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TIGHT BOUNDS FOR THE SUBSPACE SKETCH PROBLEM WITH
APPLICATIONS\ast 

YI LI\dagger , RUOSONG WANG\ddagger , AND DAVID P. WOODRUFF\ddagger 

Abstract. In the subspace sketch problem one is given an n \times d matrix A with O(log(nd)) bit
entries, and would like to compress it in an arbitrary way to build a small space data structure Qp,
so that for any given x \in \BbbR d, with probability at least 2/3, one has Qp(x) = (1 \pm \varepsilon )\| Ax\| p, where
p \geq 0 and the randomness is over the construction of Qp. The central question is, how many bits
are necessary to store Qp? This problem has applications to the communication of approximating
the number of nonzeros in a matrix product, the size of coresets in projective clustering, the memory
of streaming algorithms for regression in the row-update model, and embedding subspaces of Lp in
functional analysis. A major open question is the dependence on the approximation factor \varepsilon . We
show if p \geq 0 is not a positive even integer and d = \Omega (log(1/\varepsilon )), then \widetilde \Omega (\varepsilon  - 2d) bits are necessary.
On the other hand, if p is a positive even integer, then there is an upper bound of O(dp log(nd)) bits
independent of \varepsilon . Our results are optimal up to logarithmic factors. As corollaries of our main lower
bound, we obtain new lower bounds for a wide range of applications, including the above, which in
many cases are optimal.
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1. Introduction. The explosive growth of available data has necessitated new
models for processing such data. A particularly powerful tool for analyzing such
data is sketching, which has found applications to communication complexity, data
stream algorithms, functional analysis, machine learning, numerical linear algebra,
sparse recovery, and many other areas. Here one is given a large object, such as a
graph, a matrix, or a vector, and one seeks to compress it while still preserving useful
information about the object. One of the main goals of a sketch is to use as little
memory as possible in order to compute functions of interest. Typically, to obtain
nontrivial space bounds, such sketches need to be both randomized and approximate.
By now there are nearly optimal bounds on the memory required of sketching many
fundamental problems, such as graph sparsification, norms of vectors, and problems
in linear algebra such as low-rank approximation and regression. We refer the reader
to the surveys [32, 44] as well as the compilation of lecture notes [3].

In this paper we consider the subspace sketch problem.

\ast Received by the editors March 16, 2020; accepted for publication (in revised form) April 19,
2021; published electronically August 5, 2021. A preliminary version of this paper was presented
at the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, 2020, Salt Lake City,
Utah, SIAM, Philadelphia, 2020, pp. 1655--1674.

https://doi.org/10.1137/20M1311831
Funding: The first author was supported in part by Singapore Ministry of Education (AcRF)

Tier 2 grant MOE2018-T2-1-013. The second and third authors were supported in part by an Office
of Naval Research (ONR) grant N00014-18-1-2562 as well as the Simons Institute for the Theory of
Computing where part of this work was done.

\dagger Divison of Mathematical Sciences, Nanyang Technological University, Singapore, 637371 (yili@
ntu.edu.sg).

\ddagger Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(ruosongw@andrew.cmu.edu, dwoodruf@cs.cmu.edu).

1287

D
ow

nl
oa

de
d 

08
/1

8/
21

 to
 3

.1
.5

8.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/20M1311831
mailto:yili@ntu.edu.sg
mailto:yili@ntu.edu.sg
mailto:ruosongw@andrew.cmu.edu
mailto:dwoodruf@cs.cmu.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1288 YI LI, RUOSONG WANG, AND DAVID P. WOODRUFF

Definition 1.1. Given an n\times d matrix A with entries specified by O(log(nd)) bits,
an accuracy parameter \varepsilon > 0, and a function \Phi : \BbbR n \rightarrow \BbbR \geq 0, design a data structure
Q\Phi so that for any x \in \BbbR d, with probability at least 0.9, Q\Phi (x) = (1\pm \varepsilon )\Phi (Ax).

The subspace sketch problem captures many important problems as special cases.
We will show how to use this problem to bound the communication of approximating
statistics of a matrix product, the size of coresets in projective clustering, the memory
of streaming algorithms for regression in the row-update model, and the embedding
dimension in functional analysis. We will describe these applications in more detail
below.

The goal in this work is to determine the memory, i.e., the size of Q\Phi , required
for solving the subspace sketch problem for different functions \Phi . We first consider
the classical \ell p-norms \Phi (x) =

\sum n
i=1 | xi| p, in which case the problem is referred to

as the \ell p subspace sketch problem.1 We later extend our techniques to their robust
counterparts \Phi (x) =

\sum n
i=1 \phi (xi), where \phi (t) = | t| p if | t| \leq \tau and \phi (t) = \tau p otherwise.

Here \Phi is a so-called M -estimator and known as the Tukey loss p-norm. It is less
sensitive to ``outliers"" since it truncates large coordinate values at \tau . We let Qp

denote Q\Phi when \Phi (x) =
\sum 

i | xi| p, and use Qp,\tau when \Phi is the Tukey loss p-norm.
It is known that for p \in (0, 2] and r = O(\varepsilon  - 2), if one chooses a matrix S \in \BbbR r\times n

of independent and identically distributed (i.i.d.) p-stable random variables, then
for any fixed y \in \BbbR n, from the sketch S \cdot y one can output a number z for which
(1  - \varepsilon )\| y\| p \leq z \leq (1 + \varepsilon )\| y\| p with probability at least 0.9 [20]. We say z is a
(1\pm \varepsilon )-approximation of \| y\| p. For p = 1, the output is just med(Sy), where med(\cdot )
denotes the median of the absolute values of the coordinates in a vector. A sketch
S with r = O(\varepsilon  - 2 log n) rows is also known for p = 0 [24]. For p > 2, there is a
distribution on S \in \BbbR r\times n with r = O(\varepsilon  - 2n1 - 2/p log n) for which one can output
a (1 \pm \varepsilon )-approximation of \| y\| p given Sy with probability at least 0.9 [18]. By
appropriately discretizing the entries, one can solve the \ell p subspace sketch problem
by storing SA for an appropriate sketching matrix S, and estimating \| Ax\| p using

SAx. In this way, one obtains a sketch of size \widetilde O(\varepsilon  - 2d) bits2 for p \in [0, 2], and a

sketch of size \widetilde O(\varepsilon  - 2n1 - 2/p \cdot d) bits for p > 2. Note, however, that this is only one
particular approach, based on choosing a random matrix S, and better approaches
may be possible. Indeed, note that for p = 2, one can simply store ATA and output
Q2(x) = xTATAx. This is exact (i.e., holds for \varepsilon = 0) and only uses O(d2 log(nd))

bits of space, which is significantly smaller than \widetilde O(\varepsilon  - 2d) for small enough \varepsilon . We note
that the \varepsilon  - 2 term may be extremely prohibitive in applications. For example, if one
wants high accuracy such as \varepsilon = 0.1\%, the \varepsilon  - 2 factor is a severe drawback of existing
algorithms.

A natural question is what makes it possible for p = 2 to obtain \widetilde O(d2) bits of

space, and whether it is also possible to achieve \widetilde O(d2) space for p = 1. One thing that
makes this possible for p = 2 is the singular value decomposition (SVD), namely, that
A = U\Sigma V T for matrices U \in \BbbR n\times d and V \in \BbbR d\times d with orthonormal columns, and \Sigma 
is a nonnegative diagonal matrix. Then \| Ax\| 22 = \| \Sigma V Tx\| 22 since U has orthonormal
columns. Consequently, once \Sigma and V are obtained, one can discard A and recover
\| Ax\| 22 from the d inner products \langle \Sigma 1,1v1, x\rangle , . . . , \langle \Sigma d,dvd, x\rangle , where the vi's are the

1Note we are technically considering the pth power of the \ell p-norms, but for the purposes of
(1+ \varepsilon )-approximation, they are the same for constant p. Also, when p < 1, \ell p is not a norm, though
it is still a well-defined quantity. Finally, \ell 0 denotes the number of nonzero entries of x.

2Throughout we use \widetilde O, \widetilde \Omega , and \widetilde \Theta to hide factors that are polynomial in log(nd/\varepsilon ). We note that
our lower bounds are actually independent of n.
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TIGHT BOUNDS FOR THE SUBSPACE SKETCH PROBLEM 1289

Table 1.1
Summary of results. The lower bound column suppresses \widetilde \Omega -notation. Except for the last row,

all \ell p subspace sketch problems in this table refer to the for-each version as defined in Definition 1.1.
For the subspace embedding problem, the lower bound is on the dimension of the target space. For
the last two rows, the lower bound is on the length of the sketch. In all problems it is assumed that
n is sufficiently large.

Problem
Lower

Theorem(s) Notes
bound

\ell p subspace sketch
\varepsilon  - 2d bits Theorem 1.2

d = \Omega (log(1/\varepsilon )),
p \in [0,\infty ) \setminus 2\BbbZ +

dp/2 bits Theorem 1.4 p \geq 2
M -estimator sketch \varepsilon  - 2d bits Theorem 1.3 d = \Omega (log(1/\varepsilon ))
Projective clustering \varepsilon  - 2kj bits Theorem 1.5 j = \Omega (log(k/\varepsilon ))
Streaming coreset

\varepsilon  - 2d bits Corollary 1.6 d = \Omega (log(1/\varepsilon ))
for linear regression

Subspace embedding
\varepsilon  - 2 Corollary 1.7

d = \Omega (log(1/\varepsilon )),
p \in [1,\infty ) \setminus 2\BbbZ +

dmax\{ p/2,1\} Paragraph below
p \geq 1

Theorem 1.8
\ell p subspace sketch

\varepsilon  - 2d Corollary 1.9
d = \Omega (log(1/\varepsilon )),

via sampling matrices p \in [1,\infty ) \setminus 2\BbbZ +

\ell p subspace sketch (for-all)
\varepsilon  - 2d Theorem 1.10 p \in [1, 2]

via oblivious sketches

rows of V T . Thus one can ``compress"" A to d ``directions"" \Sigma i,ivi. A natural question
is whether for p = 1 it is also possible to find O(d) directions v1, . . . , vO(d) such that
for any x, \| Ax\| 1 can be well-approximated from some function of O(d) inner products
\langle v1, x\rangle , . . . , \langle vO(d), x\rangle . Here we need the function to be of low space, which, together
with v1, . . . , vO(d), forms a ``compressed"" version of A for calculating \| Ax\| 1. Indeed,
this would be the analogue of the SVD for p = 1, for which little is known.

The central question of our work is, how much memory is needed to solve the
subspace sketch problem as a function of \Phi ?

1.1. Our contributions. A summary of the results is given in Table 1.1. Up
to polylogarithmic factors, we resolve the above question for \ell p-norms and Tukey loss
p-norms for any p \in [0, 2). For p \geq 2 we also obtain a surprising separation for even
integers p from other values of p.

Our main theorem is the following. We denote by \BbbZ + the set of positive integers.

Theorem 1.2 (informal version of Corollaries 3.13 and 3.14). Let p \in [0,\infty ) \setminus 
2\BbbZ + be a constant. For any d = \Omega (log(1/\varepsilon )) and n = \widetilde \Omega (\varepsilon  - 2d), we have that \widetilde \Omega (\varepsilon  - 2d)
bits are necessary to solve the \ell p subspace sketch problem.

When p \in 2\BbbZ +, there is an upper bound of O(dp log(nd)) bits, independent of \varepsilon 
(see Remark 3.15). This gives a surprising separation between positive even integers
and other values of p; in particular for positive even integers p it is possible to obtain
\varepsilon = 0 with at most O(dp log(nd)) bits of space, whereas for other values of p the space
becomes arbitrarily large as \varepsilon \rightarrow 0. This also shows it is not possible, for p = 1 for
example, to find O(d) representative directions for \varepsilon = 0 analogously to the SVD for
p = 2. Note that the lower bound in Theorem 1.2 is much stronger than this, showing
that there is no data structure whatsoever which uses fewer than \widetilde \Omega (\varepsilon  - 2 \cdot d) bits, and
so as \varepsilon gets smaller, the space complexity becomes arbitrarily large.

In addition to the \ell p-norm, in the subspace sketch problem we also consider a
more general entry-decomposable \Phi , that is, \Phi (v) =

\sum 
i \phi (vi) for v \in \BbbR n and some
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1290 YI LI, RUOSONG WANG, AND DAVID P. WOODRUFF

\phi : \BbbR \rightarrow \BbbR \geq 0. We show the same \widetilde \Omega (\varepsilon  - 2d) lower bounds for a number ofM -estimators
\phi .

Theorem 1.3 (informal version of Corollaries 8.2 and 8.4). The subspace sketch

problem requires \widetilde \Omega (\varepsilon  - 2d) bits for the following functions \phi when d = \Omega (log(1/\varepsilon )) and

n = \widetilde \Omega (\varepsilon  - 2d):

\bullet (L1-L2 estimator) \phi (t) = 2(
\sqrt{} 

1 + t2/2 - 1);

\bullet (Huber estimator) \phi (t) = t2/(2\tau ) \cdot 1\{ | t| \leq \tau \} + (| t|  - \tau /2) \cdot 1\{ | t| >\tau \} ;

\bullet (Fair estimator) \phi (t) = \tau 2(| t| /\tau  - ln(1 + | t| /\tau ));
\bullet (Cauchy estimator) \phi (t) = (\tau 2/2) ln(1 + (t/\tau )2);

\bullet (Tukey loss p-norm) \phi (t) = | t| p \cdot 1\{ | t| \leq \tau \} + \tau p \cdot 1\{ | t| >\tau \} .

We also consider the mollified version of the Tukey loss functions (0 < p < 2), for

which the lower bound of \widetilde \Omega (\varepsilon  - 2d) bits still holds. Furthermore, this lower bound is
tight up to logarithmic factors, since we design a new algorithm which approximates
\Phi (x) using \widetilde O(\varepsilon  - 2) bits, which implies an upper bound of \widetilde O(\varepsilon  - 2d) for the subspace
sketch problem. See section 10 for details.

While Theorem 1.2 gives a tight lower bound for p \in [0, 2), matching the sim-
ple sketching upper bounds described earlier, and also gives a separation from the
O(dp log(nd)) bit bound for even integers p \geq 2, one may ask what exactly the space
required is for even integers p \geq 2 and arbitrarily small \varepsilon . For p = 2, the O(d2 log(nd))
upper bound is tight up to logarithmic factors since the previous work [5, Theorem 2.2]

implies an \widetilde \Omega (d2) lower bound once \varepsilon = O(1/
\surd 
d). For p > 2, we show the following:

for a constant \varepsilon \in (0, 1), there is an upper bound of \widetilde O(dp/2) bits (see Remark 4.4),
which is nearly tight in light of the following lower bound, which holds for constant \varepsilon .

Theorem 1.4 (informal version of Theorem 4.8). Let p \geq 2 and \varepsilon \in (0, 1) be

constants. Suppose that n = \widetilde \Omega (dp/2), then \widetilde \Omega (dp/2) bits are necessary to solve the \ell p
subspace sketch problem.

Note that Theorem 1.4 holds even if p is not an even integer, and shows that a
lower bound of d\Omega (p) holds for every p \geq 2.

We next turn to concrete applications of Theorems 1.2 and 1.3.
Statistics of a matrix product. In [45], an algorithm was given for estimating

\| A \cdot B\| p for integer matrices A and B with O(log n) bit integer entries (see Algo-
rithm 1 in [45] for the general algorithm). When p = 0, this estimates the number
of nonzero entries of A \cdot B, which may be useful since there are faster algorithms for
matrix product when the output is sparse; see [34] and the references therein. More
generally, norms of the product A \cdot B can be used to determine how correlated the
rows of A are with the columns of B. The bit complexity of this problem was studied
in [42, 45]. In [42] a lower bound of \Omega (\varepsilon  - 2n) bits was shown for estimating \| AB\| 0
for n\times n matrices A,B up to a (1 + \varepsilon ) factor, assuming n \geq 1/\varepsilon 2 (this lower bound
holds already for binary matrices A and B). This lower bound implies an \ell 0-subspace
sketch lower bound of \Omega (\varepsilon  - 2d) assuming that d \geq 1/\varepsilon 2. Our lower bound in Theo-
rem 1.2 considerably strengthens this result by showing the same lower bound (up to
polylog(d/\varepsilon ) factors) for a much smaller value of d = \Omega (log(1/\varepsilon )). For any p \in [0, 2],
there is a matching upper bound up to polylogarithmic factors (such an upper bound
is given implicitly in the description of Algorithm 1 of [45], where the \varepsilon there is in-
stantiated with

\surd 
\varepsilon , and also follows from the random sketching matrices S discussed

above).
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Projective clustering. In the task of projective clustering, we are given a set X \subset 
\BbbR d of n points, a positive integer k, and a nonnegative integer j \leq d. A center \scrC 
is a k-tuple (V1, V2, . . . , Vk), where each Vi is a j-dimensional affine subspace in \BbbR d.
Given a function \phi : \BbbR \rightarrow \BbbR \geq 0, the objective is to find a center \scrC that minimizes the
projective cost, defined to be

cost(X, \scrC ) =
\sum 

x\in X

\phi (dist(x, \scrC )),

where dist(x, \scrC ) = mini dist(x, Vi), the Euclidean distance from a point p to its nearest
subspace Vi in \scrC = (V1, V2, . . . , Vk). The coreset problem for projective clustering asks
to design a data structure Q\phi such that for any center \scrC , with probability at least
0.9, Q\phi (\scrC ) = (1\pm \varepsilon ) cost(X, \scrC ). Note that in this and other computational geometry
problems, the dimension d may be small (e.g., d = log(1/\varepsilon )), though one may want
a high accuracy solution. Although possibly far from optimal, surprisingly our lower
bound below is the first nontrivial lower bound on the size of coresets for projective
clustering.

Theorem 1.5 (informal version of Corollary 9.4). Suppose that \phi (t) = | t| p for
p \in [0,\infty ) \setminus 2\BbbZ + or \phi is one of the functions in Theorem 1.3. For k \geq 1 and

j = \Omega (log(k/\varepsilon )), any coreset for projective clustering requires \widetilde \Omega (\varepsilon  - 2kj) bits.

Linear regression. In the linear regression problem, there is an n\times d data matrix
A and a vector b \in \BbbR n. The goal is to find a vector x \in \BbbR d so as to minimize \Phi (Ax - b),
where \Phi (v) =

\sum 
i \phi (vi) for v \in \BbbR n and some \phi : \BbbR \rightarrow \BbbR \geq 0. Here we consider streaming

coresets for linear regression in the row-update model. In the row-update model, the
streaming coreset is updated online during one pass over the n rows of

\bigl( 
A b

\bigr) 
, and

outputs a (1\pm \varepsilon )-approximation to the optimal value minx \Phi (Ax - b) at the end. By
a simple reduction, our lower bound for the subspace sketch problem implies lower
bounds on the size of streaming coresets for linear regression in the row-update model.
To see this, we note that by taking sufficiently large \lambda ,

min
y

(\Phi (Ay) + \lambda \Phi (x - y)) = \Phi (Ax).

Thus, a streaming coreset for linear regression can solve the subspace sketch problem,
which we formalize in the following corollary.

Corollary 1.6. Suppose that \phi (t) = | t| p for p \in [0,\infty ) \setminus 2\BbbZ + or \phi is one of
the functions in Theorem 1.3. Any streaming coreset for linear regression in the row-
update model requires \widetilde \Omega (\varepsilon  - 2d) bits when d = \Omega (log(1/\varepsilon )).

Subspace embeddings. Let p \geq 1 and n be sufficiently large. Given A \in \BbbR n\times d, the
\ell p subspace embedding problem asks to find a linear map T : \BbbR n \rightarrow \BbbR r such that for
all x \in \BbbR d,

(1.1) (1 - \varepsilon )\| Ax\| p \leq \| TAx\| p \leq (1 + \varepsilon )\| Ax\| p.

The smallest r which admits a T for every A is denoted by Np(d, \varepsilon ), which is of
interest in functional analysis. When T is allowed to be random, we require (1.1)
to hold with probability at least 0.9. This problem can be seen as a special case of
the ``for-all"" version of the subspace sketch problem in Definition 1.1. In the for-all
version of the subspace sketch problem, the data structure Qp is required to, with
probability at least 0.9, satisfy Qp(x) = (1 \pm \varepsilon )\| Ax\| p simultaneously for all x \in \BbbR d.

In this case, the same lower bound of \widetilde \Omega (\varepsilon  - 2d) bits holds for p \in [1,\infty ) \setminus 2\BbbZ .
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Since the data structure can store T if it exists, we can turn our bit lower bound
into a dimension lower bound on Np(d, \varepsilon ). Doing so will incur a loss of an \widetilde O(d) factor

(Theorem 5.1). We give an \widetilde \Omega (\varepsilon  - 2) lower bound, which is the first such lower bound
giving a dependence on \varepsilon for general p.

Corollary 1.7. Suppose that p \in [1,\infty ) \setminus 2\BbbZ and d = \Omega (log(1/\varepsilon )). It holds that

Np(d, \varepsilon ) = \widetilde \Omega (\varepsilon  - 2).

The dependence on \varepsilon in this lower bound is tight, up to polylog(1/\varepsilon ) factors, for
all values of p \in [1,\infty )\setminus 2\BbbZ [37]. When p \in 2\BbbZ , no lower bound with a dependence on \varepsilon 
should exist, since a d-dimensional subspace of \ell np always embeds into \ell rp isometrically

with r =
\bigl( 
d+p - 1

p

\bigr) 
 - 1 [25]. See more discussion below in section 1.2 on functional

analysis. We also prove a bit complexity lower bound for the aforementioned for-all
version of the subspace sketch problem. We refer the reader to section 4.2 for details.

Theorem 1.8. Let p \geq 1 be a constant. Suppose that \varepsilon > 0 is a constant. The
for-all version of the subspace sketch problem requires \Omega (dmax\{ p/2,1\} +1) bits.

This lower bound immediately implies a dimension lower bound of Np(d, \varepsilon ) =
\widetilde \Omega (dmax\{ p/2,1\} ) for the subspace embedding problem for constant \varepsilon , recovering existing
lower bounds (up to logarithmic factors), which are known to be tight.

Sampling by Lewis weights. While it is immediate that Np(d, \varepsilon ) \geq d, our lower

bound above thus far has not precluded the possibility that Np(d, \varepsilon ) = \widetilde O(d + 1/\varepsilon 2).
However, the next corollary, which lower bounds the target dimension for sampling-
based embeddings, indicates this is impossible to achieve using a prevailing existing
technique.

Corollary 1.9. Let p \geq 1 and p /\in 2\BbbZ . Suppose that Qp(x) = \| TAx\| pp solves
the \ell p subspace sketch problem for some T \in \BbbR r\times n for which each row of T contains

exactly one nonzero element. Then r = \widetilde \Omega (\varepsilon  - 2d), provided that d = \Omega (log(1/\varepsilon )) and

n = \widetilde \Omega (\varepsilon  - 2d).

The same lower bound holds for the for-all version of the \ell p subspace sketch
problem. As a consequence, since the upper bounds of Np(d, \varepsilon ) in (1.2) for 1 \leq p < 2
are based on subsampling with the ``change of density"" technique (also known as
sampling by Lewis weights [15]), they are, within the framework of this classical
technique, best possible up to polylog(d/\varepsilon ) factors.

Oblivious sketches. For the for-all version of the \ell p subspace sketch problem, we
note that there exist general sketches such as the Cauchy sketch [14] which are beyond
the reach of the corollary above. Note that the Cauchy sketch is an oblivious sketch,
which means the distribution is independent of A. We also prove a dimension lower
bound of \widetilde \Omega (\varepsilon  - 2 \cdot d) on the target dimension for oblivious sketches (see section 7), which
is tight up to logarithmic factors since the Cauchy sketch has a target dimension of
O(\varepsilon  - 2d log(d/\varepsilon )).

Theorem 1.10 (informal version of Theorem 7.3). Let p \in [1, 2) be a constant.
Any oblivious sketch that solves the for-all version of the \ell p subspace sketch problem

has a target dimension of \widetilde \Omega (\varepsilon  - 2d).

Therefore, it is natural to ask in general whether Np(d, \varepsilon ) = \widetilde \Omega (d/\varepsilon 2). A proof

using the framework of this paper would require an \widetilde \Omega (d2/\varepsilon 2) lower bound for the
for-all version of the \ell p subspace sketch problem. We conjecture it is true; however,
our current methods, giving almost-tight lower bounds (in the for-each sense), do not
extend to give this result and so we leave it as a main open problem.
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1.2. Connection with Banach space theory. In the language of functional
analysis, the \ell p subspace embedding problem is a classical problem in the theory
of Lp spaces with a rich history. For two Banach spaces X and Y , we say X K-
embeds into Y if there exists an injective homomorphism T : X \rightarrow Y satisfying
\| x\| X \leq \| Tx\| Y \leq K\| x\| X for all x \in X. Such a T is called an isomorphic embedding.
A classical problem in the theory of Banach spaces is to consider the isomorphic
embedding of finite-dimensional subspaces of Lp = Lp(0, 1) into \ell np = (\BbbR n, \| \cdot \| p),
where p \geq 1 is a constant. Specifically, the problem asks what is the minimum value
of n, denoted by Np(d, \varepsilon ), for which all d-dimensional subspaces of Lp (1 + \varepsilon )-embed
into \ell np . A comprehensive survey of this problem can be found in [22].

The case of p = 2 is immediate, in which case one can take n = d and \varepsilon = 0,
obtaining an isometric embedding, and thus we assume p \not = 2. We remark that, when
p is an even integer, it is also possible to attain an isometric embedding into \ell np with

n =
\bigl( 
d+p - 1

p

\bigr) 
 - 1 [25]. In general, the best3 known upper bounds on Np(d, \varepsilon ) are as

follows:

(1.2) Np(d, \varepsilon ) \leq 

\left\{ 
    
    

C\varepsilon  - 2d log d, p = 1,

C\varepsilon  - 2d(log \varepsilon  - 2d)(log log \varepsilon  - 2d+ log(1/\varepsilon ))2, p \in (1, 2),

Cp\varepsilon 
 - 2dp/2 log2 d log(d/\varepsilon ), p \in (2,\infty ) \setminus 2\BbbZ ,

C\varepsilon  - 2(10d/p)p/2, p \in 2\BbbZ +,

where C > 0 is an absolute constant and Cp > 0 is a constant that depends only
on p. The cases of p = 1 and p \in (1, 2) are due to Talagrand [40, 41]. The case of
noneven integers p > 2 is taken from [26, Theorem 15.13], based on the earlier work
of Bourgain, Lindenstrauss, and Milman [9]. The case of even integers p is due to
Schechtman [38].

The upper bounds in (1.2) are established by subsampling with a technique called
change of density [22]. First observe that it suffices to consider embeddings from \ell Np
to \ell np since any d-dimensional subspace of Lp (1 + \varepsilon )-embeds into \ell Np for some large

N . Now suppose that E is a d-dimensional subspace of \ell Np . One can show that
randomly subsampling coordinates induces a low-distortion isomorphism between E
and E restricted onto the sampled coordinates, provided that each element of E is
``spread out"" among the coordinates, which is achieved by first applying the technique
of change of density to E.

Regarding lower bounds, a quick lower bound follows from the tightness of Dvoret-
zky's theorem for \ell p spaces (see, e.g., [30, p. 21]), which states that if \ell d2 2-embeds into
\ell np , then n \geq cd for 1 \leq p < 2 and n \geq (cd/p)p/2 for p \geq 2, where c > 0 is an absolute

constant. Since \ell d2 embeds into Lp isometrically for all p \geq 1 [21, p. 16], identical lower
bounds for Np(d, \varepsilon ) follow. Hence the upper bounds in (1.2) are, in terms of d, tight
for p \in 2\BbbZ and tight up to logarithmic factors for other values of p. However, the right
dependence on \varepsilon is a long-standing open problem and little is known. See [22, p. 845]
for a discussion on this topic. It is known that N1(d, \varepsilon ) \geq c(d)\varepsilon  - 2(d - 1)/(d+2) [9], whose
proof critically relies upon the fact that the unit ball of a finite-dimensional space of
\ell 1 is the polar of a zonotope (a linear image of cube [ - 1, 1]d) and the \ell 1-norm for
vectors in the subspace thus admits a nice representation [7]. However, a lower bound
for general p is unknown. Our Corollary 1.7 shows that n \geq c\varepsilon  - 2/ poly(log(1/\varepsilon )) for
all p \geq 1 and p \not \in 2\BbbZ , which is the first lower bound on the dependence of \varepsilon for general

3A few upper bounds for the case p \in (2,\infty ) \setminus 2\BbbZ are known, none of which dominates the rest.
Here we choose the one having the best dependence on both d and \varepsilon , up to polylog(d/\varepsilon ) factors.
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p, and is optimal up to logarithmic factors. We would like to stress that except for
the very special case of \ell 1, no lower bound on the dependence on \varepsilon whatsoever was
known for p \not \in 2\BbbZ . We consider this to be significant evidence of the generality and
novelty of our techniques. Moreover, even our lower bound for p = 1 is considerably
wider in scope, as discussed more below.

1.3. Comparison with prior work.

1.3.1. Comparison with previous results in functional analysis. As dis-
cussed, the mentioned lower bounds on Np(d, \varepsilon ) come from the tightness of Dvoret-
zky's theorem, which shows the impossibility of embedding \ell d2 into a Banach space
with low distortion. Here the hardness comes from the geometry of the target space.
In contrast, we emphasize that the hardness in our \ell p subspace sketch problem comes
from the source space, since the target space is unconstrained and the output func-
tion Qp(\cdot ) does not necessarily correspond to an embedding. The lower bound via
tightness of Dvoretzky's theorem cannot show that \ell dp does not (1+ \varepsilon )-embed into \ell nq
for d = \Theta (log(1/\varepsilon )) and n = O(1/\varepsilon 1.99), where q \not \in 2\BbbZ .

When the target space is not \ell p, lower bounds via functional analysis are more
difficult to obtain since they require understanding the geometry of the target space.
Since our data structure problem has no constraints on Qp(\cdot ), the target space does
not even need to be normed. In theoretical computer science and machine learning
applications, the usual ``sketch and solve"" paradigm typically just requires the target
space to admit an efficient algorithm for the optimization problem at hand.4 Our lower
bounds are thus much wider in scope than those in geometric functional analysis.

1.3.2. Comparison with previous results for graph sparsifiers. Recently,
the bit complexity of cut sparsifiers was studied in [5, 12]. Given an undirected graph
G = (V,E), | V | = d, a function f : 2V \rightarrow \BbbR is a (1 + \varepsilon )-cut sketch, if for any vertex
set S \subseteq V ,

(1 - \varepsilon )C(S, V \setminus S) \leq f(S) \leq (1 + \varepsilon )C(S, V \setminus S),

where C(S, V \setminus S) denotes the capacity of the cut between S and V \setminus S. The main
result of these works is that any (1+\varepsilon )-cut sketch requires \Omega (\varepsilon  - 2d log d) bits to store.
Note that a cut sketch can be constructed using a for-all version of the \ell p subspace
sketch for any p, by just taking the matrix A to be the edge-vertex incidence matrix
of the graph G and querying all vectors x \in \{ 0, 1\} d. Thus, one may naturally ask if
the lower bounds in [5, 12] imply any lower bounds for the subspace sketch problem.

We note that both works [5, 12] have explicit constraints on the value of \varepsilon . In [5],
in order to prove the \Omega (\varepsilon  - 2d) lower bound, it is required that \varepsilon = \Omega (1/

\surd 
d). In [12]

the lower bound of \Omega (d log d/\varepsilon 2) requires \varepsilon = \omega (1/d1/4). Thus, the strongest lower

bound that can be proved using such an approach is \widetilde \Omega (d2). This is natural, since one
can always store the entire adjacency matrix of the graph in \widetilde O(d2) bits. Our lower
bound, in contrast, becomes arbitrarily large as \varepsilon \rightarrow 0.

1.4. Follow-up work. After the publication of the preliminary version of this
paper in a conference proceedings, Andoni et al. applied our technique to obtain a
nearly tight lower bound for point-querying the objective function of a bias-regularized
support vector machine problem [4].

4For example, consider the space \BbbR n endowed with a premetric d(x, y) =
\sum 

i f(xi  - yi), where

f(x) = \tau x1\{ x\geq 0\} + (\tau  - 1)x1\{ x\leq 0\} (\tau \in (0, 1)), which is not even symmetric when \tau \not = 1
2
. See [46]

for an embedding into this space.
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1.5. Our techniques. We use the case of p = 1 to illustrate our ideas behind
the \widetilde \Omega (\varepsilon  - 2) lower bound for the \ell p subspace sketch problem, when d = \Theta (log(1/\varepsilon )).

We then extend this to an \widetilde \Omega (\varepsilon  - 2d) lower bound for general d via a simple padding

argument. We first show how to prove a weaker \widetilde \Omega (\varepsilon  - 1) lower bound for the for-all
version of the problem, and then show how to strengthen the argument to obtain both
a stronger \widetilde \Omega (\varepsilon  - 2) lower bound and in the weaker original version of the problem (the
``for-each"" model, where we only need to be correct on a fixed query x with constant
probability).

Note that the condition that d = \Theta (log(1/\varepsilon )) is crucial for our proof. As shown

in section 11, when d = 2, there is actually an \widetilde O(\varepsilon  - 1) upper bound, and thus our
\widetilde \Omega (\varepsilon  - 2) lower bound does not hold universally for all values of d. It is thus crucial
that we look at a larger value of d, and we show that d = \Theta (log(1/\varepsilon )) suffices.

To prove our bit lower bounds for the \ell 1 subspace sketch problem, we shall encode
random bits in the matrix A such that having a (1 + \varepsilon )-approximation to \| Ax\| 1
will allow us to recover, in the for-each case, some specific random bit, and in the
for-all case, all the random bits using different choices of x. A standard information-
theoretic argument then implies that the lower bound for the subspace sketch problem
is proportional to the number of random bits we can recover.

Warmup: An \widetilde \Omega (\varepsilon  - 1) lower bound for the for-all version. In our hard instance,

we let d = \Theta (log(1/\varepsilon )) be such that n = 2d = \widetilde \Theta (1/\varepsilon ). Form a matrix A \in \BbbR n\times d

by including all vectors i \in \{  - 1, 1\} d as its rows and then scaling the ith row by a
nonnegative scalar ri \leq poly(d). We can think of r as a vector in \BbbR n with \| r\| \infty \leq 
poly(d). Now, we query Q1(i) for all vectors i \in \{  - 1, 1\} d. For an appropriate choice
of d = \Theta (log(1/\varepsilon )), for all i \in \{  - 1, 1\} d, we have

(1.3) \| Ai\| 1 =
\sum 

j\in \{  - 1,1\} d

rj \cdot | \langle i, j\rangle | \leq 2d \cdot poly(d) < 1

\varepsilon 
.

Since Q1(i) is a (1 \pm \varepsilon )-approximation to \| Ai\| 1, and \| Ai\| 1 is always an integer, we
can recover the exact value of \| Ai\| 1 using Q1(i) for all i \in \{  - 1, 1\} d.

Now we define a matrixM \in \BbbR n\times n, whereMi,j = | \langle i, j\rangle | , where i, j are interpreted
as vectors in \{  - 1, 1\} d. A simple yet crucial observation is that \| Ai\| 1 is exactly the
ith coordinate of Mr. Notice that this critically relies on the assumption that r has
nonnegative coordinates. Thus, the problem can be equivalently viewed as designing
a vector r \in \BbbR n with \| r\| \infty \leq poly(d) and recovering r from the vector Mr. At this
point, a natural idea is to show that the matrix M has a sufficiently large rank, say,
rank(M) = \widetilde \Omega (\varepsilon  - 1), and carefully design r to show an \Omega (rank(M)) = \widetilde \Omega (\varepsilon  - 1) lower
bound.

Fourier analysis on the hypercube shows that the eigenvectors of M are the rows
of the normalized Hadamard matrix, while the eigenvalues of M are the Fourier
coefficients associated with the function g(s) = | d  - 2wH(s)| , where wH(s) is the
Hamming weight of a vector s \in \BbbF d

2. Considering all vectors of Hamming weight d/2
in \BbbF d

2 and their associated Fourier coefficients, we arrive at the conclusion that there
are at least

\bigl( 
d

d/2

\bigr) 
eigenvalues of M with absolute value

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\sum 

0\leq i\leq d
i is even

( - 1)i/2
\biggl( 
d/2

i/2

\biggr) 
| d - 2i| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
,

which can be shown to be at least \Omega (2d/2/ poly(d)). The formal argument is given in
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section 3.1. Hence rank(M) \geq 
\bigl( 

d
d/2

\bigr) 
= \Omega (2d/ poly(d)). Without loss of generality we

assume the rank(M)\times rank(M) upper-left block of A is nonsingular.

Now an \widetilde \Omega (1/\varepsilon ) lower bound follows readily. Set r so that

ri =

\Biggl\{ 
si, i \leq rank(M),

0, i > rank(M),

where \{ si\} rank(M)
i=1 is a set of i.i.d. Bernoulli random variables. Since the exact value

of Mr is known and the rank(M) \times rank(M) upper-left block of A is nonsingular,

one can recover the values of \{ si\} rank(M)
i=1 by solving a linear system, which implies an

\Omega (rank(M)) = \widetilde \Omega (\varepsilon  - 1) lower bound.
Before proceeding, let us first review why our argument fails for p = 2. For the

\ell p-norm, the Fourier coefficients associated with the vectors of Hamming weight d/2
on the Boolean cube are

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\sum 

0\leq i\leq d
i is even

( - 1)i/2
\biggl( 
d/2

i/2

\biggr) 
| d - 2i| p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
= \Theta 

\biggl( 
2d/2\surd 
d

\bigm| \bigm| \bigm| sin p\pi 
2

\bigm| \bigm| \bigm| 
\biggr) 
.

Therefore this sum vanishes if and only if p is an even integer, in which case rank(A)
will no longer be \Omega (2d/poly(d)) and the lower bound argument will fail.

An \widetilde \Omega (\varepsilon  - 2) lower bound for the for-each version. To strengthen this to an \widetilde \Omega (\varepsilon  - 2)

lower bound, it is tempting to increase d so that n = 2d = \widetilde \Omega (\varepsilon  - 2). In this case,
however, we can no longer recover the exact value of Mr, since each entry of Mr
now has magnitude \widetilde \Theta (\varepsilon  - 2) and the function Q1(\cdot ) only gives a (1\pm \varepsilon )-approximation.

We still obtain a noisy version of Mr, but with a \widetilde \Theta (1/\varepsilon ) additive error on each
entry. One peculiarity of the model here is that if some entries of r are negative, then
\| Ai\| 1 = (M | r| )i (cf. (1.3)), where | r| denotes the vector formed by taking the absolute
value of each coordinate of r, i.e., \| Ai\| 1 depends only on the absolute values of entries

of r, which suggests that the constraint that each entry ofMr has magnitude \widetilde \Theta (1/\varepsilon 2)

with an additive error of \widetilde \Theta (1/\varepsilon ) is somehow intrinsic.
To illustrate our idea for overcoming the issue of large additive error, for the

time being let us forget the actual form of M previously defined in the argument for
our \widetilde \Omega (\varepsilon  - 1) lower bound and consider instead a general M \in \BbbR n\times n with orthogonal
rows, each row having \ell 2 norm \Omega (2d/2/ poly(d)). For now we also allow r to contain
negative entries such that \| r\| \infty \leq poly(d), and pretend that the noisy version of Mr

has an \widetilde \Theta (1/\varepsilon ) additive error on each entry. Now, let

r =

n\sum 

i=1

si \cdot 
Mi

\| Mi\| 2
,

where \{ si\} ni=1 is a set of i.i.d. Rademacher random variables. By a standard concen-
tration inequality, \| r\| \infty \leq poly(d) holds with high probability (recall that n = 2d).
Consider the vectorMr. Due to the orthogonality of the rows ofM , the ith coordinate
of Mr will be

\langle Mi, r\rangle = si \cdot \| Mi\| 2.
Provided that \| Mi\| 2 is larger than the additive error \widetilde \Theta (1/\varepsilon ), we can still recover si
by just looking at the sign of \langle Mi, r\rangle . Thus, for an appropriate choice of d such that

2d/2/ poly(d) = \widetilde \Omega (1/\varepsilon ), we can obtain an \Omega (2d) = \widetilde \Omega (1/\varepsilon 2) lower bound.
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Now we return to the original M with Mi,j = | \langle i, j\rangle | , whose rows are not neces-
sarily orthogonal. The previous argument still goes through so long as we can identify
a subset \scrR \subseteq [n] = [2d] of size | \scrR | \geq \Omega (2d/ poly(d)) such that the rows \{ Mi\} i\in \scrR are
nearly orthogonal, meaning that the \ell 2 norm of the orthogonal projection of Mi onto
the subspace spanned by other rows \{ Mj\} j\in \scrR \setminus \{ i\} is much smaller than \| Mi\| 2.

To achieve this goal, we study the spectrum of M and, as far as we are aware,
this is the first such study of spectral properties of this matrix. The Fourier argument
mentioned above implies that at least \Omega (2d/ poly(d)) eigenvalues of A have the same
absolute value \Omega (2d/2/ poly(d)). If all other eigenvalues of A were zero, then we could
identify a set of | \scrR | \geq \Omega (2d/poly(d)) nearly orthogonal rows using rows of A each with
\ell 2 norm \Omega (2d/2/poly(d)), using a procedure similar to the standard Gram--Schmidt
process. The full details can be found in section 3.2. Although the other eigenvalues
of M are not all zero, we can simply ignore the associated eigenvectors since they are
orthogonal to the set of nearly orthogonal rows we obtain above.

Last, recall that what we truly obtain is M | r| rather than Mr unless r \geq 0. To
fix this, note that \| r\| \infty \leq poly(d) with high probability, and so we can just shift
each coordinate of r by a fixed amount of poly(d) to ensure that all entries of r are

positive. We can still obtain \langle Mi, r\rangle with an additive error \widetilde \Theta (1/\varepsilon ), since the amount
of the shift is fixed and bounded by poly(d).

Notice that the above argument in fact holds even for the for-each version of the
subspace sketch problem. By querying the ith vector on the Boolean cube for some
i \in \scrR , we are able to recover the sign of si with constant probability. Given this, a
standard information-theoretic argument shows that our lower bound holds for the
for-each version of the problem.

The formal analysis given in section 3.3 is a careful combination of all the ideas
mentioned above.

Applications: M -estimators and projective clustering coresets. Our general strat-
egy for proving lower bounds forM -estimators is to relate oneM -estimator, for which
we want to prove a lower bound, to another M -estimator for which a lower bound is
easy to derive. For the L1-L2 estimator, the Huber estimator, and the Fair estimator,
when | t| is sufficiently large, \phi (t) = (1 \pm \varepsilon )| t| (up to rescaling of t and the func-
tion value), and thus the lower bounds follow from those for the \ell 1 subspace sketch
problem.

For the Cauchy estimator, we relate it to another estimator \phi aux(t) = ln | x| \cdot 
1\{ | x| \geq 1\} . In section 8, we show that our Fourier analytic arguments also work for
\phi aux(t). Since for sufficiently large t, the Cauchy estimator satisfies \phi (t) =
(1 \pm \varepsilon )\phi aux(t) (up to rescaling of t and the function value), a lower bound for the
Cauchy estimator follows.

To prove lower bounds on coresets for projective clustering, the main observa-
tion is that when k = 1 and j = d  - 1, by choosing the query subspace to be the
orthogonal complement of a vector z, the projection cost is just

\sum 
x\in X \phi (\langle x, z\rangle ), and

thus we can invoke our lower bounds for the subspace sketch problem. We use a
coding argument to handle general k. In Lemma 9.1, we show there exists a set
S = \{ (s1, t1), (s2, t2), . . . , (sk, tk)\} , where si, ti \in \BbbR O(log k), \langle si, ti\rangle = 0, and \langle si, tj\rangle is
arbitrarily large when i \not = j. Now for k copies of the hard instance of the subspace
sketch problem, we add si as a prefix to all data points in the ith hard instance, and
set the query subspace to be the orthogonal complement of a vector z, to which we
add ti as a prefix. Now, the data points in the ith hard instance will always choose
the ith center in the optimal solution, since otherwise an arbitrarily large cost will
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incur. Thus, we can solve k independent copies of the subspace sketch problem, and
the desired lower bound follows.

In the rest of the section, we shall illustrate our techniques for proving lower
bounds that depend on p for the \ell p subspace sketch problem. These lower bounds
hold even when \varepsilon is a constant. We again resort to information theory, trying to
recover, using Qp queries, the entire matrix A among a collection \scrS of matrices. The
lower bound is then \Omega (log | \scrS | ) bits.

An \widetilde \Omega (dp/2) lower bound for the for-each version. Our approach for proving the
\widetilde \Omega (dp/2) lower bound is based on the following crucial observation: consider a uni-

formly random matrix A \in \{  - 1, 1\} \Theta (dp/2)\times d and a uniformly random vector x \in 
\{  - 1, 1\} d. Then \BbbE \| Ax\| pp = O(dp) with the constant hidden in the O-notation less than

1, whereas for each row Ai \in \BbbR d of A, interpreted as a column vector, \| AAi\| pp \geq dp.
Intuitively, the lower bound comes from the fact that one can recover the whole matrix
A by querying all Boolean vectors x \in \{  - 1, 1\} d using the function Qp(\cdot ), since if x is
a row of A, then \| Ax\| pp would be slightly larger than its typical value, by adjusting
constants.

To implement this idea, one can generate a set of almost orthogonal vectors
S \subseteq \BbbR d and require that all rows of A come from S. A simple probabilistic argument
shows that one can construct a set of | S| = dp vectors such that for any distinct

s, t \in S, | \langle s, t\rangle | \leq O(
\surd 
d log d).5 If we form the matrix A using n = \widetilde \Omega (dp/2) vectors

from S as its rows, then for any vector t that is not a row of A,

\| At\| pp \leq n \cdot (d log d)p/2 \ll dp

for some appropriate choice of n. Thus, by querying Qp(s) for all vectors s \in S, one
can recover the whole matrix A, even when \varepsilon is a constant. By a standard information-
theoretic argument, this leads to a lower bound of \Omega (log

\bigl( 
dp\widetilde \Omega (dp/2)

\bigr) 
) = \widetilde \Omega (dp/2) bits.

Furthermore, one only needs to query | S| = dp vectors, which means the lower bound
in fact holds for the for-each version of the \ell p subspace sketch problem, by a standard
repetition argument and losing a log d factor in the lower bound.

An \Omega (dmax\{ p/2,1\} +1) lower bound for the for-all version. In order to obtain the
nearly optimal \Omega (dmax\{ p/2,1\} +1) lower bound for the for-all version, we must abandon
the constraint that all rows of the A matrix come from a set S of poly(d) vectors. Our

plan is still to construct a large set of matrices \scrS \subseteq \{ +1, - 1\} \Theta (dp/2)\times d, and show that
for any distinct matrices S, T \in \scrS , it is possible to distinguish them using the function
Qp(\cdot ), thus proving an \Omega (log | \scrS | ) lower bound. The new observation is that, to dis-
tinguish two matrices S, T \in \scrS , it suffices to have a single row of T , say Ti, such that
\| STi\| pp \ll dp. Again using the probabilistic method, we show the existence of such a

set \scrS with size exp
\bigl( 
\Omega (dp/2+1)

\bigr) 
, which implies an \Omega (log | \scrS | ) = \Omega (dp/2+1) lower bound.

Our main technical tool is Talagrand's concentration inequality, which shows

that for any p \geq 2 and vector x \in \{  - 1, 1\} d, for a matrix A \in \BbbR \Theta (dp/2)\times d with
i.i.d. Rademacher entries, \| Ax\| p = \Theta (d) with probability 1  - exp( - \Omega (d)). This im-

plies that for two random matrices S, T \in \BbbR \Theta (dp/2)\times d with i.i.d. Rademacher entries,
the probability that there exists some row Ti of T such that \| STi\| pp \ll dp is at least

1 - exp
\bigl( 
\Omega (dp/2+1)

\bigr) 
, since the \Theta (dp/2) rows of T are independent. By a probabilistic ar-

gument, the existence of the set \scrS follows. The formal analysis is given in section 4.2.1.

5The O(
\surd 
log d) factor can be removed using more sophisticated constructions based on coding

theory (see Lemma 4.1).
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TIGHT BOUNDS FOR THE SUBSPACE SKETCH PROBLEM 1299

The above argument fails to give an \Omega (d2) lower bound when p < 2. However,
for any p < 2, since \ell n2 embeds into \ell mp with m = Op(n) and a constant distortion, we
can directly reduce the case of p < 2 to the case of p = 2. The formal analysis can be
found in section 4.2.2. Combining these two results yields the \Omega (dmax\{ p/2,1\} +1) lower
bound.

2. Preliminaries. For two functions f and g, we write f(x) \sim g(x), x \rightarrow \infty , if
limx\rightarrow \infty f(x)/g(x) = 1.

For a vector x \in \BbbR n, we use \| x\| p to denote its \ell p-norm, i.e., \| x\| p = (
\sum n

i=1 | xi| p)
1/p

.
When p < 1, it is not a norm but it is still a well-defined quantity and we call it the
\ell p-norm for convenience. When p = 0, \| x\| 0 is defined to be the number of nonzero
coordinates of x.

For two vectors x, y \in \BbbR n, we use projy x \in \BbbR n to denote the orthogonal pro-

jection of x onto y. For a matrix A \in \BbbR n\times d, we use Ai \in \BbbR d to denote its ith
row, treated as a column vector. We use \| A\| 2 to denote its spectral norm, i.e.,
\| A\| 2 = sup\| x\| 2=1 \| Ax\| 2, and \| A\| F to denote its Frobenius norm, i.e., \| A\| F =
\bigl( \sum n

i=1

\sum d
j=1A

2
ij

\bigr) 1/2
.

Suppose that A \in \BbbR m\times n has singular values \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma r \geq 0, where

r = min\{ m,n\} . It holds that \sigma 1 = \| A\| 2 \leq \| A\| F =
\bigl( \sum r

i=1 \sigma 
2
i

\bigr) 1/2
. The condition

number of A is defined to be

\kappa (A) =
sup\| x\| 2=1 \| Ax\| 2
inf\| x\| 2=1 \| Ax\| 2

.

Theorem 2.1 (Eckart--Young--Mirsky theorem). Suppose that A \in \BbbR m\times n has
singular values \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma r > 0, where rank(A) = r \leq min\{ m,n\} . For any
matrix B \in \BbbR m\times n such that rank(B) \leq k \leq r, it holds that

\| A - B\| 2F \geq 
r\sum 

i=k+1

\sigma 2
i .

Below we list a handful of concentration inequalities which will be useful in our
arguments.

Lemma 2.2 (Hoeffding's inequality, [8, p. 34]). Let s1, . . . , sn be i.i.d. Rademacher
random variables and a1, . . . , an be real numbers. Then

Pr

\Biggl\{ \sum 

i

siai > t

\Biggr\} 
\leq exp

\biggl( 
 - t2

2
\sum 

i a
2
i

\biggr) 
.

Lemma 2.3 (Khintchine's inequality, [8, p. 145]). Let a1, . . . , an be real numbers
and s1, . . . , sn be i.i.d. Rademacher random variables. There exist absolute constants
A,B > 0 such that

A

\Biggl( \sum 

i

a2i

\Biggr) 1/2

\leq 
\Biggl( 
\BbbE | 
\sum 

i

siai| p
\Biggr) 1/p

\leq B
\surd 
p

\Biggl( \sum 

i

a2i

\Biggr) 1/2

.

Lemma 2.4 (Talagrand's inequality, [8, p. 204]). Let X = (X1, . . . , Xn) be a ran-
dom vector with independent coordinates taking values in [ - 1, 1]. Let f : [ - 1, 1]n \rightarrow \BbbR 
be a convex 1-Lipschitz function. It holds for all t \geq 0 that

Pr \{ f(X) - \BbbE f(X) \geq t\} \leq e - t2/8.
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1300 YI LI, RUOSONG WANG, AND DAVID P. WOODRUFF

Lemma 2.5 (Gaussian concentration, [43, p. 105]). Let p \geq 1 be a constant.
Consider a random vector X \sim N(0, In) and a nonnegative 1-Lipschitz function f :
(\BbbR n, \| \cdot \| 2) \rightarrow \BbbR , then

Pr
\Bigl\{ 
| f(x) - (\BbbE (f(x))p)1/p| \geq t

\Bigr\} 
\leq 2e - ct2 ,

where c = c(p) > 0 is a constant that depends only on p.

Lemma 2.6 (extreme singular values, [43, p. 91]). Let A be an N \times n matrix
with i.i.d. Rademacher entries. Let \sigma min(A) and \sigma max(A) be the smallest and largest
singular values of A. Then for every t \geq 0, with probability at least 1  - 2 exp( - ct2),
it holds that

\surd 
N  - C

\surd 
n - t \leq \sigma min(A) \leq \sigma max(A) \leq 

\surd 
N + C

\surd 
n+ t,

where C, c > 0 are absolute constants.

Lemma 2.7. Let U1, . . . , Uk \in \BbbR n be orthonormal vectors and s1, . . . , sk be inde-
pendent Rademacher random variables. It holds that

Pr

\Biggl\{ \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
k\sum 

i=1

si \cdot Ui

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq 3
\surd 
ln k

\Biggr\} 
\geq 1 - 1

k1.3
.

Proof. Let Z =
\sum k

i=1 siUi, then

Zj =

k\sum 

i=1

siUi,j .

Since \{ Ui\} is a set of orthonormal vectors, we have that

k\sum 

i=1

U2
i,j \leq 1.

It follows from Hoeffding's inequality (Lemma 2.2) that for each j \in [k],

Pr\{ | Zj | \geq 3
\surd 
ln k\} \leq exp( - 2 ln k).

The claimed inequality follows by taking a union bound over all j \in [k].

We also need a result concerning uniform approximation of smooth functions by
polynomials. Let Pn denote the space of polynomials of degree at most n. For a given
function f \in C[a, b], the best degree-n approximation error En(f ; [a, b]) is defined to
be

En(f ; [a, b]) = inf
p\in Pn

\| f  - p\| \infty ,

where the \| \cdot \| \infty norm is taken over [a, b]. The following bound on approximation
error is a classical result.

Lemma 2.8 (see [36, p. 23]). Let f(x) have a kth derivative on [ - 1, 1]. If n > k,

En(f ; [ - 1, 1]) \leq 6k+1ek

(k + 1)nk
\omega k

\biggl( 
1

n - k

\biggr) 
,

where \omega k is the modulus of continuity of f (k), defined as

\omega k(\delta ) = sup
x,y\in [ - 1,1]
| x - y| \leq \delta 

\bigm| \bigm| \bigm| f (k)(x) - f (k)(y)
\bigm| \bigm| \bigm| .
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3. An \widetilde \Omega 
\bigl( 
\bfitvarepsilon  - \bftwo 

\bigr) 
lower bound. To prove the space lower bound of the data

structure Qp, we appeal to information theory. We shall encode random bits in A
such that if for each x, Qp(x) approximates \| Ax\| pp (or \| Ax\| p when p = 0) up to a
1\pm \varepsilon factor with probability at least 0.9, we can recover from Qp(x) some random bit
(depending on x) with at least constant probability. A standard information-theoretic
argument implies a lower bound on the size of Qp which is proportional to the number
of random bits we can recover.

For each p \geq 0, we define a family of matrices M (p) = \{ M (d,p)\} \infty d=1, where M
(d,p)

is a 2d \times 2d matrix with entries defined as

M
(d,p)
i,j = | \langle i, j\rangle | p,

where i and j are interpreted as vectors on the Boolean cube \{  - 1, 1\} d. We assume
00 = 0 throughout the paper.

3.1. Spectrum of matrices \bfitM .

Lemma 3.1. For any d \geq 1, M (d,p) can be rewritten as H(d)\Lambda (d,p)(H(d))T in its
spectral decomposition form, where \Lambda (d,p) is a 2d \times 2d diagonal matrix, and H(d) is a
2d \times 2d normalized Hadamard matrix.

Proof. Let T be the natural isomorphism from the multiplicative group \{  - 1, 1\} d
to the additive group \BbbF d

2. Then | \langle i, j\rangle | p = g(Ti + Tj) for some function g defined
on \BbbF d

2. It can be computed (see [27, Lemma 5]) that the singular values of a matrix
with entries g(Ti+ Tj) are the absolute values of the Fourier coefficients of g. In our
particular case, the singular values of M (d,p) are

| \^g(s)| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

x\in \BbbF d
2

( - 1)\langle s,x\rangle g(x)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
, s \in \BbbF d

2.

Furthermore, the proof of that lemma shows that H(d) in the spectral decomposition
is given by

(H(d)
s )z =

1

2d/2
( - 1)\langle s,z\rangle , s, z \in \BbbF d

2,

which implies that H(d) is a normalized Hadamard matrix.

Lemma 3.2. When d is even, there are at least
\bigl( 

d
d/2

\bigr) 
entries in \Lambda (d,p) with absolute

value \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\sum 

0\leq i\leq d
i is even

( - 1)i/2
\biggl( 
d/2

i/2

\biggr) 
| d - 2i| p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\triangleq \Lambda 

(d,p)
0 \geq 0.

Proof. We shall use the notation in the proof of Lemma 3.1. Consider the Fourier
coefficients \^g(s) for s \in \BbbF d

2 with Hamming weight d/2, which is the same for all
\bigl( 

d
d/2

\bigr) 

such s's. Note that

\^g(s) =

d\sum 

i=0

i\sum 

j=0

( - 1)j
\biggl( 
d/2

j

\biggr) \biggl( 
d/2

i - j

\biggr) 
g(i).

By comparing the coefficients of xi on both sides of the identity (1+x)d/2(1 - x)d/2 =
(1 - x2)d/2, we see that

i\sum 

j=0

( - 1)j
\biggl( 
d/2

j

\biggr) \biggl( 
d/2

i - j

\biggr) 
=

\Biggl\{ 
( - 1)i/2

\bigl( 
d/2
i/2

\bigr) 
, i is even,

i is odd.
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1302 YI LI, RUOSONG WANG, AND DAVID P. WOODRUFF

Hence

\^g(s) =
\sum 

even i

( - 1)i/2
\biggl( 
d/2

i/2

\biggr) 
g(i).

Finally, observe that, for x, y \in \{ +1, - 1\} d, we have (d  - \langle x, y\rangle )/2 = dH(x, y) =
wH(Tx + Ty), where dH(x, y) denotes the Hamming distance between x and y and
wH(s) denotes the Hamming weight of s \in \BbbF d

2. Hence g(i) = | d  - 2i| p and the
conclusion follows.

Let N (d) be the multiplicity of the singular value \Lambda 
(d,p)
0 of M (d,p). We know from

the preceding lemma that N (d) \geq 
\bigl( 

d
d/2

\bigr) 
. By permuting the columns of H(d), we may

assume the absolute value of the first N (d) diagonal entries of \Lambda (d,p) are all equal to

\Lambda 
(d,p)
0 , i.e., \bigm| \bigm| \bigm| \Lambda (d,p)

1

\bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \Lambda (d,p)

2

\bigm| \bigm| \bigm| = \cdot \cdot \cdot =
\bigm| \bigm| \bigm| \Lambda (d,p)

N(d)

\bigm| \bigm| \bigm| = \Lambda 
(d,p)
0 .

The following lemma is critical in lower bounding \Lambda 
(d,p)
0 . We found the result in

a post on math.stackexchange.com [1] but could not find it in any published litera-
ture and so we reproduce the proof in full from [1], with small corrections regarding
convergence of integrals.

Lemma 3.3. It holds for all complex p satisfying 0 < Re p < 2n that

(3.1)

n\sum 

k=1

( - 1)k+1

\biggl( 
2n

n+ k

\biggr) 
kp = 22n - p\Gamma (p+ 1)

\pi 

\Bigl( 
sin

\pi p

2

\Bigr) \int \infty 

0

sin2n t

tp+1
dt.

Proof. By the binomial theorem,

(z  - 1)2n =

2n\sum 

k=0

\biggl( 
2n

k

\biggr) 
( - z)k =

n\sum 

k= - n

\biggl( 
2n

k + n

\biggr) 
( - z)k+n.

Splitting the sum at k =  - 1 and k = 1, we have

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) \bigl( 
zk + z - k

\bigr) 
= ( - 1)n(z  - 1)2n z - n  - 

\biggl( 
2n

n

\biggr) 
.

Plugging in z = exp (2it) yields

(3.2) (2 sin t)2n = 2

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
cos(2kt) +

\biggl( 
2n

n

\biggr) 
.

Plug (3.2) into the integral on the right-hand side of (3.1) and introduce a regularizer
exp( - st) (s > 0) under the integral sign:

\int \infty 

0

e - st (2 sin t)
2n

tp+1
dt = 2

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) \int \infty 

0

e - st cos(2kt)

tp+1
dt+

\biggl( 
2n

n

\biggr) 
\Gamma ( - p)sp,

 - 1 < Re p < 0.
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One can compute that

\int \infty 

0

e - st cos(2kt)

tp+1
dt =

1

2

\int \infty 

0

e - st(ei2kt + e - i2kt)

tp+1
dt

=
(s - 2ki)p + (s+ 2ki)p

2
\Gamma ( - p)

= (4k2 + s2)
p
2 cos

\biggl( 
p arctan

2k

s

\biggr) 
\Gamma ( - p),  - 1 < Re p < 0.

It follows that

\int \infty 

0

e - st (2 sin t)
2n

tp+1
dt

= 2

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
(4k2 + s2)

p
2 cos

\biggl( 
p arctan

2k

s

\biggr) 
\Gamma ( - p) +

\biggl( 
2n

n

\biggr) 
\Gamma ( - p)sp,

 - 1 < Re p < 0.

It is easy to verify that the integral on the left-hand side is analytic whenever the
integral converges. Analytic continuation permits p to be extended to \{ p :  - 1 <
Re p < 2n\} \setminus \BbbZ . Now, for p such that 0 < Re p < 2n and p /\in \BbbZ , let s \rightarrow 0+ on both
sides. It is also easy to verify (for example, by Lebesgue's dominated convergence
theorem) that we can take the limit s\rightarrow 0+ under the integral sign, hence

(3.3)

\int \infty 

0

(2 sin t)2n

tp+1
dt = 2

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
(2k)p cos

\Bigl( \pi p
2

\Bigr) 
\Gamma ( - p),

0 < Re p < 2n, p \not \in \BbbZ .

Invoking the reflection identity (see, e.g., [6, p. 9])

(3.4) \Gamma ( - p)\Gamma (1 + p) =  - \pi 

sin(p\pi )
, p \not \in \BbbZ ,

we obtain that

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
kp =  - 22n - p\Gamma (p+ 1)

\pi 

\Bigl( 
sin

p\pi 

2

\Bigr) \int \infty 

0

sin2n t

tp+1
dt,

0 < Re p < 2n, p \not \in \BbbZ .

Finally, analytic continuation extends p to the integers in (0, 2n).

As an immediate corollary of Lemma 3.3, we have the following.

Corollary 3.4. Suppose that d \in 8\BbbZ . There exists an absolute constant c > 0
such that

\Lambda 
(d,p)
0 \geq c

2d/2\surd 
d

\bigm| \bigm| \bigm| sin p\pi 
2

\bigm| \bigm| \bigm| .

Proof. Letting 2n = d/2 and k = n - i/2, the summation in Lemma 3.2 becomes

22p+1

\bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
kp

\bigm| \bigm| \bigm| \bigm| \bigm| =
2d/22p+1\Gamma (p+ 1)

\pi 

\bigm| \bigm| \bigm| sin p\pi 
2

\bigm| \bigm| \bigm| 
\int \infty 

0

sind t

tp+1
dt.
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Since (see, e.g., [16, p. 511])

\int \pi 

0

sind x dx =

\surd 
\pi \Gamma (d+1

2 )

\Gamma (d2 + 1)
\geq C\surd 

d
,

where C > 0 is an absolute constant, we have that

\int \infty 

0

sind t

tp+1
dt \geq 

\infty \sum 

n=0

1

((n+ 1)\pi )p+1

\int (n+1)\pi 

n\pi 

sind x dx \geq C\surd 
d
\cdot \zeta (p+ 1)

\pi p+1
.

Notice that h(p) = \Gamma (p + 1)\zeta (p + 1)/(\pi /2)p+1 is a positive continuous function on
(0,\infty ) and h(p) \rightarrow \infty as p\rightarrow \infty and p\rightarrow 0+, it must hold that infp>0 h(p) > 0. The
conclusion follows.

3.2. Orthogonalizing rows. Suppose we are given a matrix \Pi \in \BbbR n\times n in its
spectral decomposition form \Pi = H\Sigma HT , where

\Sigma i,i =

\Biggl\{ 
\pm \sigma , i \leq r,

0, r < i \leq n,

and H is the normalized Hadamard matrix. The goal of this section is to identify a
set of orthogonal vectors, using rows of \Pi .

Lemma 3.5. Each row of \Pi has the same \ell 2 norm \| \Pi i\| 2 = \sigma 
\sqrt{} 
r/n.

Proof.
\| \Pi i\| 2 = \| Hi\Sigma H

T \| 2 = \| Hi\Sigma \| 2.
The lemma follows since all entries in H have absolute value 1/

\surd 
n, and the r nonzero

entries on the diagonal of \Sigma have absolute value \sigma .

To identify a set of orthogonal vectors using the rows of \Pi , we run a procedure
similar to the standard Gram--Schmidt process.

Lemma 3.6. There is a set \scrR \subseteq [n] with size | \scrR | = r/100 such that for each
i \in \scrR , \Pi i can be written as

(3.5) \Pi i = Ri + Pi,

where \{ Ri\} i\in \scrR is a set of orthogonal vectors, and Pi is the orthogonal projection of
\Pi i onto the subspace spanned by \{ Rj\} j\in \scrR \setminus \{ i\} . Furthermore, for each i \in \scrR , \| Ri\| 22 \geq 
99/100\| \Pi i\| 22 = 99/100 \cdot \sigma 2r/n.

Proof. We show how to construct such a set \scrR . Suppose that we have found
a set \scrR with size strictly less than r/100 with \Pi i = Ri + Pi satisfying the stated
constraints. We shall show how to increase the size of \scrR by one.

Let \Pi = S + Q. Here, for each i \in [n] we have \Pi i = Si + Qi, where Qi is the
orthogonal projection of \Pi i onto the subspace spanned by \{ Rj\} j\in \scrR and Si = \Pi i - Qi.

Notice that for all j \in \scrR we have Qj = \Pi j and Sj = 0. Since \| \Pi \| 2F = r\sigma 2 and
rank(Q) \leq | \scrR | , by Theorem 2.1 we have

\sum 

i\in [n]

\| Si\| 22 = \| S\| 2F = \| \Pi  - Q\| 2F \geq \| \Pi \| 2F  - | \scrR | \cdot \sigma 2 >
99

100
\| \Pi \| 2F =

99

100

\sum 

i\in [n]

\| \Pi i\| 22.

Thus, by averaging, there exists i /\in \scrR such that \| Si\| 22 > 99/100\| \Pi i\| 22. We add i into
\scrR and set Ri in (3.5) to be Si and Pi to be Qi. It is easy to verify that the stated
constraints still hold. We continue this process inductively until | \scrR | = r/100.
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Lemma 3.7. Let x \in \BbbR n be a random vector defined as

x =
\sum 

i\in \scrR 
si \cdot 

Ri

\| Ri\| 2
,

where \{ si\} i\in \scrR is a set of i.i.d. Rademacher random variables. Here the set \scrR and the
orthogonal vectors \{ Ri\} i\in \scrR are as defined in Lemma 3.6. Let e \in \BbbR n be an arbitrary
vector (that could depend on si's) satisfying that \| e\| \infty \leq 0.1\sigma 

\sqrt{} 
r/n. For each i \in \scrR ,

it holds that

Pr
x
\{ sign ((\Pi x+ e)i) = sign(si)\} \geq 4

5
.

Proof. For each i \in \scrR , we have

\langle \Pi i, x\rangle = \langle Ri, x\rangle + \langle Pi, x\rangle = si \cdot \| Ri\| 2 +
\sum 

j\in \scrR \setminus \{ i\} 

sj \cdot \| projRj
\Pi i\| 2.

We first analyze the second term:

\BbbE | \langle Pi, x\rangle | \leq 

\left( 
 \sum 

j\in \scrR \setminus \{ i\} 

\| projRj
\Pi i\| 22

\right) 
 

1/2

= \| Pi\| 2 \leq 1

10
\| \Pi i\| 2.

By Markov's inequality, with probability at least 4/5, we have | \langle Pi, x\rangle | \leq \| \Pi i\| 2/2.
Recall that \| Ri\| 2 \geq 99/100\| \Pi i\| 2 (Lemma 3.6) and \| \Pi i\| 2 = \sigma 

\sqrt{} 
r/n (Lemma 3.5).

It happens with probability at least 4/5 that | ei| + | \langle Pi, x\rangle | < | \langle Ri, x\rangle | , in which case
we have sign ((\Pi x+ e)i) = sign(si).

3.3. Space lower bound on \bfitQ \bfitp . In this section, we describe a reduction from
the subspace sketch problem to the \sansI \sansN \sansD \sansE \sansX problem, a classical problem in communi-
cation complexity. We shall rephrase the problem in the context of a data structure.
The \sansI \sansN \sansD \sansE \sansX data structure stores an input string s \in \{  - 1, 1\} n and supports a query
function, which receives an input i \in [n] and outputs si \in \{  - 1, 1\} which is the ith bit
of the underlying string. To prove the lower bound for the subspace sketch problem,
we need the following lower bound for the distributional \sansI \sansN \sansD \sansE \sansX problem.

Lemma 3.8 (see [31]). In the \sansI \sansN \sansD \sansE \sansX problem, suppose that the underlying string
s is drawn uniformly from \{  - 1, 1\} n and the input i of the query function is drawn
uniformly from [n]. Any (randomized) data structure for \sansI \sansN \sansD \sansE \sansX that succeeds with
probability at least 2/3 requires \Omega (n) bits of space, where the randomness is taken over
both the randomness in the data structure and the randomness of s and i.

Throughout the reduction, d is a fixed parameter with value to be determined
later. For the matrix M (d,p), we consider its spectrum-truncated version

\~M (d,p) \triangleq H(d)diag(\Lambda 
(d,p)
1 ,\Lambda 

(d,p)
2 . . . . ,\Lambda 

(d,p)

N(d) , 0, 0, . . . , 0)(H
(d))T .

Lemma 3.9. Each row of \~M (d,p) is orthogonal to all eigenvectors associated with

eigenvalues other than \Lambda 
(d,p)
1 ,\Lambda 

(d,p)
2 , . . . ,\Lambda 

(d,p)

N(d) .

Proof. Let v1, . . . , v2d be the columns of H(d). Then \~M (d,p) =
\sum N(d)

i=1 \Lambda 
(d,p)
i viv

T
i .

Let w be an eigenvector corresponding to another eigenvalue. Then

\~M (d,p)w =

N(d)\sum 

i=1

\Lambda 
(d,p)
i vi(v

T
i w) = 0,

since vi and w are orthogonal as they are associated with distinct eigenvalues.
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1306 YI LI, RUOSONG WANG, AND DAVID P. WOODRUFF

Now we invoke Lemma 3.6 on the matrix \~M (d,p) and obtain a set \scrR \subseteq [2d] and a
set of orthogonal vectors \{ Ri\} i\in \scrR . We shall encode | \scrR | random bits in A and show
how to recover them.

Let

x =
\sum 

i\in \scrR 
si \cdot 

Ri

\| Ri\| 2
.

By Lemma 2.7, with probability 1  - exp( - \Omega (d)), it holds that \| x\| \infty \leq 3
\surd 
d. We

condition on \| x\| \infty \leq 3
\surd 
d in the rest the proof, since we can include the alternative

case \| x\| \infty > 3
\surd 
d in the overall failure probability.

Next we define a vector y \in \BbbR 2d to be yi = (xi +\Delta (d))1/p, where \Delta (d) = 5
\surd 
d is a

constant that depends only on d. Clearly, it holds for all i \in [2d] that 2
\surd 
d \leq ypi \leq 8

\surd 
d.

Round each entry of y to its nearest integer multiple of \delta = 1/(p(8
\surd 
d)1 - 1/p2d),

obtaining \~y. A simple calculation using the mean-value theorem shows that for all
i \in [2d],

(3.6) | \~ypi  - (xi +\Delta (d))p| = | \~ypi  - ypi | \leq p(8
\surd 
d)

p - 1
p \delta \leq 2 - d.

Finally we construct the matrix A \in \BbbR 2d\times d to be used in the \ell p subspace sketch
problem. The jth row of A is the jth vector of \{  - 1, 1\} d, scaled by \~yj .

Lemma 3.10. The matrix A constructed above for the \ell p subspace sketch problem
satisfies \kappa (A) \leq C for some constant C that depends on p only.

Proof. Let B be the 2d \times d matrix whose rows are all vectors in \{  - 1, 1\} d. Then,

\| Bx\| 22 = 2d \BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

sixi

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

,

where s1, . . . , sd is a Rademacher sequence. It follows from Khintchine's inequality
that

(3.7) C12
d/2\| x\| 2 \leq \| Bx\| 2 \leq C22

d/2\| x\| 2
for some constants C1, C2. Notice that the rows of A are rescaled rows of B with the
scaling factors in [(2

\surd 
d)1/p, (8

\surd 
d)1/p]. Hence \kappa (A) \leq C for some constant C that

depends on p only.

The recovery algorithm is simple. The vector to be used for querying the data
structure is the ith vector on the Boolean cube \{  - 1, 1\} d, where i \in \scrR . Given Qp(i),

we guess the sign of si to be just the sign of Qp(i) - \langle M (d,p)
i ,\Delta (d) \cdot 1\rangle . Next we prove

the correctness of the recovery algorithm.
For each i \in \{  - 1, 1\} d, the guarantee of the subspace sketch problem states that,

with probability at least 0.9,

(3.8) \| Ai\| pp \leq Qp(i) \leq (1 + \varepsilon )\| Ai\| pp.

We condition on this event in the remaining part of the analysis.
First we notice that

(3.9) \| Ai\| pp =

2d\sum 

j=1

| \langle Aj , i\rangle | p =
\sum 

j\in \{  - 1,1\} d

| \langle i, \~yj \cdot j\rangle | p =
\sum 

j\in \{  - 1,1\} d

\~ypj | \langle i, j\rangle | p.

Next we give an upper bound on the value of \| Ai\| pp.
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Lemma 3.11. For each i \in \{  - 1, 1\} d, the matrix A constructed for the \ell p subspace
sketch problem satisfies

\| Ai\| pp \leq 2d \cdot (8d1.5)p.
Proof. Each term in the summation (3.9) is upper bounded by (8d1.5)p, which

implies the stated lemma.

Combining the preceding lemma with the query guarantee (3.8), the preceding
lemma implies it holds that

| Qp(i) - \| Ai\| pp| \leq \varepsilon \cdot 2d \cdot (8d1.5)p.

On the other hand, by (3.6) and (3.9),

\bigm| \bigm| \bigm| \| Ai\| pp  - \langle M (d,p)
i , (x+ 1 \cdot \Delta (d))\rangle 

\bigm| \bigm| \bigm| \leq 
\sum 

j\in \{  - 1,1\} d

| \langle i, j\rangle | p \cdot | \~ypi  - (xi +\Delta (d))| \leq dp.

Thus by the triangle inequality,

\bigm| \bigm| \bigm| (Qp(i) - \langle M (d,p)
i ,\Delta (d) \cdot 1\rangle ) - (\langle M (d,p)

i , x\rangle )
\bigm| \bigm| \bigm| \leq \varepsilon \cdot 2d \cdot (8d1.5)p + dp.

Notice that x is a linear combination of rows of \~M (d,p). By Lemma 3.9,

M (d,p)x = \~M (d,p)x.

By Lemma 3.7, if

(3.10) \varepsilon \cdot 2d \cdot (8d1.5)p + dp \leq 0.1\Lambda 
(d,p)
0

\sqrt{} 
N (d)/2d/2,

then with probability 4/5, (Qp(i) - \langle M (d,p)
i ,\Delta (d) \cdot 1\rangle ) has the same sign as ( \~M (d,p)x)i,

in which case we recover the correct sign. By Lemma 3.8, the size of Qp is lower
bounded by \Omega (| \scrR | ).

Now for each \varepsilon > 0 and p \in (0,\infty ) \setminus 2\BbbZ , by Lemma 3.2, (3.10) can be satisfied by
setting

2d/2 \geq sin(p\pi /2)

\varepsilon \cdot polylog(1/\varepsilon ) ,

which implies a space complexity lower bound of

\Omega (| \scrR | ) = \Omega (N (d)) = \Omega (2d/
\surd 
d) = \Omega 

\biggl( 
1

\varepsilon 2 \cdot polylog(1/\varepsilon )

\biggr) 

bits.
Formally, we have proved the following theorem.

Theorem 3.12. Let p \in (0,\infty ) \setminus 2\BbbZ . There exist constants C \in (0, 1] and \varepsilon 0 > 0
that depend only on p such that the following holds. For any \varepsilon \in (0, \varepsilon 0), d \geq d0, and
n \geq 2d0 , any data structure for the \ell p subspace sketch requires \Omega ( 1

\varepsilon 2\cdot polylog(1/\varepsilon ) ) bits.

The lower bound holds even when \kappa (A) \leq K for some constant K that only depends
on p. Here d0 = 2 log2(C/(\varepsilon polylog(1/\varepsilon )).

We note that the polylog(1/\varepsilon ) factors in the definition of d0 and the bit lower
bound may not have the same exponent.

Next we strengthen the lower bound to \widetilde \Omega (d/\varepsilon 2) bits.
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Corollary 3.13. Under the assumptions of C, \varepsilon 0, d, in Theorem 3.12 and the
assumption that n = \Omega ( d

\varepsilon 2\cdot polylog(1/\varepsilon ) ), any data structure for the \ell p subspace sketch

problem requires \Omega ( d
\varepsilon 2\cdot polylog(1/\varepsilon ) ) bits. The polylog(1/\varepsilon ) factors may not have the

same exponent in the two \Omega -notations above.

Proof. Let A\prime \in \BbbR n\prime \times d\prime 
be the hard instance matrix for Theorem 3.12, where

d\prime = 2 log2(C/(\varepsilon polylog(1/\varepsilon )) and n
\prime = 2d

\prime 
. We construct a block diagonal matrix A

with b = d/d\prime blocks, each being an independent copy of A', so that A has d columns.
The number of rows in A is bn\prime = \Omega ( d

\varepsilon 2 polylog(1/\varepsilon ) ). In this case, the \ell p sketch problem

on A\prime requires a data structure of \widetilde \Omega (b/\varepsilon 2) = \Omega ( d
\varepsilon 2\cdot polylog(1/\varepsilon ) ) bits, since we are now

solving the \sansI \sansN \sansD \sansE \sansX problem with \widetilde \Omega (b \cdot 1/\varepsilon 2) random bits.

The corollary above is also true for p = 0.

Corollary 3.14. Under the assumptions of C, \varepsilon 0, d, and n in Corollary 3.13,
any data structure for the \ell 0 subspace sketch problem requires \Omega ( d

\varepsilon 2\cdot polylog(1/\varepsilon ) ) bits.

Proof. The matrix M (d,0) is defined as (M (d,0))i,j = 1\{ \langle i,j\rangle \not =0\} . Note that each

row of M (d,0) has the same number of 1's; let Wd denote this number. Observe that
Corollary 3.4 continues to hold because we have by symmetry

n\sum 

k=1

( - 1)k+1

\biggl( 
2n

n+ k

\biggr) 
=

1

2

\biggl( 
2n

n

\biggr) 
\geq c

22n\surd 
n

for some absolute constant c > 0. Let yj = xi+\Delta (d), where xi and \Delta (d) are as defined
before. In the construction of A, replicate \~yj times (rounded to an integer multiple
of \delta = 2 - d) the jth vector of \{  - 1, 1\} d. Our guess of the sign si is then the sign of
\delta Q0(i) - \Delta (d)Wd. Similarly to the procedure above, we have that

\delta | Q0(i) - \| Ai\| 0| \leq \delta \varepsilon \| Ai\| 0 \leq \varepsilon \cdot 8
\surd 
d \cdot 2d

and
\bigm| \bigm| \bigm| \delta \| Ai\| 0  - \langle M (d,0)

i , (x+ 1 \cdot \Delta (d))\rangle 
\bigm| \bigm| \bigm| \leq 

\sum 

j

| \^yj  - xi  - \Delta (d)| 1\{ \langle i,j\rangle \not =0\} \leq \delta 2d = 1.

And therefore it suffices to have

\varepsilon \cdot 8
\surd 
d \cdot 2d + 1 \leq 0.1\Lambda 

(d,p)
0

\sqrt{} 
N (d)/2d/2,

which holds when 2d/2 = 1/(\varepsilon / polylog(1/\varepsilon )) as before. Therefore the analogue of
Theorem 3.12 holds and so does the analogue of Corollary 3.13.

Remark 3.15. The condition that p /\in 2\BbbZ + is necessary for the lower bound.
When p \in 2\BbbZ +, it is possible to achieve \varepsilon = 0 with O(dp log(nd)) words. Recall
that a d-dimensional subspace of \ell p space can be isometrically embedded into \ell rp with

r =
\bigl( 
d+p - 1

p

\bigr) 
 - 1 [25]. In general the data structure does not necessarily correspond to

a linear map and can be of any form. Indeed, there is a much simpler data structure
as follows, based on ideas in [38]. For each x \in \BbbR d, let yx \in \BbbR d be defined as (yx)i =
((Ax)i)

p/2, then \| yx\| 22 = \| Ax\| pp. Observe that each coordinate (yx)i is a polynomial

of dp/2 terms in x1, . . . , xd. Form an n\times dp/2 matrix B, where the ith row consists of
the coefficients in the polynomial corresponding to (yx)i. The data structure stores
BTB. To answer the query Qp(x), one first calculates from x a dp/2-dimensional
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vector x\prime whose coordinates are all possible monomials of total degree p/2. Note that
Bx\prime = yx. Hence one can just answer Qp(x) = (x\prime )TBTBx\prime = \| Bx\prime \| 22 = \| Ax\| pp
without error. This Qp does not give an isometric embedding but is much simpler
than known isometric embeddings, and the space complexity is O(dp log(nd)) bits.

4. Lower bounds for \bfitp > 2.

4.1. Lower bounds for the subspace sketch problem for \bfitp > 2. In this
section, we prove a lower bound on the \ell p subspace sketch problem, in the case that
\varepsilon is a constant and p \geq 2. We need the following result from coding theory.

Lemma 4.1 (see [35]). For any p \geq 1 and d = 2k  - 1 for some integer k, there
exist a set S \subset \{  - 1, 1\} d and a constant Cp depending only on p which satisfy

(i) | S| = dp;

(ii) for any s, t \in S such that s \not = t, | \langle s, t\rangle | \leq Cp

\surd 
d.

Lemma 4.2. For any p \geq 1, C \geq 1, and d = 2k  - 1 for an integer k, there exist a
set S \subset \{  - 1, 1\} d with size | S| = dp, a set \scrM \subset \BbbR R\times d for some R, and a constant Cp

depending only on p which satisfy

(i) for any M1,M2 \in \scrM such that M1 \not = M2, there exists x \in S such that
\| M2x\| p < d/C and \| M1x\| p \geq d;

(ii) | \scrM | \geq exp
\bigl( 
dp/2/(CpC

p)
\bigr) 
.

Proof. Set R = dp/2/(CpC
p). Then R \leq dp/e. We set \scrM to be the set of R \times d

matrices whose rows are all possible combinations of R distinct vectors in S, where
S is the set constructed in Lemma 4.1. Clearly, | \scrM | =

\bigl( 
dp

R

\bigr) 
\geq eR. Furthermore,

consider two different M1,M2 \in M . There exists an x \in S which is a row of M1 but
not a row of M2. Thus, \| M1x\| p \geq d and

\| M2x\| p \leq Cp

\surd 
d \cdot R1/p < d/C.

Theorem 4.3. Solving the \ell p subspace sketch problem requires \widetilde \Omega (dp/2) bits when
0 < \varepsilon < 1 and p \geq 2 are constants and n = \Omega (dp/2).

Proof. We first prove a lower bound for randomized data structures for the \ell p
subspace sketch problem with failure probability d - p/100. Let \scrM \subset \BbbR R\times d and S \subset 
\{  - 1, 1\} d be as constructed in Lemma 4.2. Choose a matrix M from \scrM uniformly at
random. Since for each x \in \{  - 1, 1\} d, with probability at least 1 - d - p/100,

(4.1) \| Mx\| pp \leq Qp(x) \leq (1 +O(\varepsilon ))\| Mx\| pp,

by a union bound, with probability at least 0.99, (4.1) holds simultaneously for all
x \in S. It follows from Lemma 4.2(i) that by querying \| Mx\| p for all x \in S, one can
distinguish all different M \in \scrM . A standard information-theoretic argument leads to
a lower bound of \Omega (log | \scrM | ) = \Omega (dp/2).

For randomized data structures for the \ell p subspace sketch problem with constant
failure probability, a standard repetition argument implies that the failure probability
can be reduced to d - p/100 using O(log d) independent repetitions. Therefore a lower

bound of \widetilde \Omega (dp/2) bits follows.
Remark 4.4. The lower bound in Theorem 4.3 is nearly optimal. To obtain an \ell p

subspace sketch with constant \varepsilon and \widetilde O(dp/2) bits, one can first apply Lewis weights

sampling [15] to reduce the size of A to \widetilde O(dp/2) \times d, and then apply the embedding
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in [18] to further reduce the number of rows of A to \widetilde O(d(p/2)\cdot (1 - 2/p)) = \widetilde O(dp/2 - 1).

Therefore the data structure takes \widetilde O(dp/2) bits to store.

4.2. Lower bounds for the for-all version. In this section, we prove a lower
bound on the for-all version of the \ell p subspace sketch problem for the case of p \geq 2
and constant \varepsilon . In the for-all version of the \ell p subspace sketch problem, the data
structure Qp is required to, with probability at least 0.9, satisfy Qp(x) = (1\pm \varepsilon )\| Ax\| p
simultaneously for all x \in \BbbR d.

4.2.1. Lower bound for \bfitp \geq 2. Throughout this section we assume that p \geq 2
is a constant.

Let N = cpd
p/2 in this section, where cp > 0 is a constant that depends only

on p. Denote the unit ball in \ell np by Bn
p . For each x \in Bn

2 , we define a function

fx : \BbbR N\times d \rightarrow \BbbR by
fx(A) = \| Ax\| p.

Lemma 4.5. The function fx(\cdot ) satisfies the following properties:

(i) \BbbE [fx(A)] \leq Cc
1/p
p

\surd 
p
\surd 
d, where entries of A are i.i.d. Rademacher random

variables and C is an absolute constant;

(ii) fx(\cdot ) is 1-Lipschitz with respect to the Frobenius norm;

(iii) fx(\cdot ) is a convex function.

Proof. By Khintchine's inequality, (\BbbE | (Ax)i| p)1/p \leq C
\surd 
p\| x\| 2 = C

\surd 
p, where

C is an absolute constant. It follows that \BbbE \| Ax\| pp \leq N(C
\surd 
p)p and by Jensen's

inequality, \BbbE \| Ax\| p \leq (\BbbE \| Ax\| pp)1/p \leq N1/pC
\surd 
p = Cc

1/p
p

\surd 
p
\surd 
d, which implies (i).

To prove (ii), note that

fx(A - B) = \| Ax - Bx\| p \leq \| Ax - Bx\| 2 \leq \| A - B\| 2 \leq \| A - B\| F .
(iii) is a simple consequence of the convexity of the \ell p norm.

The following lemma is a direct application of Talagrand's concentration inequal-
ity (Lemma 2.4) with Lemma 4.5.

Lemma 4.6. Let A \in \BbbR N\times d and x \in \BbbR d have i.i.d. Rademacher random variables.
It holds that

Pr
A,x

\Bigl\{ 
fx(A) \geq Cc1/pp

\surd 
pd
\Bigr\} 
\leq e - cd,

where C is an absolute constant and cp is a constant depending only on p.

Proof. Let \^x = x/
\surd 
d. We have \| \^x\| 2 = 1. By Lemmas 4.5 and 2.4, we have

Pr
A

\Bigl\{ 
f\^x(A) \geq Cc1/pp

\surd 
p
\surd 
d
\Bigr\} 
\leq e - cd.

Since fx(A) =
\surd 
df\^x(A), we have

Pr
A

\Bigl\{ 
fx(A) \geq Cc1/pp

\surd 
pd
\Bigr\} 
\leq e - cd,

which implies the stated lemma.

Lemma 4.7. There exists a set \scrS \subseteq \{ +1, - 1\} N\times d such that

(i) | \scrS | \geq exp(c1Nd);

(ii) for any S, T \in \scrS such that S \not = T , there exists i \in [N ], such that \| STi\| p \leq 
Cc

1/p
p

\surd 
pd;

(iii) when p > 2, for any S \in \scrS , \kappa (S) \leq 2.
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Proof. We first define a set of bad matrices \sansB \sansa \sansd \subseteq \{ +1, - 1\} N\times d to be

\sansB \sansa \sansd =
\Bigl\{ 
A \in \{ +1, - 1\} N\times d : Pr

x

\Bigl\{ 
\| Ax\| p \geq Cc1/pp

\surd 
pd
\Bigr\} 
\geq 3e - cd

\Bigr\} 
,

where x \in \{ +1, - 1\} d is an i.i.d. Rademacher vector and Cp, c are the same constants
in Lemma 4.6. It follows from Lemma 4.6 that

Pr
A
\{ A \in \sansB \sansa \sansd \} \leq 1

3
,

since otherwise

Pr
A,x

\Bigl\{ 
fx(A) \geq Cc1/pp

\surd 
pd
\Bigr\} 
\geq Pr

A
\{ A \in \sansB \sansa \sansd \} \cdot Pr

x

\Bigl\{ 
fx(A) \geq Cc1/pp

\surd 
pd | A \in \sansB \sansa \sansd 

\Bigr\} 

> e - cd.

Let the multiset \scrT \subseteq \{ +1, - 1\} N\times d of size | \scrT | = exp(c2Nd) consist of independent
uniform samples of matrices in \{ +1, - 1\} N\times d. We define three events as follows.

\bullet \scrE 1: There are at least (1/12)| \scrT | distinct matrices in \scrT \setminus \sansB \sansa \sansd .
\bullet \scrE 2: For each S \in \scrT \setminus \sansB \sansa \sansd and each T \in \scrT \setminus \{ S\} , there exists some i \in [N ]

such that \| STi\| p \leq Cpd.
\bullet \scrE 3: There are at least (23/24)| \scrT | matrices T \in \scrT such that \kappa (T ) \leq 2.

We analyze the probability of each event below.
First, notice that \BbbE | \scrT \cap \sansB \sansa \sansd | \leq | \scrT | /3. Thus, by Markov's inequality we have

Pr(| \scrT \cap \sansB \sansa \sansd | \geq 2| \scrT | /3) \leq 1/2. Let X denote the number of distinct matrices in T .
Note that \BbbE X = 2Nd(1  - (1  - 2 - Nd)| \scrT | ) \approx | \scrT | when c2 is small. It follows from a
standard balls-into-bins argument with the bounded difference method (see, e.g., [17,
section 6.3]) that Pr(X < (3/4)\BbbE X) \leq 2 exp( - (\BbbE X)2/(8| \scrT | )) < 0.01. This implies
that Pr(\scrE c

1) \leq 1/2 + 0.01 = 0.51.
Next, consider a fixed matrix S \in \{ +1, - 1\} N\times d \setminus \sansB \sansa \sansd . For a random matrix

T \in \{ +1, - 1\} N\times d whose entries are i.i.d. Rademacher random variables, for each row
Ti of T , by the definition of \sansB \sansa \sansd , we have

Pr
\Bigl\{ 
\| STi\| p \geq Cc1/pp

\surd 
pd
\Bigr\} 
\leq 3e - cd.

Since the rows of T are independent,

Pr
\Bigl\{ 
\| STi\| p \geq Cc1/pp

\surd 
pd, \forall i \in [N ]

\Bigr\} 
\leq 3Ne - cNd \leq e - c\prime Nd.

Choosing appropriate constants for C and c (and thus c\prime ) allows for a union bound
over all pairs S \in \scrT \setminus \sansB \sansa \sansd and T \in \scrT \setminus \{ S\} , and we have Pr(\scrE c

2) \leq 1/3.
Last, for the condition number, recall the classical result that for a random ma-

trix T of i.i.d. Rademacher entries, it holds with probability \geq 1  - exp( - c3d) that
smin(T ) \geq 

\surd 
N  - c4

\surd 
d and smin(T ) \geq 

\surd 
N + c4

\surd 
d, which implies that \kappa (T ) \leq 

(
\surd 
N + c4

\surd 
d)/(

\surd 
N  - c4

\surd 
d) \leq 2 when d is sufficiently large. Letting \scrT 1 = \{ T \in 

| \scrT | : \kappa (T ) > 2\} , we have \BbbE | \scrT 1| \leq e - c3d| \scrT | . Thus by a Markov bound, Pr\{ | \scrT 1| \geq 
6e - c3d| \scrT | \} \leq 1/10, and thus Pr(\scrE c

3) \leq 1/10.
Since Pr(\scrE c

1) + Pr(\scrE c
2) + Pr(\scrE c

3) < 1, there exists a set \scrT for which all \scrE 1, \scrE 2, \scrE 3
hold. Taking \scrS to be the distinct well-conditioned matrices in \scrT \setminus \sansB \sansa \sansd , we see that \scrS 
satisfies conditions (i)--(iii).
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1312 YI LI, RUOSONG WANG, AND DAVID P. WOODRUFF

Theorem 4.8. The for-all version of the \ell p subspace sketch problem requires
\Omega ((d/p)p/2 \cdot d) bits to solve when p \geq 2 and \varepsilon < 1 are constants and n = \Omega (dp/2). The
lower bound holds even when \kappa (A) \leq 2 if p > 2, and all entries in A are in \{ +1, - 1\} .

Proof. Choose a matrix A uniformly at random from the set \scrS in Lemma 4.7.
Suppose that Qp : \BbbR d \rightarrow \BbbR satisfies

\| Ax\| pp \leq Qp(x) \leq (1 +O(\varepsilon ))\| Ax\| pp, x \in \BbbR d.

For any row Ai \in \BbbR d of A, interpreted as a column vector, \| AAi\| p \geq d, whereas for

any B \in \scrS \setminus \{ A\} , there exists a row Ai of A such that \| BAi\| p \leq Cc
1/p
p

\surd 
pd < d/3,

provided that cp is small enough. Thus, by appropriate choice of the constants in
Lemma 4.7, we can use Qp to determine which matrix A \in \scrS has been chosen. By
property (ii) of the set \scrS , it must hold that all elements of \scrS are distinct from each
other. It then follows from a standard information-theoretic argument that the size
of the data structure for the \ell p sketch problem is lower bounded by \Omega (log | \scrS | ) =
\Omega (Nd) = \Omega ((d/p)p/2 \cdot d).

4.2.2. Lower bound for 1 \leq \bfitp \leq 2. The lower bound for 1 \leq p < 2 follows
from the lower bound for p = 2 by embedding \ell p into \ell 2. It is known that \ell n2 K-
embeds into \ell mp for some m \leq cn, where c = c(p) and K = K(p) are constants that
depend only on p. Furthermore, the embedding T : \ell n2 \rightarrow \ell mp can be realized using a
rescaled matrix of i.i.d. Rademacher entries (with high probability). See [29, section
2.5] for a proof for p = 1, which can be generalized easily to a general p. Thus, one
can reduce the for-all version of the \ell 2 subspace sketch problem to the for-all version
of the \ell p subspace sketch with 1 \leq p \leq 2. Thus the lower bound of \Omega (d2) also holds
when 1 \leq p \leq 2.

5. Linear embeddings. In this section, our goal is to show that isomorphic em-
beddings into low-dimensional spaces induce solutions to the subspace sketch problem.
Therefore a lower bound on the subspace sketch problem implies a lower bound on
the embedding dimension.

Theorem 5.1. Let p, q \geq 1, \varepsilon > 0, and A \in \BbbR N\times d with full column rank.
Let E \subseteq \ell Np be the column space of A and suppose that T : E \rightarrow \ell nq is a (1 +
\varepsilon )-isomorphic embedding. Then there exists a data structure for the for-all ver-
sion of the \ell p subspace sketch problem on A with approximation ratio 1 \pm 6p\varepsilon and
O(nd log(N | 1/p - 1/2| dn\kappa (A)/\varepsilon )) bits.

Proof. Without loss of generality, we may assume that 1
\kappa (A)\| x\| 2 \leq \| Ax\| 2 \leq \| x\| 2.

Let B \in \BbbR n\times d be such that B = TA. Then \| Ax\| pp \leq \| Bx\| pq \leq (1 + \varepsilon )p\| Ax\| pp.
Round each entry of B to an integer multiple of \delta = \varepsilon /(D1n

1/qd1/2\kappa (A)), where
D1 = max\{ 1, N1/2 - 1/p\} , obtaining \~B. First we claim that the rounding causes only
a minor loss,

(5.1) (1 - \varepsilon )p\| Bx\| pq \leq \| \~Bx\| pq \leq (1 + \varepsilon )p\| Bx\| pq .

Indeed, write B = \~B +\Delta B, where each entry of \Delta B is bounded by \delta . Then

\| (\Delta B)x\| q \leq n1/qd1/2\delta \| x\| 2 \leq n1/qd1/2\delta \| x\| 2 \leq n1/qd1/2\delta \cdot \kappa (A) \cdot \| Ax\| 2
\leq \varepsilon \| Ax\| p
\leq \varepsilon \| Bx\| q.
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TIGHT BOUNDS FOR THE SUBSPACE SKETCH PROBLEM 1313

This proves (5.1) and so

(1 - \varepsilon )p\| Ax\| pp \leq \| \~Bx\| pq \leq (1 + \varepsilon )2p\| Ax\| pp,

which implies that the matrix \~B can be used to solve the \ell p subspace sketch problem
on A with approximation ratio 1\pm 6p\varepsilon . Since

\| Bx\| q \leq (1 + \varepsilon )p\| Ax\| p \leq (1 + \varepsilon )pD2\| Ax\| 2 \leq (1 + \varepsilon )pD2\| x\| 2,
where D2 = max\{ 1, N1/p - 1/2\} , each entry of B is at most eD2. Hence, after round-
ing, each entry of \~B can be described in O(log(D2/\delta )) = O(log(dnD\kappa (A)/\varepsilon )) bits,
where D = D1D2 = N | 1/2 - 1/p| . The matrix \~B can be described in O(nd log(D2/\delta ))
bits. The value of \delta can be described in O(log(1/\delta )) bits, which is dominated by
the complexity for describing \~B. Therefore the size of the data structure is at most
O(nd log(D2/\delta )) = O(nd log(Ddn\kappa (A)/\varepsilon )) bits.

The dimension lower bound for linear embeddings now follows as a corollary from
combining the preceding theorem with Theorem 3.12, where we choose d = C log(1/\varepsilon )
and note that N = O(1/\varepsilon 2) and \kappa (A) = O(1) in our hard instance.

Corollary 5.2. Let p \in [1,\infty ) \setminus 2\BbbZ and suppose that d \geq C log(1/\varepsilon ). It holds
that

Np(d, \varepsilon ) \geq cp \cdot 1/(\varepsilon 2 \cdot polylog(1/\varepsilon )),
where cp > 0 is a constant that depends only on p and C > 0 is an absolute constant.

Remark 5.3. It is not clear how much the assumption d \geq C log 1
\varepsilon can be weak-

ened. The best known results for p = 1 are as follows [25]:

N1(d, \varepsilon ) \leq 

\left\{ 
  
  

c2\varepsilon 
 - 1/2, d = 2,

c(d)
\bigl( 

1
\varepsilon 2 log

1
\varepsilon 

\bigr) (d - 1)/(d+2)
, d = 3, 4,

c(d)
\bigl( 

1
\varepsilon 2

\bigr) (d - 1)/(d+2)
, d \geq 5,

which is substantially better than 1/(\varepsilon 2 polylog(1/\varepsilon )) for constant d. In a similar
lower bound [9],

N1(d, \varepsilon ) \geq c(d)\varepsilon  - 2(d - 1)/(d+2),

where c(d) \approx e - c\prime d ln d, so the lower bound is nontrivial only when d = O
\bigl( 
log 1

\varepsilon / log log
1
\varepsilon 

\bigr) 
.

Since N1(d, \varepsilon ) is increasing, optimizing d w.r.t. \varepsilon yields that

N1(d, \varepsilon ) = \Omega 
\bigl( 
\varepsilon  - 2 exp( - c\prime \prime 

\sqrt{} 
ln(1/\varepsilon ) ln ln(1/\varepsilon ))

\bigr) 

for all d = \Omega 
\bigl( \sqrt{} 

ln(1/\varepsilon )
\bigr) 
. Our result improves the lower bound to \varepsilon  - 2/ polylog(1/\varepsilon )

for larger d and, more importantly, works for general p \geq 1 that is not an even integer.

Remark 5.4. In the case of p > 2, it is an immediate corollary from Theorem 4.8
that Np(d, \varepsilon ) = \Omega (dp/2/ log d), which recovers the known (and nearly tight) lower
bound up to a logarithmic factor.

6. Sampling-based embeddings. Our goal in this section is to prove the fol-
lowing lower bound.

Theorem 6.1. Let p \geq 1 and p /\in 2\BbbZ . Suppose that Qp(x) = \| TAx\| pp solves the
for-all version of the \ell p subspace sketch problem on A and \varepsilon for some T \in \BbbR m\times n such
that each row of T contains exactly one nonzero element. Then it must hold that m \geq 
cpd/(\varepsilon 

2 polylog(1/\varepsilon )), provided that d \geq C1 log(1/\varepsilon ) and n \geq C2d/(\varepsilon 
2 polylog(1/\varepsilon )),

where cp > 0 is a constant that depends only on p and C1, C2 > 0 are absolute
constants.
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1314 YI LI, RUOSONG WANG, AND DAVID P. WOODRUFF

Proof. Let A be the hard instance matrix for the \widetilde \Omega (1/\varepsilon 2) lower bound in Corol-
lary 5.2. Recall that A is a block diagonal matrix with k = \Theta (d/ log(1/\varepsilon )) diagonal
blocks. Each block has dimension 2s \times s with 2s/2 = 1/\varepsilon 1 - o(1). Furthermore, each
block can be written as DB, where D is a 2s\times 2s diagonal matrix and B is the 2s\times s
matrix whose rows are all vectors in \{  - 1, 1\} s, and each entry in D has magnitude in
[(2

\surd 
s)1/p, (8

\surd 
s)1/p]. The matrix B can be described using O(s2s) bits and the matrix

D using O(2s log s) bits. Without loss of generality we may assume that each nonzero
entry of T is an integer multiple of \varepsilon 1/p, since the loss of rounding, by the triangle
inequality, is at most \varepsilon \| Ax\| pp. Next, we shall bound the number of bits needed to
describe T .

Letting x = ej be a canonical basis vector,

(1 + \varepsilon )\| Ax\| pp \geq \| TAx\| pp =

m\sum 

i=1

| tiAi,j | p \geq 2
\surd 
s

m\sum 

i=1

| ti| p.

On the other hand,

\| Ax\| pp \leq k \cdot 8\surd s\| Bx\| pp \leq 8k
\surd 
s(2s/2\| Bx\| 2)p \leq C \prime k

\surd 
s2sp,

where we used (3.7) for the last inequality. It follows from the AM--GM inequality
that

\sum 

i

log
| ti| 
\varepsilon 1/p

= log
\prod 

i

| ti| 
\varepsilon 1/p

\leq m

p
log

\Biggl( 
1

m

\sum 

i

| ti| p
\varepsilon 

\Biggr) 

\leq C \prime \prime m

\biggl( 
s+ log

1

\varepsilon 
+ log

k

m

\biggr) 

\leq C \prime \prime \prime ms,

that is, T can be described using O(ms) bits, provided that m \geq k. Therefore TA can
be described in O(s2s+2s log s+ms) = O((m+1/\varepsilon 2) log(1/\varepsilon )) bits. Combining with
the lower bound of \Omega (d/(\varepsilon 2 poly log(1/\varepsilon )) bits, we have m = \Omega (d/(\varepsilon 2 polylog(1/\varepsilon ))).

A similar argument shows that when m < k, the matrix T can be described in
O(d) bits, which leads to a contradiction to the lower bound. Hence it must hold that
m \geq k and, as we proved above, m = \Omega (d/(\varepsilon 2 polylog(1/\varepsilon ))).

The lower bound for the (for-each) \ell p subspace sketch problem loses further a
factor of log d.

Corollary 6.2. Let p \geq 1 and p /\in 2\BbbZ . Suppose that Qp(x) = \| TAx\| pp solves
the (for-each) version of the \ell p subspace sketch problem on A and \varepsilon for some T \in 
\BbbR m\times n such that each row of T contains exactly one nonzero element. Then it must
hold that m \geq cpd/(\varepsilon 

2 \cdot log d \cdot polylog(1/\varepsilon )), provided that d \geq C1 log(1/\varepsilon ) and n \geq 
C2d/(\varepsilon 

2 polylog(1/\varepsilon )), where cp > 0 is a constant that depends only on p and C1, C2 >
0 are absolute constants.

Proof. Observe that we used the approximation to \| Aei\| pp for each canonical basis
vector ei in the proof of Theorem 6.1, which holds with a constant probability if we
make O(log d) independent copies of the (randomized) data structure. This incurs a
further loss of a log d factor in the lower bound.

7. Oblivious sketches. An oblivious subspace embedding for d-dimensional
subspaces E in \ell np is a distribution on linear maps T : \ell np \rightarrow \ell mp such that it holds for
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any d-dimensional subspace E \subseteq \ell np that

Pr
T
\{ (1 - \varepsilon )\| x\| p \leq \| Tx\| p \leq (1 + \varepsilon )\| x\| p \forall x \in E\} \geq 0.99.

More generally, an oblivious sketch is a distribution on linear maps T : \ell np \rightarrow \BbbR m,
accompanied by a recovery algorithm \scrA , such that it holds for any d-dimensional
subspace E \subseteq \ell np that

Pr
T
\{ (1 - \varepsilon )\| x\| p \leq \scrA (Tx) \leq (1 + \varepsilon )\| x\| p \forall x \in E\} \geq 0.99.

It is clear that an oblivious embedding is a special case of an oblivious sketch, where
\scrA (Tx) = \| Tx\| p.

In this section we shall show that when 1 \leq p < 2, any oblivious sketch requires
m = \widetilde \Omega (d/\varepsilon 2).

Before proving the lower bound, let us prepare some concentration results. We
use \BbbS n - 1 to denote the unit sphere in (\BbbR n, \| \cdot \| 2). First, observe that the norm
function x \mapsto \rightarrow \| x\| p is a Lipschitz function of Lipschitz constant max\{ 1, n1/p - 1/2\} . Also
note that (\BbbE g\sim N(0,In) \| g\| pp)1/p = \beta pn

1/p, where \beta p = (\BbbE g\sim N(0,1) | g| p)1/p. Standard
Gaussian concentration (Lemma 2.5) leads to the following.

Lemma 7.1. Let p \geq 1 be a constant and g \sim N(0, In). It holds with probability
at least 1  - exp( - c\varepsilon 2nmin\{ 1,2/p\} ) that (1  - \varepsilon )\beta pn

1/p \leq \| g\| p \leq (1 + \varepsilon )\beta pn
1/p, where

c = c(p) > 0 is a constant that depends only on p.

Suppose that G is an n \times d Gaussian random matrix of i.i.d. N(0, 1) entries.
Observe that for a fixed x \in \BbbS d - 1, Gx \sim N(0, In). A typical \varepsilon -net argument on \BbbS d - 1

allows us to conclude the following lemma. We remark that this gives Dvoretzky's
theorem for \ell p spaces.

Lemma 7.2. Let 1 \leq p < 2 be a constant and G be an n \times d Gaussian random
matrix. There exist constants C = C(p) > 0 and c = c(p) > 0 such that whenever n \geq 
Cd log(1/\varepsilon )/\varepsilon 2, it holds Pr

\bigl\{ 
(1 - \varepsilon )\beta pn

1/p \leq \| Gx\| p \leq (1 + \varepsilon )\beta pn
1/p \forall x \in \BbbS d - 1

\bigr\} 
\geq 

1 - 2 exp( - c\varepsilon 2n).
Now, consider two distributions on n \times d matrices, where n = \Theta (d\varepsilon  - 2 log(1/\varepsilon )).

The first distribution \scrL 1 is just the distribution of a Gaussian random matrix G of
i.i.d. N(0, 1) entries, and the second distribution \scrL 2 is the distribution of G+ \sigma uvT ,
where G is the Gaussian random matrix of i.i.d. N(0, 1) entries, u \sim N(0, In) and
v \sim N(0, Id) and \sigma = \alpha 

\sqrt{} 
\varepsilon /d for some constant \alpha to be determined later, and G, u,

and v are independent.

Theorem 7.3. Let 1 \leq p < 2 be a constant. Suppose that S \in \BbbR m\times n is an
oblivious sketch for d-dimensional subspaces in \ell np , where n = \Omega (d\varepsilon  - 2 log(1/\varepsilon )). It
must hold that m \geq cd/\varepsilon 2, where c = c(p) > 0 is a constant depending only on p.

Proof. It follows from the preceding lemma that, if A \sim \scrL 1, we have that
supx\in \BbbS d - 1 \| Ax\| p \leq (1 + \varepsilon )\beta pn

1/p with probability at least 0.999 with an appropriate
choice of constant in the \Theta -notation of n. Next we consider the supremum of \| Ax\| p
when A \sim \scrL 2. Observe that

sup
x\in \BbbS d - 1

\bigm\| \bigm\| (G+ \sigma uvT )x
\bigm\| \bigm\| 
p
\geq 
\bigm\| \bigm\| \bigm\| \bigm\| (G+ \sigma uvT )

v

\| v\| 2

\bigm\| \bigm\| \bigm\| \bigm\| 
p

=

\bigm\| \bigm\| \bigm\| \bigm\| G
v

\| v\| 2
+ \sigma u\| v\| 2

\bigm\| \bigm\| \bigm\| \bigm\| 
p

.

Since v \sim N(0, Id), the direction v/\| v\| 2 \sim Unif(\BbbS d - 1) and the magnitude \| v\| 2 are
independent, and by rotational invariance of the Gaussian distribution, Gx \sim N(0, Id)
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for any x \in \BbbS d - 1. Hence

\bigm\| \bigm\| \bigm\| \bigm\| G
v

\| v\| 2
+ \sigma u\| v\| 2

\bigm\| \bigm\| \bigm\| \bigm\| 
p

dist
== \| u1 + \sigma tu2\| p dist

==
\sqrt{} 
1 + \sigma 2t2\| u\| p,

where t follows the distribution of \| v\| 2 and u1, u2 are independent N(0, In) vectors.
Applying the preceding two lemmas, we see that with probability at least 0.998, it
holds that t \geq 0.99

\surd 
d and \| u\| p \geq (1  - \varepsilon )\beta pn

1/p. Therefore, when A \sim \scrL 2 with
probability at least 0.998, we have supx\in \BbbS d - 1 \| Ax\| p \geq 

\surd 
1 + 0.992\alpha 2\varepsilon (1 - \varepsilon )\beta pn

1/p \geq 
(1 + 4\varepsilon )\beta pn

1/p, for an appropriate choice of \alpha .
Therefore with the corresponding recovery algorithm \scrA ,

Pr
A\sim \scrL 1,S

\biggl\{ 
sup

x\in \BbbS n - 1

\scrA (SAx) \leq (1 + \varepsilon )2\beta pn
1/p

\biggr\} 
\geq 0.9,

Pr
A\sim \scrL 2,S

\biggl\{ 
sup

x\in \BbbS n - 1

\scrA (SAx) \geq (1 + 4\varepsilon )(1 - \varepsilon )\beta pn
1/p

\biggr\} 
\geq 0.9,

which implies that the linear sketch S can be used to distinguish \scrL 1 from \scrL 2 by
evaluating supx\in \BbbS d - 1 \scrA (SAx). It then follows from [28, Theorem 4] that the size of
the sketch md \geq c/\sigma 4 = c\prime d2/\varepsilon 2 for some absolute constants c, c\prime > 0, and thus
m \geq c\prime d/\varepsilon 2.

8. Lower bounds for \bfitM -estimators. The main theorem of this section is the
following.

Theorem 8.1. Suppose there exist \alpha , \lambda > 0 and p \in (0,\infty )\setminus 2\BbbZ such that \phi (t/\lambda ) \sim 
\alpha | t| p as t \rightarrow \infty or t \rightarrow 0. When d \geq C1 log(1/\varepsilon ) and n \geq C2d/(\varepsilon 

2 polylog(1/\varepsilon ))
for some absolute constants C1, C2 > 0, the subspace sketch problem for \Phi (x) =\sum n

i=1 \phi (xi) requires \Omega (d/(\varepsilon 2 polylog(1/\varepsilon ))) bits.

Proof. We reduce the problem to the \ell p subspace sketch problem. We prove the
statement in the case of t\rightarrow \infty below. The proof for the case of t\rightarrow 0 is similar.

For a given \varepsilon > 0, there exists M such that (1  - \varepsilon )\alpha | t| p \leq \phi (t/\lambda ) \leq (1 + \varepsilon )\alpha | t| p
for all | t| \geq M . Let A be our hard instance for the \ell p subspace sketch problem in
Theorem 3.12. Then each row of A is a \{  - 1, 1\} -vector scaled by a factor of \~yi \geq \Delta for

some \Delta = \Omega 
\bigl( 
log1/(2p)(1/\varepsilon )

\bigr) 
. One can recover a random sign used in the construction

of A by querying Ax for a \{  - 1, 1\} -vector x. Therefore, if (Ax)i \not = 0, it must hold
that | (Ax)i| \geq \Delta . This implies that there exists a scaling factor \beta = M/\Delta such
that (1  - \varepsilon )\alpha \| \beta Ax\| pp \leq \Phi (\lambda  - 1\beta Ax) \leq (1 + \varepsilon )\alpha \| \beta Ax\| pp, that is, \alpha  - 1\beta  - p\Phi (\lambda  - 1\beta Ax)
is a (1 \pm \varepsilon )-approximation to \| Ax\| pp for \{  - 1, 1\} -vectors x. The conclusion follows
from Corollary 3.13 (which plants independent copies of hard instance A in diagonal
blocks) and a rescaling of \varepsilon .

We have the following immediate corollary.

Corollary 8.2. When d \geq C1 log(1/\varepsilon ) and n \geq C2d/(\varepsilon 
2 polylog(1/\varepsilon )) for some

absolute constants C1, C2 > 0, for the following functions \phi , the subspace sketch
problem requires \Omega (d/(\varepsilon 2 polylog(1/\varepsilon ))) bits.

\bullet (L1-L2 estimator) \phi (t) = 2(
\sqrt{} 
1 + t2/2 - 1);

\bullet (Huber estimator) \phi (t) = t2/(2\tau ) \cdot 1\{ | t| \leq \tau \} + (| t|  - \tau /2) \cdot 1\{ | t| >\tau \} ;

\bullet (Fair estimator) \phi (t) = \tau 2(| t| /\tau  - ln(1 + | t| /\tau ));
\bullet (Tukey loss p-norm) \phi (t) = | t| p \cdot 1\{ | t| \leq \tau \} + \tau p \cdot 1\{ | t| >\tau \} .
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TIGHT BOUNDS FOR THE SUBSPACE SKETCH PROBLEM 1317

Now we prove the \Omega (d/(\varepsilon 2 polylog(1/\varepsilon ))) lower bound for the subspace sketch
problem for the Cauchy estimator \phi (t) = (\tau 2/2) ln(1 + (t/\tau )2). First consider an
auxiliary function \phi aux(t) = ln | x| \cdot 1\{ | x| \geq 1\} , for which we shall also have a lower bound
of \Omega (d/(\varepsilon 2 polylog(1/\varepsilon )) by following the approach in section 3 with some changes we

highlight below. Instead of M
(d,p)
i,j = | \langle i, j\rangle | p, we shall define M

(d,p)
i,j = \phi aux(\langle i, j\rangle ),

and we proceed to define N (d) and \Lambda 
(d,p)
0 in the same manner. The following lemma is

similar to Corollary 3.4, showing that this new matrix M (d,p) also has large singular
values. The proof is postponed to section 8.1.

Lemma 8.3. Suppose that d \in 8\BbbZ . Then \Lambda 
(d,p)
0 \geq c2d/2/

\surd 
d for some absolute

constant c > 0.

Therefore, the entire lower bound argument in Corollary 3.14 goes through. We
can then conclude that the subspace sketch problem for \Phi aux(x) =

\sum n
i=1 \phi aux(xi) re-

quires \Omega (d/(\varepsilon 2 polylog(1/\varepsilon )) bits. Now, for the Cauchy estimator \phi (t) = (\tau 2/2) ln(1+
(t/\tau )2), note that (1 - \varepsilon )\tau 2\phi aux(t) \leq \phi (\tau \cdot t) \leq (1+\varepsilon )\tau 2\phi aux(t) for all sufficiently large
t. It follows from a similar argument to the proof of Theorem 8.1 that the same lower
bound continues to hold for the subspace sketch problem for the Cauchy estimator.

Corollary 8.4. When d \geq C1 log(1/\varepsilon ) and n \geq C2d/(\varepsilon 
2 polylog(1/\varepsilon )) for some

absolute constants C1, C2 > 0, for the Cauchy estimator \phi (t) = (\tau 2/2) ln(1 + (t/\tau )2),
the subspace sketch problem requires \Omega (d/(\varepsilon 2 polylog(1/\varepsilon ))) bits.

8.1. Proof of Lemma 8.3. Before starting, let us define a useful integral

In =

\int \pi 
2

0

sin2n tdt.

We shall repeatedly use the following classical result that (see, e.g., [16, p. 511])

(8.1) In =

\surd 
\pi \Gamma (n+ 1

2 )

2n\Gamma (n)
=

1

2

\sqrt{} 
\pi 

n
+O

\biggl( 
1

n3/2

\biggr) 
, n\rightarrow \infty .

Now we begin the proof of Lemma 8.3. Differentiate both sides of (3.3) w.r.t p:

 - 
\int \infty 

0

(2 sin t)2n ln t

tp+1
dt = 2

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
(2k)p ln(2k) cos

\Bigl( \pi p
2

\Bigr) 
\Gamma ( - p)

 - 2

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
(2k)p

\pi 

2
sin
\Bigl( \pi p

2

\Bigr) 
\Gamma ( - p)

 - 2

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
(2k)p cos

\Bigl( \pi p
2

\Bigr) 
\Gamma \prime ( - p).

Invoke the reflection identity (3.4),

\Gamma (p+ 1)

\pi 
sin
\Bigl( \pi p

2

\Bigr) \int \infty 

0

(2 sin t)2n ln t

tp+1
dt =

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
(2k)p ln(2k)

 - 2

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
(2k)p

\pi 

2

sin2
\bigl( 
\pi p
2

\bigr) 

sin(p\pi )

 - 
n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
(2k)p

\Gamma \prime ( - p)
\Gamma ( - p) .
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1318 YI LI, RUOSONG WANG, AND DAVID P. WOODRUFF

Letting p \rightarrow 0+, we see that the middle term on the right-hand side vanishes, which
implies that

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
ln k

= lim
p\rightarrow 0+

\Biggl[ 
22n

\pi 
sin
\Bigl( \pi p

2

\Bigr) \int \infty 

0

(sin t)2n ln t

tp+1
dt+

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) \biggl( 
\Gamma \prime ( - p)
\Gamma ( - p)  - ln 2

\biggr) \Biggr] 
.

Note that letting p\rightarrow 0+ in Lemma 3.3 leads to

(8.2)

n\sum 

k=1

( - 1)k+1

\biggl( 
2n

n+ k

\biggr) 
=

22n

\pi 
lim

p\rightarrow 0+
sin
\Bigl( \pi p

2

\Bigr) \int \infty 

0

sin2n t

tp+1
dt;

we thus obtain that

(8.3)

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
ln k

=
22n

\pi 
lim

p\rightarrow 0+
sin
\Bigl( \pi p

2

\Bigr) \int \infty 

0

\biggl( 
(sin2n t) ln t

tp+1
 - 
\biggl( 
\Gamma \prime ( - p)
\Gamma ( - p)  - ln 2

\biggr) 
sin2n t

tp+1

\biggr) 
dt

=
22n

2
lim

p\rightarrow 0+
p

\int \infty 

0

\biggl( 
(sin2n t) ln t

tp+1
 - 
\biggl( 
\Gamma \prime ( - p)
\Gamma ( - p)  - ln 2

\biggr) 
sin2n t

tp+1

\biggr) 
dt.

We wish to show that the limit on the rightmost side is at least c/
\surd 
n for some absolute

constant c > 0. Note that the left-hand side of (8.2) is

that

n\sum 

k=1

( - 1)k+1

\biggl( 
2n

n+ k

\biggr) 
=

1

2

\biggl( 
2n

n

\biggr) 
\sim 1

2
\surd 
\pi 
\cdot 2

2n

\surd 
n
, n\rightarrow \infty ,

thus

lim
p\rightarrow 0+

p

\int \infty 

0

sin2n t

tp+1
dt \sim 1\surd 

\pi n
, n\rightarrow \infty .

Note the fact that \Gamma \prime (x)/\Gamma (x) =  - 1/x - \gamma + o(1) as x\rightarrow 0 (e.g., plugging n = 1 into
eq. (1.2.15) in [6, p. 13]), where \gamma = 0.577 . . . is the Euler gamma constant. Thus
(8.3) can be rewritten as

(8.4)

n\sum 

k=1

( - 1)k
\biggl( 

2n

n+ k

\biggr) 
ln k

=
22n

2
lim

p\rightarrow 0+
p

\int \infty 

0

\biggl( 
(sin2n t) ln t

tp+1
 - 
\biggl( 
1

p
 - \gamma  - ln 2

\biggr) 
sin2n t

tp+1

\biggr) 
dt.

Hence, letting

fp(t) =
p ln t - 1

tp+1
,

we see it suffices to show that

(8.5) lim
p\rightarrow 0+

\int \infty 

0

fp(t) sin
2n tdt >  - c\surd 

n

for some constant c \in 
\bigl( 
0, 1\surd 

\pi 
(\gamma +ln 2)

\bigr) 
. Combining (8.4) and (8.2), we know that the

limit in (8.5) must exist.
We split the integral into [0, \pi ] and [\pi ,\infty ) and deal with each part separately.
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TIGHT BOUNDS FOR THE SUBSPACE SKETCH PROBLEM 1319

Lemma 8.5. It holds that

lim
p\rightarrow 0+

\int \pi 

0

fp(t) sin
2n tdt \geq  - 2\surd 

\pi n
+O

\biggl( 
1

n

\biggr) 
.

Proof. Observe that

lim
p\rightarrow 0+

\int \pi 

0

p ln t

tp+1
sin2n tdt = 0,

because the integrands, viewed as functions of (p, t), are bounded on [0, 1] \times [0, \pi ],
since sin2n t \sim t2n near t = 0 and so t = 0 is not a singularity. Furthermore,

lim
p\rightarrow 0+

\int \pi 

0

sin2n t

tp+1
dt =

\int \pi 

0

sin2n t

t
dt

because the integrand is uniformly continuous on [0, 1] \times [0, \pi ] and we can take the
limit under the integral sign.

Hence, for the integral on [0, \pi ], we have

lim
p\rightarrow 0+

\int \pi 

0

fp(t) sin
2n tdt =  - 

\int \pi 

0

sin2n t

t
dt.

We claim that

(8.6)

\int \pi 

0

sin2n t

t
dt \leq 2\surd 

\pi n
+O

\biggl( 
1

n

\biggr) 
.

First observe that

\int \pi 

\pi /2

sin2n t

t
dt \leq 2

\pi 

\int \pi 

\pi /2

sin2n tdt =
2

\pi 
In \sim 1\surd 

\pi n

and \int 1

0

sin2n t

t
dt \leq 

\int 1

0

t2n - 1dt =
1

2n
.

Letting \delta =
\sqrt{} 

(3 lnn)/(2n), then for t \in [1, \pi /2 - \delta ],

sin2n t \leq sin2n
\Bigl( \pi 
2
 - \delta 
\Bigr) 
\leq 
\biggl( 
1 - \delta 2

3

\biggr) 2n

\leq e - 
2
3n\delta 

2

=
1

n

and, thus,

\int \pi 
2  - \delta 

1

sin2n t

t
dt \leq 

\int \pi 
2  - \delta 

1

sin2n tdt \leq 
\Bigl( \pi 
2
 - 1
\Bigr) 
\cdot 1
n
= O

\biggl( 
1

n

\biggr) 
.

For the last part,

\int \pi 
2

\pi 
2  - \delta 

sin2n t

t
dt \leq 1

\pi 
2  - \delta 

\int \pi 
2

\pi 
2  - \delta 

sin2n tdt \leq 1
\pi 
2  - \delta 

\cdot In \sim 1\surd 
\pi n

.

The proof of (8.6) is complete.
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1320 YI LI, RUOSONG WANG, AND DAVID P. WOODRUFF

Now we deal with the integral on [\pi ,\infty ), for which we have the following approx-
imation.

Lemma 8.6. It holds for all small p > 0 that

\int \infty 

\pi 

fp(t) sin
2n tdt =

\sqrt{} 
\pi 

n

\infty \sum 

k=1

fp

\biggl( \biggl( 
k +

1

2

\biggr) 
\pi 

\biggr) 
+ o

\biggl( 
1

n

\biggr) 
.

Proof. Consider
\bigm| \bigm| \bigm| \bigm| \bigm| 

\int (k+1)\pi 

k\pi 

\biggl[ 
fp(t) - fp

\biggl( \biggl( 
k +

1

2

\biggr) 
\pi 

\biggr) \biggr] 
sin2n tdt

\bigm| \bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int \pi 
2

0

\biggl[ 
fp

\biggl( \biggl( 
k+

1

2

\biggr) 
\pi +t

\biggr) 
+fp

\biggl( \biggl( 
k+

1

2

\biggr) 
\pi  - t

\biggr) 
 - 2fp

\biggl( \biggl( 
k+

1

2

\biggr) 
\pi 

\biggr) \biggr] 
sin2n

\Bigl( \pi 
2
 - t
\Bigr) 
dt

\bigm| \bigm| \bigm| \bigm| \bigm| 

\leq max
t\in [k\pi ,(k+1)\pi ]

| f \prime \prime p (t)| \cdot 
\int \pi 

2

0

t2 sin2n
\Bigl( \pi 
2
 - t
\Bigr) 
dt.

Hence
\bigm| \bigm| \bigm| \bigm| \bigm| 

\int \infty 

\pi 

fp(t) sin
2n tdt - 

\infty \sum 

k=1

fp

\biggl( \biggl( 
k +

1

2

\biggr) 
\pi 

\biggr) \int \pi 

0

sin2n tdt

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\infty \sum 

k=1

max
t\in [k\pi ,(k+1)\pi ]

| f \prime \prime p (t)| \cdot Jn,

where

Jn =

\int \pi 
2

0

t2 sin2n
\Bigl( \pi 
2
 - t
\Bigr) 
dt.

We can calculate that

f \prime \prime p (t) =
p(1 + p)(2 + p) ln t - 3p(2 + p) - 2

t3+p

and thus for all small p \geq 0,

\infty \sum 

k=1

max
t\in [k\pi ,(k+1)\pi ]

| f \prime \prime p (t)| 

is uniformly bounded. Next we deal with Jn. Let \delta > 0 (which could depend on n)
to be determined. Then we have

Jn =

\int \pi 
2

0

\Bigl( \pi 
2
 - t
\Bigr) 2

sin2n tdt

\leq 
\int \pi 

2  - \delta 

0

\Bigl( \pi 
2
 - t
\Bigr) 2

sin2n
\Bigl( \pi 
2
 - \delta 
\Bigr) 
dt+

\int \pi 
2

\pi 
2  - \delta 

\delta 2 sin2n tdt

\leq sin2n
\Bigl( \pi 
2
 - \delta 
\Bigr) \int \pi 

2

0

\Bigl( \pi 
2
 - t
\Bigr) 2
dt+ \delta 2In

\leq 
\biggl( 
1 - \delta 2

3

\biggr) 2n
\pi 3

24
+ \delta 2In

\leq \pi 3

24
e - 

2
3n\delta 

2

+ \delta 2In.

Recall that In = (1/2)
\sqrt{} 
\pi /n + O(1/n3/2). Taking \delta =

\sqrt{} 
3(lnn)/n, we see that

Jn = O((lnn)/n3/2). The conclusion follows.

D
ow

nl
oa

de
d 

08
/1

8/
21

 to
 3

.1
.5

8.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TIGHT BOUNDS FOR THE SUBSPACE SKETCH PROBLEM 1321

In view of Lemmas 8.5 and 8.6, in order to show (8.5), it suffices to show that

(8.7) lim inf
p\rightarrow 0+

Ap >
2 - \gamma  - ln 2

\pi 
,

where

Ap =

\infty \sum 

k=1

fp

\biggl( \biggl( 
k +

1

2

\biggr) 
\pi 

\biggr) 
.

Let N = [e1/p/\pi ], then fp(t) < 0 and increasing when t \in [\pi ,N\pi ] and fp(t) > 0 when
t \in [(N + 1)\pi ,\infty ). We then have

Ap = fp

\biggl( 
3

2
\pi 

\biggr) 
+

N - 1\sum 

k=2

fp

\biggl( \biggl( 
k +

1

2

\biggr) 
\pi 

\biggr) 
+ fp

\biggl( \biggl( 
N +

1

2

\biggr) 
\pi 

\biggr) 
+

\infty \sum 

k=N+1

fp

\biggl( \biggl( 
k +

1

2

\biggr) 
\pi 

\biggr) 

\geq fp

\biggl( 
3

2
\pi 

\biggr) 
+

N - 1\sum 

k=2

fp(k\pi ) + fp

\biggl( \biggl( 
N +

1

2

\biggr) 
\pi 

\biggr) 
+

\infty \sum 

k=N+1

p ln(k\pi ) - 1

((k + 1)\pi )p+1

\geq fp

\biggl( 
3

2
\pi 

\biggr) 
+

\infty \sum 

k=2

fp(k\pi ) - fp(N\pi ) - fp((N + 1)\pi ) + fp

\biggl( \biggl( 
N +

1

2

\biggr) 
\pi 

\biggr) 

+

\infty \sum 

k=N+1

\biggl( 
p ln(k\pi ) - 1

((k + 1)\pi )p+1
 - p ln((k + 1)\pi ) - 1

((k + 1)\pi )p+1

\biggr) 

= fp

\biggl( 
3

2
\pi 

\biggr) 
+Bp + Cp +Dp,

where

Bp =

\infty \sum 

k=2

fp(k\pi ),

Cp =  - fp(N\pi ) - fp((N + 1)\pi ) + fp

\biggl( \biggl( 
N +

1

2

\biggr) 
\pi 

\biggr) 
,

Dp =

\infty \sum 

k=N+1

p ln(1 - 1
k+1 )

((k + 1)\pi )p+1
.

It is clear that fp(3\pi /2) \rightarrow  - 2/(3\pi ) and Cp \rightarrow 0 as p \rightarrow 0+. For Dp, note that the
summands

p ln(1 - 1
k+1 )

((k + 1)\pi )p+1
\sim  - p

(k + 1)p+2\pi p+1
, k \rightarrow \infty ,

we also have Dp \rightarrow 0 as p \rightarrow 0+. With the help of Riemann zeta functions \zeta (s) =\sum \infty 
n=1 n

 - s, we can write

Bp =
1 - p ln\pi + (p ln\pi  - 1)\zeta (1 + p) - p\zeta \prime (1 + p)

\pi p+1
.

Recall the fact that \zeta (1 + p) = 1
p + \gamma + f(p) for an analytic function f on \BbbC with

f(0) = 0 (see, e.g., [6, p. 15]), we see that

lim
p\rightarrow 0+

Bp =
1 - \gamma + ln\pi 

\pi 
.
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Therefore

lim inf
p\rightarrow 0+

Ap  - 
2 - \gamma  - ln 2

\pi 
\geq 1

\pi 

\biggl( 
 - 2

3
+ (1 - \gamma + ln\pi ) - (2 - \gamma  - ln 2)

\biggr) 

=
ln(2\pi ) - 5

3

\pi 
> 0,

establishing (8.7). The proof of Lemma 8.3 is now complete (recalling that 2n = d/2
as in Corollary 3.4).

9. Lower bounds on coresets for projective clustering. We shall prove a
lower bound of \widetilde \Omega (kj/\varepsilon 2) bits for coresets for projective clustering. First we need a
lemma which provides codewords to encode the clustering information.

Lemma 9.1. For any given integer L \geq 1 and even integer D \geq 2, there exists a
set S = \{ (s1, t1), (s2, t2), . . . , (sm, tm)\} of size m \geq c2D/

\surd 
D, where si, ti \in \BbbR D and

c > 0 is an absolute such that

\bullet \langle si, ti\rangle = 0,

\bullet \langle si, tj\rangle \geq L2 for i \not = j,

\bullet all entries of si and ti are in \{ 0, L\} .
Proof. We first consider the case L = 1. Let \{ si\} be the set of all binary vectors

with Hamming weight D/2, and ti = 1D  - si, i.e., ti is the complement of si. Thus,
\langle si, ti\rangle = 0 by construction. For any i \not = j, since si \not = sj , and both si and sj have
Hamming weight D/2, we have \langle si, tj\rangle \geq 1.

For a general L, we replace all entries of value 1 in the construction above with
L.

In the rest of the section, we also use an n\times d matrix to represent a point set of
size n in \BbbR d, where each row represents a point in \BbbR d.

Below we set up the framework of the hard instance for the projective subspace
clustering problem. For a given k, choosing D = O(log k), we can obtain a set S of
size k as guaranteed by Lemma 9.1. Suppose that j \geq D+ 1 and d \geq j + 1. Without
loss of generality we may assume that d = j + 1, otherwise we just embed our hard
instance in \BbbR j+1 into \BbbR d by appending zero coordinates.

For a set \scrA consisting of k matrices A(1), A(2), . . . , A(k) \in \BbbR n\times (j+1 - D), we form a
point set X = X(\scrA ) \in \BbbR nk\times d, whose rows are indexed by (i, j) \in [k]\times [n] and defined
as

Xi,j =
\Bigl( 
sTi A

(i)
j

\Bigr) 
,

where A
(i)
j denotes the jth row of A(i).

Suppose that y \in \BbbR j+1 - D. For each i \in [k], let Vi,Wi \subseteq \BbbR j+1 be j-dimensional
subspaces that satisfy

Vi \bot vi, vi =
\bigl( 
ti 0j+1 - D

\bigr) 
,

Wi \bot wi, wi =
\bigl( 
ti y

\bigr) 
,

where, for notational simplicity, we write vertical concatenation in a row. Last, for
each \ell \in [k], define a center

\scrC \ell = (V1, . . . , V\ell  - 1,W\ell , V\ell +1, . . . , Vk).

Lemma 9.2. When \| y\| 2 = 1 and L2 \geq maxi \| A(\ell )
i \| 2, it holds that cost(X, \scrC \ell ) =

\Phi (A(\ell )y/\| w\ell \| 2).
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Proof. One can readily verify, using Lemma 9.1, that Pij \bot vi whenever i \not = \ell ,
and thus Pij \in V \prime 

i and dist(Pij , X\ell ) = 0 for i \not = \ell .
On the other hand, for i \not = \ell ,

dist(P\ell j , Vi) =
| \langle P\ell j , vi\rangle | 
\| vi\| 2

=
| \langle P\ell j , vi\rangle | 
L \cdot 
\sqrt{} 
D/2

\geq L\sqrt{} 
D/2

and

dist(P\ell j ,W\ell ) =
| \langle P\ell j , w\ell \rangle | 
\| w\ell \| 2

=
| \langle A(\ell )

i , y\rangle | 
\| w\ell \| 2

\leq \| A(\ell )
i \| 2\| y\| 2\sqrt{} 

D
2 L

2 + \| y\| 22
.

Hence when L2 \geq \| y\| 2 maxi \| A(\ell )
i \| 2, it must hold that W\ell is the subspace in X\ell that

is the closest to P\ell j for all j and, therefore,

cost(X, \scrC \ell ) =
n\sum 

j=1

\phi (dist(P\ell j ,W\ell )) = \Phi 

\biggl( 
A(\ell )y

\| w\ell \| 2

\biggr) 
.

Theorem 9.3. Suppose that there exists a function \Phi and absolute constants C0

and \varepsilon 0 such that for any d \geq C0 log(k/\varepsilon ) and \varepsilon \in (0, \varepsilon 0), solving the subspace sketch
problem for \Phi requires M bits. Then there exists an absolute constant C1 such that
for any k \geq 1 and j \geq C1 log(k/\varepsilon ), any coreset for projective clustering for \Phi requires
kM bits.

Proof. We prove this theorem by a reduction from the subspace sketch problem
for \Phi to coresets for projective clustering for \Phi .

Choose D = O(log k) and d\prime := j + 1  - D = C0 log(1/\varepsilon ). Let A(1), . . . , A(k) \in 
\BbbR n\times d\prime 

be k independent hard instances for the subspace sketch problem for \Phi . Let
X be as constructed before Lemma 9.2. If one can compute a projective clustering
coreset for X so that one can approximate cost(X, \scrC \ell ) up to a (1\pm \varepsilon )-factor, it follows
from Lemma 9.2 that one can approximate \Phi (A(\ell )y/\| w\| 2) up to a (1\pm \varepsilon )-factor for
every \ell \in [k] and every unit vector y \in \BbbR d\prime 

. Solving the subspace sketch problem for
\Phi for each A(\ell ) requires M bits. Therefore, solving k independent instances requires
kM bits.

We have the following immediate corollary.

Corollary 9.4. Under the assumptions of Theorem 9.3, any coreset for projec-
tive clustering requires \Omega (jM/ log(k/\varepsilon )) bits.

Proof. Let b = j/(C0 log(k/\varepsilon )). Let X \prime be a block diagonal matrix of b blocks,
each diagonal block is an independent copy of the hard instance X in Theorem 9.3.
It then follows from Theorem 9.3 that the lower bound is \Omega (bM) bits.

A lower bound of \Omega (jk/(\varepsilon 2 log k \cdot polylog(1/\varepsilon )) follows immediately for \Phi (x) =
\| x\| pp (Theorem 3.12) for p \in [0,+\infty ) \setminus 2\BbbZ +, and the M -estimators in Corollaries 8.2
and 8.4.

10. Upper bounds for the Tukey loss \bfitp -norm. We shall prove in this section
an \widetilde O(1/\varepsilon 2) upper bound for estimating a mollified version of the Tukey loss p-norm
\Phi (x) for a vector x \in \BbbR n, where p \in (0, 2].

10.1. Jacobi polynomials. Jacobi polynomials P
(\alpha ,\beta )
n (x) (\alpha , \beta >  - 1, n =

0, 1, 2, . . . ) are a class of orthogonal polynomials on [ - 1, 1] with respect to the weight
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function w\alpha ,\beta (x) = (1 - x)\alpha (1 + x)\beta , that is,

\int 1

 - 1

P (\alpha ,\beta )
n (x)P (\alpha ,\beta )

m (x)(1 - x)\alpha (1 + x)\beta dx = 0, n \not = m.

The convention is to take Jacobi polynomials as the following explicit expression (see,
e.g., [39, eq. (4.3.2)]):

P (\alpha ,\beta )
n (x) =

n\sum 

\nu =0

\biggl( 
n+ \alpha 

n - \nu 

\biggr) \biggl( 
n+ \beta 

\nu 

\biggr) \biggl( 
x - 1

2

\biggr) \nu \biggl( 
x+ 1

2

\biggr) n - \nu 

.

Hence P
(\alpha ,\beta )
n is a polynomial of degree n and

P (\alpha ,\beta )
n (1) =

\biggl( 
n+ \alpha 

n

\biggr) 
, P (\alpha ,\beta )

n ( - 1) = ( - 1)n
\biggl( 
n+ \beta 

n

\biggr) 
.

The normalization of Jacobi polynomials is given by

\int 1

 - 1

\Bigl[ 
P (\alpha ,\beta )
n (x)

\Bigr] 2
(1 - x)\alpha (1 + x)\beta dx =

2\alpha +\beta +1

2n+ \alpha + \beta + 1
\cdot \Gamma (n+ \alpha + 1)\Gamma (n+ \beta + 1)

n! \Gamma (n+ \alpha + \beta + 1)
.

Let c
(\alpha ,\beta )
n be the reciprocal of the right-hand side above such that

\biggl\{ \sqrt{} 
c
(\alpha ,\beta )
n P (\alpha ,\beta )

n (x)

\biggr\} 

n\geq 0

is orthonormal with respect to the weight function w\alpha ,\beta (x).
The derivatives of a Jacobi polynomial are Jacobi polynomials with different pa-

rameters (cf. [39, eq. (4.21.7)]):

dm

dxm
P (\alpha ,\beta )
n (x) =

\Gamma (\alpha + \beta + n+ 1 +m)

2m\Gamma (\alpha + \beta + n+ 1)
P\alpha +m,\beta +m
n - m (x).

The maximum of the Jacobi polynomials on [ - 1, 1] is well known.

Lemma 10.1 (see [39, Theorem 7.32.1]). When \alpha , \beta >  - 1
2 , maxx\in [ - 1,1] | P (\alpha ,\beta )

n (x)| =\bigl( 
n+q
n

\bigr) 
, where q = max\{ \alpha , \beta \} .

A finer upper bound on the Jacobi polynomial on ( - 1, 1) is due to Nevai, Erd\'elyi,
and Magnus [33].

Lemma 10.2 (see [33]). There exists an absolute constant C > 0 such that for
all \alpha , \beta >  - 1

2 and all n \geq 0,

sup
x\in [ - 1,1]

(1 - x)\alpha +
1
2 (1 - x)\beta +

1
2

\biggl( \sqrt{} 
c\alpha ,\beta n P (\alpha ,\beta )

n

\biggr) 2

\leq C(1 +
\sqrt{} 
\alpha 2 + \beta 2).

10.2. Mollification of Tukey loss function. We want to construct a mollifier
\psi \in Cs

0( - 1, 1) which satisfies the moment conditions

(10.1)

\int 1

 - 1

tk\psi (t)dt =

\Biggl\{ 
1, k = 0,

0, k = 1, 2, . . . , s.
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Such mollifier can be constructed using Jacobi polynomials P
(s+1, 12 )
s (x) as

\psi (x) = cs(1 - x2)s+1P
(s+1, 12 )
s (2x2  - 1), x \in ( - 1, 1).

Observe that \psi (x) is a polynomial consisting of even-degree terms only so the moment
condition (10.1) is satisfied for all odd k. For even k = 2\ell , note that

\int 1

 - 1

t2\ell \psi (t)dt = 2

\int 1

 - 1

(1 - u)s+1(1 + u)\ell  - 
1
2P

(s+1, 12 )
s (u)du

= 2

\int 1

 - 1

ws+1, 12
(u) \cdot (1 + u)\ell  - 1 \cdot P (s+1, 12 )

s (u)du.

When 1 \leq \ell \leq s, the polynomial (1 + u)\ell  - 1 can be written as a linear combination

of \{ P (s+1, 12 )
r \} r=0,...,\ell  - 1, hence the integral above is 0 from the orthogonality of Jacobi

polynomials. This implies that the moments condition (10.1) for even k \geq 2 is sat-
isfied. (This in fact implies the moment conditions hold up to k = 2s.) At last, one
can choose the normalization factor cs such that the moment condition is satisfied for
k = 0 (see Lemma 10.3 below).

The following are probably classical results but we do not know an appropriate
reference and so we produce full proofs here.

Lemma 10.3. It holds that cs \sim ( - 1)s
\sqrt{} 

2
\pi s.

Proof.

\int 1

 - 1

(1 - x2)s+1P
(s+1, 12 )
s (2x2  - 1)dx

=
1\surd 

2 \cdot 2s+1

\int 1

 - 1

(1 - u)s+1(1 + u) - 
1
2P

(s+1, 12 )
s (u)du

=
1\surd 

2 \cdot 2s+1
\cdot ( - 1)s

2
3
2+s

\surd 
\pi \Gamma (2s+ 2)

\Gamma (2s+ 5
2 )

\sim ( - 1)s
\sqrt{} 
\pi 

2s
,

where we used the identity in [2] for the second equality.

Lemma 10.4. It holds that

\int 1

 - 1

| \psi (x)| dx \leq C
\surd 
s ln s.

Proof. Similarly to the proof of the preceding lemma, we have that

\int 1

 - 1

| \psi (x)| dx =
| cd| \surd 
2 \cdot 2s+1

\int 1

 - 1

(1 - u)s+1(1 + u) - 
1
2

\bigm| \bigm| \bigm| P (s+1, 12 )
s (u)

\bigm| \bigm| \bigm| du.

Break the integral on the right-hand side into two pieces on [ - 1, - 1 + 1/s] and
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[ - 1 + 1/s, 1]. For the integral on [ - 1, - 1 + 1/s],

\int  - 1+ 1
s

 - 1

(1 - u)s+1(1 + u) - 
1
2

\bigm| \bigm| \bigm| P (s+1, 12 )
s (u)

\bigm| \bigm| \bigm| du \leq 
\int  - 1+ 1

s

 - 1

2s+1(1 + u) - 
1
2

\biggl( 
s+ 1

2

s

\biggr) 
du

= 2s+1 2\surd 
s

\biggl( 
s+ 1

2

s

\biggr) 

\leq C12
s+1.

For the integral on [ - 1 + 1/s, 1], we use the finer bound in Lemma 10.2, which,
in our case, implies that

\bigm| \bigm| \bigm| P s+1, 12
s (u)

\bigm| \bigm| \bigm| \leq C2s/2

(1 - u)
s
2+

3
4 (1 + u)

1
2

, u \in ( - 1, 1),

where we used the fact that c
(s+1, 12 )
s \sim s2/2s. It follows that

\int 1

 - 1+ 1
s

(1 - u)s+1(1 + u) - 
1
2

\bigm| \bigm| \bigm| P (s+1, 12 )
s (u)

\bigm| \bigm| \bigm| du \leq C

\int 1

 - 1+ 1
s

2s/2
(1 - u)

s
2+

1
4

1 + u
du

\leq C2

\int 1

 - 1+ 1
s

2s/2
2

s
2

1 + u
du

\leq C32
s ln s.

Combining the two parts above with Lemma 10.3, we have

\int 1

 - 1

| \psi (x)| dx \leq C4
| cs| \surd 
2 \cdot 2s+1

2s ln s \leq C5

\surd 
s ln s.

Let h\alpha (x) = (1 - x2)\alpha . We have the following bound on the derivatives of h\alpha (x).

Lemma 10.5. It holds for k < \alpha that

max
x\in [ - 1,1]

| (h\alpha )(k)(x)| \leq k!2k
\biggl( 
2\alpha 

k

\biggr) 
.

Proof. Writing (1 - x2)\alpha as (1 + x)\alpha (1 - x)\alpha , by Leibniz's rule we see that

(h\alpha )(k)(x) =

k\sum 

\ell =0

\biggl[ \biggl( 
k

\ell 

\biggr) 
\alpha (\alpha  - 1) \cdot \cdot \cdot (\alpha  - \ell + 1)(1 + x)\alpha  - \ell 

\cdot \alpha (\alpha  - 1) \cdot \cdot \cdot (\alpha  - (k  - \ell ) + 1)(1 - t)\alpha  - (k - \ell )( - 1)k - \ell 
\Bigr] 

= k!

s\sum 

\ell =0

\biggl( 
\alpha 

\ell 

\biggr) \biggl( 
\alpha 

k  - \ell 

\biggr) 
(1 + t)\alpha  - \ell (1 - x)\alpha  - (k - \ell )( - 1)s - \ell .

Hence

| (h\alpha )(s)(x)| \leq k!2k
k\sum 

\ell =0

\biggl( 
\alpha 

\ell 

\biggr) \biggl( 
\alpha 

k  - \ell 

\biggr) 
= k!2k

\biggl( 
2\alpha 

k

\biggr) 
,

as claimed.

Now we are ready to bound the derivatives of \psi (x).
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Lemma 10.6. Suppose that k \leq s. It holds that

max
x\in [ - 1,1]

| \psi (k)(x)| \leq C1

\surd 
ks

\biggl( 
C2s

2

k

\biggr) k

,

where C1, C2 > 0 are absolute constants.

Proof. By Leibniz's rule of differentation,

\psi (k)(x) = cs

k\sum 

\ell =0

\biggl( 
k

\ell 

\biggr) 
(hs+1)(k - \ell )(x)(P

(s+1, 12 )
s )(\ell )(2x2  - 1) \cdot (4x)\ell 

= cs

s\sum 

\ell =0

\biggl( 
k

\ell 

\biggr) 
(hs+1)(k - \ell )(x)

\cdot P (s+\ell +1,\ell + 1
2 )

s - \ell (2x2  - 1)(2x)\ell 
\ell \prod 

i=1

\biggl( 
2s+

1

2
+ i

\biggr) 
.

Therefore

| \psi (s)(x)| \leq | cs| 
s\sum 

\ell =0

\biggl( 
k

\ell 

\biggr) 
(k  - \ell )!2k - \ell 

\biggl( 
2s+ 2

\ell 

\biggr) 
\cdot 
\biggl( 
2s+ 1

k  - \ell 

\biggr) 
2\ell 

\ell +1\prod 

i=2

(2s+ i)

\leq | cs| 2k
k\sum 

\ell =0

\biggl( 
k

\ell 

\biggr) \biggl( 
2s+ 2

\ell 

\biggr) 
(2s+ \ell + 1)!

(2s+ \ell + 1 - k)!

= | cs| 2kk!
k\sum 

\ell =0

\biggl( 
k

k  - \ell 

\biggr) \biggl( 
2s+ 2

\ell 

\biggr) \biggl( 
2s+ \ell + 1

k

\biggr) 

\leq | cs| 2kk!
\biggl( 
2s+ k + 1

k

\biggr) k\sum 

\ell =0

\biggl( 
k

k  - \ell 

\biggr) \biggl( 
2s+ 2

\ell 

\biggr) 

= | cs| 2kk!
\biggl( 
2s+ k + 1

k

\biggr) \biggl( 
2s+ k + 2

k

\biggr) 

= | cs| 2kk!
\biggl( 
3s

k

\biggr) 2k

\leq C1

\surd 
ks

\biggl( 
C2s

2

k

\biggr) k

for some absolute constants C1, C2 > 0.

We also define a family of dilated versions of \psi as

\psi t(x) =
1

t
\psi 
\Bigl( x
t

\Bigr) 
,

then \psi t \in Cs+1
0 ( - t, t) and

\int t

 - t
\psi t(x)dx = 1.

Recall that the Tukey p-loss function is

\phi (x) =

\Biggl\{ 
| x| p, | x| \leq \tau ,

\tau p, | x| > \tau .
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1

(a) Plot of \widetilde \phi on [ - 1.5, 1.5]

0.9 0.95 1 1.05 1.1

0.85

0.9

0.95

1

φ(x)

φ̃(x)

(b) Plot of \widetilde \phi and \phi on [0.9, 1.1]

Fig. 10.1. Plots of the Tukey loss function \phi and the mollified version \widetilde \phi with p = 1.5, d = 1,
\delta = 1/16, \gamma = 3/16, and \tau = 1. In this case, \phi (\gamma ) \approx 0.081 and c\gamma \approx 7.3\times 10 - 7.

Let \delta \in (0, 1/8) and \gamma \in (2\delta , 1/2) be constants. We define the mollified version of \phi 
to be

(10.2) \widetilde \phi (x) =
\Biggl\{ 
\phi (x), | x| \leq \gamma \tau ,

(\phi \ast \psi \delta \tau )(x) + c\gamma , | x| > \gamma \tau ,

where the constant c\gamma is such that \widetilde \phi (x) is continuous at x = \gamma \tau . The mollified

version \widetilde \phi is not necessarily differentiable (unless when p = 1, in which case c\gamma = 0

and \phi \in Cs(0,+\infty )) but it is differentiable on [\gamma \tau ,+\infty ) and \widetilde \phi (x) = \phi (x)+c\gamma = \tau p+c\gamma 
for all | x| \geq (1 + \delta )\tau . See Figure 10.1 for an example plot.

We are going to choose the parameter s in our polynomial mollifier \psi such that
\widetilde \phi is close to \phi . Specifically, we have the following lemma.

Lemma 10.7. For \varepsilon > 0, when s = \Omega (log(1/\varepsilon )), it holds that | \widetilde \phi (x) - \phi (x)| \leq \varepsilon \phi (x)
on [\gamma \tau , \tau /2]. The constant in the \Omega -notation depends on p and \gamma .

Proof. Observe that

(\phi \ast \psi \delta \tau  - \phi )(x) = xp
\int \delta \tau 

 - \delta \tau 

\biggl[ \biggl( 
1 +

t

x

\biggr) p

 - 1

\biggr] 
\psi \delta \tau (t)dx

= xp
\int 1

 - 1

\biggl[ \biggl( 
1 + \delta \tau \cdot t

x

\biggr) p

 - 1

\biggr] 
\psi (t)dt.

If it holds that

(10.3)

\bigm| \bigm| \bigm| \bigm| 
\int 1

 - 1

\biggl[ \biggl( 
1 +

t

x

\biggr) p

 - 1

\biggr] 
\psi (t)dt

\bigm| \bigm| \bigm| \bigm| \leq 
\varepsilon 

2
, x \in 

\biggl[ 
\gamma 

\delta 
,
1

2\delta 

\biggr] 
,

then c\gamma \leq (\varepsilon /2)(\gamma \tau )p and thus

| \widetilde \phi (x) - \phi (x)| \leq | (\phi \ast \psi \tau /8  - \phi )(x)| + | c\gamma | \leq 
\varepsilon 

2
(xp + (\gamma \tau )p) \leq \varepsilon \phi (x)

for all x \in [\gamma \tau , \tau /2] as desired.
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Now we find s such that (10.3) holds. Note that | t/x| \leq \delta /\gamma < 1/2. Recall the
Taylor expansion with Cauchy remainder,

(1 + u)p  - 1 =

s\sum 

i=1

\biggl( 
p

i

\biggr) 
ui + rs(u),

where

rs(u) = (s+ 1)

\biggl( 
p

s+ 1

\biggr) 
us+1

\biggl( 
1 - \theta 

1 + \theta u

\biggr) s

(1 + \theta u)p - 1, \theta \in (0, 1).

We have bounds (note that p \leq 2)
\bigm| \bigm| \bigm| \bigm| 
\biggl( 

p

s+ 1

\biggr) \bigm| \bigm| \bigm| \bigm| \leq 
s!

(s+ 1)!
=

1

s+ 1
,

0 \leq 1 - \theta 

1 + \theta u
\leq 1, | u| < 1,

(1 + \theta u)p - 1 \leq max\{ (1 + | u| )p - 1, (1 - | u| )p - 1\} =: Kp(u).

It follows from the moment conditions (10.1) and Lemma 10.4 that
\bigm| \bigm| \bigm| \bigm| 
\int 1

 - 1

\biggl[ \biggl( 
1 +

t

x

\biggr) p

 - 1

\biggr] 
\psi (t)dt

\bigm| \bigm| \bigm| \bigm| \leq rs

\biggl( 
t

x

\biggr) 

\leq C
\surd 
s ln s

\biggl( 
\delta 

\gamma 

\biggr) s+1

Kp

\biggl( 
\delta 

\gamma 

\biggr) 
.

Hence (10.3) holds when s = \Omega (log(1/\varepsilon )) (where the constant depends on p, \delta , and
\gamma ).

A similar argument shows that \widetilde \phi (k) can be made (1\pm \varepsilon )-close to \phi (k) on [\gamma \tau , \tau /2]
for k = 1, . . . , d.

Next we bound the derivatives of \widetilde \phi .
Lemma 10.8. Suppose that 1 \leq k \leq s. There exist constants C1, C2 > 0 that

depend only on p, \delta , and \gamma such that

max
x\in [\gamma \tau ,(1+\delta )\tau ]

\bigm| \bigm| \bigm| \widetilde \phi (k)(x)
\bigm| \bigm| \bigm| \leq C1\tau 

p
\surd 
ks

\biggl( 
C2s

2

k\tau 

\biggr) k

.

Proof. Observe that for x \in [\gamma \tau , (1 + \delta )\tau ],
\bigm| \bigm| \bigm| \widetilde \phi (k)(x)

\bigm| \bigm| \bigm| \leq 2\delta \tau \cdot max
x\in [(\gamma  - \delta )\tau ,(1+\delta )\tau ]

\phi (x) \cdot max
x\in [ - \delta \tau ,\delta \tau ]

\bigm\| \bigm\| \bigm\| \psi (k)
\delta \tau (x)

\bigm\| \bigm\| \bigm\| 

\leq 2\delta \tau \cdot \tau p \cdot max
x\in [ - \delta \tau ,\delta \tau ]

\bigm\| \bigm\| \bigm\| \psi (k)
\delta \tau (x)

\bigm\| \bigm\| \bigm\| 

=
2\tau p

(\delta \tau )k
max

x\in [ - 1,1]

\bigm\| \bigm\| \bigm\| \psi (k)(x)
\bigm\| \bigm\| \bigm\| .

The result follows from Lemma 10.6.

As a corollary of the preceding lemma, we have the following.

Lemma 10.9. Let a \in (0, \gamma ] and b \geq 1+\delta be constants. When s = \Theta (log 1
\varepsilon ), there

exists a polynomial p(x) of degree O(s) such that | p(x)  - \widetilde \phi (x)| \leq \varepsilon \widetilde \phi (x) on [a\tau , b\tau ].
The constants in the \Theta - and O-notations depend on a, b, \delta , \gamma , and p.
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Proof. Since \widetilde \phi (x) \geq (a\tau )p on [a\tau , b\tau ], it is sufficient to consider the uniform

approximation | p(x)  - \widetilde \phi (x)| \leq \varepsilon (a\tau )p on [a\tau , b\tau ]. It follows from Lemma 2.8 that
when n > k,

En(\widetilde \phi ; [a\tau , b\tau ]) \leq 
6k+1ek

(k + 1)nk
\cdot 
\biggl( 
(b - a)\tau 

2

\biggr) k

\cdot max
x\in [a\tau ,b\tau ]

| \widetilde \phi (k)(x)| \cdot 1

n - k
.

Assume that k > 2. When x \in [a\tau , \gamma \tau ],

\bigm| \bigm| \bigm| \widetilde \phi (k)(x)
\bigm| \bigm| \bigm| =

\bigm| \bigm| \bigm| \phi (k)(x)
\bigm| \bigm| \bigm| =

\bigm| \bigm| p(p - 1) \cdot \cdot \cdot (p - k + 1)xp - k
\bigm| \bigm| \leq (k + 1)!(a\tau )p - k.

When x > (1 + \delta )\tau , \widetilde \phi (x) = \tau p + c\gamma and thus \widetilde \phi (k)(x) = 0. When x \in [\gamma \tau , (1 + \delta )\tau ],
we invoke Lemma 10.8. Combining the three cases, when s = k and n \geq 2k, we have
that

En(\widetilde \phi ; [a\tau , b\tau ]) \leq 
C1\tau 

ps

n

\biggl( 
C2 \cdot max\{ b - a, 1a\} \cdot s

n

\biggr) s

,

where C1, C2 > 0 are absolute constants. It is now clear that we can take s = k =
\Omega (log 1

\varepsilon ) and n = \Omega (s) so that En(\widetilde \phi ; [a\tau , b\tau ]) \leq \varepsilon \cdot (a\tau )p.

10.3. Estimation algorithm. In this subsection, we let \delta = 1/16 and \gamma = 3/16

for the definition of \widetilde \phi in (10.2). Since \widetilde \phi (x) agrees with | x| p for small | x| , it follows

from Theorem 8.1 that solving the subspace sketch problem for \widetilde \Phi (x) requires \widetilde \Omega (d/\varepsilon 2)
bits. In this subsection we show that this lower bound is tight up to polylogarithmic
factors. Specifically we have the following theorem.

Theorem 10.10. Let p \in (0, 2] be a constant and \widetilde \Phi (x) be the mollified Tukey loss
p-norm of x \in \BbbR n. There exists a randomized algorithm which returns an estimate Z
to \widetilde \Phi (x) such that (1  - \varepsilon )\widetilde \Phi (x) \leq Z \leq (1 + \varepsilon )\widetilde \Phi (x) with probability at least 0.9. The

algorithm uses \widetilde Op(1/\varepsilon 
2) bits of space.

This theorem implies an \widetilde O(d/\varepsilon 2) upper bound for the corresponding subspace
sketch problem. The remainder of the section is devoted to the proof of this theorem.

We shall first sample rows of A with sampling rate \Theta ( \tau p\widetilde \Phi (x)\varepsilon 2
). However, we do

not know \widetilde \Phi (x) in advance. To implement this, we sample rows of A using O(log n)
different sampling rates 1, (1.1) - 1, (1.1) - 2, . . . , 1.1 - O(logn) and, in parallel, estimate
\widetilde \Phi (x) using a separate data structure of O(polylog(n) \cdot d) space [11, 10], which gives

an estimate F satisfying 0.9\widetilde \Phi (x) \leq F \leq 1.1\widetilde \Phi (x). Then we choose a sampling rate
r = 1.1 - s for some integer s that is closest to \tau p

F\varepsilon 2 . Thus r \in [ \tau p

2\Phi (x)\varepsilon 2 ,
2\tau p\widetilde \Phi (x)\varepsilon 2

] when

\widetilde \Phi (x) > \tau p

2\varepsilon 2 , and r = 1 otherwise.
Now we show that for the chosen sampling rate r, the sampled entries give an

accurate estimation to \widetilde \Phi (x). This is definitely true when r = 1, in which case there

is no sampling at all. Otherwise, let Xi = \widetilde \Phi (xi) if item i is sampled and Xi = 0

otherwise. Let X =
\sum 

iXi and Z = (1/r)X. It is clear that \BbbE [Z] = \widetilde \Phi (x). We
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calculate the variance below:

Var(Z) =
1

r2
Var(X) =

1

r2

\sum 

i

Var(Xi)
2 =

1

r2

\sum 

i

(r  - r2)(\widetilde \Phi (xi))2

\leq 1

r

\sum 

i

(\widetilde \Phi (xi))2

= O

\Biggl( 
\widetilde \Phi (x)\varepsilon 2
\tau 

\cdot 
\sum 

i

\~\phi (xi) \cdot \tau 
\Biggr) 

= O(\varepsilon 2) \cdot (\widetilde \Phi (x))2.

It follows from Chebyshev's inequality that with constant probability,

Z =
1

r

\sum 
Xi = (1\pm O(\varepsilon ))\widetilde \Phi (x).

We condition on this event in the rest of the proof. Thus, it suffices to estimate the
summation of \widetilde \Phi (xi) for those xi that are sampled. In the rest of this section, we use
L to denote the indices of entries that are sampled at the sampling rate r.

For each i \in L with | xi| \geq \tau , we claim that

(10.4) | xi| \geq \Omega (\varepsilon 2) \cdot \| (xL) - O(2p/\varepsilon 2)\| pp,

where xL denotes the vector x restricted to the indices in L and v - k denotes the
vector v after zeroing out the largest k entries in magnitude.

We first show that \widetilde \Phi (xL) = O
\bigl( 
\tau p

\varepsilon 2

\bigr) 
, which is clearly true when r = 1, since in

this case, \widetilde \Phi (xL) = \widetilde \Phi (x) = O
\bigl( 
\tau p

\varepsilon 2

\bigr) 
. When r < 1,

\sum 
i\in L

\widetilde \Phi (xi) = (1\pm O(\varepsilon )) \cdot r \cdot \widetilde \Phi (x) =
O
\bigl( 
\tau p

\varepsilon 2

\bigr) 
.

Let L\prime = \{ i \in L : | xi| \geq \tau /2\} . It follows that | L\prime | \leq \widetilde \Phi (xL)/(\tau /2)p = O(2p/\varepsilon 2).
Hence

\| xL\setminus L\prime \| pp =
\sum 

i\in L\setminus L\prime 

| xi| p = \widetilde \Phi (xL\setminus L\prime ) \leq \widetilde \Phi (xL) = O

\biggl( 
\tau p

\varepsilon 2

\biggr) 
,

establishing (10.4).
Therefore, to find all i \in L with | xi| \geq \tau , we use an \ell p-heavy hitter data structure,

which can be realized by aCount-Sketch structure [13] which hashes xL intoO(1/\beta )
buckets and finds \beta -heavy hitters relative to \| (xL) - 1/\beta \| 1. Set \beta = \Theta (\varepsilon 2/2p). In the
end we obtain a list H \subseteq L such that every i \in H is a \beta /2-heavy hitter relative
to \| (xL) - 1/\beta \| pp, and all \beta -heavy hitters are in H. Furthermore, for each i \in H the
data structure also returns an estimate \^xi such that | xi| /2 \leq | \^xi| \leq 2| xi| whenever
| xi| \geq \tau /2. The data structure has space complexity \widetilde Op(1/\varepsilon 

2).
For each xi \in L with | xi| \geq \tau , it must hold that i \in H. Let H1 = \{ i \in H : | \^xi| \geq 

5\tau /4\} and H2 = \{ i \in H : 3\tau /8 \leq | \^xi| \leq 5\tau /2\} .
For each i \in H1, by the estimation guarantee it must hold that | xi| \geq 5\tau /4.

Hence S1 = (\tau p + c\gamma )| H1| = \widetilde \Phi (xH1).
For each i \in H2 it must hold that | xi| \in [ 3

16\tau , 5\tau ] and, thus,

\| x[n]\setminus H1
\| pp \leq 5p\widetilde \Phi (x[n]\setminus H1

).

Let p(x) be a polynomial such that | p(x) - \widetilde \phi (x)| \leq \varepsilon \widetilde \phi (x) on [ 3
16\tau , 5\tau ]. By Lemma 10.9,

it is possible to achieve deg p = O(log(1/(\varepsilon \tau ))). We now use an estimation algorithm
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analogous to the HighEnd structure in [23], which uses the same space \widetilde O(1/\varepsilon 2).
Using the same BasicHighEnd structure in [23], with constant probability, for each
xi \in H we have T estimates \^xi,1, . . . , \^xi,T \in \BbbC such that \^xi,t = xi + \delta i,t, where each
\delta i,t \in \BbbC satisfies | \delta i,t| \leq | xi| /2 and \BbbE (\delta i,t)k = 0 for k = 1, . . . , 3 deg p. The estimator
is

S2 = Re
\sum 

i\in H2

\widetilde \Phi 
\Biggl( 

1

T

T\sum 

i=1

p(\^xi,t)

\Biggr) 
.

It follows from the analysis in [23] (x can be replaced with x[n]\setminus H1
in the analysis of

the variance) that the algorithm will output, with a constant probability,

S2 = \widetilde \Phi (xH2
)\pm \varepsilon \| x[n]\setminus H1

\| 1 = (1\pm 5p\varepsilon )\widetilde \Phi (xH2
).

For each i \in [n] \setminus (H1 \cup H2), it must hold that | xi| \leq \tau /2 and thus we can use an
\ell p sketch algorithm as in [23], and obtain

S3 = (1\pm \varepsilon )\| x[n]\setminus (H1\cup H2)\| pp = (1\pm 2\varepsilon )\widetilde \Phi (x[n]\setminus (H1\cup H2)),

where we used Lemma 10.7 in the last step.
Finally, the algorithm returns S1 + S2 + S3, which is a (1\pm O(\varepsilon ))-approximation

to \widetilde \Phi (x), where the constant in O-notation depends on p. Rescaling \varepsilon proves the
correctness of the estimate.

For the part of evaluating S2 and S3, the space complexity is the same as the
HighEnd and \ell p sketch algorithm in [23], which are both \widetilde O(1/\varepsilon 2) bits.

11. An upper bound for \ell \bfone subspace sketches in two dimensions. In this
section, we prove an O(polylog(n)/\varepsilon ) upper bound for the \ell 1 subspace sketch problem
when d = 2. Our plan is to reduce the \ell 1 subspace sketch problem with d = 2 to
coresets for the weighted 1-median problem with d = 1. For the latter problem, an
O(polylog(n)/\varepsilon ) upper bound is known [19].

For the special case where the first column of the A matrix is all ones, the \ell 1
subspace sketch problem with d = 2 is equivalent to coresets for 1-median with d = 1.
To see this, by homogeneity, we may assume x2 = 1 for the query vector x \in \BbbR 2.
Thus, \| Ax\| 1 =

\sum n
i=1 | x1 +Ai,2| , which is the 1-median cost of using x2 as the center

on \{  - A1,2, - A2,2, . . . , - An,2\} . When entries of the first column of A are positive but
not necessarily all ones, we have

\| Ax\| 1 =

n\sum 

i=1

Ai,1

\bigm| \bigm| \bigm| \bigm| x1 +
Ai,2

Ai,1

\bigm| \bigm| \bigm| \bigm| ,

which is the weighted 1-median cost of using x1 as the center on

\biggl\{ 
 - A1,2

A1,1
, - A2,2

A2,1
, . . . , - An,2

An,1

\biggr\} 

with weights \{ Ai,1, Ai,2, . . . , An,2\} . It has been shown in [19, Theorem 2.8] that there
exists a coreset of size O(polylog(n)/\varepsilon ) for the weighted 1-median problem when d = 1.

For general A, we divide the rows of A into three separate matrices A+, A - , and
A0. Here, all entries in the first column of A+ are positive, all entries in the first
column of A - are negative, and all entries in the first column of A0 are zeroes. Since
\| Ax\| 1 = \| A+x\| 1+\| A - x\| 1+\| A0x\| 1, we can design subspace sketches separately for
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A+, A - , and A0. Our reduction above implies an O(polylog(n)/\varepsilon ) upper bound for
A+ and A - . For A0, since all entries in the first column are all zero, we have

\| A0x\| 1 = | x2| 
\sum 

i

\bigm| \bigm| A0
i,2

\bigm| \bigm| .

Thus, it suffices to store
\sum 

i

\bigm| \bigm| A0
i,2

\bigm| \bigm| for A0.

Theorem 11.1. The \ell 1 subspace sketch problem can be solved using \widetilde O(1/\varepsilon ) bits
when d = 2.

Acknowledgment. We thank the anonymous reviewers for various suggestions
that contributed to the exposition of the proofs.
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