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Abstract—In this paper, we investigate the problem of optimal
content cache management for HTTP adaptive bit rate (ABR)
streaming over wireless networks. Specifically, in the media cloud,
each content is transcoded into a set of media files with diverse
playback rates, and appropriate files will be dynamically chosen
in response to channel conditions and screen forms. Our design
objective is to maximize the quality of experience (QoE) of an in-
dividual content for the end users, under a limited storage budget.
Deriving a logarithmic QoE model from our experimental results,
we formulate the individual content cache management for HTTP
ABR streaming over wireless network as a constrained convex
optimization problem. We adopt a two-step process to solve the
snapshot problem. First, using the Lagrange multiplier method,
we obtain the numerical solution of the set of playback rates
for a fixed number of cache copies and characterize the optimal
solution analytically. Our investigation reveals a fundamental
phase change in the optimal solution as the number of cached files
increases. Second, we develop three alternative search algorithms
to find the optimal number of cached files, and compare their
scalability under average and worst complexity metrics. Our
numerical results suggest that, under optimal cache schemes, the
maximum QoE measurement, i.e., mean-opinion-score (MOS),
is a concave function of the allowable storage size. Our cache
management can provide high expected QoE with low complexity,
shedding light on the design of HTTP ABR streaming services
over wireless networks.

Index Terms—Adaptive bit rate streaming, content cache man-
agement, optimization, quality of experience.

I. INTRODUCTION

M OBILE video, owing to the rapid adoption of smart-
phones, is fueling a dramatic growth of mobile data

traffic lately. Cisco VNI report [1] predicted that the mobile data
traffic will increase 26 times between 2010 and 2015, among
which the leading contributor is the video traffic generated by
the mobile users worldwide. This growth of mobile video, how-
ever, is in tandem with a huge concern of the user experience,
resulted from the inherent nature of stochastic wireless chan-
nels (e.g., multi-path fading and shadowing effects). As a result,
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service providers should aim to provide a high Quality of Ex-
perience (QoE) for the rising demand of video streaming over
wireless networks.
Various techniques have been proposed to address real-time

adaptation of multimedia contents over wireless channels for a
better QoE (often resulting from a better Quality of Service).
For example, rate-reduction transcoding design [2] was pro-
posed as an integral part of wireless video streaming and [3]
demonstrated by experiments that rate adaptation transcoding
was effective for streaming high quality pre-encoded video.
However, the real-time transcoding approach often entails a
stringent requirement for computing resources. Recently, HTTP
adaptive bit rate (ABR) streaming [4]–[7] has emerged as a
main-stream solution to provide smooth playback experience
with high quality of videos and improve the network resource
utilization. In practical systems (e.g., Cisco’s CDS-IS [8]) or
the emerging media cloud platform, each content is transcoded
into a set of media files with diverse playback rates, and appro-
priate files will be dynamically chosen in response to channel
conditions and outlet forms [9]. The ABR solution is, however,
stressed by the huge growth of user-generated contents. It has
been observed in Cisco’s deployment that transcoding a large
set of video contents into files with different playback rates on
the streaming engine can have the storage to be filled up rapidly.
This observation dictates that either more storage space should
be provisioned, resulting a higher cost, or intelligent algorithms
should be designed to make the best use of the limited storage
budget, providing a just-in-situ QoE requirement.
Taking the latter approach, we investigate the issue of optimal

content cache management for HTTP ABR streaming. Previous
studies on HTTP ABR streaming mainly focus on mechanisms
to adjust the streaming bit rates for varying network conditions.
In [5], [6], [9]–[11], various solutions were proposed to improve
the performance of the HTTP ABR streaming services, with an
objective to optimize the Quality of Service (QoS) (e.g., the re-
duction of end-to-end delay, better buffer management, band-
width savings, or higher resource utilization). On a different
track, research efforts [12]–[15] have been devoted to investi-
gating QoE-aware adaptation schemes. These solutions aim to
maximize content provisioning and network resources under the
QoE requirement, or maximize the QoE under the bandwidth
constraints. However, neither approach considers the storage as-
pect of HTTP ABR streaming. In this research, we extend the
research scope of HTTP ABR streaming with QoE-driven con-
tent cache management.
In this paper, we aim to develop a QoE-optimal scheme

for the individual content cache management in HTTP ABR
streaming. Our design objective is to provide the best possible
QoE for the mobile users, while avoiding the content storage
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to be filled up rapidly. Specifically, the content provided by the
original server is transformed into HTTP streaming formats
and cached on the streaming engine in advance. When a client
consumes some content with a required streaming rate, the
streaming engine will reply a content file with the closest bit
rate to the requested, hoping that the distortion is acceptable by
the client. In this case, the research problem is how to choose
a set of video files with different playback rates, for a given
storage budget, so as to maximize the expected QoE for a pool
of mobile users.
We adopt a snapshot approach to the cache management

problem in the system involved, which can be extended to the
dynamic approach. Ideally, the cache management in streaming
system should be dynamical and cache replacement should be
in place for good performance. However, the complexity of
implementing a dynamic system would be high, as one would
consider all possible corner cases. As such, we take a snapshot
of the inherent dynamic system and aim to shed some light by
solving a snapshot optimization problem. The insight obtained
can certainly facilitate to solve the dynamic problem. Indeed, in
system development, the software architect normally prefers to
solve a series of snapshot problems rather than the unstructured
dynamic evolution of the underlined system. The QoE obtained
by our cache management is close to the upper bound (i.e.,
5), implying that the gap between our cache management and
the dynamic cache management is small. Therefore, our cache
management can provide good QoE for the users, while its
complexity is much less than the dynamic one.
Our contribution in this research is multi-fold, detailed as fol-

lows:
• We present a logarithmic QoE model derived from our ex-
perimental results (cf. Section V-A), and formulate the con-
tent cache management for HTTP ABR streaming into a
convex optimization (i.e., snapshot problem), thus giving
this engineering problem an analytical framework.

• We apply the Lagrange multiplier method to solve the opti-
mization problem and obtain numerical solution of the set
of playback rates for an individual content cached in the
stream engine. We characterize the optimal solution ana-
lytically and our investigation reveals a fundamental phase
change in the optimal solution as the number of cached files
increases.

• We provide three alternative search algorithms (i.e., ex-
haustive search, Dichotomous-based search, and variable
step-size search) to find the optimal number of cached
files, and compare their scalability under average and worst
complexity metrics.

• Our numerical results suggest that under optimal
cache schemes, the maximum QoE measurement, i.e.,
mean-opinion-score (MOS), is a concave function of the
allowable storage size.

Our comprehensive investigation reveals insightful guidelines
to provide HTTP ABR streaming services over commercially-
available platforms, e.g., CDS-IS from Cisco.
The rest of this paper is organized as follows. Section III

presents the system model and problem formulation. In
Section IV, a mathematical solution is given for the optimal
content cache management of the HTTP ABR streaming.

Numerical simulations are provided in Section V. Finally,
Section VI concludes the paper and suggests future work.

II. RELATED WORK

There has been a line of research work studying the adaptive
HTTP streaming [5], [6], [9]–[11], [16]. These works mainly
consider the Quality of Service (QoS) for varying network
conditions. [16] studied the multimedia-streaming systems
and proposed packet scheduling algorithms over in-vehicle
QoS-enabled wireless channels. [6] proposed an algorithm
for adaptive HTTP streaming that detects bandwidth changes.
[9] presented a solution to improve the performance of adap-
tive HTTP streaming services, with significant bandwidth
savings and minimal decrease in quality. [10] conducted an
experimental evaluation of three commercial adaptive HTTP
streaming players, and investigated on how they react to the
available bandwidth variations. [11] analyzed the delay com-
ponents of adaptive HTTP streaming and considered how to
minimize the end-to-end delay for live services. But few of
them takes account into QoE.
Another line of research [17]–[20] investigated the QoEmea-

surement and its relationship with QoS. In our work, however,
we do not correlate QoE to QoS, but consider the QoE metric as
MOS by capturing the user’s subjective perception. We present
a QoE model based on the distortion between the required bit
rate and the actual streaming rate.
Moreover, [14] proposed a QoE adaptation scheme for video

applications that maximizes content provisioning and network
resources according to user’s QoE requirement over resource
constrained wireless and mobile networks. [12] developed a
QoE-optimized packet scheduler that minimizes the overall dis-
tortion under the bandwidth constraints for the wireless links.
[15] presented a Sender Bit rate (SBR) adaptation scheme
at pre-encoding stage for video applications based on MOS.
This scheme was shown to be responsive to available network
bandwidth and congestion. [13] investigated the impact of
transcoding and packet dropping on the video quality, and
provided the optimal resource allocation, which maximizes the
mean user satisfaction for network resources.
However, none of these works account for the content

caching issue on the media cloud. This research discusses how
to utilize the limited cache storage in the media cloud to achieve
the optimal QoE. Basically, we focus on the snapshot problem.
First, we verify the appropriate QoE function, by evaluating the
scores from our experimental QoE study. Then, we formulate
the content cache management for HTTP ABR streaming into
a convex optimization problem. Following that, the mathemat-
ical solution and analysis are provided for the optimal bit rate
streaming on the QoE-driven content cache management. In
addition, we provide three alternative algorithms on finding the
optimal cache management. Finally, the simulation results are
in a great accuracy, and the design of bit rate streaming can
provide insightful guidelines for the practical content cache
management.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe functional architecture for
a generic HTTP ABR streaming system, modeled after a real
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Fig. 1. A schematic diagram for HTTP ABR streaming system over the wire-
less network: contents acquired from original servers are transcoded into a set
of HTTP ABR files with different playback rates, and cached in the streaming
engine.

system deployment. Following that, we present various models
for the HTTP ABR streaming system, including a user-request
model, a QoE model and a content caching model. Using these
models, we formulate the content cache management as a con-
strained optimization model.

A. System Architecture

This subsection presents our proposed ABR media streaming
architecture for wireless networks. It is based on real experience
with one of the leading vendors in the market.
The generic HTTP ABR streaming system, adapted from a

real deployment, is illustrated in Fig. 1. It consists of three parts,
including a content origin server, a media streaming engine with
caching capability, and a pool of mobile media outlets. The
content origin server stores media files in their original for-
mats and transfers them to the intermediate media cache engine.
In any media cache engine, the original content file is trans-
formed into HTTP streaming format (e.g., SmoothHD, Adobe
Zeri, MoveNet, etc.) for adaptive bit rate streaming. Specifi-
cally, a few files of the same content are created locally and
stored at the content cache. Each file corresponds to a different
streaming rate. Moreover, the format of each file includes two
parts: i) a manifest file for meta data, and ii) a set of media con-
tent files, each of which contains video content of a fixed play-
back duration (e.g., 2 seconds). When the user requests some
content, the streaming engine replies with a required streaming
rate, which is determined by the physical capability of the media
outlet and the network status. Based on the required streaming
rate, the content engine will stream the content from a chosen
file among all available copies cached locally. If a particular
playback rate is not immediately available, the most logic ap-
proach is to stream the content with the closest rate from below.

B. System Model

1) User Request Model: User request from a mobile media
outlet is characterized by a required playback rate, denoted as

. The required playback rate depends on both the physical ca-
pability of the media outlet (e.g., screen size) and the network
channel condition (e.g., available bandwidth). Normally, can
be modeled as a random variable with a specific probability den-
sity function of for , where and are the
lower and upper bound of , respectively. In this paper, we as-
sume the user request playback rate follows a uniform distribu-
tion, with the following probability density function,

(1)

A non-uniform distribution can be approximated with a flat line
in its any local neighborhood, according to the basic principle
in differential geometry [21]. Although a more realistic model
can be assumed, it would render our mathematical approach in-
tractable. The operating principle derived from the simple as-
sumption can be made into software more reliable, with a lim-
ited performance penalty. Moreover, the results obtained can be
extended to other random models, providing operational guide-
lines for practical HTTP ABR systems.
2) QoE Model: QoE measures the user’s satisfactory of

viewing a video. In the video streaming system, it not only
depends on QoS, but also some other factors, for instance,
the quality of the video content. In this paper, we present a
simplified QoE model, in which the user’s experience depends
on two system parameters, including the required playback rate
of and the actual playback rate of .
Practically, . Moreover, we further assume that the QoE
function1 has the following properties, including
• is always positive;
• is concave against ;
• is continuous and twice differentiable for .
In [17], user experience follows the logarithmic law, and QoE

function can bemodeled in the logarithmic form for applications
of file downloading and web browsing. As such, we adopt the
QoE model as the logarithmic function between and in the
HTTP ABR scheme, which is specified as

(2)

where the constant parameters and are both positive, and
can be different for various types of applications.
3) Content Caching Model: In a typical HTTP ABR

streaming system, the cache engine conducts a transcoding
process to convert the received media format into HTTP ABR
format. Specifically, the received content file is transformed into
a set of content files, each of which represents one streaming
rate. We assume that copies of HTTP ABR files are created
in the cache, and each copy has a streaming rate of ,

. We call the vector of chosen playback rates
as a rate profile, i.e., . Without loss
of generality, we assume that . Moreover,
the size of a content file with a streaming rate of is given by

, where is a non-decreasing, continuous and
twice differentiable function of the streaming rate.

1In this paper, we use QoE function and Mean-Opinion-Score (MOS) inter-
changeably.
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Fig. 2. Illustration of playback rates for cached media files and request play-
back rates.

In this case, the total storage capacity required at the content
cache engine can be calculated as

(3)

We model the storage size of the files as the affine function

(4)

where represents the size of the media content and repre-
sents the meta data stored on the media cache engine.

C. Problem Formulation

In real system development, the software architect normally
prefers to solve a series of snapshot problems rather than the un-
structured dynamic evolution of the underlined system. In this
paper, we focus on the snapshot problem. Specifically, we con-
sider how to maximize the expected QoE by optimally caching
HTTP ABR content files in the media cloud. Obviously, it is
beneficial to cache streaming files in different bit rates as many
as possible for a higher QoE. However, in a real system deploy-
ment, the storage space in the content cache can be filled up
rapidly, in order tomeet different QoE requirements. Practically,
it does not allow numerous files to be cached for streaming.
As such, one should control the storage budget, by optimally
choosing a subset of playback rates, for which a copy of the
media content is cached.
Fig. 2 shows the scenario of the cached playback rates and

the requested playback rates. There are copies to be cached,
i.e., . If the requested bit rate falls within the
region (i.e., ), we will assign as the replied
bit rate. In this case, our task is to find between
the given minimal rate and the maximal rate to maximize
the average QoE, while respecting a given storage budget con-
straint. Mathematically, the problem can be formulated as the
following constrained optimization problem,

(5)

where is a rate profile, and the ex-
pectation of the QoE is taken over the distribution of user re-
quest playback rate (i.e., ).
The entire QoE volume is a summation of all such regions

, as shown in Fig. 2. The objective function
hence is a sum of the individual QoE in every region. We inte-
grate within each region because the requested bit rate is con-

tinuous. Therefore, the optimization problem can be re-written
as

(6)

Replacing the QoE function with its reverse, we transform the
maximization problem into the following equivalent minimiza-
tion problem,

(7)

Notice that this optimization is different from the clas-
sical source coding problem in Information Theory [22],
because in our formulation, each segment is represented by its
lower bound, compared to the mid-point in the source-coding
problem. As such, the classical Max-Lloyd algorithm [23], [24]
cannot be used.
In Sections IV and V, we will provide the solution of snap-

shot problem, i.e., how to obtain the optimal set of streaming
bit rate, and , for the cache management. Notice that the
formulation only concerns the cache management for individual
content. In a real system, multiple contents could compete for
storage space in the media cloud. It is beyond the scope of this
paper to address the interplay among different contents. Nev-
ertheless, the results obtained for individual content would be
instrumental for the optimization problem involving multiple
contents.

IV. OPTIMAL QOE-DRIVEN CACHE
MANAGEMENT FOR SNAPSHOT PROBLEM

In this section, we adopt a two-step process to solve the snap-
shot problem:
• Deriving the optimal set of playback rates for a fixed
number of cache copies: in this step, we first identify the
optimization problem of (7) as a convex optimization with
respect to for a fixed , in Section IV-A. Then, we use
the Lagrange multiplier method to solve this constrained
optimization problem in Section IV-B, and characterize
the optimal solution for content cache management in
Section IV-C. Our investigation reveals a fundamental
phase in exploring the available storage budget to maxi-
mize the offered QoE metrics. Moreover, we show that, as
the increase of , the optimal QoE function first increases
monotonically and then decreases monotonically.

• Searching for an optimal number of cache copies: in this
step, based on this property of the optimal QoE function,
we present three algorithms to find for the optimal QoE
in the content cache management, and provide the analysis
of their performance respectively, in Section IV-D.
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A. Convexity of the Optimization Problem for a Fixed

In this subsection, we first show that the optimization
problem, for a fixed , is convex. We consider the Hessian
matrix for the objective function in (7), which is given
as shown in the equation at the bottom of the page, where

.
The th determinant minor of the matrix can be derived

inductively. Specifically, is given by

(8)

To show this, we can first consider the cases of and
. For these two cases, we can trivially reach (8). Then, if

we assume (8) holds for and , can be calculated
by

(9)

Following that, we can reach (8) for the case of , which follows
by induction.
Notice that each of the is positive, thus the determinant of

all the principal minors of are greater than 0, i.e., .
Therefore, is positive definite, and the objective function
is strictly convex.
Also, the constraint in (7) is an affine, i.e., the constrained set

is convex. Hence, the optimization problem of (7), for a fixed
value of , is a convex optimization problem. Since (6) and (7)
are equivalent, (6) is also a convex optimization problem.

B. Optimal Rate Profile for a Fixed

In this subsection, we use the Lagrange multiplier method to
solve the optimization problem for a fixed value of . Specifi-
cally, the Lagrangian function of the optimization problem (7)
is given by

(10)

where

Since it is a convex optimization problem with respect to
, the KKT conditions are necessary and

sufficient for a global minimum of subject to the inequality
constraints. Using the KKT conditions, we have the following
equations,

(11)

(12)

(13)

(14)

(15)

To solve the optimization problem, we introduce a set of slack
variables and , following the approach in [25], to convert
the inequality constraints into equality constraints. Therefore,
the extended Lagrangian function can be written as,

(16)

Then, we have

(17)

(18)

(19)

...
...

...
...

...
...

...
...
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(20)

(21)

Since , the variables must be zero. As a result, orga-
nizing these equations together, we obtain

(22)
Therefore, to solve the optimization problem (7), it is equivalent
to find the solution of the system of nonlinear (22), in which
there are equations and unknowns. Notice that
only the real numbers are allowed for the unknowns.
Finally, to solve this system of nonlinear equations, we can

minimize , where is defined as the sum of the square of func-
tions on the left hand side of (22), as follows:

(23)
It corresponds to an unconstrained optimization, which can be
solved by the method of trust-region-dogleg [26]. In this paper,
we leverage the solver (i.e., fsolve) provided by Matlab, which
implements the trust-region-dogleg algorithm. We set the max-
imum iteration times to be 1000, and the order of magnitude for
to be (this value can be increased for higher rate of con-
vergence). That is, if the iteration times reaches 1000 and is
larger than , then we claim that there is no solution for the
set of equations. More details about the numerical evaluation
will be given in Section V-B.

C. Characterization of Optimal Rate Profile

In this subsection, we characterize the optimal rate profile for
the QoE-driven content cache management. It can be shown that
a fundamental phase change exists in the optimal solution.
Considering the complementary slackness in (22),

we can have two possibilities, each of which corresponds to a
phase in the optimal solution.
1) Phase I : This is the case when the avail-

able storage budget is not fully utilized, with the remainder of
.
The set of (22) can be transformed as follows,

(24)

Plugging the optimal conditions in (24) into the objective func-
tion in (6), we obtain

(25)

where and are their optimal values.

In Phase I, we can characterize the optimal rate profile and
the corresponding QoE with some nice properties, as detailed in
the following three lemmas.
Lemma 1: From the first equations in (24), there can be at

most one solution for .
Proof: Assume that there are two solutions for the

rate profile . Suppose , and
are two of qualified rate profiles.

Then we have , otherwise it will lead to
. Without loss of generality, let .

Then, and .
Since ,
we have . In that case, . Sub-
sequently, from

, we obtain .
However, from

, we obtain , i.e.,
. Contradiction occurs. Therefore, there can exist

at most one solution for .
Lemma 1 suggests that once we find the solution of , it must

be optimal and unique rate profile for the streaming files.
Lemma 2: In Phase I, for a given , the increase of storage

size will still produce the same results of , and thus re-
mains the same.

Proof: Since is irrelevant to the first equations in
(24), the increase of cache size will produce the same results of
. In addition, in (25) depends on , but not the cache size
. Therefore, remains the same.
Lemma 2 suggests that the expected QoE does not change

for a specific in Phase I even if there are more cache storage
available.
Lemma 3: Consider two rate profiles,

and in
Phase I. The rates satisfy the following relationships:
and , where .

Proof:
(1) Suppose . Then ,

which results in , i.e.,
. Also, we have

, which results in . Subse-
quently, it follows that and

, which results in ,
i.e., . Contradiction oc-
curs. Hence, . This will result ,

.
(2) Suppose . Then ,

which results in and
, i.e.,

. Subsequently, . Contradiction oc-
curs. Hence, . This will also result

. Further, we have
for .

Lemma 3 indicates that as increases, will decrease and
will increase.

Using these lemmas, we can derive the following theorem
that describes the property of the optimal objective function
(i.e., the expected QoE) in Phase I.
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Theorem 1: In Phase I, the optimal objective function is
increasing with .

Proof: See Appendix A.
Theorem 1 suggests that, in this phase, we should cache more

copies with different bit rates, in order to improve the QoE.
Moreover, since is increasing with , the remainder
will decrease with the increase of , approaching to be zero

eventually, which is Phase II in Sections IV-C
and IV-D.
2) Phase II : The set of (22) can be trans-

formed as follows,

(26)
It corresponds to the case when the available storage budget is
fully utilized. Plugging the optimal conditions in (26) into the
objective function (6), we obtain

(27)

where and are their optimal values.
Similarly, for Phase II, we can characterize several properties

of the optimal solution in the following lemmas.
Lemma 4: For the first equations in (26) there can be at

most one solution for and .
Proof: We prove it by showing that for distinct , there

cannot exist the rate profiles and
satisfying the first equations in

(26).
We first assume it is true, i.e., there are two distinct

rate profiles with , and
with . If , then
by Lemma 1. As a result,

. Without loss of generality, let .
Suppose . Then . This

will lead to . For different ,
the sum of the cannot reach the same . Contradiction
occurs. Hence, .
Suppose . Then ,

which results in ,
i.e., . As such,

. Subsequently, we have .
Contradiction occurs. Hence, .
Afterwards, suppose . It will lead to

. Contradiction occurs. Hence, .
Similarly, it follows that . Since

, for different , the sum of
the cannot reach the same . Therefore, there exists at
most one solution for and .
Lemma 5: In Phase II, as increases, and will mono-

tonically decrease while will monotonically increase.
Proof: See Appendix B.

Lemma 5 suggests that as increases, will approach to .
As such, the system of equations will have no solution when
is very close to . Also, if there is no solution for , there
will be no solution for since cannot go further as
well.
Lemma 6: InPhase II, the optimal objective function does

not monotonically increase with .
Proof: depends on the variables , and , as

indicated in (27). By Lemma 5, we notice that and will
both decreasemonotonically, while increases monotonically.
Hence, there can be two possibilities: (1) monotonically

decreases, or (2) initially increases, and then decrease mono-
tonically. Whichever the case it is, is not monotonically in-
creasing.
Lemma 7: During the phase change, i.e., from Phase I to

Phase II, there is a gain for the optimal objective function .
Proof: This can be verified by Theorem 1. Consider two

rate profiles in Phase I with , and Phase II with
, where is the maximum number of cached files allowed in

Phase I. As decreases, the optimal solution will move from
Phase I to Phase II. This transition will result in

, where can be viewed as a special case of
Phase I when is extremely small.
Then, based on the analysis above, we can have the following

theorem that describes the properties of the optimal solution for
rate profile.
Theorem 2: As the number of cached contents increases, the

maximum expected QoE measurement first increases monoton-
ically, and then decreases monotonically. Moreover, the max-
imum expected QoE measurement is achieved in Phase II, i.e.,
optimal QoE is achieved by fully using the storage budget.
This theorem suggests that it is desirable to cache a proper

number of content files in the media cloud to maximize the ex-
pected QoE. In Section IV-D, we will investigate how to find the
optimal value for the number of cached contents in the media
cloud.

D. Algorithms of Searching an Optimal Value of

In this subsection, we consider the problem of how to find
the optimal number of copies for the rate profile, in order to
maximize the QoE function. In particular, based on the property
of the optimal solution described in Section IV-C, we present
three algorithms to find and provide the performance analysis
for these algorithms respectively.
Theorem 2 in Section IV-C indicates that the cache budget

should be fully utilized for the optimal QoE. In other words,
the rate profile under the partial utilization of the cache budget
will provide a smaller QoE. As such, to obtain the optimal rate
profile, we can ignore the cases when the cache size is partially
utilized.
When the cache size is fully utilized, we have

. In addition, the rate profile follows that
. In this case, we have .

Therefore, we can estimate a lower and an upper bound for ,
given by and . In
the following, we present three algorithms to find among

.
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The first brute-force one is an exhaustive searching algorithm
that computes the QoE functions sequentially with a step size of
one, starting from . For each , we solve the system of
equations in (22), calculate the QoE function , and com-
pare it with the previous one of . If ,
the search continues. This process terminates when we reach

, and that is the optimal number of the
cached content copies in the media cloud. The pseudo-code de-
scription for the exhaustive search method is presented in Algo-
rithm 1.

Algorithm 1 The Exhaustive Search Method to Find

Require: , ,

Ensure:

calculate

while do

calculate

if then

break

end if

end while

The second one is a Dichotomous-based searching algorithm,
illustrated in Algorithm 2. The Dichotomous-based search is
based on region elimination. The search region of each iteration
is , in which initially the variable is set to
be , and to be . In each search iteration, we examine
the case of (i.e., the half of and ), and
update the variables or by the rules as follows. On
one hand, if there exists no solution for , there will be
no solutions for ; hence, we can eliminate the region
to . On the other hand, if there exists a solution
for , then we calculate and compare it
with . If , there are no better
solution for ; hence, we can eliminate the region to

. If , there are no better
solution for ; hence, we can eliminate the region to

. The algorithm stops when and are
close enough, i.e., or .

Algorithm 2 The Dichotomous-based Search Method to Find

Require: , , ,

Ensure:

while !( or ) do

if there has no solution for then

else

calculate

calculate

if then

else

end if

end if

end while

if then

else

end if

The third one is a variable step-size searching algorithm, as
shown in Algorithm 3. The algorithm solves the system of equa-
tions for the case of and , and calculates the objective
functions, and , for each search iteration. Ini-
tially, starts from . In the following search iterations, is
increased or decreased by a step size, in response to the com-
parison between and . If ,
the tentative search direction is correct (feasible); hence, we can
move forward and the step size, denoted as , is increased ex-
ponentially, i.e., , where is the number of iterations
and . If , however, the tentative search
direction is incorrect (infeasible); hence, should be returned
back and decreased exponentially by the step size. We define
another variable to denote the step size for the case of back
return, i.e., , where is the number of iterations and

. In addition, if there is no solution for , then we move
back to the previous and continue the search. As such, will
fluctuate within the feasible set until it converges to the optimal
one.

Algorithm 3 The Variable Step-size Search Method to Find

Require: , , , ,

Ensure:

while there does not exist an such that
and do

if there has no solution for then

//go back and start from the previous
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else

calculate

if there has no solution for then

//go back and start from the previous

else

calculate

if then

// is increased by

else

// is decreased by

end if

end if

end if

end while

We first present a preliminary analysis of the complexity of
the three alternative searching algorithms for finding . Nu-
merical analysis will be detailed in Section V.
First, the exhaustive searching algorithm is the simplest one.

It solves the system of (22) once in each iteration, and terminates
when an is found such that . The average
and worst search times to solve (22) are .
Second, for the Dichotomous-based searching algorithm, the

region is reduced by half in each iteration, which results in the

average and worst search time complexity to be
. But if is very large, there may be no solution for (22)

starting with the mid point such that the trust-region algorithm
to find the solutions will iterate for 1000 times, which is time-
consuming. Notice that when there is a solution for (22), the
iteration times can be much less, with only about 10 times for
the convergence (cf. Section V-B).
Third, the variable step-size search method generally can

have better performance. On one hand, the variable step-size
search starts from so that it does not have the problem of
large as the Dichotomous-based algorithm. On the other
hand, is increased or decreased by the step size, in response
to the comparison between and in each it-
eration. Specifically, would first increase exponentially if

, but will return back and decrease exponen-
tially if .
Moreover, the search times of the variable step-size algorithm

can be analyzed as follows. On one hand, the average and worst
search times of the variable step-size algorithm are no more
than , because this algorithm can skip some iter-
ations during the search, compared with the exhaustive search
algorithm whose step size is always 1. On the other hand, the
variable step-size algorithm cannot have less average and worst
search times than and the Dichotomous-based algorithm, i.e.,

. As such, the average and worst search times
of the variable step-size algorithm are between
and . However, we have to solve (22) twice in each
search iteration with the variable step-size search algorithm.

V. NUMERICAL ANALYSIS AND RESULTS

In this section, we provide the numerical results of the op-
timal content cachemanagement for HTTPABR streaming over
wireless networks. First, we verify our proposed QoE model,
based on a set of experiments over an SVC video database, con-
sisting of eight different video clips. Next, for a given , we il-
lustrate the phase change in our proposed algorithm. Finally, the
three algorithms of how to find are evaluated and their com-
plexities are compared under two alternative complexity met-
rics.

A. Verification of QoE Model

In this subsection, we verify our QoE model based on the
QoE database that consists of eight videos (i.e., harbour, ducks,
parkjoy, city, crew, soccer, ice and oldtown, as shown in Fig. 3).
These videos are saved in H.264/SVC format [27]. The presen-
tation time of each video is 10s. The QoE of these videos can be
measured by the MOS scaling from 1 to 5, where 5 represents
the service is excellent and 1 represents bad.We have conducted
an experimental QoE study for the adapted SVC bitstreams.
The SVC bitstreams were adapted by the Bitstream Extraction
in JSVM [27] for different bit rate and subjective tests were
conducted accordingly.2 In the subjective test, 22 non-expert
viewers with normal or corrected-to-normal vision acuity par-
ticipated in the single-stimulus test for evaluation based on the
Adjectival Categorical Judgment Methods in [28]. The viewing

2Although the subject test is not conducted with real HTTP ABR streaming,
the QoEmodel derived from the rate adaptation over SVC can be readily applied
to HTTP ABR streaming.
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Fig. 3. Eight types of videos. (a) Harbour. (b) Ducks. (c) Parkjoy. (d) City. (e) Crew. (f) Soccer. (g) Ice. (h) Oldtown.

TABLE I
DATA OF RATE(KBPS) AND MOS

Fig. 4. Approximation of QoE function with streaming rates.

TABLE II
PARAMETERS FOR THE QOE FUNCTION

conditions, facility setup and data screening followed the ITU
recommendations [28], [29]. Table I provides the rate-MOS re-
sults for these videos. These results are applied directly to verify
the QoE function (2), which can be rewritten as,

.
Based on the QoE data set in Table I, we adopt a simple yet

commonly-used linear regression3 and obtain the QoE model
parameters by minimizing , i.e.,

where is the index of the fitting data, is the total number
of fitting data and is the score in the subjective tests
corresponding to . Table II lists the values of , , , ,

and for eight types of videos.
It should be noted that videos with the similar feature (e.g.,
motion, temporal and spatial information) can have the same
parameters of the QoE function model. Therefore, classifying
videos into categories can reduce the efforts to model each video
and address the scalability issues of modeling QoE function.
Fig. 4 indicates that the fitting functions of QoE approximate
well with the streaming rates for all the videos.

3A more sophisticated approach would be to adopt a weighed curve-fitting
mechanism, resulting in complicated analysis. One might have to rely on nu-
merical evaluation, as compared to the closed-form solution we obtained.
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TABLE III
THE OPTIMAL RATE PROFILE OF CONTENT CACHE MANAGEMENT FOR CITY VIDEO

Fig. 5. Schematic illustrations of rate profile for city video
.

B. Optimal Rate Profiles for a Fixed

In this subsection, we present the numerical results of optimal
rate profiles when the number of copies is fixed.
As an example, we consider the case of the city video with the

cache size . We set the parameters in the content
cachingmodel (4) as and . Given an , we can find
the optimal rate profile of for the video. The optimal rate pro-
files for different are given in Table III, with a great accuracy
for the optimal solution (i.e., ). It can be observed that,
when , the constraint of the cache size is inactive, corre-
sponding to the case of Phase I; and when , the storage
budget is fully utilized, corresponding to the case of Phase II.
The optimal QoE is achieved at . Therefore, it follows
that a phase change occurs and the optimal QoE is achieved in
Phase II, which agrees with the analysis in Section IV-C.
Fig. 5 gives a schematic illustration of rate profiles for

the city video. It can be observed that, monotonically in-
creases in Phase I and decreases in Phase II. That is, when the
cache budget is partially utilized, expands, trying to make
more usage of the cache budget; when the cache budget is fully
utilized, shrinks back to allow other to be fed into the
cache.

Fig. 6. Relationship of and QoE .

Fig. 7. Relationship of and .

Fig. 6 shows the relationship between and QoE for eight
videos, in which the cache size is 3000 KB. Notice that with
the increase of , the QoE function first increases, and then de-
creases upon a threshold. This agrees with Theorem 2.

C. Searching for Optimal

In this subsection, for different videos and cache sizes, we
find to maximize the QoE objective functions. In addition,



1442 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 6, OCTOBER 2013

Fig. 8. Times to solve equations of search algorithms for three categories of videos. (a) Category 1: Harbour. (b) Category 1: Ducks. (c) Category 1: Parkjoy. (d)
Category 2: City. (e) Category 2: Crew. (f) Category 2: Soccer. (g) Category 3: Ice. (h) Category 3: Oldtown.

Fig. 9. Total computing iterations of search algorithms for three categories of videos. (a) Category 1: Harbour. (b) Category 1: Ducks. (c) Category 1: Parkjoy.
(d) Category 2: City. (e) Category 2: Crew. (f) Category 2: Soccer. (g) Category 3: Ice. (h) Category 3: Oldtown.

we compare the scalability of the aforementioned three alterna-
tive algorithms. Numerical results suggest that scalability of the
algorithm depends on the parameters of the QoE model for a
specific video and the given cache budget.
First, Fig. 7 illustrates the optimal selection of for various

cache budgets. It can be observed that, some different types of
videos can have almost the same of , the number of optimal
streaming copies. This indicates that some videos can be ag-
gregated into a category, which can reduce the efforts to find
the optimal solution and facilitate our design of the streaming
on the cache engine in practice. Roughly, the videos can be di-
vided into three categories in terms of the value of : Category
1, with small for videos of harbour, ducks and parkjoy, i.e.,
increases slightly with the increase of the cache size; Cate-

gory 2, with medium for videos of city, crew and soccer, i.e.,
increases gradually; and Category 3, with large for the

videos of ice and old town, i.e., increases dramatically.
This observation can be understood as follows. Considering

(22), we notice that the term , dependent on the
QoE model of a specific video, has an influence on . For a
given cache budget, if the term is larger, each

rate in will be larger. However, due to the cache constraint,
will be smaller. This is can be verified by the fact that Cate-

gory 1 has large values of , and Cate-
gory 2 and Category 3 have smaller values of ,
with more than 2000 and about 1500, respectively, as shown in
Table II.
Second, in Fig. 8, we consider the total number of times

solving (22) as a metric for their algorithmic complexity. It
shows that the exhaustive search has the smallest number of
times solving (22) for Category 1 (with small ); Dichoto-
mous-based search and the variable step-size method have a
smaller number of times than the exhaustive search for Cate-
gory 2 (with medium ) and Category 3 (with large ).
Third, we also evaluate the scalability of the search algo-

rithms, by considering the total number of iterations used by
the trust-region algorithm to solve the set of equations in (22). In
Fig. 9, we compare the scalability of the three search algorithms
of for the three categories of videos with various cache bud-
gets. The variable step-size search has the smallest total com-
puting iterations for videos of Category 3, when the cache size
is large. While the exhaustive search has the smallest total com-
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TABLE IV
SEARCH ALGORITHMS

puting iterations for the videos of Category 1 and Category 2,
when the cache size is small.
Moreover, we observe that, although the Dichotomous-based

search has a small number of times to solve (22), its number of
computing iterations is large. This is because the Dichotomous-
based search has a high cost to solve (22) in the initial steps
with large , as discussed in Section IV-D. The approach to
improve the performance of the Dichotomous-based search is to
estimate more accurately. One implication from Fig. 7 is that
increases with . This indicates on how to find the optimal

number of streaming files , if some background information
is given. Suppose is known for a cache size . Then, for a
larger cache budget (i.e., ), we can search starting
from (i.e., ), because the optimal number of cached
files for , i.e., , should be no less than ; for a smaller
cache budget (i.e., ), we can set to be (i.e.,

), because the optimal number of cached files for ,
i.e., , should be no greater than . As a result, if the solution
of a larger cache budget is known, we can reduce the value of
before using the Dichotomous-based search algorithm to find

the optimal cache management, for a given cache budget.
Therefore, the scalability of the algorithms depends on the

parameters of the QoE model for a specific video and the given
cache budget. Specifically, the exhaustive search is efficient
when is large and is small, while the variable
step-size search has the best performance when
is small and is large, where the term depends
on the QoE model of the specific video. At the same time, the
Dichotomous-based search is efficient only when the upper
bound of can be appropriately estimated. Combining the
analysis above and the simulation results in this section, we
summarize the characteristics of the algorithms in Table IV.
Finally, we plot the value of optimal QoE with cached

content copies as a function of the cache size in Fig. 10. First,
the optimal QoE is a concavely increasing function of the given
cache size. As the cache size increases, the marginal benefit of
a higher QoE diminishes. This characterization offers practical
insights to choose a specific operating point for each video con-
tent within a video catalog, maximizing the overall QoE perfor-
mance for an aggregate storage budget. Second, the expected
QoE is larger than 4 for all of the videos if the given cache size
is no less than 2000 KB. This indicates that the performance gap

Fig. 10. Relationship of and maximum QoE.

between our cache management and the upper bound (i.e., 5) is
small.

VI. CONCLUSION

In this paper, we investigated the problem of how to cache
a set of media files with optimal streaming rates, under HTTP
adaptive bit rate streaming over wireless networks. We for-
mulated this design as an optimization framework (snapshot
problem), whose objective is to maximize the QoE objective
function for a given storage budget. First, for a fixed number
of content copies, we translated this problem into a convex
optimization problem, for which we derived the mathematical
solution and identified a phase change in the optimal solution.
Second, we proposed three alternative search algorithms to
find for the optimal content cache management. Numerical
results suggested that the scalability of the algorithm depends
on the parameters of the QoE model for a specific video and
the given cache budget. Finally, simulation results showed that
our cache management can provide high expected QoE while
requiring low complexity, which gives guidelines for practical
design of HTTP ABR streaming services.
In the future, we will consider the model of user requests into

a more realistic one (i.e., non-uniform distribution). In addition,
we will extend the paper by considering the scenario of multiple
distinctive content stored on the cache, coupled with the popu-
larity of these content. Finally, we will also consider an elastic
scheme of cloud storage, in which additional storage space can
be acquired to meet the demands.

APPENDIX

Proof of Theorem 1: Consider two rate profiles, i.e.,
with , and

with , where and are the optimal QoE functions of
and , respectively. To examine if the optimal QoE function

will increase as is larger, it is equivalent to check if the differ-
ence between and is positive:

(28)
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Since for any ( and ), we have
. As a result,

(29)

where

(30)

Subsequently, we can have

(31)

Hence, , i.e., the optimal QoE function is in-
creasing with .

Proof of Lemma 5: Suppose that as increases, will
decrease. That is, , where is the multiplier for the rate
profile and is the multiplier for the
rate profile . Note that . Then,
we have

(32)

It follows that

(33)

Suppose if , then

(34)

It follows that . Subsequently, we obtain
. Contradiction occurs. Hence, .

Similarly, it can be proved that . Since,
and ,

we have , which is inconsistent with
, . Therefore, .

Then suppose . Given , we have

(35)

By (35), we can obtain , ,
. Contradiction occurs. Hence, . Similarly, we can

also prove by contradiction.
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