2,...,v,,]" is the vector of informativeness scores in

which v; = ", I[z; € DIS(V;)] for all j = 1,...,n,, and
S is the similarity matrix of unlabeled data under the
representation of target model i. The first term in Eq. (9)
accounts for estimating the diversity of unlabeled data. Note
that S is a similarity matrix. During the optimization of b,
the rows that are less similar to the others will be assigned a
higher value of b. This indicates that these instances have a
higher degree of uniqueness within the dataset. We simply
implement S? using the linear kernel, i.e., taking the inner
product of features as their similarity value. One challenge
is that it can be problematic to use the same distance metric

Input: hypothesis spaces Ci,...,Cy, labeled set £, unla-
beled set U/, training epochs T, query batch size 7.
Output: hy,...,h;, where h; € V, fori=1,... k.

1: while labeling budget is not exhausted do
2: fori=1,...,kdo
3: Train model ¢ for T" epochs on £ and
_ obtain ht from epoch t fort =1,...,T
Vie {hi |j=15) 15 +1,....T}
Calculate S* by Eq. (10)
St 1((SHT+ 87
end for R
U > L[, € DIS(V;)] form =1,...,n,
Solve minimization problem (9) to obtain b
10: J < indices of the largest 7 coordinates in b
11:  Query h*(x;) forall j € J
122 L+ LU{(z;,h* () |je T}
132 U—U\{z;|je ]}
14: end while
15: h; < argminpec, (e-errp(h)) foreachi=1,....k
16: return h; foreach:=1,...,k

o P N Tk

across the representations of multiple models because of the
different ranges of feature values. Therefore, we take the
nearest neighbors as follows,

S = {1 if u is v’s neighbor . (10)

0 otherwise

The neighbor is calculated by the Euclidean distance
between the data representations. Specifically, we consider
a data point as a neighbor of a specific instance if its
Euclidean distance to that instance falls within the smallest
1% of distances across all unlabeled data. To facilitate the
computation, we symmetrize each S* by replacing it with
2((SHT + S%) and relax b to [0,1]"+. With these modifi-
cations, we can solve the objective Eq. (9) efficiently using
existing quadratic programming toolboxes. Subsequently,
we query the unlabeled data with higher values of b. The
implementation is summarized in Algorithm 2.

The described implementation of DIAM for deep models
is efficient. It evaluates the unlabeled data using hypotheses
obtained in later training epochs and runs in time propor-
tional to the product of the size of the well-performing hy-
potheses set and the computational cost of informativeness
is comparable to that of the entropy method. Then, it solves
a quadratic program to make the data selection.

5.3 Efficient DIAM Implementation for Deep Regres-
sion

In this section, we implement the DIAM method for the
deep regression tasks. In our DIAM algorithm, we need
first to find a set of hypotheses having good performances
on the labeled dataset, ie, V; = {h € Cj|e-errz(h) —
infgec, e-errg(g) < o;}. Then, given an unlabeled data
point, we estimate whether there exists a pair of hypotheses
in V; that exhibit highly inconsistent predictions. Our im-
plementation is based on the fact that a neural network is
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Algorithm 3 The DIAM-svd Algorithm for Regression.

Algorithm 4 The DIAM-leverage Algorithm for Regression.

Input: feature matrices of the data under different models
LY, Ui =1,...,k; query batch size 7.
Output: the set of indices of the selected unlabeled data.
st ..., s" v « zero vector of length n,,
fori=1,....,k do
ALY (BY)T < SVD(L?)
foreachj=1,...,n, do
:c]T + j-th row of U?
st I(5)71(B) Tayls
end for
end for
forj=1,...,n, do
Vj
Sk I[s’ is among the largest 7 coordinates of s’
: end for
: return the indices of the largest 7 coordinates in v

> Perform SVD on L.

O XN DGR

—
=

==
N =

composed by a feature extractor (i.e., the backbone) and a
fully connected layer (i.e., the linear prediction layer). Note
that the last layer of deep models is usually a fully connected
layer, whose parameters are linear in the output of the
previous layer. Therefore, we can approximate the active
deep regression problem as the following: given the features
of the data (e.g., the output of the network backbone),
we need to learn a linear regression model with the least
number of queries. In this way, multiple target models may
lead to different feature representations, but the hypothesis
spaces remain the same.

Next, we introduce our implementations of DIAM for
regression tasks. Since our implementations identify the
disagreement region of each model individually, we omit
the superscript of the index of the target model in the
remainder of this section.

5.3.1 An SVD-based Implementation

Recall that we need to maintain a soft version space and
verify whether there exists a pair of hypotheses in the soft
version space that have highly inconsistent predictions on
the unlabeled data. This can be formulated as follows (using
mean-square loss).

Problem 1. Let w € R be the linear model parameters, L &
R™>*¢ and U € R™*¢ be the feature matrices of labeled and
unlabeled data, respectively. Here n; > cand L is assumed to have
full column rank. Define w = arg min,, e-errz(w). Given a set
of hypotheses(i.e., a soft version space) such that V = {w | || Lw—
Lw|3 < o} and an unlabeled data x, the problem asks to verify
whether there exist w1, ws € V such that |w] & — w, x| > 6.

In the definition above, o and & are hyperparameters,
where o controls the empirical errors of the hypotheses in
V and ¢ is the threshold of prediction inconsistency used to
identify informative unlabeled data. Next, we explain how
to solve the problem. Since L has full column rank, V is an
ellipsoid in R® centered at w. To see this, we first provide
the definition of ellipsoid as follows

Definition 5 ( [23]). If M is a real, symmetric, c-by-c positive-
definite matrix, and w is a vector in R®, then the set points w

Input: feature matrices of the data under different models
L', U",i =1, ..., k; query batch size 7.
Output: the set of indexes of the selected unlabeled data.

1: s',..., 8" v < zero vector of length n,,
2. fori=1,...,k do

3: X* <— [[1{7}

4: forj=1,...,n, do

5: s’ « the j-th leverage score of X"
6: end for

7: end for

8 forj=1,...,n, do

9: v

Sk I[s} is among the largest 7 coordinates of s’
10: end for
11: return the indices of the largest 7 coordinates in v

that satisfy the equation

(w—w) M(w—w) =1 (11)

is an c-dimensional ellipsoid centered at 1.

Next, we perform singular value decomposition (SVD)
on L to obtain L = AXBT, where A and B are unitary
matrices. Then |L(w — w)|% = [|[AXBT (w — w)|% =
[SBT(w — w)||3. The last equation uses the property of
unitary matrix that it is an isometry with respect to o-norm.
Without loss of generality, we may assume that w = 0;
otherwise we can let w = w — w and work with w instead,
as such translation does not change the answer to our
problem.

Now, V is a centered ellipsoid given by {w|[| B wl|3 <
o}. It is easy to see that the set formed by all w; — ws with
wi,wy € V is an ellipsoid twice as large as V, i.e.

{wl — Wy ‘ w1, W € ‘7} = {w ‘ ||ZBTw||§ < 40’}.

After rescaling w, our problem can be rephrased as deter-
mining whether there exists w € V such that w'x > /2.
Here, we remove the absolute value due to the symmetry of
the ellipsoid.

We further transform the ellipsoid V into a ball by letting
7w = XB"w, so V becomes {r|||7|3 < ¢}. Then w'x =
" -3 ~!BTx and the problem is now determining whether
there exists 7 with ||7r||3 < o satisfies 7" - S 1BTx = 6/2,
which is equivalent to determine whether the hyperplane
w' .Y 1B"x = 5/2 intersects the ball ||7r||3 = o. This can
be solved by calculating the distance from the origin to the
hyperplane, which is given by

5/@Ix"' B  |,). (12)
Our problem has a positive answer if and only if Eq. (12)
is no larger than o. This implies that if the data x falls
into the disagreement region, it will have a larger value of
|S~1BTz||o. Therefore, in our implementation, we can rank
the unlabeled data with this value and query the top-rated
ones without deciding the values of o and &. We refer to this
method as DIAM-svd.



5.3.2 A Leverage-score-based Implementation

Here, we modify the definition of V to include the require-
ment that the candidate models have similar predictions to
the ERM hypothesis not only on the labeled data but also on
the unlabeled data. Let X =[] € R("«#+m)%¢ and redefine
V = {w|||Xw — Xw|} < o}. This leads to the following
problem.

Problem 2. Let w € R® be the linear model parameters,
L e R"*Cand U € R™ € be the feature matrices of labeled and
unlabeled data of model i, respectively. Here X = [ Y] is assumed
to have full column rank. Define w = argmin, e-errg(w).
Given a set of hypotheses such that V = {w | || Xw — Xw||3 <
o} and an unlabeled data a:jT, which is the j-th row of X, the
problem asks to verify that whether there exist wy,ws € V such
that |w{ x; — wy x;| > 6.

Similarly, we can apply SVD to obtain X = AXB . Note
that X contains all the unlabeled data, therefore, we can
write the unlabeled data x; as :cJT = ejT AYBT, where e j is
the j-th standard basis vector. By a similar argument to the
previous section, we can transform to problem to deciding
whether

6/@IET B ajll2) <o,
or, equivalently,
|S'BT - BSAT e)]ls > 6/(20),
which is exactly
1A e;jll2 > 5/(20).

Note that ||e] A|3 is exactly the leverage score [16] of the
row al:;r in X. Therefore, in our implementation, we can
rank the unlabeled data based on their leverage scores and
query the top-ranked ones, rather than tuning the values of
o and &. We refer to this method as DIAM-leverage.

Note that our analysis indicates that selecting data
within the disagreement region is equivalent to identifying
data with the highest leverage score. This finding offers
a unique perspective on understanding the effectiveness
of these data. The leverage score can be interpreted as a
measure of difficulty in representing a given instance as a
linear representation of the remaining data [16]. An instance
with a higher leverage score suggests a more difficult repre-
sentation using other instances, suggesting that it possesses
unique information and is therefore informative.

We summarize the above two implementations of DIAM
for deep regression tasks in Algorithms 3 and 4.

6 EXPERIMENT
6.1 Empirical Settings

We validate our method first on classification tasks, using
a scenario involving multiple target models. To create this
scenario, we utilize the results of a recent neural architecture
search (NAS) method called OFA [9], which is designed
to efficiently search for model architectures that meet the
hardware constraints of different devices by training a single
supernet. They have published the effective architectures,
from which we use the architectures optimized for the
Samsung mobile phones, which include Samsung S7 Edge,

9

Table 1: The specifications of the datasets in the experiments.

Dataset #Training | #Testing | #Label License
MNIST 60, 000 10,000 10 CC BY-SA 3.0
EMNIST 60,000 10,000 10 MIT
KMNIST 60,000 10,000 10 CC BY-SA 4.0
EMNIST let. | 88,800 14, 800 26 CC01.0
EMNIST dig. | 240,000 | 40,000 10 CCO0 1.0
CIFAR-10 50, 000 10,000 10 Apache License 2.0
CIFAR-100 50, 000 10, 000 100 | Apache License 2.0

Samsung Note8 and Samsung Notel0, as our target models.
Each of the phone model has 4 architectures, resulting in a
total of 12 architectures. These architectures are pruned from
a MobileNetV3 (which is the super-net), but have significant
differences in terms of prediction time and accuracy. Their
Multiply-Accumulate Operations (MACs) range from 66M
to 237M, illustrating their diversity. Specifically, we take
the following 12 target models, the details of which can be
found at https:/ /github.com/mit-han-lab/once-for-all:

s7edge_lat@88ms_topl@76.3_finetune@25
s7edge_lat@58ms_topl@74.7_finetune@25
s7edge_lat@41ms_topl@73.1_finetune@25
s7edge_lat@29ms_topl@70.5_finetune@25
note8_lat@65ms_topl@76.1_finetune@25
note8_lat@49ms_topl@74.9_finetune@25
o note8_lat@31ms_topl@72.8_finetune@25
e note8_lat@22ms_topl1@70.4_finetune@25
o notel0_lat@22ms_topl@76.6_finetune@25
e notel0_lat@16ms_topl@75.5_finetune@25
o notel0_lat@11ms_topl1@73.6_finetune@25
o notel0_lat@8ms_top1@71.4_finetune@25

We compare the following query strategies in our exper-
iments.

e DIAM: Our proposed method in this paper, which
selects data located in the joint disagreement regions
of multiple target models, i.e., Algorithm 2.

o CAL [15]: This strategy queries data that falls into
the disagreement region of any of the target models.
It has a bounded query complexity for the multiple
target models setting according to Theorem 1.

o Entropy [43]: This strategy selects data with the high-
est prediction entropy, based on the mean entropy
across all target models, to accommodate the novel
problem setting.

o Least Confidence [55]: This strategy queries data with
the least prediction confidence, based on the mean
confidence values across all target models.

o Margin [52]: This strategy selects data with the mini-
mum prediction margin, based on the mean margin
values across all target models.

o Coreset [53]: This strategy queries the most repre-
sentative data. The distance is calculated using the
features extracted by the supernet in OFA [9].

o Random: This strategy queries data randomly and is
exactly the passive learning method. Note that the
trivial upper bound A(ERM’) < max; A;(ERM) is
tight without extra assumptions.

For the specifications of the classification datasets, we
on the one hand consider the Optical Character Recogni-
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Figure 1: The learning curves with the mean accuracy of the target models of the compared methods. The error bars indicate
the standard deviation of the performances of target models.

tion (OCR) application, which is a representative machine
learning system that needs to be deployed on diverse de-
vices. We employ five commonly used hand-writing charac-
ters classification benchmarks in our experiments, i.e., the
MNIST [41], Fashion-MNIST [65], Kuzushiji-MNIST [13],
EMNISTdigits and EMNISTletters [14] datasets. On the
other hand, we employ two commonly used image classi-
fication datasets, CIFAR-10 and CIFAR-100 [39]. The dataset
specifications are summarized in Table 1. We adopt the
pool-based active learning setting, where we initially label
3000 randomly chosen data points for training and used
the remaining data as the unlabeled pool. In each iteration,
the compared sampling methods select 7 = 1500 unlabeled
examples for querying and then retrain the models. The
mean and standard deviation of the accuracy of multiple
target models are reported.

Regarding the setting of model training, we mainly fol-
low the training configurations of OFA. The hyperparame-
ters are set to their default values in the project. For example,
the learning rate is set to 7.5 x 1073, the batch size is set to
128, and the SGD optimizer is employed with a momentum
of 0.9. Since the set of initially labeled data is small, a limited
number of training epochs is adopted to mitigate the risk of
over-fitting. Specifically, we initialize the models with the
pre-trained weights on the image-net dataset and then fine-
tune them for 20 epochs using labeled data. The code is pub-
licly available at https:/ /github.com/tangypnuaa/DIAM.

We run our experiments on three cloud servers, each
equipped with 128GB of memory, four RTX 2080 graphic
cards and an Intel Xeon Silver 4110 @ 2.10GHz CPU with
eight cores. Each of the compared methods is run on
a separate graphics card and the resource occupation of
each individual process is reported. The minimum memory
requirements for training and validating the models are
10GB main memory and 11GB CUDA memory, respectively.
When running the Coreset and DIAM methods, an addi-
tional 10GB of main memory is needed to store the distance

matrix.

6.2 Results

We report in Fig. 1 the trend of mean accuracy of multiple
target models as the number of queries increases. The error
bars represent the standard deviation of the performances
of the multiple target models. It can be observed from
the figure that the standard deviation is large for a small
number of queries, indicating that the target models have
highly inconsistent predictions on the data. This may imply
the diverse preferences among different models of data
selection. Under this scenario, our method DIAM outper-
forms the traditional active and passive learning methods.
This result demonstrates the effectiveness of DIAM and
the importance of designing an active query method in
this practical setting. The uncertainty-based methods, i.e.,
Entropy, Least confidence and Margin, achieve comparable
performances with random sampling. These results align
with our expectation, as traditional AL methods are usually
model-dependent and the data queried by one model may
not be useful for training other models. The Coreset method
is less stable than Random. A possible reason is that Coreset
selects data based on the extracted features of deep models,
which will be optimized along with the training procedures.
Therefore, it may also suffer from the model dependence
problem.

The statistical significance of the performance compar-
isons between our DIAM method and the other compared
methods is demonstrated in Table 2. Specifically, we conduct
paired t-tests at a 0.05 significance level of the performances
of multiple target models after each iteration and report the
Win/Tie/Loss results of the tests. Here, "Win’ (resp. 'Loss’)
means that the mean accuracy of our method is statistically
significantly better (resp. worse) than that of the rival with
statistical significance and 'Tie’ means that no method is
statistically significantly better. The results in the table show
that our DIAM method consistently outperforms the other

12000 15000
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Table 2: Win/Tie/Loss (W./T./L.) results of DIAM versus the other methods with varied numbers of queried batch based
on paired ¢-tests at 0.05 significance level. The comparisons are based on the performances of 12 target models after each

iteration.
Algorithms Number of queried batch (1,500 examples per batch) W./T./L.
1 2 3 4 5 6 7 8 9
MNIST

Entropy Tie Tie Win Win Win Win Win Win Win 7/2/0
Margin Tie Tie Win Win Win Tie Win Win Tie 5/4/0
Least conf. Tie Win Win Win Win Tie Win Win Tie 6/3/0
CAL Win Win Win Win Win Tie Win Win Tie 7/2/0
Random Win Tie Win Win Win Win Win Win Tie 7/2/0
Coreset Win Win Win Win Win Win Win Tie Win 8/1/0
W./T./L. 3/3/0 3/3/0 6/0/0 6/0/0 6/0/0 3/3/0 6/0/0 5/1/0 2/4/0 40/14/0

Fashion-MNIST
Entropy Tie Tie Win Tie Tie Win Tie Win Win 4/5/0
Margin Tie Tie Win Win Win Win Win Win Tie 6/3/0
Least conf. Tie Tie Win Win Tie Win Tie Win Win 5/4/0
CAL Tie Tie Tie Tie Tie Win Tie Win Win 3/6/0
Random Tie Tie Win Win Tie Win Tie Win Win 5/4/0
Coreset Win Win Win Win Win Win Tie Tie Tie 6/3/0
W./T./L. 1/5/0 1/5/0 5/1/0 4/2/0 2/4/0 6/0/0 1/5/0 5/1/0 4/2/0 29/25/0

Kuzushiji-MNIST

Entropy Win Tie Tie Tie Win Win Win Win Win 6/3/0
Margin Tie Win Tie Win Win Win Win Win Win 7/2/0
Least conf. Win Tie Win Win Win Win Win Win Win 8/1/0
CAL Tie Win Tie Win Win Win Win Win Win 7/2/0
Random Tie Win Win Win Win Win Win Win Win 8/1/0
Coreset Win Win Win Win Win Win Win Win Win 9/0/0
W./T./L. 3/3/0 4/2/0 3/3/0 5/1/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 45/9/0

EMNIST-digits
Entropy Tie Tie Tie Tie Win Win Win Win Tie 4/5/0
Margin Tie Tie Tie Tie Win Win Win Win Tie 4/5/0
Least conf. Win Tie Tie Win Win Win Win Win Tie 6/3/0
CAL Tie Tie Win Tie Tie Win Win Win Tie 4/5/0
Random Tie Tie Win Win Win Win Win Win Tie 6/3/0
Coreset Tie Tie Tie Win Tie Win Win Win Tie 4/5/0
W./T./L. 1/5/0 0/6/0 2/4/0 3/3/0 4/2/0 6/0/0 6/0/0 6/0/0 0/6/0 28/26/0

EMNIST-letters
Entropy Win Tie Tie Win Win Win Win Win Win 7/2/0
Margin Tie Tie Tie Tie Win Tie Tie Tie Win 2/7/0
Least conf. Win Tie Tie Win Win Win Tie Win Win 6/3/0
CAL Tie Tie Tie Tie Win Tie Tie Tie Win 2/7/0
Random Win Tie Tie Tie Win Tie Tie Tie Win 3/6/0
Coreset Win Win Tie Win Win Win Win Win Win 8/1/0
W./T./L. 4/2/0 1/5/0 0/6/0 3/3/0 6/0/0 3/3/0 2/4/0 3/3/0 6/0/0 28/26/0

CIFAR-10
Entropy Tie Tie Tie Tie Tie Tie Tie Win Tie 1/8/0
Margin Tie Tie Win Win Tie Win Tie Win Tie 4/5/0
Least conf. Tie Tie Tie Win Win Tie Tie Win Win 4/5/0
CAL Tie Tie Tie Win Win Tie Win Win Win 5/4/0
Random Tie Tie Tie Win Win Tie Win Win Tie 4/5/0
Coreset Win Win Win Win Win Win Win Win Win 9/0/0
W./T./L. 1/5/0 1/5/0 2/4/0 5/1/0 4/2/0 2/4/0 3/3/0 6/0/0 3/3/0 27/27/0
CIFAR-100

Entropy Tie Win Win Win Tie Win Win Win Win 7/2/0
Margin Tie Win Win Tie Tie Tie Win Win Win 5/4/0
Least conf. Tie Tie Tie Win Win Win Win Win Win 6/3/0
CAL Win Tie Tie Tie Tie Win Win Win Win 5/4/0
Random Tie Tie Tie Tie Win Tie Win Win Win 4/5/0
Coreset Win Win Win Win Win Win Win Win Win 9/0/0
W./T./L. 2/4/0 3/3/0 3/3/0 3/3/0 3/3/0 4/2/0 6/0/0 6/0/0 6/0/0 36/18/0

methods significantly. There are no cases in which it is
significantly worse than any baseline, and it achieves the
best result on all benchmarks. Taken together, these findings
indicate that DIAM selects informative query points that
benefit all target models, leading to higher mean accuracy
and more uniform gains.

6.3 The Best and Worst Performances of Multiple Mod-
els

To examine whether the compared methods can improve all
target models evenly, which are usually equally important
in real-world applications. We report the best and worst
performances of multiple target models in Table 3a. Here
we report the mean and standard deviation values of the
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Table 3: The mean and standard deviation values of the learning curves of the best and worst performances of multiple
target models, and the performances of our DIAM method with different values of the trade-off parameter /5 (mean accuracy

+ mean standard deviation). The best performance is highlighted in boldface.

Methods Datasets
MNIST [ Fashion-MNIST | Kuzushiji-MNIST | EMNIST-digital [ EMNIST-letter | CIFAR-I0 [ CIFAR-100
Best
DIAM 98.44 1+ 0.69 87.61 1+ 2.14 90.49 1+ 5.92 98.44 1+ 0.71 87.01 £+ 5.07 69.59 +8.53 | 27.73 £9.24
Entropy 98.13 4+ 0.66 86.97 4+ 1.99 89.17 +5.26 98.10 % 0.62 86.60 + 5.06 69.00 & 8.24 26.91 +8.75
Margin 98.20 4 0.62 87.00 & 2.08 89.09 & 5.22 98.13 +0.61 86.42 + 4.96 68.66 & 8.06 26.88 - 8.84
Least conf. | 98.20 £0.64 87.09 & 2.06 88.86 +5.16 98.14 + 0.66 86.55 + 4.96 68.88 4 8.20 27.32+8.89
CAL 98.22 4+ 0.65 87.16 +2.12 89.17 +5.30 98.17 + 0.65 86.66 + 4.97 68.91 4 8.27 27.51+9.04
Random 98.22 4+ 0.67 87.09 +1.99 89.18 +5.35 98.13 + 0.65 86.84 +4.91 68.52 4 8.18 27.36 + 8.72
Coreset 98.07 4 0.64 86.86 & 2.20 89.58 & 5.58 98.26 + 0.67 85.66 + 5.34 66.81 4 9.59 22.60 + 7.15
Worst
DIAM 95.17 £ 3.74 82.56 + 2.99 76.96 + 11.73 94.66 + 3.25 64.08 + 23.61 61.92+7.86 | 21.37+£6.76
Entropy 94.97 + 3.54 82.01 +2.39 75.36 = 11.41 94.87 + 3.30 70.12 + 13.42 61.84 +7.95 19.88 £ 6.40
Margin 95.02 4 3.72 81.54 +2.57 75.79 £ 10.99 94.22 4+ 3.67 70.69 + 13.85 | 61.74+8.10 19.77 £ 5.77
Least conf. 94.69 + 3.58 82.18 +2.81 75.05 +11.37 94.78 £ 3.57 69.91 + 14.51 62.24 + 7.74 19.92 £ 6.49
CAL 94.83 £ 3.64 82.16 £ 3.08 74.94 £ 11.09 94.36 + 3.51 69.86 & 14.09 62.10 4 7.66 20.04 +£5.91
Random 95.18 4+ 3.65 81.91 + 2.59 75.60 + 10.75 94.08 £ 3.67 70.63 + 14.61 61.40 + 8.15 19.88 £6.14
Coreset 93.53 & 3.57 81.43 £ 3.05 73.94 +11.83 92.02 + 2.96 68.89 &+ 13.03 58.62 4 8.61 15.80 + 4.46
(a) The best and worst performances of multiple target models.
Parameter - Datasets —
MNIST Fashion-MNIST | Kuzushiji-MNIST | EMNIST-digits | EMNIST-]etters CIFAR-10 CIFAR-100
B8=0.1 97.29 +1.95 85.47 £ 2.52 84.74 1 8.62 97.16 £+ 1.87 80.16 £ 8.86 65.51 £ 8.00 24.51 1 8.00
B8=1.0 97.26 + 1.97 85.38 +2.54 84.69 +8.77 97.10 +1.93 80.47 + 8.36 65.68 +8.02 | 24.14+7.71
B =10.0 97.24 £1.97 85.52 4 2.51 84.47 £8.75 97.07 +£1.93 80.56 1+ 8.73 65.52 £+ 7.96 24.17 £ 7.68

(b) Parameter sensitivity of DIAM method.

learning curves, rather than plotting them. The best perfor-
mance of each case is highlighted in boldface.

It can be observed that DIAM usually achieves the best
results in both cases. Even when it is not in the first place, its
performance is the second best and closely competitive with
the best-performing method. These results demonstrate our
method’s ability to impartially improve the target models
with different architectures, which we believe is essential
for applications involving multiple target models.

6.4 Study on the Parameter Sensitivity of DIAM Method

To study the sensitivity of the trade-off parameter 5 to
our method, we evaluate the performances of DIAM with
different values of (. Specifically, we set 5 to each of
{-0.1,-1.0,—10.0} and report the mean and standard de-
viation of the learning curves in Table 3b. For clarity of pre-
sentation, we omit the negative sign in the table; however, it
should be noted that 3 is always assigned a negative value.
The best performance of each case is highlighted in boldface.

The results show that our method is less sensitive to this
parameter. For datasets with a larger number of classes, e.g.,
EMNIST-letters, a bigger value of /3 is preferable. Otherwise,
using 8 = 0.1 yields good performance. A possible expla-
nation for these phenomena is the degree of class imbalance
caused by active querying. When 8 = 0.1, DIAM places
more emphasis on informativeness in data selection, which
may lead to class imbalance, especially in tasks with larger
label spaces. Consequently,, it is crucial to promote diversity
in data selection in such situations.

6.5 Study on Different Numbers of Target Models

We further examine the performances of compared methods
with different numbers of target models. We empirically

take the first 2,4, 6,8 specifications from the model config-
uration list in Sec. 6.1 as the target models set. We conduct
this experiment on MNIST and Kuzushiji-MNIST datasets.

We report in Fig. 2 the trend of mean accuracy of mul-
tiple target models as the number of queries increases. The
error bars represent the standard deviation of the perfor-
mances of multiple target models. The results show that
our method consistently outperforms the other compared
methods under the settings of different numbers of target
models, which demonstrates its robustness to the number
of models.

6.6 Study on Deep Regression Task

In this section, we validate the effectiveness of the proposed
DIAM implementations for regression tasks. We continue to
employ the architectures introduced in Sec. 6.1 as our target
models since the convolutional neural network is commonly
used in deep regression [40], [58]. For the empirical settings,
we replace the loss function with the Mean Square Error
(MSE) for regression. The data batch size in model training
is reduced to 64. The following metrics are employed to
evaluate the test performances: Mean Absolute Error (MAE)
and MSE. We compare the following query strategies in our
experiments.

e DIAM-svd: Our proposed method in this paper,
which uses SVD to identify the data located in the
joint disagreement regions, i.e., Algorithm 3.

e DIAM-leverage: Our proposed method in this paper,
which uses leverage score to identify the data located
in the joint disagreement regions, i.e., Algorithm 4.

o Coreset [53]: This strategy queries the most represen-
tative data.
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Figure 2: Learning curves of the compared methods with different numbers of target models (2, 4, 6, 8 models). The error
bars indicate the standard deviation of the performances of target models.

o BAIT [2]: This strategy queries batches of samples
by optimizing a bound on the maximum likelihood
estimators error in terms of the Fisher information.

o BADGE [3]: This strategy queries data points by
considering both predictive uncertainty and sample
diversity.

o Random: This strategy queries data uniformly from
the unlabeled set.

We implement BADGE and BAIT algorithms using the BM-
DAL toolbox [32]. Note that, BADGE, BAIT and Coreset
methods use the features extracted by the supernet in OFA
to evaluate and select data points.

Facial landmark detection is another representative ma-
chine learning system that needs to be deployed on diverse
devices. We employ CelebA [45], and LFW and NET facial
landmark detection datasets [58] to validate the effective-
ness of the proposed method, which are commonly used
deep regression datasets [40]. The LFW and NET facial land-
mark detection datasets contain 13466 training instances,
and 1521 test images. We follow the data partition provided
in [58] to ensure fair comparisons. The initially labeled set
contains 500 instances randomly sampled from the training
set, and 300 images will be queried from the remaining
training data at each iteration. The CelebA dataset com-
prises 162770 training instances and 19962 test instances.
Given the relatively large size of this dataset, we have
increased the query batch size to 600. All other settings
remain the same.

The learning curves of the compared methods with 12
target models are presented in Fig. 3. We can observe that
the proposed two implementations of DIAM significantly
outperform the other compared methods. These results
demonstrate the effectiveness of the proposed selection cri-
terion. DIAM-svd and DIAM-leverage achieve comparable
performances, which aligns closely with our expectation,
since the problems they address share similar definitions.

Coreset is better than Random, it also has a smaller per-
formance variance. This result accords with the objective
of Coreset, as it aims to cover the data distribution with
the least data. BAIT demonstrates relatively lower effective-
ness, suggesting that further refinement and redesign are
necessary to better adapt it to the multi-model setting. In
contrast, BADGE generally performs well, likely because it
explicitly considers for both informativeness and diversity.
This finding highlights the importance of incorporating both
criteria in active learning for multiple models, as evidenced
by the strong performance of DIAM in classification tasks.

We further examine the performances of the compared
methods with different numbers of target models on the
CelebA dataset. Specifically, we follow the strategy in Sec 6.5
to take the first 8 and 4 models defined in Sec. 6.1 as
target models. we plot the learning curves of the compared
methods in Fig. 4. The observations from the learning curve
comparisons are in line with the results obtained from the
12 model settings, which indicates that our method is robust
to the number of models in the regression task.

7 CONCLUSION

In this paper, we propose to study active learning in a novel
setting, where the task is to select and label the most useful
examples that are beneficial to the performances of multiple
target models. We analyze the query complexity of both ac-
tive and passive learning, demonstrating the potential of AL
to achieve better query complexity than random sampling.
Based on this insight, we further propose an active selection
criterion DIAM to identify and select the data located in
the joint disagreement regions of different target models.
We provide efficient implementations of DIAM to extend its
applications to deep classification and regression problems.
Empirical experiments conducted on two representative
tasks, OCR and FLD, which are often required to support
diverse devices, show the effectiveness of our proposed
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Figure 3: The learning curves of the compared methods with the mean performances of 12 target models for the regression
task. The metrics include MSE, MAE. The error bars indicate the standard deviation of the performances of target models.
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of the performances of target models.

method. As a future direction, we will explore more intri-
cate learning tasks, such as object detection and semantic
segmentation, and develop effective query strategies for
multiple target models.
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