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Abstract—This paper investigates the problem of minimizing
energy consumption for real-time video encoding on mobile de-
vices, by dynamically configuring the clock frequency in the CPU
via the dynamic voltage scaling (DVS) technology. The problem
can be formulated as a constrained optimization problem, whose
objective is to minimize the total energy consumption of encoding
video contents while respecting a real-time delay constraint.
Under a probabilistic workload model, we obtain closed-form so-
lutions for both the optimal clock frequency configuration and the
resulted minimum energy. We also compare the optimal solution
with a brute force flat frequency configuration. Numerical results
indicate that our derived optimal solution outperforms the brute-
force approach significantly. Moreover, we apply the optimal
solution for real-time H.264/AVC video encoding application. Our
numerical results suggest that an energy saving of 10% − 20%

can be achieved, compared to the flat clock frequency scheduling.

I. INTRODUCTION

Growing popularity of smart phones and ubiquitous wireless

Internet access have fueled an exponential growth of mobile

media [1]. Many mobile devices (e.g., iPhone) nowadays are

capable of capturing high-quality photos and videos [2]. These

user-generated contents are encoded by mobile devices first

and then uploaded to the cloud via wireless connections or

portable storage devices (e.g., Compact Flash Card). Such

an emerging media trend is contributing significantly to the

growth of mobile data traffic, which is expected to increase

by a factor of 40 between 2009 and 2014 [3]. In particular,

by 2015 video traffic will constitute almost two-thirds of the

world’s mobile data traffic.

However, mobile devices are inherently resource-

constrained [4]. In particular, the energy supply on mobile

devices is limited by the physical size of the battery that

cannot grow in response to high demand. As a result, the

limited battery life-time has been shown to be the most

important factor affecting the user experience [5]. The

emerging trend of video encoding on mobile devices, due

to its energy-hungry nature, aggravates this limitation. In

order to sustain a longer battery life-time, the task of video

encoding on mobile devices should be executed with energy

concern [6]. In this research, we aim to minimize the energy

consumption for video encoding on mobile devices, while

respecting some quality-of-service (QoS) requirements.

Previous researchers have investigated the problem of

energy-aware video encoding from a perspective of encoder

design. In [7], a comprehensive power-rate-distortion model

was developed to describe the relationship of different encod-

ing modules for the general video coding structure. In [8],

a joint complexity-distortion optimization approach was pro-

posed for real-time H.264 video encoding under power-

constraint, in which computational resource is dynamically

allocated to frames and Macro-Blocks. The proposed system

needs to dynamically allocate resource to motion estimation

and mode decision modules and configure the two modules

to utilize the resource. However, these encoder-centric ap-

proaches often resulted in algorithms that are complicated,

rendering its applicability to resource-poor mobile devices to

a limited level.

In this research, we propose an alterative venue of mini-

mizing the energy consumed for video encoding on mobile

devices by dynamically reconfiguring the clock frequency of

the chip. Our proposed solution is feasible due to the dynamic

voltage scaling technology (DVS). In CMOS circuits[9], the

energy per operation Eop is proportional to V 2, where V is

the supply voltage to the chip. Moreover, it has been observed

that the clock frequency of the chip, f , is approximately

linearly proportional to the voltage supply of V [9]. Therefore,

the energy per operation can be expressed as, Eop = κf2,

where κ is the energy coefficient depending on the chip

architecture. Note that CPU can reduce its energy consumption

substantially by running more slowly [10]. However, for real-

time video encoding, the encoder has to meet a delay deadline

for each group of pictures (GOP), which suggests that the

clock frequency cannot be constantly small.

In this paper, we take a systematic approach to investigate

the problem of how to dynamically reconfigure the clock

frequency in the mobile device to minimize the energy con-

sumption, while respecting the QoS requirement. We adopt a

probabilistic QoS model, in which the encoding process should

complete with a target probability within a specified delay

deadline for each GOP. Such a requirement is translated into

the number of CPU cycles required before the encoding dead-

line. Under this model, the optimal clock-scheduling problem

is formulated as a constrained optimization problem, in which

the objective is to minimize the total energy consumption

with a constraint of delay deadline. We solve the optimization

problem analytically and obtain closed-form solutions for both

the optimal clock frequency schedule and the minimum energy

consumption. We then apply the lightweight clock scheduling

algorithm to real-time H.264/AVC encoding application on

mobile devices. The numerical results suggest that significant



amount of energy can be saved by using our optimal solution.

The rest of the paper is organized as follows. In Section

II, we present a mathematical model for energy consumption

in mobile devices and encoder workload, and a problem for-

mulation for optimal clock scheduling mechanism. In Section

III, we solve the optimization problem and obtain closed-form

solutions for the optimal clock-scheduling algorithm and the

minimum energy consumption. In Section IV, the lightweight

algorithm is applied for real-time H.264/AVC encoding on

mobile devices and we obtain numerical results about the

energy saving. Section V concludes this paper.

II. MODEL AND FORMULATION

In this section, we first present a mathematical model for

energy consumption in mobile devices and a probabilistic

model for encoder workload. Under this model, the problem

of optimal clock-scheduling mechanism is formulated as a

constrained optimization problem.

A. Energy Consumption Model for Mobile Devices

The energy consumed on mobile devices, for a special

computing task, depends on the number of CPU cycles and the

clock frequency. First, in CMOS circuits, the clock frequency

f , is approximately linearly proportional to the voltage supply

V , and the energy per cycle Ec is proportional to V 2 [9].

Therefore, the energy consumption per cycle can be expressed

as

Ec = κf2, (1)

where κ is a coefficient depending on the chip architecture.

The energy per CPU cyle, as denoted in (1), has the following

properties including:

• Ec(f) is an increasing function of the clock frequency

of f ;

• Ec(f) is a convex function of the clock frequency of f .

Given these properties, it can be seen that CPU can conserve

energy substantially by running more slowly. However, for

real-time video encoding, the encoder has to meet a speci-

fied deadline for each GOP, which suggests that the clock

frequency cannot be constantly small. Therefore properly

scheduling of CPU clock frequency can conserve energy while

meeting the required deadline simultaneously.

B. Probabilistic Workload Model for Video Encoding

The workload of an encoding task is characterized by the

number of CPU cycles, denoted as W . It is normally modeled

as a random variable. As shown in [11] [12], the (truncated)

normal distribution can be used to model the workload. The

probability density function (PDF) of normal distribution is

given by

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , for x > 0. (2)

In this paper, we assume a probabilistic workload model

that an encoding task should be completed with probability ρ

by allocating Wρ cycles. This requirement can be expressed

as the cumulative distribution function (CDF)

F (x) = Pr[x ≤ Wρ] ≥ ρ. (3)

As such, the required number of CPU cycles Wρ, for an

empirical normal distribution and completion probability ρ,

is given by

Wρ = F−1
W (ρ). (4)

In this model, a CPU frequency scheduling consists of two

parts, including the pre-deadline part and the post-deadline

part. The maximum number of cycles executed in the pre-

deadline part equals to Wρ. The post-deadline part describes

the scheduling when task has missed its deadline. In this paper,

we only focus on the scheduling policy for the pre-deadline

part. If the encoding process misses its required deadline,

it is assumed that the post-deadline part is executed with a

maximum clock frequency.

C. Problem Formulation

In the real-time video encoding system, we focus on the

encoding task of each GOP. Specifically, the encoding task

of each GOP is required to meet the deadline at a specified

probability, which can be expressed as a probabilistic QoS

model,

Pr[t ≤ T ] ≥ ρ, (5)

where t is the encoding time for an individual GOP-encoding

task and T is the required encoding deadline for a GOP-

encoding task.

The encoding requirement specified in Eq.(5), under the

probabilistic workload model, can be translated into a require-

ment of the number of CPU cycles, i.e. Wρ defined in Eq.(4).

Therefore, the total energy consumption can be derived as

εc = κ

∫ Wρ

0

p(x)

∫ x

0

[f(w)]2dwdx

(a)
= κ

∫ Wρ

0

[f(w)]2
∫ Wρ

w

p(x)dxdw

(b)
= κ

∫ Wρ

0

[f(w)]2(1− F (w))dw,

where f(w) is the clock frequency defined as a function of w,

which is the number of CPU cycles that has been completed

for the current task, (a) results from the exchange of integral

order, and (b) is from the definition of the CDF.

A discrete version of the energy consumption, by using the

approximation of du = 1, can be written as

εc = κ

Wρ∑
w=1

F c(w)[f(w)]2, (6)

where F c(w) is the complementary cumulative distribution

function (CCDF) of workload. Notice that F c(w) is the

probability in which the encoding task has not finished after

executing w CPU cycles.



Using the above definition, we can formulate the optimal

clock frequency allocation problem as the following con-

strained optimization problem,

min
f(w)

εc = κ

Wρ∑
w=1

F c(w)[f(w)]2, (7)

s.t.

Wρ∑
w=1

1

f(w)
≤ T, (8)

f(w) > 0,

where the constraint of Eq.(8) corresponds to the task deadline

requirement.

III. OPTIMAL DVS SCHEDULING

In this section, we solve the optimization problem via a

Lagrangian method and obtain the closed-form solutions for

the optimal clock-scheduling policy and the corresponding

minimum energy consumption. We then evaluate the charac-

teristics of the clock-scheduling policy.

A. Derivation of Optimal DVS policy

In this subsection, we first show the existence of a unique

solution to the aforementioned optimization problem and then

use a Lagrangian multiplier method to solve the optimization

problem in Eq.(7).

First, we show the existence of a unique solution for the

optimization problem. In Eq.(7), the energy expression is a

linear combination of [f(w)]2. Since the form of x2 is a

convex function, our objective function Eq.(7) is also a convex

function. It is clear that the two constrains in Eq.(8) are both

convex sets [13]. Therefore, we can conclude that there exists

a unique solution for the convex optimization problem.

Second, we use the Lagrangian multiplier method to solve

the optimization problem in Eq.(7). The Lagrangian function

is given by

L(f(w), λ) =

Wρ∑
w=1

F c(w)[f(w)]2 + λ(

Wρ∑
w=1

1

f(w)
− T )

=

Wρ∑
w=1

{F c(w)[f(w)]2 +
λ

f(w)
} − λT.

Using KKT condition, the optimization problem must satisfy

the following conditions,

∂L(f(w), λ)

∂f(w)
= 2F c(w)f(w)− λ

[f(w)]2
= 0 (9)

∂L(f(w), λ)

∂λ
=

Wρ∑
w=1

1

f(w)
− T = 0. (10)

From Eq.(9) we can obtain

f∗(w) = { λ

2F c(w)
}1/3. (11)
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Fig. 1. The energy saving improvement compared to flat scheduling. η =

σ/µ, and η1, η2, η3 are respectively 0.1, 0.12, 0.14.

Substituting Eq.(11) into Eq.(10), we can obtain

(
λ

2
)1/3 =

∑Wρ

w=1[F
c(w)]1/3

T
. (12)

Therefore, substituting Eq.(12) into Eq.(11), the optimal

CPU frequency scheduling policy is given by

f∗(w) =
θ

T [F c(w)]1/3
, (13)

where

θ =

Wρ∑
i=1

[F c(i)]1/3. (14)

Substituting Eq.(13) into Eq.(6), we obtain the expected opti-

mal energy consumption as

ε∗c =
κ

T 2
{
Wρ∑
i=1

[F c(i)]1/3}3

=
κ

T 2
θ3. (15)

In this research, we also consider a benchmark scheduling

policy, i.e. a brute force approach that adopts a flat fre-

quency scheduling. The brute force approach has the same

amount of pre-deadline workload with our proposed optimal

DVS scheduling. The lowest frequency for the flat frequency

scheduling scheme is

fF (w) = Wρ/T. (16)

In this case, the minimum energy consumption is

EF
c = κW 3

ρ /T
2. (17)

It will be shown in the next section, for a probabilistic

workload, our optimal DVS frequency allocation can conserve

considerable energy most time, compared to the flat frequency

scheduling.
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Fig. 2. The optimal clock frequency scheduling. The mean of each workload
are respectively µ1 = 3Bc, µ2 = 3.3Bc, µ3 = 3.6Bc, while standard
derivation is fixed to σ = 0.3Bc, and deadline is T = 0.5s. (Bc denotes
Billion cycle)

B. Optimal DVS Scheduling Characteristics

In this subsection, we investigate the characteristics of the

optimization solution, including the energy saving for differ-

ent workloads and the optimal DVS scheduling relationship

between different workloads.

First, let us consider the energy saving performance. We

need to know the potential improvement capability of energy

saving under different workload (e.g., µ, σ combinations).

Compared to the flat frequency scheduling policy, the energy

saving of our proposed optimal DVS scheduling policy, de-

noted as

δ =
E∗

c − EF
c

EF
c

, (18)

is plotted in Figure 1, as a function of the task completion

probabilty, for different variance-to-mean ratios (η = σ/µ).

We can see that the energy saving increases with the increas-

ing of the task completion probability. Moreover for larger

variance-to-mean ratio, we can obtain more energy saving,

which means higher variance of workload can potentially

result in more energy saving.

Second, let us consider the optimal clock-frequency policy.

In Figure 2, we compare the optimal clock-frequency policies

for three different means of the workload cycles (µ), with the

same variance of the workload cycles (σ2). We observe that

the shape of frequency scheduling curves for different µ is

similar to each other, as shown analytically next.

Let us consider two workloads of WL1, WL2, with µ1 >
µ2 and σ1 = σ2. In normal distributions, the PDF curve of

WL1 can be obtained by right shifting the WL2’s curve with

a distance of ∆µ = µ1 − µ2. The CDF and CCDF curves of

them follow the same shifting rule. As a result, we can get

the relationship,

F c
2 (w) = F c

1 (w +∆µ). (19)
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Fig. 3. The optimal clock frequency scheduling. The standard derivation of
each workload are respectively σ1 = 0.3Bc, σ2 = 0.36Bc, σ3 = 0.42Bc,
while mean of cycles is fixed to µ = 3Bc, and deadline is T = 0.5s.

Since the shapes of CCDF for two distribution have a shifting

relationship, the difference between θ can be derived as

follows,

θ1 − θ2 =

Wρ1∑
i=1

[F c
1 (i)]

1/3 −
Wρ2∑
i=1

[F c
2 (i)]

1/3

= ∆µ = µ1 − µ2. (20)

Using this result, we can obtain the following relationship

between their corresponding clock-frequency policies,

f∗

2 (w) =
θ2

T [F c
2 (w)]

1/3

=
θ2

T [F c
1 (w +∆µ)]1/3

=
θ1 −∆µ

θ1
f∗

1 (w +∆µ). (21)

Therefore, the optimal frequency scheduling vector of WL2

can be calculated as a left shift ∆µ with a scale of θ1−∆µ
θ1

from the scheduling vector of WL1.

Using the shift-and-scale property, we can reduce the com-

plexity of our proposed optimal DVS scheduling algorithm

significantly. Specifically, for a given work load distribution,

the optimal DVS scheduling policy, as denoted in (13), can

be stored in a table. For practical encoding applications, the

practical clock frequency scheduling vector can be obtained

by the shift-and-scale approach. Therefore, the shift-and-scale

relationship could be used to simplify the frequency optimiza-

tion algorithm on practical platforms.

Finally, let us investigate the impact of variance on the opti-

mal scheduling policy. In Figure 3, three frequency scheduling

curves are plotted for different variance σ2 while the same

mean µ. It can be seen that, the shape varies for different

variances, and larger variance leads to earlier frequency accel-

eration.
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Fig. 4. Per-GOP CPU cycle consumption histogram and normal distribution
CDF fitting for four different videos

In summary, owing to these characteristics, our optimal

DVS solution can be implemented with a low complexity. The

frequency expression in Eq.(13) is a light weight computation

process, since it can tabulated. In addition, the curve shift-

ing relationship between different workload can reduce the

complexity. Therefore, our proposed algorithm is suitable for

mobile devices with a limited energy budget.

IV. DVS APPLICATION TO REAL-TIME VIDEO ENCODING

In this section, we apply our proposed optimal DVS

scheduling algorithm to real-time video encoding. Firstly, we

evaluate the workload characteristics of H.264/AVC video

encoding, and then apply the optimal DVS scheduling policy

for it and compare the energy consumption with different

distribution estimation configurations.

A. Empirical Workload Distribution for H.264/AVC Coding

In a real-time video encoding system, the real-time man-

agement unit can be selected as a single frame or a batch of

frames. Considering the high complexity of encoding manage-

ment, we set a batch of frames encoding process (i.e. encoding

of a GOP) to be an individual task as the minimum real-time

encoding unit. Several CIF size sample videos are used as test

sequences and encoded with x264 software [14], which is a

high performance open source H.264/AVC encoder. The raw

video sequences are compressed with frame structure of I-B-

P-B-P-B...(GOP-16), a frame rate of 25 fps and quantization

parameter of 30. The encoding experiments run on a 3GHz

Intel Core Duo CPU. The number of cycles consumed is

collected via Oprofile tools [15]. The x264 platform-specific

assembly optimization is disabled for platform-independent

results.

In Figure 4, we plot the histograms of the per-GOP CPU

cycles consumed for encoding four different video sources.
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Fig. 5. Cumulative energy consumption for three alterative DVS policies

TABLE I
ENERGY SAVING OVER BRUTE-FORCE ALGORITHM

Algorithm Foreman Football Akiyo Mobile
Gene-Aided DVS 29.7% 35.2% 22.2% 29.4%
Non-Causal DVS 16.4% 18.9% 11.8% 16.2%

The resulted histograms are curve-fitted with a (truncated)

normal distribution CDF. It can be seen that video encoding

workload can be well modeled with a normal distribution.

B. Optimal Clock Frequency Configuration and Energy Con-

sumption

In this subsection, we first compare the energy performance

of the following three scheduling algorithms.

1) Brute-Force Scheduling Algorithm: in this case, the

scheduler has access to the overall distribution of all

the GOP-encoding tasks (a non-causal estimator) and

applies a flat frequency-scheduling policy to meet the

encoding delay deadline;

2) Gene-Aided DVS Algorithm: in this case, the scheduler

knows the exact number of CPU cycles consumed to en-

code each GOP and applies a flat-frequency scheduling

policy to meet the encoding delay deadline;

3) Non-Causal DVS Algorithm: in this case, the scheduler

has access to the overall workload distribution for all

the GOP-encoding tasks (a non-causal estimator) and

applies our proposed DVS policy to meet the encoding

delay deadline with a target task completion probability.

In our first experiment, the task completion probability is

set to be 95%. For both the brute force algorithm and the Non-

Causal DVS algorithm, the workload distribution is obtained

from global experiment data. In Figure 5, we present the

simulation results of cumulative energy consumption for the

three scheduling algorithms, as a function of the number of

encoded GOPs. We first notice that our proposed non-causal



TABLE II
ENERGY CONSUMPTION GAP COMPARED TO GENE-AIDED DVS

Video Non-causal
Recent-k

k=3 k=6 k=9 k=12 k=15

Foreman 18.9% 15.9% 17.7% 16.9% 16.7% 17.1%
Football 25.1% 14.8% 22.4% 24.5% 25.9% 27.2%
Akiyo 13.3% 11.3% 14.2% 14.5% 15.1% 15.4%
Mobile 18.7% 10% 13.9% 16.8% 18.5% 18.5%

DVS algorithm achieves a significant gain compared to the

brute Force scheduling algorithm. However, our proposed non-

causal DVS algorithm experience some performance penalty

from the Genie-Aided DVS algorithm. The average energy

saving gain is illustrated in Table I. We can see that the non-

causal DVS algorithm can achieve an energy saving gain of

10% − 20%, and the Gene-Aided scheduling algorithm can

provide a gain of 20%− 35%.

Our second experiment addresses the issue of workload

estimation for DVS. In reality, the non-causal estimator for the

workload distribution is infeasible. A more practical approach

is to adopt a causal estimator for the workload distribution.

In [11], a few sampling methods were investigated for such a

purpose. In this paper, we adopt a Recent-k method to estimate

the empirical workload distribution and evaluate its impact

on the energy consumption for real-time video encoding on

mobile devices. Specifically, the Recent-k method uses the

sample of the k most recent encoding tasks to estimate the

workload distribution (i.e., the mean and the variance of an

embedded Gaussian distribution). The energy consumption

penalty (δ = (EDV S − EGene)/EGene) against the Gene-

Aided DVS algorithm is used for performance evaluation. We

calculate the energy consumption penalty for the Recent-k
method and the non-causal DVS algorithm in Table II for

k = 3, 6, 9, 12, 15. It can be observed that the estimator

using the shortest history (k = 3 scheme) can achieve more

energy saving compared to long history estimation (Global

estimation), and thus is more suitable for video encoding. It

can be understood as follows. In real-time video encoding

application, due to the dynamics of video motion, current

frame will only take some of neighboring frames as reference,

which leads to the strong correlation on neighboring frames

encoding. Therefore, it is reasonable that estimation based on

a shorter history can conserve more energy, especially for the

fast motion videos, such as ”Football”.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate the problem of minimizing

energy consumption for real-time video encoding on mobile

devices via the DVS technology. The problem is formulated

as a constrained optimization problem. Under a probabilistic

workload model, we obtain closed-form solutions for both

the optimal clock frequency configuration and the resulted

minimum energy for GOP encoding. Numerical results indi-

cate that our derived optimal solution outperforms the brute-

force approach significantly. Moreover, we apply the optimal

solution for real-time H.264/AVC video encoding application.
Our numerical results suggests that an energy saving of

10% − 20% can be achieved, compared to the flat clock

frequency scheduling.

In this paper, the analytical result for the impact of esti-

mation error is not proposed. Therefore, in the future work,

we will do more effort to analyze the tight bound of energy

consumption difference while considering the estimation error

of workload distribution.
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