
SIAM J. COMPUT. c© 2012 Society for Industrial and Applied Mathematics
Vol. 41, No. 2, pp. 436–453

APPROXIMATE SPARSE RECOVERY: OPTIMIZING TIME AND
MEASUREMENTS∗

ANNA C. GILBERT† , YI LI‡ , ELY PORAT§ , AND MARTIN J. STRAUSS¶

Abstract. A Euclidean approximate sparse recovery system consists of parameters k,N , an
m-by-N measurement matrix, Φ, and a decoding algorithm, D. Given a vector, x, the system
approximates x by x̂ = D(Φx), which must satisfy |x̂ − x|2 ≤ C|x − xk|2, where xk denotes the
optimal k-term approximation to x. (The output x̂ may have more than k terms.) For each vector
x, the system must succeed with probability at least 3/4. Among the goals in designing such systems
are minimizing the number m of measurements and the runtime of the decoding algorithm, D. In
this paper, we give a system with m = O(k log(N/k)) measurements—matching a lower bound, up

to a constant factor—and decoding time k logO(1) N , matching a lower bound up to a polylog(N)
factor. We also consider the encode time (i.e., the time to multiply Φ by x), the time to update
measurements (i.e., the time to multiply Φ by a 1-sparse x), and the robustness and stability of the
algorithm (resilience to noise before and after the measurements). Our encode and update times are
optimal up to log(k) factors. The columns of Φ have at most O(log2(k) log(N/k)) nonzeros, each of
which can be found in constant time. Our full result, a fully polynomial randomized approximation
scheme, is as follows. If x = xk+ν1, where ν1 and ν2 (below) are arbitrary vectors (regarded as noise),
then setting x̂ = D(Φx+ ν2), and for properly normalized Φ, we get |x− x̂|22 ≤ (1+ ε) |ν1|22 + ε |ν2|22
using O((k/ε) log(N/k)) measurements and (k/ε) logO(1)(N) time for decoding.

Key words. approximation, embedding, sketching, sparse approximation, sublinear algorithms

AMS subject classifications. 94A12, 68W25, 68W20, 68P30

DOI. 10.1137/100816705

1. Introduction. Tracking heavy hitters in high-volume, high-speed data
streams [5], monitoring changes in data streams [8], designing pooling schemes for
biological tests [13] (e.g., high throughput sequencing, testing for genetic markers),
localizing sources in sensor networks [19, 20], and combinatorial pattern matching [6]
are all quite different technological challenges, yet they can all be expressed in the
same mathematical formulation. We have a signal x of length N that is sparse or
highly compressible; i.e., it consists of k significant entries (“heavy hitters”) which we
denote by xk while the rest of the entries are essentially negligible. We wish to acquire
a small amount of information (commensurate with the sparsity) about this signal in
a linear, nonadaptive fashion and then use that information to quickly recover the sig-
nificant entries. In a data stream setting, our signal is the distribution of items seen,
while in biological group testing, the signal is proportional to the binding affinity of
each drug compound (or the expression level of a gene in a particular organism). We

∗Received by the editors December 2, 2010; accepted for publication (in revised form) January
15, 2012; published electronically April 24, 2012. A preliminary version of this paper appeared in
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), 2010, pp. 475–484.

http://www.siam.org/journals/sicomp/41-2/81670.html
†Department of Mathematics, University of Michigan, Ann Arbor, MI 48104 (annacg@umich.edu).

This author’s work was supported in part by DARPA/ONR N66001-08-1-2065.
‡Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,

MI 48109 (leeyi@umich.edu). This author’s work was supported in part by NSF CCF 0743372.
§Department of Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel (porately@cs.

biu.ac.il).
¶Department of Mathematics and the Department of Electrical Engineering and Computer Sci-

ence, University of Michigan, Ann Arbor, MI 48104 (martinjs@umich.edu). This author’s work was
supported in part by NSF CCF 0743372 and DARPA/ONR N66001-08-1-2065.

436

APPROXIMATE SPARSE RECOVERY 437

want to recover the identities and values of only the heavy hitters which we denote by
xk, as the rest of the signal is not of interest. Mathematically, we have a signal x and
an m-by-N measurement matrix Φ with which we acquire measurements y = Φx,
and, from these measurements y, we wish to recover x̂, with O(k) entries, such that

‖x− x̂‖2 ≤ C ‖x− xk‖2 .
Our goal, which we achieve up to constant or log factors in the various criteria, is to
design the measurement matrix Φ and the decoding algorithm in an optimal fashion:
(i) we minimize the number m = O(k logN/k) of measurements, (ii) the decoding
algorithm runs in sublinear time O(k logN/k), and (iii) the encoding and update times
are optimal O(N logN/k) and O(logN/k), respectively. In order to achieve this, our
algorithm is randomized; i.e., we specify a distribution on the measurement matrix Φ
and we guarantee that for each signal, the algorithm recovers a good approximation
with high probability over the choice of matrix.

In the above applications, it is important both to take as few measurements as
possible and to recover the heavy hitters extremely efficiently. Measurements corre-
spond to physical resources (e.g., memory in data stream monitoring devices, number
of screens in biological applications), or, in medical imaging, to the radiation that a
patient receives in a CT scan; thus reducing the number of necessary measurements
is critical these problems. In addition, these applications require efficient recovery of
the heavy hitters—we test many biological compounds at once, we want to quickly
identify the positions of entities in a sensor network, and we cannot afford to spend
computation time proportional to the size of the distribution in a data stream appli-
cation. In several of the applications, such as high throughput screening and other
physical measurement systems, it is also important that the result be robust to the
corruption of the measurements by an arbitrary noise vector ν2. (It is less critical
for digital measurement systems that monitor data streams in which measurement
corruption is less likely.)

1.1. Related work. Do Ba et al. [2] give a lower bound of Ω(k log(N/k)) for
the number of measurements for sparse recovery in a model that is related to ours but
different in some important respects. There are polynomial time algorithms [16, 4, 15]
meeting this lower bound, both with high probability for each signal and the stronger
setting, with high probability for all signals.1 Previous sublinear time algorithms,
whether in the “for each” model [5, 10] or in the “for all” model [14], however, used
several additional factors of log(N) measurements. We summarize some previous al-
gorithms in Table 1.1. The column sparsity denotes how many ones there are per
column of the measurement matrix and determines both the decoding and measure-
ment update time, and, for readability, we suppress O(·). The noise column denotes
whether the algorithm tolerates postmeasurement noise ν2. The approximation error
signifies the metric we use to evaluate the output; �p ≤ C�q(+�r) is shorthand for
‖x− x̂‖p ≤ C ‖x− xk‖q (+C ‖ν2‖r). (Some previous results that did not directly
claim stability with respect to ν2 can be modified easily to accommodate nonzero ν2.)
It has been shown [7] that to achieve �2 ≤ C�2 in the “for all” model requires Ω(n)
measurements.

1.2. Our result. We give a sublinear time recovery algorithm and a distribution
over normalized measurement matrices that meet the lower bound (up to constant

1Albeit with different error guarantees and different column sparsity depending on the error
metric.

438 A. C. GILBERT, Y. LI, E. PORAT, AND M. J. STRAUSS

Table 1.1

Summary of the best previous results and the result obtained in this paper. The sketch type A
refers to the “for all” model: for certain probability, a random measurement matrix works for all
signals. Type E refers to “for each” model: for each signal, a random measurement matrix works
for certain probability. Some decoding times depend on a parameter T = log(‖x‖2/‖x− xk‖2). LP
denotes the time complexity of solving a linear program. The constants c in different rows can be
different.

Paper For all/ No. measurements Column sparsity/ Decode time Approx. error Noise
For each update time

[11, 4] A k log(N/k) k log(N/k) LP �2 ≤ (1/
√
k)�1 + �2 Y

[5, 10] E k logc N logc N k logc N �2 ≤ C�2
[9] E k logc N logc N k logc N �1 ≤ C�1
[14] A k logc N logc N k2 logc N �2 ≤ (1/

√
k)�1

[3] A k log(N/k) log(N/k) LP �2 ≤ (C/
√
k)�1 + �2 Y

[15] A k log(N/k) log(N/k) k log(N/k) �1 ≤ C�1 + �1 Y

[16] A k log(N/k) log(N/k) Tnk log(N/k) �2 ≤ (C/
√
k)�1 + �2 Y

This paper E k log(N/k) logc N k logc N �2 ≤ C�2 + �2 Y

factors) in terms of the number of measurements and are within logO(1) N factors of
optimal in the running time and log2 k in the sparsity of the measurement matrix.

Theorem 1.1. There is an algorithm and distribution on matrices Φ satisfying
maxx E[‖Φx‖2 / ‖x‖2] = 1 such that given Φx + ν2, the parameters, and a concise

description of Φ, the algorithm returns x̂ with approximation error ‖x− x̂‖22 ≤ (1 +

ε) ‖ν1‖22 + ε ‖ν2‖22 with probability 3/4. The algorithm runs in time k/ε logO(1) N and
Φ has O

(
k/ε log(N/k)

)
rows. In expectation, there are O(log2(k) log(N/k)) nonzeros

in each column of Φ.
The approximation x̂may have more than k terms. From previous work, e.g., [14],

it is known that if

‖x− x̂‖22 ≤ (1 + ε2) ‖x− xk‖22 + ε2 ‖ν2‖22 ,

then the truncation x̂k of x̂ to k terms satisfies

‖x− x̂k‖22 ≤ (1 + Θ(ε)) ‖x− xk‖22 + ε ‖ν2‖22 .

So an approximation with exactly k terms is possible, but with cost 1/ε2 versus 1/ε
for the general case.

1.3. Our technical contributions. Previous sublinear algorithms begin with
the observation that if a signal consists of a single heavy hitter, then the trivial
encoding of the positions 1 through N with log(N) bits, referred to as a bit tester,
can identify the position of the heavy hitter, as in the following:

⎛⎜⎜⎝
1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
7
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
7
0
7
0

⎞⎟⎟⎠ .

APPROXIMATE SPARSE RECOVERY 439

The second observation in previous work is that a number of hash or Bernoulli func-
tions drawn at random from a hash family are sufficient to isolate enough of the heavy
hitters, which can then be identified by the bit tester. Depending on the type of error
metric desired, the hashing matrix is premultiplied by random ±1 vectors (for the
�2 metric) in order to estimate the signal values. In this case, the measurements are
referred to as the Count Sketch in the data stream literature [5] and, without the
premultiplication, the measurements are referred to as Count Median [9, 10] and
give �1 ≤ C�1 error guarantees. In addition, the sublinear algorithms are typically
greedy iterative algorithms that recover portions of the heavy hitters with each itera-
tion or that recover portions of the �2 (or �1) energy of the residual signal, where the
energy of �2 norm, where �p energy of x is defined as ‖x‖pp.

We build upon the Count Sketch design but incorporate the following algo-
rithmic innovations to ensure an optimal number of measurements:

• With a random assignment of N signal positions to O(k) subsignals, we
need to encode only O(N/k) positions, rather than N as in the previous
approaches. Thus we can reduce the domain size which we encode.

• We use a good error-correcting code (rather than the trivial identity code of
the bit tester).

• Our algorithm is an iterative algorithm but maintains a compound invari-
ant: in our algorithm, the number of undiscovered heavy hitters decreases at
each iteration while, simultaneously, the required error tolerance and failure
probability become more stringent. Because there are fewer heavy hitters to
find at each stage, we can use more measurements to meet more stringent
guarantees.

We believe we are the first to consider a “for each” algorithm with postmeasurement
noise, ν2. As we discuss below, we need to give a new definition of the appropriate
metric under which to normalize Φ.

In section 2 we detail the matrix algebra we use to describe the measurement
matrix distribution which we cover in section 3, along with the decoding algorithm.
In section 4, we analyze the foregoing recovery system.

2. Preliminaries.

2.1. Vectors. Let x denote a vector of length N . For each k ≤ N , let xk denote
either the usual kth component of x or the signal of length N consisting of the k
largest-magnitude terms in x; it will be clear from context. The signal xk is the best

k-term representation of x. The energy of a signal x is ‖x‖22 =
∑N

i=1 |xi|2.
2.2. Matrices. In order to construct the overall measurement matrix, we form

a number of different types of combinations of constituent matrices, and to facilitate
our description, we summarize our matrix operations in Table 2.1. The matrices that
result from all our matrix operations have N columns and, with the exception of the
semidirect product of two matrices �r, all operations are performed on matrices A
and B with N columns. The full description of the matrix algebra defined in Table 2.1
is as follows:

• Row direct sum. The row direct sum A⊕rB is a matrix with N columns that
is the vertical concatenation of A and B.

• Elementwise product. If A and B are both r × N matrices, then A�B is
also an r ×N matrix whose (i, j) entry is given by the product of the (i, j)
entries in A and B.

440 A. C. GILBERT, Y. LI, E. PORAT, AND M. J. STRAUSS

Table 2.1

Matrix algebra used in constructing an overall measurement matrix. The last column contains
both the output dimensions of the matrix operation and its construction formula.

Operator Name Input Output dimensions and construction

⊕r row direct sum A : r1 ×N M : (r1 + r2)×N

B : r2 ×N Mi,j =

{
Ai,j , 1 ≤ i ≤ r1

Bi−r1,j , 1 + r1 ≤ i ≤ r2

� elementwise product A : r ×N M : r ×N
B : r ×N Mi,j = Ai,jBi,j

�r semidirect product A : r1 ×N M : (r1r2)×N

B : r2 × h Mi+(k−1)r2,� =

{
0, Ak,� = 0

Ak,�Bi,j , Ak,� = jth nonzero in row �

• Semidirect product. Suppose A is a matrix of r1 rows (and N columns) in
which each row has exactly h nonzeros and B is a matrix of r2 rows and h
columns. Then B�rA is the matrix with r1r2 rows, in which each nonzero
entry a of A is replaced by a times the jth column of B, where a is the jth
nonzero in its row.
This definition can be modified for our purposes in a straightforward fashion
when A has fewer than h nonzeros per row.

3. Sparse recovery system. In this section, we specify the measurement ma-
trix and detail the decoding algorithm.

3.1. Measurement matrix. The overall measurement matrix, Φ, is multi-
layered. At the highest level, Φ consists of a random permutation matrix P left-
multiplying the row direct sum of O(log(k)) summands, Φ(j), each of which is used
in a separate iteration of the decoding algorithm. Each summand Φ(j) is the row
direct sum of two separate matrices, an identification matrix, D(j), and an estimation
matrix, E(j):

Φ = P

⎡⎢⎢⎢⎢⎣
Φ(1)

Φ(2)

...

Φ(log(k))

⎤⎥⎥⎥⎥⎦ , where Φ(j) = E(j)⊕rD
(j).

In iteration j, the identification matrix D(j) consists of the row direct sum of
O(j) matrices, all chosen independently from the same distribution. We construct
that distribution,

2−Θ(j)√
log(N/k)

(C(j)
�rH

(j))�S(j),

as follows:
• For j = 1, 2, . . . , log k, the matrix H(j) is a hashing matrix with dimensions
kcj×N , where c in the range 1/2 < c < 1 will be specified later. Each column
has exactly one nonzero, a one, in a uniformly random row. The columns are
pairwise independent.

APPROXIMATE SPARSE RECOVERY 441

• The matrix C(j) is an encoding of positions by an error-correcting code with
constant rate and relative distance, together with several ones. That is, fix an
error-correcting code and encoding and decoding algorithms that encode mes-
sages of Θ(log logN) bits into longer codewords, also of length Θ(log logN),
and can correct a constant fraction of errors. Let E(·) be its encoding func-
tion. The ith column of C(j) is the direct sum of Θ(log logN) copies of
one with the direct sum of E(i1), E(i2), . . . , where i1, i2, . . . are blocks of
O(log logN) bits each, whose concatenation is the binary expansion of i. The
number of columns in C(j) is the same as the maximum number of nonze-
ros in H(j), which is approximately the expected number, Θ

(
cjN/k

)
, where

c < 1. The number of rows in C(j) is the logarithm of the number of columns,
since the process of breaking the binary expansion of index i into blocks has
rate 1 and encoding by E(·) has constant rate.
The existence of such an error-correcting code can be shown by a simple
counting argument. Given a codeword of length c2n and a fraction r < 1/4,
there is a ball of radius 2rc2n about it with volume

(
c2n

2rc2n

)
22rc2n. If no other

codeword is in that ball, nearest-neighbor decoding will recover the correct
codeword. Assuming that q codewords have disjoint balls about them, the
size of their union is at most q

(
c2n

2rc2n

)
22rc2n. As long as this volume is less

than the total number of strings of length c2n (i.e., 2c2n), there are more
potential codewords we can use. If there are 2c1n messages (each of length
c1n), each of which needs a codeword, it is possible to find enough decodable
codewords as long as

2c1n
(

c2n

2rc2n

)
22rc2n ≤ 2c2n.

This relationship holds for appropriately chosen c1, c2, and large n. Note that
error-correcting encoding often is accomplished by a matrix-vector product,
but we are not encoding a linear error-correcting code by the usual generator
matrix process. Rather, our matrix explicitly lists all the codewords. The
code may be nonlinear.

• The matrix S(j) is a pseudorandom sign-flip matrix. Each row is a pairwise
independent family of uniform ±1-valued random variables. The sequence of
seeds for the rows is a fully independent family. The size of S(j) matches the
size of C(j)

�rH
(j).

Below, to achieve our claimed runtime, we will construct C(j) and H(j) together.
See Figure 3.1 and section 4.2.2.

The identification matrix at iteration j is of the form

D(j) =
2−Θ(j)√
log(N/k)

⎡⎢⎢⎢⎢⎣
[
(C(j)

�rH
(j))�S(j)

]
1

...[
(C(j)

�rH
(j))�S(j)

]
O(j)

⎤⎥⎥⎥⎥⎦ .

In iteration j, the estimation matrix E(j) consists of the direct sum of O(j +

log(1/ε)) matrices, all chosen independently from the same distribution, 2−Θ(j)√
log(N/k)

442 A. C. GILBERT, Y. LI, E. PORAT, AND M. J. STRAUSS

H =

⎛⎝1 0 0 1 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 0 0 0 1

⎞⎠ , C =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1
0 1 0 1
0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
The matrix H is formed from hash function h which maps 〈8, 0, 3, 6〉 to 〈0, 1, 2, 3〉. If
ρ is the top row of H and S arbitrary, then

(C�rρ)� S =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 0 0 1 0 0 −1 0 −1 0 0
1 0 0 −1 0 0 1 0 1 0 0
0 0 0 −1 0 0 −1 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0
1 0 0 0 0 0 −1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
Fig. 3.1. Example measurement matrix for identification. Here N = 11, k = 3, and,

in the hashing h : i �→ a + bi mod N , we have a = 1 and b = 4, so that the sequence
i = 〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉 is mapped to 〈1, 5, 9, 2, 6, 10, 3, 7, 0, 4, 8〉. The three buckets are
{i : 0 ≤ a + bi < 4}, {i : 4 ≤ a + bi < 8}, and {i : 8 ≤ a + bi < 11}. We number starting from 0,
so 0 ≤ i < 11. In this example, we use two rows of ones and the double repetition code instead of a
good code.

H ′(j)�S′(j), so that the estimation matrix at iteration j is of the form

E(j) =
2−Θ(j)√
log(N/k)

⎡⎢⎢⎢⎢⎣
[
H ′(j)�S′(j)

]
1

...[
H ′(j)�S′(j)

]
O(j+log(1/ε))

⎤⎥⎥⎥⎥⎦ .

The construction of the distribution is similar to that of the identification matrix but
omits the error-correcting code and uses different constant factors for the number of
rows, etc., compared with the analogues in the identification matrix.

• The matrix H ′(j) is a hashing matrix with dimensions O(kcj) × N for ap-
propriate c, 1/2 < c < 1. Each column has exactly one nonzero, a one, in a
uniformly random row. The columns are pairwise independent.

• The matrix S′(j) is a pseudorandom sign-flip matrix of the same dimension
as H ′(j). Each row of S′(j) is a pairwise independent family of uniform
±1-valued random variables. The sequence of seeds for the rows is fully
independent.

3.2. Measurements. The overall form of the measurements mirrors the struc-
ture of the measurement matrices. We do not, however, use all the measurements
in the same fashion. Upon receiving Φx + ν2, the algorithm first applies the per-
mutation P−1. In iteration j of the algorithm, we use the measurements y(j) =
Φ(j)x+(P−1ν2)

(j). As the matrix Φ(j) = E(j)⊕rD
(j), we have a portion of the mea-

surements w(j) = D(j)x + (P−1ν2)
D(j) that we use for identification and a portion

z(j) = E(j)x+(P−1ν2)
E(j) that we use for estimation. The w(j) portion is further de-

composed into measurements [v(j),u(j)] corresponding to the run of O(log logN) ones
in C(j) and measurements corresponding to each of the blocks in the error-correcting

APPROXIMATE SPARSE RECOVERY 443

Recover(Φ,y)

Output: x̂ = approximate representation of x

y = P−1y

a(0) = 0
For j = 0 to O(log k) {

y = y− P−1Φa(j)

split y(j) = w(j)⊕rz(j) // Recall that y = (y(1), . . . ,y(O(log k)))

Λ = Identify(D(j),w(j))

b(j) = Estimate(E(j) , z(j),Λ)

a(j+1) = a(j) + b(j)

}
x̂ = a(j)

Identify(D(j),w(j))

Output: Λ = list of positions

Λ = ∅
Divide w(j) into sections [v,u] of size O(log(cj(N/k)))
For each section {

u = median(|v�|)
For each � // threshold measurements

u� = H(|u�| − u/2) // H(u) = 1 if u > 0, H(u) = 0 otherwise

Divide u into blocks bi of size O(log logN)
For each bi

βi = Decode(bi) // using error-correcting code

λ =Integer(β1, β2, . . .) // integer represented by bits β1, β2, . . .
λ =Convert(λ) // convert bucket index to signal index

Λ = Λ ∪ {λ}
}

Estimate(E(j) , z(j),Λ)

Output: b = vector of positions and values

b = ∅
For each λ ∈ Λ

bλ = median
� s.t.H

(j)
�,λ

=1
(z

(j)
� S

(j)
�,λ)

For each λ ∈ Λ
If |bλ| is not among top Θ(k/2j)

bλ = 0

Fig. 3.2. Pseudocode for the overall decoding algorithm.

code. There are O(j) independently and identically distributed (i.i.d.) repetitions in
the identification part and O(j + log(1/ε)) repetitions in the estimation part.

3.3. Decoding. The decoding algorithm is shown in Figure 3.2.

4. Analysis. The overall structure of our algorithm is greedy, similar to other
algorithms in the literature. At each iteration, the algorithm recovers some of the
signal but introduces errors both through many coefficient estimates that are approx-
imately but not perfectly correct and through a small number of terms that can be
arbitrarily bad. The result is called a residual signal.

444 A. C. GILBERT, Y. LI, E. PORAT, AND M. J. STRAUSS

The measurement and runtime costs of the first iteration dominate the combined
cost of all the others. In it, we reduce a bound on the number of heavy hitters
to recover from k to k/2 while increasing the noise energy from 1 to 1 + ε/4 using
O((k/ε) log(N/k)) measurements. In subsequent iterations, the number of heavy hit-
ters is reduced to k/2j, which reduces the leading cost factor from k/ε to 2−jk/ε. This
gives the algorithm 2j times more resources. In particular, the algorithm can tighten
the approximation constant from 1+ ε/4 to 1+ (ε/4)cj for appropriate c in the range
1/2 < c < 1 at cost factor (1/c)j < 2j, which is more than paid for by the 2−j < 1
savings in the leading factor. Similarly, the algorithm can simultaneously afford to
have a smaller failure probability at iteration j. With the tightened approximation
constant, the algorithm can tolerate additional ν2 noise in later iterations, which, as
we show below, saves resources.

To prove our result formally, we state a loop invariant maintained by our algorithm
and prove that this invariant holds in the Loop Invariant Maintenance (LIM) Lemma.
We demonstrate how it characterizes a single iteration of the algorithm: (i) how
many measurements are used, (ii) how many nonzeros there are in each column of
the measurement matrix, (iii) the runtime, and (iv) the properties of the residual. To
prove the LIM lemma, we proceed as follows:

• In Claim 2, we explain, structurally, how the conclusions of the lemma are
met—what are the sources of errors, etc.

• We then examine the three subroutines in the algorithm: (i) isolating heavy
hitters, (ii) identifying them, and (iii) estimating coefficients.

• Finally, we show that the number of measurements used, the sparsity of the
measurement matrix, the running time, and the effect of postmeasurement
noise are all as claimed in the lemma.

Finally, we discuss normalization of Φ and show that it is, indeed, normalized. We
conclude by analyzing the correctness and efficiency of the overall algorithm using our
results about each iteration.

4.1. Correctness. Without loss of generality, assume ‖ν1‖2 = ‖ν2‖2 = 1, since
our analysis can scale the signal (the algorithm does not need to know the scaling) and,
if ν1 and ν2 have different energies, we can increase the weaker of the two. Formally,
we maintain the following invariant.

Claim 1 (loop invariant). At the beginning of iteration j, the residual signal has

the form r(j) = σ(j) + ν
(j)
1 with∥∥∥σ(j)
∥∥∥
0
≤ k

2j
and

∥∥∥ν(j)1

∥∥∥2
2
≤ 1 + ε

(
1−

(3
4

)j)
except with probability 1

4 (1 − (12)
j), where ‖·‖0 is the number of nonzero entries.

Furthermore, the algorithm has computed (the sparse partial representation) x̂(j) =
x− r(j).

Clearly, the invariant holds at the start and maintaining the invariant is sufficient
to prove the overall result. In order to show that the algorithm maintains the loop
invariant, we demonstrate the following lemma, which, after proper instantiation of
the lemma’s variables, can be used to show the invariant is maintained.

4.1.1. Loop invariant maintenance.
Lemma 4.1 (loop invariant maintenance). Fix numerical parameters N , �, δ,

and η with δ > 0 and η > 1/N . Let a be a vector of length N that can be written
as a = σ + ν1 with ‖σ‖0 ≤ �. Let Φ be of the form of O(log(1/δ)) repetitions of

APPROXIMATE SPARSE RECOVERY 445

(C�rH)�S in row direct sum with O(log 1/(δη)) repetitions of H ′�S′ described in
section 3.1, where H and H ′ have O(�/η) rows. Let ν2 be a noise vector, where each
component has magnitude at most 4√

m
‖ν2‖2, where m is the length of ν2.

Then, except with probability δ, given Φ, y = Φa + ν2, and appropriate parame-
ters, the inner loop of the Recover algorithm in Figure 3.2 recovers b, which can be
written as b = σ′ + ν′1 with ‖σ′‖0 ≤ �/2 and ‖ν′1‖22 ≤ (1 + η) ‖ν1‖22 + 16η

γ ‖ν2‖22, where
γ is the common expected number of nonzeros in each column of Φ. Furthermore,

• the number of rows in Φ is O(�/η) log(N/�) log(1/δ),

• the computation time is (�/η) logO(1)(N/(�δη)),
• the expected number γ of non-zeros in each column of Φ is O((logN/�) log(1/δ)).

Proof. Much of the algorithm and the analysis are similar to previous work
(e.g., [5]), so we sketch the proof, focusing on changes versus previous work. We first
address the case ν2 = 0.

Recall that Φ works by giving each element of the signal a random sign flip, hash-
ing each item pairwise independently at random to each measurement, and encoding
each index by an error-correcting code. We have the next claim.

Claim 2. Except with probability δ/3,
• the vector b contains all but at most �/4 terms of σ, with “good” estimates;
• the vector b contains at most �/4 terms with “bad” estimates, i.e., with square

error greater than proportional to η/� · ‖ν1‖22;
• the total sum square error over all “good” estimates is at most η/4.

Proof. To simplify notation, let T be the set of terms of a that are both among
the top � and have energy at least η

8� ‖ν1‖22. We know that |T | ≤ O(�). We call the
elements in T heavy hitters. The proof proceeds in three steps.

Step 1. Isolate heavy hitters with little noise. Consider the action of a hashing and
sign-flip matrix H�S with O(�/η) rows. From previous work [5, 1], it follows that
if constant factors parametrizing the matrices are chosen properly, the next lemma
follows.

Lemma 4.2. For each t ∈ T , the following holds with probability 1−O(δη):
(a) The term t is hashed by at least one row ρ in H.
(b) There are O(ηN/�) total positions (out of N) hashed by ρ.
(c) The dot product (ρ�s)a is stat±O(

√
η
� ‖ν1‖2), where s is a sign-flip vector.

(d) Every t′ ∈ T \ {t} is not hashed by ρ.
Proof (sketch). For intuition, note that the estimator st(ρ�s)a is a random

variable with mean at and variance ‖ν1‖22. Then the claims in the lemma assert that
the expected behavior happens, up to constant factors, with probability Ω(1). The
O(log 1/(δη)) repetitions of H�S bring the failure probability down to O(δη).

In the favorable case, into each row of H is hashed exactly one term of T that
dominates the other ηN/� terms hashed into that row.

Call a row ρ that satisfies the conditions in Lemma 4.2 a good row.
Step 2. Identify heavy hitters with little noise. Next, we show how to identify the

heavy hitter t in a good row. Since there are ηN/� different positions hashed by H ,
we need to learn the O(log(ηN/�)) bits describing t in this context. Previous sublinear
algorithms [10, 14] used a trivial error-correcting code, in which the tth column was
simply the binary expansion of t in direct sum with a single 1 for the matrix C in
semidirect product with H . Thus, if the signal x consists of xt in the tth position
and zeros elsewhere, the vector (C�rH)x would include xt and xt times the binary
expansion of t (the latter interpreted as a string of zeroes and ones as real numbers).
These algorithms require strict control on the failure probability of each measurement

446 A. C. GILBERT, Y. LI, E. PORAT, AND M. J. STRAUSS

in order to use such a trivial encoding. In our case, each measurement succeeds only
with probability Ω(1) and generally fails with probability Ω(1). So we need to use a
more powerful error-correcting code and a more reliable estimate of |xt|.

Recall that we have a portion w of the measurements that are used for identifi-
cation and that these are further decomposed into the pieces [v,u] that correspond
to the parallel repetition of Θ(log logN) ones and to the error-correcting code blocks,
respectively. We use the block v of b = Θ(log logN) independent measurements of
|xt| to obtain an estimate u of |xt| that we use to threshold the subsequent measure-
ments u to 0/1 values that correspond to the bits in the encoding of t. Let p denote
the success probability of each individual measurement in v. We can arrange that
p > 1− r. (Recall that r is the relative distance of the error-correcting code.) Then,
we expect the fraction p to be approximately correct estimates of |xt|, we achieve
close to this expected fraction, and the median u over the Θ(log logN) estimates is
approximately correct with high probability.

Next, we use the median u to threshold the remaining measurements u to 0/1
values. Let us consider these bit estimates. In a single error-correcting code block of
b = Θ(log logN) measurements, we will get close to the expected number, bp, of suc-
cessful measurements, except with probability 1/ log(N), using the Chernoff bound.
In the favorable case, we get a number of failures less than the (properly chosen)
distance of the error-correcting code and we can recover the block using standard
nearest-neighbor decoding. The number of error-correcting code blocks associated
with t is O(log(ηN/�)/ log logN) ≤ O(logN), so we can take a union bound over all
blocks and conclude that we recover t with probability Ω(1). Because the algorithm
takes O(log(1/δ)) parallel independent repetitions, we guarantee that the failure prob-
ability is δ for each t ∈ T and we expect δ|T | = O(δ�) failures, overall. The probability
of getting more than �/4 failures is at most O(δ).

Step 3. Estimate heavy hitters. Many of the details in this step are similar to those
in Lemma 4.2 (as well as to previous work as the function Estimate is essentially
the same as Count Sketch), so we give only a brief summary.

The error-correcting code is not necessary for estimating the coefficient values
and we use a separate set of measurements z that do not include the coding overhead.
As above, random sign flips and hashing into O(�/η) buckets suffices to isolate a term
t so that the remaining terms hashed to t’s bucket have expected energy O(η/�) and
realize energy O(η/�) with constant probability. Another factor log 1/(δη) repetitions
suffices to make the failure probability δη, so that except with probability δ, we have
O(η|Λ|) = O(�) failures overall among the |Λ| = Θ(�/η) candidates whose coefficients
we estimate.

This concludes the proof of the claim.
Number of measurements. We now consider the number of measurements in

the matrix. The hashing matrix H contributes O(�/η) rows. The constant-rate error-
correcting code matrix C contributes an additional factor of O(log ηN/�) to identify
one index out of ηN/�. The O(log 1/δ) repetitions contribute that additional factor
to drive down the overall failure probability of identification from 1−Ω(1) to δ. The
S matrix does not contribute to the number of rows. This gives a product of

O((�/η)(log(ηN/�) log 1/δ))

for identification.
Similarly, for estimation, we have O(�/η) rows for hashing. Since we are estimat-

ing coefficients for O(�/η) candidates and can only afford O(�) errors except with prob-
ability δ, the Markov inequality requires that each estimate fail with probability at

APPROXIMATE SPARSE RECOVERY 447

most ηδ, which contributes the factor O(log 1/(ηδ)). Thus we get O((�/η) log 1/(ηδ))
for estimation and

O((�/η)(log(ηN/�) log 1/δ + log 1/(ηδ)),

overall. Note that we may assume η > �/N , since otherwise we may use �/η > N
measurements to recover trivially. Thus the overall number of measurements is

O((�/η)(log(N/�) log 1/δ)).

Number of nonzeros. The expected number of nonzeros in each column of the
identification part of Φ is O(1) from hashing, times the factor O(log ηN/�) from the
general (dense) error-correcting code, times O(log 1/δ) for repetition. Analysis of the
estimation part is similar. We get O(log(N/�) log 1/δ) nonzeros altogether.

Postmeasurement noise. Finally, consider the effect of ν2. Suppose there arem
rows inΦ. A careful inspection of the above proof indicates that ν1 enters only through
the expected energy in each bucket, which is Θ((η/�) ‖ν1‖22); the error-correcting code
and parallel repetitions lead to energy Θ((η/�) ‖ν1‖22) = Θ((γ/m) ‖ν1‖22) in each com-

ponent of Φa. The error (1 + η) ‖ν1‖22 represents the “inevitable” error ‖ν1‖22 due
to terms outside the top O(�) that are not recovered by the algorithm, plus “excess”

error η ‖ν1‖22, which is introduced through many small coefficient approximation er-

rors. Since ν2 does not affect the inevitable error, we can replace (γ/m) ‖ν1‖22 with

(γ/m) ‖ν1‖22 +(16/m) ‖ν2‖22 when figuring the excess error, giving the claimed result.
(Below we will see that γ can be viewed as a normalization factor for Φ, which makes
Φν1 and ν2 comparable.)

The computation time is straightforward. This concludes the proof of Lemma 4.1,
the LIM Lemma.

4.1.2. Normalization of the measurement matrix. Next we consider the
normalization of the overall matrix Φ from section 3.1. As has been observed [2],
Φ should be normalized in the setting of ν2
= 0. Otherwise, the matrix Φ can be
scaled up by an arbitrary constant factor c > 1 which can be undone by the decoding
algorithm: Let D′ be a new decoding algorithm that calls the old decoding algorithm
D as D′(y) = D(1cy), so that D′(cΦx + ν2) = D(Φx + 1

cν2). Thus we would be able
to reduce the effect of ν2 by an arbitrary factor c > 1. In our “for each, �2 ≤ C�2”
model, an appropriate way to normalize Φ is as follows.

Definition 4.3. The ‖Φ‖2�2 norm of a randomly constructed matrix Φ is

max
x �=0

E

[‖Φx‖2
‖x‖2

]
.

Note that the usual �2-operator norm,

‖Φ‖2 = max
x �=0

[‖Φx‖2
‖x‖2

]
,

is typically much larger than ‖Φ‖2�2, which would lead to a much weaker result. But
it corresponds to an adversary choosing x and ν2 knowing the outcome Φ, which is
counter to the spirit of the “for each” model in previous work. Here we assume the
adversary knows the distribution on Φ, but not the outcome, when choosing x and
ν2.

448 A. C. GILBERT, Y. LI, E. PORAT, AND M. J. STRAUSS

Now we bound ‖Φ‖2�2 for our Φ. It is straightforward to see that this is the
maximum expected column �2 norm. In the jth iteration, there are at most j logN/k

nonzero entries, each of magnitude
√

cj

logN/k for some c in the range 1/2 < c < 1. It

follows that

‖Φ‖22�2 ≤
∑
j

jcj = O(1)

if constants are chosen properly.

4.1.3. Invariant. Now we show that the invariant is satisfied, using the LIM
lemma. That is all that remains to prove our main theorem, Theorem 1.1.

Theorem 1.1. There is an algorithm and distribution on matrices Φ satisfying

max
x

E[‖Φx‖2 / ‖x‖2] = 1

such that given Φx, the parameters, and a concise description of Φ, the algorithm
returns x̂ with approximation error

‖x− x̂‖22 ≤ (1 + ε) ‖ν1‖22 + ε ‖ν2‖22
with probability 3/4. The algorithm runs in time O((k/ε) logO(1) N) and Φ has
O((k/ε) log(N/k)) rows. In expectation, there are O(log2(k) log(N/k)) nonzeros in
each column of Φ.

Proof. Note that the matrices described in section 3.1 have two additional features
compared with the matrices in the LIM lemma. First, there is a single random
permutation matrix P that multiplies all the error-correcting code, hashing, and sign-
flip matrices, and second, the matrices in iteration j are multiplied by cj/2, where c
is an appropriate constant in the range 1/2 < c < 1. Also note that ν2 is not a priori
guaranteed to be symmetric, as stipulated by the LIM lemma.

Consider the effect of ν2. We would like to argue that the noise vector ν2 is
“distributed at random” by the permutation and each measurement is corrupted by
‖ν2‖2

2

m , approximately its fair share of ‖ν2‖22, where m is the number of measurements.
Unfortunately, the contributions of ν2 to the various measurements are not indepen-
dent as ν2 is permuted, so we cannot use such a simple analysis. Nevertheless, they
are negatively correlated and thus the Chernoff bound still applies [12].

For a more complete analysis, set I = {i : (P−1ν2)i ≥ 4√
m
‖ν2‖2}, so |I| ≤

m
16 . We say row i in the measurement matrix is heavily corrupted if i ∈ I. The
measurement matrix is decomposed into B blocks (in the sense of error-correcting
codes) of rows, and these blocks are used to identify a heavy hitter or to estimate
a signal position value. For identification, we have a block size of O(log logN) and
an explicit encoding/decoding procedure, while for estimation we have a block size
of O(logN) and a trivial encoding/decoding procedure. If some of the blocks are
corrupted by the measurement noise, we may still be able to decode accurately. In
order to ascertain how many blocks are heavily corrupted and what influence this has
on the decoding procedure, we must analyze how the random permutation disperses
I over the blocks.

Let Xi = �{i∈I} and Λ1, . . . ,ΛB be the set of indices of the blocks. Define
Yk =

∑
i∈Λk

Xi (1 ≤ k ≤ B) to be the number of corrupted measurements in block

k. The most desirable situation is that as in LIM Lemma, Yk ≤ |Λk|
16 for all k, which

APPROXIMATE SPARSE RECOVERY 449

is, however, extremely unlikely to happen. We could only expect something weaker.
It follows from the Chernoff bound that

Pr

(
|Yk| ≥ |Λk|

6

)
≤ e−0.05·|Λk|.

Since |Λk| = Ω(log logN) in the encoding portion of the identification matrix D,
the probability above is 1

logΩ(1) N
. Furthermore, there are O(logN) rows in a block

of the hashing portion of D; thus the union bound gives o(1) failure probability of

|Yk| ≤ |Λk|
6 for all k corresponding to a specific row in the hashing matrix.

Suppose there are g good hashing rows, g =
∑

gt, where gt = Ω(j) (recall that
the identification matrix D has Θ(j) layers) is the number of good rows containing
heavy hitter t. From the negative association, the probability that 4

5gt good rows
are heavily corrupted is at most o(1)gt = O(c−j) for some constant c, in which case
we say the heavy hitter t is ruined. By the Markov inequality, only a small fraction
of heavy hitters are ruined except with small probability O(c−j), which is sufficient
for recovery in the jth iteration. Similar arguments work for the estimation matrix,
where heavy hitters and non-heavy hitters are discussed separately. Summing the
failure probability over j, we conclude that except with probability o(1), the post-
measurement noise ν2 will be dispersed favorably, i.e., the blocks corresponding to
most heavy hitters have at most 1/6 of the measurements being heavily corrupted.

Next, we claim that with the measurement noise dispersed favorably, we only need
an increase of a constant factor in the number of measurements to accommodate the
noise. Let {Xi}mi=1 be i.i.d. Bernoulli random variables with parameter p that denote
the failure of measurement i (in which case Xi = 1). Let λ > p be the thresholding
constant. The Chernoff bound tells us that the failure probability of a fraction λm of
all the measurements is

Pr

(
m∑
i=1

Xi ≥ mλ

)
≤ e−C(δ)mp,

where δ = λ
p − 1 and C(δ) is a constant depending on δ. With postmeasurement

noise, a fraction θ of Xi’s are corrupted and not usable, where θ is sufficiently small
such that θ+ p < λ. (For instance, following the above constants, we have that θ = 1

6
and we can adjust p and λ in the arguments of the case ν2 = 0 such that θ + p < λ.)
The threshold becomes m(λ− θ) instead of mλ, and thus

Pr

(
m∑
i=1

Xi ≥ m(λ − θ)

)
≤ e−C(ζ)mp,

where ζ = λ−θ
p −1. It is now clear that m needs to increase by only a constant factor,

namely, C(δ)
C(ζ) , to keep the probability bound unchanged. Henceforth, we may assume

ν2 corrupts each measurement in Φx by at most 16‖ν2‖2/m.
We turn now to the complete proof of the invariant (Claim 1) with postmea-

surement noise. With assumed normalization ‖ν1‖2 = ‖ν2‖2 = 1, we have that

‖ν(0)1 ‖2 = 1.
In iteration j, we make � of the LIM lemma equal to k/2j, η of the LIM lemma is

Θ(εβj), and δ = 2−j, for β < 1 to be specified below. It is straightforward to confirm
that ‖σ(j+1)‖0 ≤ k/2j+1, provided the invariant held at the previous iteration. We

now turn to ‖ν(j+1)
1 ‖2.

450 A. C. GILBERT, Y. LI, E. PORAT, AND M. J. STRAUSS

At the beginning of the jth iteration,∥∥∥ν(j)1

∥∥∥2
2
≤ 1 + ε

(
1−

(
3

4

)j
)
.

This means that 1 ≤ ‖ν(j)1 ‖22 ≤ 2 remains unchanged up to factor 2. By the LIM
lemma and the discussion at the beginning of section 4.1.2, each repetition gives with
high probability an estimate with∥∥∥ν(j+1)

1

∥∥∥2
2
−
∥∥∥ν(j)1

∥∥∥2
2

at most εβj

(∥∥∥ν(j)1

∥∥∥2
2
+ 16c−j ‖ν2‖22

)
.

It follows that the median over repetitions of this estimate satisfies the same bound
with high probability. Since 1 � c−j , it follows that 1+ c−j ≈ c−j . If we put β ≈ 5/8
and c ≈ 5/6, the invariant is satisfied.

We have proved that the algorithm returns x̂ with approximation error

‖x− x̂‖22 ≤ (1 + ε) ‖ν1‖22 + 16ε ‖ν2‖22 .
Now, replace 16ε by ε to achieve the desired form of error bound while introducing
only a constant to the time cost.

4.2. Efficiency.

4.2.1. Number of measurements. The number of measurements in iteration
j is computed as follows. There are log(1/δ) = O(j) parallel repetitions in iteration
j. They each consist of O(k/(εβj2j) log(N/k)) measurements, where β = 5/8. That
is, the number of measurements is

Θ

(
jk

ε

(
4

5

)j

log(N/k)

)
=

k

ε
log(N/k)

(
4

5
+ o(1)

)j

.

Thus we have a sequence bounded by a geometric sequence with ratio less than 1.
The sum, over j, is bounded by O((k/ε) log(N/k)).

Note that the dimension of the random permutation matrix P matches the num-
ber of rows, O((k/ε) log(N/k)).

4.2.2. Encoding, decoding, and update time. The encoding time is bounded
by N times the number of nonzeros in each column of the measurement matrix. This
was analyzed above in section 4.1; there are log(j) log(N/k) nonzeros per column in it-
eration j for j ≤ O(log(k)), so the total is log2(k) log(N/k) nonzeros per column. This
is suboptimal by the factor log2(k). By comparison, however, some proposed methods
use dense matrices, which are suboptimal by the exponentially larger factor k.

When constructing the matrix for measuring the original signal or some interme-
diate representation, our algorithm will need to find, quickly, the bucket to which an
index i is hashed and a codeword for i, where i is in the range 1 ≤ i ≤ N . Note
that it is crucial that we use O(log(N/B)) bits for the codeword to meet the sketch
length lower bound O(k log(N/k)) (instead of O(k logN)), where B is the number of
buckets, and not log(N) bits. This means we need to find codewords for just the i’s
hashed to a particular bucket. Upon decoding, we need to be able to find i from its
codeword, quickly.

We can use a pseudorandom number generator that hashes i to a bucket j if
jN/B ≤ ai + b mod N < (j + 1)N/B for random a and b. Then we encode i by

APPROXIMATE SPARSE RECOVERY 451

E(ai + b − jN/B), assuming quick encoding for numbers in the contiguous range 0
to N/B − 1. To decode, knowing j, we first recover ai+ b− jN/B, whence we easily
recover ai + b and subsequently i. Define hash function f(i) = ai + b on ZN . The
nonzeroes at positions i1, . . . , ih in a row of the hashing matrix are ordered such that
f(i1) < f(i2) < · · · < f(ih). An example is given in Figure 3.1.

Another issue is the time to find and to encode and decode the error-correcting
code. Observe that the length of the code is O(log logN). We can afford time ex-

ponential in the length, i.e., time logO(1) N , for finding, encoding, and decoding the
code. These tasks are straightforward in that much time. Alternatively, we can use a
look-up table of size polylog(N) to decode a code in O(1) time.

5. Conclusion and open problems. In this paper, we construct an approxi-
mate sparse recovery system that is essentially optimal: the recovery algorithm is a
sublinear algorithm (with near optimal running time), the number of measurements
meets a lower bound, and the update time, encode time, and column sparsity are each
within log factors of the lower bounds. We leave the following problems open and
make conjectures:

• We do not think that the current approach can be extended to the “for
all” signal model in �1 ≤ C�1 and �2 ≤ (C/

√
k)�1 error metric guarantees

(all current sublinear algorithms use at least one factor O(logN) additional
measurements), and we leave open the problem of designing a sublinear time
recovery algorithm and a measurement matrix with an optimal number of
rows for this setting, under any suitable error metric.

• Our current algorithm outputs a desirable approximation with constant prob-
ability. It remains to improve the success probability to high probability, i.e.,
≥ 1−1/N , which is the case of several previous algorithms listed in Table 1.1.

• It remains to improve the number of nonzeros in the columns of our measure-
ment matrix from

O(log2(k) log(N/k)) to O(log(N/k)).

• To obtain the index of a heavy hitter, we divide a message of length O(log(N/k))
into pieces of length O(log logN) and encode/decode each piece individually.
It is possible to use a better error-correcting code with codewords of length
O(log(N/k)) with polynomial recovery time, such as low-density parity check
codes (LDPC). Adopting such a scheme may also simplify the analysis. How-
ever, nearest-neighbor decoding is easier and can take only constant time by
using a look-up table of size polylogN .

• A straightforward way to encode a signal takes time proportional to the signal
support size times the number of nonzeros per column of the measurement
matrix. This is the case with our algorithm and the relevant related work. If
the measurement matrix is properly structured, however—for example, if it
consists of rows of a Fourier matrix in arithmetic progression—it is possible to
multiply the measurement matrix by a vector faster than the trivial algorithm.
Thus it would be interesting to improve the encode time of our algorithm
(assuming a dense signal), even if one cannot improve the number of non-
zeros per column.

• As discussed earlier, Do Ba et al. [2] give a lower bound of Ω(k log(N/k))
for the number of measurements for constant ε, and Wainwright [18] gives
a lower bound of Ω((k/ε) log(N/k)), under certain restrictions, for problems
and in models that are not exactly the same as ours. These lower bounds can

452 A. C. GILBERT, Y. LI, E. PORAT, AND M. J. STRAUSS

be regarded as characterizing obstacles in our setting. It remains to give a
lower bound for the dependence on ε and to meet it.
Note that the number of measurements used by our algorithm is

O((k/ε)(log(εN/k) + log(1/ε))).

Above we quoted the larger expression

O((k/ε) log(N/k)).

Note that we may assume that ε > k/N since otherwise we may use k/ε > N
measurements and recover trivially. Also, if ε1.1 > k/N , then

log(1/ε) ≤ O(log(εN/k)).

Thus the number of measurements used by our algorithm isO((k/ε) log(εN/k))
except for the (rare?) cases of k/N < ε < (k/N).9. Nevertheless, we conjec-
ture that the lower bound is Ω((k/ε) log(N/k)), which quantitatively matches
the result in [18], and that this holds even if one of ν1 and ν2 is zero.
The dependence on ε seems to increase from 1/ε to 1/ε2 for the recovery
of an exactly k-sparse representation. It would be good to have a precise
characterization of the lower bound here as well.2

Acknowlegement. The authors would like to thank the anonymous referees for
their helpful comments and suggestions.

REFERENCES

[1] N. Alon, Y. Matias, and M. Szegedy, The space complexity of approximating the frequency
moments, J. Comput. System Sci., 58 (1999), pp. 137–147.

[2] K. Do Ba, P. Indyk, E. Price, and D. Woodruff, Lower bounds for sparse recovery, in
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2010.

[3] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss, Combining Geometry and
Combinatorics: A Unified Approach to Sparse Signal Recovery, Allerton Press, Allerton,
IA, 2008.

[4] E. J. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate
measurements, Comm. Pure Appl. Math., 59 (2006), pp. 1208–1223.

[5] M. Charikar, K. Chen, and M. Farach-Colton, Finding frequent items in data streams, in
Proceedings of the International Colloquium on Automata, Languages, and Programming,
2002.

[6] R. Clifford, K. Efremenko, E. Porat, and A. Rothschild, k-mismatch with don’t cares,
in Proceedings of the European Symposium on Algorithms, 2007, pp. 151–162.

[7] A. Cohen, W. Dahmen, and R. DeVore, Compressed sensing and best k-term approximation,
J. AMS, 22 (2009), pp. 211–231.

[8] G. Cormode and S. Muthukrishnan, What’s hot and what’s not: Tracking most frequent
items dynamically, in Proceedings of the ACM Symposium on Principles of Database
Systems, 2003, pp. 296–306.

[9] G. Cormode and S. Muthukrishnan, Improved data stream summaries: The count-min
sketch and its applications, in Proceedings of the Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, 2004.

[10] G. Cormode and S. Muthukrishnan, Combinatorial algorithms for compressed sensing, in
Proceedings of the 40th Annual Conference Information Sciences and Systems, Princeton,
NJ, 2006.

2Very recently, Price and Woodruff [17] have proved a lower bound of Ω((k/ε) log(N/k)) mea-
surements for nonsparse output and Ω(k/ε2) measurements for sparse outputs, resolving much of
this last open problem.

APPROXIMATE SPARSE RECOVERY 453

[11] D. L. Donoho, Compressed Sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[12] D. Dubhashi and V. Priebe Desh Ranjan, Negative Dependence Through the FKG Inequality,

Research report MPI-I-96-1-020, Max-Planck-Institut für Informatik, Saarbrucken, Ger-
many, 1996.

[13] Y. Erlich, K. Chang, A. Gordon, R. Ronen, O. Navon, M. Rooks, and G. J. Hannon,
DNA sudoku—harnessing high-throughput sequencing for multiplexed specimen analysis,
Genome Research, 19 (2009), pp. 1243—1253.

[14] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, One sketch for all: Fast
algorithms for compressed sensing, in Proceedings of the ACM Symposium on Theory of
Computing, 2007, pp. 237–246.

[15] P. Indyk and M. Ruzic, Near-optimal sparse recovery in the L1 norm, in Proceedings of the
Foundations of Computer Science, 2008, pp. 199–207.

[16] D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inac-
curate samples, Appl. Comput. Harmonic Anal., 26 (2009), pp. 301–321.

[17] E. Price and D. Woodruff, (1+ ε)-approximate sparse recovery, in Proceedings of the Foun-
dations of Computer Science, 2011, pp. 295–304.

[18] M. Wainwright, Information-theoretic bounds on sparsity recovery in the high-dimensional
and noisy setting, IEEE Trans. Inform. Theory, 55 (2009), pp. 5728–5741.

[19] Y. H. Zheng, D. J. Brady, M. E. Sullivan, and B. D. Guenther, Fiber-optic localization
by geometric space coding with a two-dimensional gray code, Appl. Optics, 44 (2005),
pp. 4306–4314.

[20] Y. H. Zheng, N. P. Pitsianis, and D. J. Brady, Nonadaptive group testing based fiber sensor
deployment for multiperson tracking, IEEE Sensors J., 6 (2006), pp. 490–494.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

