
67IEEE Network • November/December 2014 0890-8044/14/$25.00 © 2014 IEEE

he gap between Internet videos and mobile devices is
driving the evolution of mobile multimedia application
platforms. According to the Cisco Visual Networking
Index (VNI) report [1], mobile video consumption will

increase 16-fold between 2012 and 2017, generating over 66
percent of mobile data traffic by 2017. However, it is still a
challenge to satisfy the soaring demand for video consumption
on resource-constrained mobile devices. Nowadays, mobile
devices can support limited video formats and resolutions. For
example, the iPhone 5S and Samsung Galaxy S4 do not support
flash video (FLV), which is a commonly-used format provided
by content providers. Thus, transcoding technology [2] is
required to transcode videos into a particular format (e.g. mp4)
suitable to be played on mobile devices, along with a resolution
reduction to match the screen size of diverse mobile devices.
Nevertheless, such a transcoding process is computation-inten-
sive, which can drain the battery lifetime of mobile devices.
Therefore, a new computing paradigm is increasingly demand-
ed for mobile devices to consume video content.

Cloud computing [3], due to its elasticity of resource alloca-
tion, offers a natural way to accomplish transcoding tasks,

bridging the gap between Internet videos and mobile devices.
Instead of transcoding a video locally, mobile users can
upload the video to the cloud for transcoding via base stations
or WiFi access points, which is referred to as computation
offloading [4]. By offloading the computation to the cloud,
significant energy consumption on resource-constrained
mobile devices can be saved, enabling mobile devices to run
rich media applications [5].

Vast amounts of work has been invested in leveraging
cloud computing to enhance the performance of multimedia
transcoding. The authors in [6] utilized a Hadoop-based cloud
for transcoding media content, which can greatly improve
encoding times. Similarly, the authors in [7] presented a scal-
able distributed media transcoding system that can reduce the
transcoding time for mobile users. With visualization technol-
ogy, the authors in [8, 9] considered the cost-efficient virtual
machine provision in the cloud for video transcoding. From
the perspective of cache management, the authors in [10] pro-
vided a simulation for a cloud transcoding system, and
explored the proper cache sizes and the number of computers
to effectively operate in the cloud. However, neither of those
prior works investigated decision-making policy for transcod-
ing (i.e. offloading policy) under an optimization framework,
by considering energy conservation on both mobile devices
and the cloud jointly. Therefore, an energy-efficient offload-
ing policy is needed to deliver Transcoding as a Service
(TaaS) for the sake of green mobile cloud.

T

Abstract
In this article we investigate energy-efficient offloading policy for transcoding as a
service (TaaS) in a generic mobile cloud system. Computation on mobile devices
can be offloaded to a mobile cloud system that consists of a dispatcher at the front
end and a set of service engines at the back end. Particularly, a transcoding task
can be executed on the mobile device (i.e. mobile execution) or offloaded and
scheduled by the dispatcher to one of the service engines in the cloud (i.e. cloud
execution). We aim to minimize the energy consumption of transcoding on the
mobile device and service engines in the cloud while achieving low delay. For the
mobile device, we formulate its offloading policy under delay deadline as a con-
strained optimization problem. We find an operational region on which execution
mode, that is, mobile execution or cloud execution, is more energy efficient for the
mobile device. For the cloud, we propose an online algorithm to dispatch transcod-
ing tasks to service engines, with an objective to reduce energy consumption while
achieving queue stability. By appropriately choosing the control variable, the pro-
posed algorithm outperforms alternative algorithms, with lower time average ener-
gy consumption and time average queue length on the service engines. The
proposed offloading policy can reduce energy consumption on both mobile
devices and the cloud jointly, which provides guidelines for the design of green
mobile cloud.

Toward Transcoding as a Service:
Energy-Efficient Offloading Policy for

Green Mobile Cloud
Weiwen Zhang, Yonggang Wen, and Hsiao-Hwa Chen

T

W. Zhang and Yonggang Wen are with Nanyang Technological University,
Singapore.

Hsiao-Hwa Chen is with National Cheng Kung University, Taiwan.

CHEN_LAYOUT_Layout 1 11/14/14 2:04 PM Page 67

IEEE Network • November/December 201468

In this article we first present a generic green mobile cloud
system to provide TaaS to mobile devices, as illustrated in Fig.
1. There is a dispatcher at the front end that receives offload-
ing requests from mobile devices. There are also a set of ser-
vice engines and data storage in the back end that stores the
original video contents. If the video requested by users is
cached in service engines, the cached video can be rendered
immediately to users without transcoding; otherwise, video
transcoding is performed either on the mobile device locally
(i.e. mobile execution) or one of the service engines in the
cloud (i.e. cloud execution). Specifically, the dispatcher can
have the information of mobile users (i.e. specific profile of
transcoding tasks and configuration of mobile devices) and
service engines in the cloud (i.e. the queue length and esti-
mated transcoding time in each service engine) to make the
offloading decision for the execution of transcoding tasks.

Then we propose an optimization framework
for offloading policy to reduce the energy con-
sumption on both the mobile device and the
cloud, coupled with the consideration of time
delay for video transcoding. For the mobile
device, we formulate offloading policy as a con-
strained optimization problem, in order to mini-
mize the energy consumption on the mobile
device while satisfying the delay deadline. We
find the operational region on which execution
mode, that is, mobile execution or cloud execu-
tion, is more energy efficient for the mobile device.
For the cloud, using the framework of Lyapunov
optimization, we propose an online algorithm to
dispatch transcoding tasks to service engines, in
order to Reduce Energy consumption while
achieving the QUEue STability (REQUEST) in
the cloud. The REQUEST algorithm is adaptive
to balance the trade-off between time average
energy consumption and time average queue
length. By appropriately choosing the control
variable, the REQUEST algorithm outperforms
three alternative algorithms, that is, Round
Robin, Random Rate, and Least Time algorithms,
with lower time average energy consumption and
time average queue length on service engines.

The proposed offloading policy can reduce the
energy consumption on both the mobile devices
and the cloud jointly, which provides guidelines
for the design of green mobile cloud.

The rest of this article is organized as follows.
In the following section we present the models of
mobile execution and cloud execution as well as
an optimization framework. In the third section
we propose the energy-efficient offloading policy.
After that we further discuss the variation of a
generic mobile cloud system and its related
research problems. The final section summarizes
this article and provides future directions.

System Modeling and Optimization
Framework
As illustrated in Fig. 2, transcoding tasks can be
executed in two alternative modes:
•Mobile execution, in which transcoding tasks

are executed locally on the mobile device.
•Cloud execution, in which transcoding tasks are

offloaded and scheduled by the dispatcher to
one of the service engines for execution.

In the following, we present system models for mobile exe-
cution and cloud execution. We first define an application
profile for the transcoding task. Then we introduce a queue-
ing model for service engines in the cloud for cloud execution.
In addition, we present energy consumption models for the
mobile device and service engines in the cloud, respectively,
followed by an optimization framework for offloading policy.

Transcoding Model
In this article a transcoding task is abstracted into a profile
with two parameters, including:
• Input data size L, the number of data bits of the file for

transcoding.
• Application completion deadline Td, the delay deadline

before which the application should be completed.
Both the input data size L and the application completion

Figure 1. A generic mobile cloud system. There is a dispatcher at the front-
end that receives offloading requests from mobile devices. There are also
a set of service engines and data storage in the back-end. The dispatcher
can have the information of mobile users (i.e. specific profile of transcod-
ing tasks and configuration of mobile devices) and service engines in the
cloud (i.e. the queueing delay and estimated transcoding time in each ser-
vice engine) for the offloading policy.

Service
engines

Dispatcher

Application
offloading

Task
delegation

Data
storage

Mobile
devices

Figure 2.Transcoding tasks can be executed in two alternative modes: the
mobile execution and the cloud execution. The mobile execution com-
pletes transcoding tasks using computation resources on the mobile
device, while the cloud execution completes transcoding tasks by a dele-
gated service engine after the mobile device has transmitted the input file
to that service engine. There can be two classes of transcoding tasks, that
is, delay-sensitive tasks and delay-tolerant tasks. Delay-sensitive tasks can
preempt delay-tolerant tasks in each service engine.

CPU Delay-tolerant task

Cloud execution

Mobile execution

Dispatcher

Transcoding
tasks

Service engines

Delay-sensitive task

CHEN_LAYOUT_Layout 1 11/14/14 2:04 PM Page 68

IEEE Network • November/December 2014 69

deadline Td have an impact on the energy consumption of
transcoding tasks. Normally, with more input data the energy
consumption can be higher. For the completion deadline Td,
we assume that there are two types of application profile: if
Td is small, the transcoding task is delay-sensitive; if Td is
large, the transcoding task is delay-tolerant. We assume that
delay-tolerant tasks are offloaded to the cloud to reduce the
burden of CPU resources on mobile devices.

The classification of delay-sensitive and delay-tolerant
transcoding tasks can be interpreted by the category of
users. Suppose that there are two categories of users, that
is, members and non-members. Members have subscribed to
TaaS in advance, while non-members request video
transcoding in an on-demand manner. In this case, members
can have higher priority, for which transcoding tasks are
considered to be delay-sensitive; non-members have lower
priority, for which transcoding tasks are considered to be
delay-tolerant.

Queueing Model
We model service engines in the cloud as a set of queues in
Fig. 2. Without loss of generality, we assume that there are N
service engines in the cloud. We define queue length Q(t) as
the remaining time of transcoding tasks for each service
engine at discrete time slot t, that is, Q(t) = {Q1(t), Q2(t), …,
QN(t)}. The length of a time slot is small such that there is at
most one transcoding task arriving for each time slot. The dis-
patcher can estimate the transcoding time of the task arriving
at time slot t executed by each service engine, that is, A(t) =
{A1(t), A2(t), …, AN(t)}. In addition, the dispatcher can
observe the queue length of each service engine before it
decides which service engine should receive transcoding tasks.
Note that delay-sensitive transcoding tasks can preempt delay-
tolerant transcoding tasks ahead in the queue in order to sat-
isfy the time constraint of video transcoding. In this article we
take queueing delay T0 into account, which was not consid-
ered in [11].

Energy Model
Let us consider the energy consumption on both mobile
device and service engines in the cloud for video transcoding.

First, for the mobile device, its energy consumption stems
from the local computation determined by the CPU workload
for the mobile execution, or the data transmission to the
cloud for the cloud execution.

Specifically, for the mobile execution, the computation energy
for each operation is a function of the clock frequency f [11].
The total energy consumption is a summation over all CPU
cycles, W, to accomplish the transcoding task within the delay
deadline Td by setting f for each CPU cycle. Particularly, the
number of CPU cycles W depends on the input data L and
the complexity of transcoding. Thus, the total energy con-
sumption of the mobile execution is Em (L, Td, y), where
y = {f1, f2, …, fW} is any clock-frequency vector that meets
the delay deadline Td.

For the cloud execution, the energy consumption on the
mobile device consists of the energy consumed by transmitting
the input data and receiving the output data. First, the input
data L is transmitted to the cloud by adapting transmission
rate rt, and the resulted energy consumption is assumed to be
a monomial function of the data transmitted (where n is the
monomial order depending on the module scheme) [11]. Sec-
ond, the output data L¢ is assumed to be received at a con-
stant rate r¢ and power P ¢. Thus, the total energy consumption
of the cloud execution is E{Etran (L, Ts, f)} + Erecv(L¢), where
Etran and Erecv are the energy consumed by transmitting the
input data and receiving the output data, respectively, and the

expectation is taken over the varying channel condition. More
specifically, f = {r1, r2,…rTs} is a data transmission schedule
that meets the transmission delay Ts = Td – (L¢/r¢) – T0, where
the queueing delay in the cloud T0 depends on the offloading
policy for which service engine is chosen to perform the
transcoding task.

Second, for the service engine in the cloud, its energy con-
sumption stems from the computation to accomplish
transcoding tasks. We do not consider other types of energy
consumption in the service engine, for example, memory and
network, since computation energy consumption is dominant
in the distributed servers [12]. Specifically, each service engine
operates in a constant CPU speed si and a computation power
Pi that is assumed to be a convex function of CPU speed si
[12], where i = 1, 2, …, N. If the ith service engine receives a
transcoding task, its resulting energy consumption will be
Ai(t)Pi; otherwise, there is no energy consumption for the ith
service engine.

Optimization Framework
For the mobile device, given the characteristics of the
transcoding task (i.e. L and Td), we determine which execu-
tion, that is, mobile execution or cloud execution, is more
energy-efficient. We can formulate delay-constrained opti-
mization problems for the mobile execution and the cloud
execution, respectively. For the mobile execution, its energy
consumption Em can be minimized by optimally configuring
the clock frequency via dynamic voltage scaling (DVS), that is

(1)

where Y is the set of all feasible clock-frequency vectors y.
For the cloud execution, its energy consumption Ec can be
minimized by optimally setting the transmission rate, that is,

(2)

where F is the set of all feasible data scheduling vectors f.
Then the offloading policy for mobile devices is obtained by
comparing the optimal energy consumption of the mobile exe-
cution and the cloud execution.

For service engines in the cloud, given the estimated
transcoding time and the observed queue length (i.e. A(t) and
Q(t)), we determine which service engine should perform the
arriving transcoding task. We can formulate a stability-con-
strained optimization problem, aiming to minimize the time
average energy consumption while satisfying the queue stabili-
ty (i.e. the time average queue length should not go to infini-
ty, which implies finite average delay), or

(3)

where the expectation is taken over the randomness of A(t).
Particularly, the time average energy consumption

—
E and the

time average queue length —Q are defined as the average of
summation of energy consumed and remaining transcoding
time by N service engines over a long period of time, respec-
tively. Under this optimization framework, the energy-efficient
offloading policy for the mobile device and the cloud is pre-
sented in the next section.

Energy-Efficient Offloading Policy
In this section we propose the energy-efficient offloading poli-
cy in the green mobile cloud system.

=
∈Ψ

E E ψ
ψ

L Tmin{ (, ,)},m m d
*

EE E E= φ + ′
φ∈Φ

L T Lmin { (, ,)}, (),c tran s recv
*

< ∞

⎧
⎨
⎪

⎩⎪

E

Q

min ,

s.t. ,

CHEN_LAYOUT_Layout 1 11/14/14 2:04 PM Page 69

IEEE Network • November/December 201470

Offloading Policy for Mobile Devices

For the offloading policy on the mobile device, we determine
whether the transcoding task should be executed locally or
offloaded for cloud execution, in order to minimize the energy
consumed on the mobile device while meeting the delay deadline.

We can adapt the results in [11] to obtain the minimum
energy consumption on the mobile device. Specifically, the
minimum energy consumption of the mobile device by the
mobile execution is Em

* = ML3/Td
2, where M is a constant

depending on the chip architecture on the mobile device. The
minimum energy consumption on the mobile device by the
cloud execution is

where the first term refers to the energy consumption of
transmitting the input data, and the second term refers to the
energy consumption of receiving the output data. In addition,
C(n) is a function of monomial order n for the cloud execution.

As an example, let us consider the application of
transcoding FLV files with 1920×1080 resolution size into
mp4 files with 320×240 resolution size.1 We collect both the
input and output data, and find that the output data size L¢
can be modelled as a linear function of input data size L,
that is L¢ = aL + b, as illustrated in Fig. 3. Thus, the output
data size, L¢, can be approximated by this model.

Based on the characteristics of the transcoding task and the
configuration of mobile devices, we can determine which exe-
cution is more energy-efficient for the mobile device by com-
paring Em

* and Ec
*. Figure 4 shows there exists an operational

region of the mobile execution and the cloud execution,
respectively, for input data size L and specified time delay Td
under n = 2. First, Figs. 4a and 4b show the cases when the
queueing delay is relatively long. Particularly, if the queueing
delay is longer (i.e. T0 = 1s in Fig. 4b), the region of the
mobile execution is larger, indicating that it is more likely to
accomplish the transcoding task on the mobile device. This is
because, under a total application completion deadline, the
transmission time is shorter for the longer queueing delay,
given that the receiving time (i.e. L¢/r¢) is the same (i.e. r¢ =
500 KB/s). In this case, it requires the mobile device to trans-
mit the input data within a shorter given time, which con-
sumes more energy. Second, Figs. 4c and 4d show the cases
when the queueing delay is relatively short (i.e. T0 = 0.1 s).
Under a high receiving rate (i.e. r¢ = 500 KB/s), it seems that
the region is separated by a line, as illustrated in Fig. 4c. This
is because both the queueing delay and the receiving time are
short, indicating that the transmission time is close to the total
application completion deadline. This result agrees with [11] if
we only consider the transmission delay. However, under the
same queueing delay but lower receiving rate (i.e. r¢ = 250
KB/s), the receiving time has the effect on the decision. As
illustrated in Fig. 4d, the region of the mobile execution has
expanded for low receiving rate, if compared to Fig. 4c.

Offloading Policy for Service Engines
For the offloading policy on service engines, we determine
which service engine should receive the transcoding task to
minimize the time average energy consumption in the cloud,
subject to the queue stability.

Using the framework of Lyapunov optimization [13], we
propose the REQUEST algorithm that dispatches transcoding
tasks to service engines in order to reduce energy consump-
tion while achieving the queue stability. The REQUEST algo-
rithm works as follows. Upon receiving the transcoding task at
time slot t, the dispatcher estimates its transcoding time for
each service engine, Ai(t), and observes the queue length on
each service engine, Qi(t), where i = 1, 2, …, N. Then the
transcoding task is dispatched to the service engine with the
minimum value of Ai(t)(Qi(t) + VPi), where V is a control
variable. In addition, the queue length is updated at every
time slot for each service engine.

The REQUEST algorithm controls the energy-delay
trade-off of transcoding by tuning the variable V. We con-
duct a simulation where the length of a time slot is set to be
0.5 second. We assume that there are 10 service engines,
the CPU speed of which ranges from 2.0 GHz to 2.9 GHz.
In Fig. 5 we plot the time average energy consumption and
the time average queue length that are normalized and cal-
culated over 100,000 time slots under different V . It is
shown that the time average energy consumption decreases
and converges to the optimal value, as V increases. Howev-
er, the time average queue length grows linearly. Hence,
there exists an energy-delay trade-off of the REQUEST
algorithm. By choosing different control variable V, the
REQUEST algorithm can balance the trade-off between the
time average energy consumption and the time average
queue length.

We also compare the performance of the REQUEST algo-
rithm with the other three dispatching algorithms, that is,
Round Robin, Random Rate, and Least Time. For the Round
Robin algorithm, transcoding tasks are scheduled in a cyclic
fashion among N service engines. For the Random Rate algo-
rithm, transcoding tasks are dispatched to the ith service
engine with the probability

For the Least Time algorithm, transcoding tasks are sched-
uled to the service engine with the least remaining time. We
use a real trace data that contains the video requests to a
CDN node in China from 7:00 am to 7:00 pm on March 25,

E =
− ′ ′ −

+ ′ ′
′−

C n L

T L r T

P L

r

()

(/)
,c

n

d o
n

*
1

∑ =

s

s
.i

ii
N

1

Figure 3. Curve fitting of input data size and output data size
for transcoding. The data size of the output file L¢ can be
modelled as a linear function of the data size of the input
file L, that is, L¢ = aL + b, where a = 0.0175 and b =
0.3093.

0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Input data size, L (MB)

O
ut

pu
t d

at
a

si
ze

, L
 (

M
B

)

1 In this article, we only consider the case of transcoding videos into
different resolution sizes and formats. The optimization framework is
still valid for the case of adapting the bit rate of videos.

CHEN_LAYOUT_Layout 1 11/14/14 2:04 PM Page 70

IEEE Network • November/December 2014 71

2012. We plot the time average energy consumption and the
time average queue length for every hour as well as the file
size in Fig. 6 from top to bottom, respectively. It is shown
that the REQUEST algorithm (V = 0) has a time average
queue length close to the Round Robin, Random Rate, and
Least Time algorithms, but it has the largest time average
energy consumption. The REQUEST algorithm (V = 5) can
have the smallest time average energy consumption, but it
has the longest time average queue length. The REQUEST
algorithm (V = 1) has a slightly larger time average energy
consumption than the REQUEST algorithm (V = 5) but
achieves a much shorter time average queue length. This
reflects the energy-delay trade-off of the REQUEST algo-
rithm. The Least Time algorithm has a shorter time average
queue length, but larger time average energy consumption
than the REQUEST algorithm (V = 5 and V = 1). The
other two algorithms, that is, Round Robin and Random
Rate, however, have much larger time average energy con-
sumption than the REQUEST algorithm (V = 5 and V = 1).
This is because these two algorithms are unaware of the
arrivals and the queue length, which limits their perfor-
mance. Therefore, the REQUEST algorithm is more adap-
tive to reduce the energy consumption while maintaining the
queue stability.

Variation of Generic Green Mobile Cloud
System

In this section we present the variation of the proposed gener-
ic green mobile cloud system and discuss its related open
research problems.

VM Deployment and Task Migration
Virtual machines (VMs) can be deployed in service engines to
achieve high resource utilization and reduce the energy con-
sumption in the cloud. First, each service engine is equipped with
multiple VMs that are dynamically set to be active or inactive in
response to the arrival of transcoding tasks. As such, the deploy-
ment of VMs can reduce the number of service engines used and
improve the resource utilization of service engines. Second, task
consolidation by migrating tasks from one service engine to
another also allows fewer service engines to be used, thus saving
energy consumption in the cloud [14]. However, since there are
more tasks to be processed with resource contention in a shared
service engine, task consolidation can degrade the performance
and increase the delay for users. Therefore, an intelligent task
migration strategy should consider this energy-delay trade-off to
allocate computing resources for application offloading.

Figure 4. Operational region of the mobile execution and the cloud execution for mobile devices, where n = 2. a) T0 = 0.5s, r¢ =
500KB/s; b) T0 = 1s, r¢ = 500 KB/s; c) T0 = 0.1s, r¢ = 500 KB/s; d) T0 = 0.1s, r¢ = 250 KB/s.

2 2.5 3 3.5 4 4.5 5
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

D
at

a
si

ze
,
L

 (
M

B
)

Delay deadline, T (s)d

Cloud execution

Mobile execution

2 2.5 3 3.5 4 4.5 5
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

D
at

a
si

ze
,
L

 (
M

B
)

Delay deadline, T (s)d

Mobile execution

Cloud execution

2 2.5 3 3.5 4 4.5 5
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

D
at

a
si

ze
,
L

 (
M

B
)

Delay deadline, T (s)d

Cloud execution

Mobile execution

(a)

(d)(c)

(b)

2 2.5 3 3.5 4 4.5 5
0.1

0.12

0.14

0.16

0.18

0.2

0.22

D
at

a
si

ze
,
L

 (
M

B
)

Delay deadline, T (s)d

Cloud execution

Mobile execution

CHEN_LAYOUT_Layout 1 11/14/14 2:04 PM Page 71

IEEE Network • November/December 201472

Task Classification
Transcoding tasks can be classified into different priorities,
based on what type of service has been subscribed by mobile
users. Transcoding tasks in a higher priority can preempt
transcoding tasks in a lower priority to have low queueing
delay. In addition, transcoding tasks in a high priority can be
accomplished by service engines in parallel. Therefore, by task
classification, the cloud provider can deliver a range of quality
of service to users, while reducing the energy consumption in
the cloud.

Cache Management
We can have a cache management for the content in the
cloud. If the video requested by users is cached in the storage
and available to users, delay can be reduced significantly for
users to consume the video, and energy consumption can be
saved on service engines. However, the storage space can be
limited for a large amount of content. Therefore, a strategic
cache management by predicting user requests can be incor-
porated into the generic mobile cloud system.

Other Applications
The generic mobile cloud system can also be applied to other
computation-intensive mobile applications. One typical appli-
cation is image retrieval [15]. It is common for a camera-
equipped mobile device to capture and store images.
Retrieving images from a large collection of images is compu-
tation-intensive for mobile devices. Particularly, this applica-
tion extracts features from the query image and the collection,
and then compares images based on their features. To reduce
the energy consumption on the mobile device, one can adopt
our proposed optimization framework and find the optimal
operational region for the mobile execution and the cloud
execution. Meanwhile, the proposed REQUEST algorithm
can also be applied to schedule service engines in the cloud to
reduce the energy consumption while achieving the queue sta-
bility for image retrieval.

Conclusion
In this article we presented a generic mobile cloud system and
investigated an energy-efficient offloading policy for TaaS in
this system. We aimed to minimize the energy consumption of
transcoding on the mobile devices and service engines in the
cloud while achieving a low delay. For a mobile device, we

formulated the offloading policy as a delay-constrained opti-
mization problem. We obtained the operational region on
which execution mode, that is, mobile execution or cloud exe-
cution, is more energy efficient for the mobile device. For ser-
vice engines in the cloud, we formulated the offloading policy
as a stability-constrained optimization problem. We proposed
an online algorithm to dispatch transcoding tasks to service
engines, which can reduce energy consumption while achiev-
ing queue stability. By appropriately choosing the control vari-
able, the proposed algorithm outperforms three alternative
algorithms, with lower time average energy consumption and
queue length. Finally, we discussed related research problems
in the proposed generic green mobile cloud system.

In the future we will consider the dispatching algorithm
under the virtualized environment in which virtual machines
are put into use and task migration can take effect. This con-
sideration can further reduce the energy consumption and
improve the utilization of resources in the cloud.

References
[1] Cisco Visual Networking Index: Forecast and Methodology, 2012–2017,

Cisco, 2013.
[2] A. Vetro, C. Christopoulos, and H. Sun, “Video Transcoding Architectures

and Techniques: An Overview,” IEEE Signal Process. Mag., vol. 20, no.
2, 2003, pp. 18–29.

[3] M. Armbrust et al., “A View of Cloud Computing,” Commun. of the ACM,
vol. 53, no. 4, 2010, pp. 50–58.

[4] K. Kumar and Y. H. Lu, “Cloud Computing for Mobile Users: Can Offload-
ing Computation Save Energy?” IEEE Computer, vol. 43, no. 4, 2010,
pp. 51–56.

[5] Y. Xu and S. Mao, “A Survey of Mobile Cloud Computing for Rich Media
Applications,” IEEE Wireless Commun., vol. 20, no. 3, 2013, pp. 46–53.

[6] A. Garcia, H. Kalva, and B. Furht, “A Study of Transcoding on Cloud
Environments for Video Content Delivery,” Proc. 2010 ACM Multimedia
Workshop on Mobile Cloud Media Computing, 2010, pp. 13–18.

[7] H. Sanson, L. Loyola, and D. Pereira, “Scalable Distributed Architecture
for Media Transcoding,” Algorithms and Architectures for Parallel Process-
ing, 2012, pp. 288–302.

[8] A. Ashraf, “Cost-Efficient Virtual Machine Provisioning for Multi-Tier Web
Applications and Video Transcoding,” Proc. 2013 13th IEEE/ACM Int’l
Symposium on Cluster, Cloud and Grid Computing, 2013, pp. 66–69.

[9] F. Jokhio et al., “Prediction-Based Dynamic Resource Allocation for Video
Transcoding in Cloud Computing,” Proc. 2013 21st Euromicro Int’l Conf.
Parallel, Distributed and Network-Based Processing, 2013, pp. 254–61.

[10] S. Ko, S. Park, and H. Han, “Design Analysis for Real-Time Video
Transcoding on Cloud Systems,” Proc. 28th Annual ACM Symposium on
Applied Computing, 2013, pp. 1610–15.

Figure 5. Time average energy consumption and time average
queue length under different V values in the REQUEST
algorithm.

0 5 10 15 2019

20

21

22
Ti

m
e

av
er

ag
e

en
er

gy
 c

on
su

m
pt

io
n,

 E

Control variable, V

0 5 10 15 200

50

100

150

Ti
m

e
av

er
ag

e
qu

eu
e

le
ng

th
, Q

Time average energy consumption

Time average queue length

Figure 6. Performance comparison among the REQUEST
algorithm, the Round Robin algorithm, the Random Rate
algorithm and the Least Time algorithm under real trace.

7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM
0

5

10

15

20

25

Ti
m

e
av

er
ag

e
en

er
gy

, E

REQUEST(V=0)
REQUEST(V=1)
REQUEST(V=5)
Round Robin
Random Rate
Least Time

7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM
0

5

10

15

20

25

30

Ti
m

e
av

er
ag

e
qu

eu
e

le
ng

th
, Q

7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM
0

5

10

Time

Fi
le

 s
iz

e,
 L

 (
M

B
)

CHEN_LAYOUT_Layout 1 11/14/14 2:04 PM Page 72

IEEE Network • November/December 2014 73

[11] W. Zhang et al., “Energy-Efficient Mobile Cloud Computing Under
Stochastic Wireless Channel,” IEEE Trans. Wireless Commun., 2013, pp.
4569–81.

[12] Y. Chen et al., “Managing Server Energy and Operational Costs in Host-
ing Centers,” ACM SIGMETRICS Performance Evaluation Review, vol. 33,
no. 1, 2005, pp. 303–14.

[13] M. J. Neely, “Stochastic Network Optimization with Application to Com-
munication and Queueing Systems,” Synthesis Lectures on Commun. Net-
works, vol. 3, no. 1, 2010, pp. 1-211.

[14] L. Gkatzikis and I. Koutsopoulos, “Migrate or Not? Exploiting Dynamic
Task Migration in Mobile Cloud Computing Systems,” IEEE Wireless Com-
mun., vol. 20, no. 3, 2013, pp. 24–32.

[15] Y.-J. Hong, K. Kumar, and Y.-H. Lu, “Energy Efficient Content-Based
Image Retrieval for Mobile Systems,” Proc. IEEE Int’l Symposium on Cir-
cuits and Systems, 2009, pp. 1673–76.

Biographies
WEIWEN ZHANG is a Ph.D. candidate at the School of Computer Engineering
at Nanyang Technological University (NTU) in Singapore. He received his
bachelor’s degree in software engineering and master’s degree in computer
science from South China University of Technology (SCUT) in 2008 and
2011, respectively. His research interests include cloud computing and mobile
computing.

YONGGANG WEN [S’00-M’08-SM’14] has been an assistant professor with the
School of Computer Engineering at Nanyang Technological University, Singa-
pore, since 2011. He received his Ph.D. degree in Electrical Engineering and
Computer Science (minor in Western Literature) from Massachusetts Institute of

Technology (MIT), Cambridge, MA, USA. Previously he worked at Cisco lead-
ing product development in the content delivery network, which had a revenue
impact of three billion US dollars globally. Dr. Wen has published over 100
papers in top journals and prestigious conferences. His latest work in multi-
screen cloud social TV has been featured by global media (more than 1600
news articles from over 29 countries) and recognized with ASEAN ICT Award
2013 (Gold Medal) and IEEE Globecom 2013 Best Paper Award. He serves
on the editorial boards of IEEE Transactions on Multimedia, IEEE Access Jour-
nal, and Elsevier Ad Hoc Networks. Dr. Wen’s research interests include
cloud computing, green data centers, big data analytics, multimedia networks,
and mobile computing.

HSIAO-HWA CHEN [S’89-M’91-SM’00-F’10] is a distinguished professor in the
Department of Engineering Science, National Cheng Kung University, Taiwan.
He obtained his BSc and MSc degrees from Zhejiang University, China, and
a Ph.D. degree from the University of Oulu, Finland, in 1982, 1985, and
1991, respectively. He has authored or co-authored over 400 technical
papers in major international journals and conferences, six books, and more
than 10 book chapters in the areas of communications. He served as the gen-
eral chair, TPC chair, and symposium chair for many international confer-
ences. He served or is serving as an editor and/or guest editor for numerous
technical journals. He is the founding editor-in-chief of Wiley’s Security and
Communication Networks Journal (www.interscience.wiley.com/
journal/security). He is the recipient of the best paper award at IEEE WCNC
2008, and a recipient of the IEEE Radio Communications Committee Out-
standing Service Award in 2008. Currently he is serving as the editor-in-chief
of IEEE Wireless Communications. He is a Fellow of IEEE, a Fellow of IET,
and an elected Member at Large of IEEE ComSoc.

CHEN_LAYOUT_Layout 1 11/14/14 2:04 PM Page 73

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

