
IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015 27

A Survey on Software-Defined Networking
Wenfeng Xia, Yonggang Wen, Senior Member, IEEE, Chuan Heng Foh, Senior Member, IEEE,

Dusit Niyato, Member, IEEE, and Haiyong Xie, Member, IEEE

Abstract—Emerging mega-trends (e.g., mobile, social, cloud,
and big data) in information and communication technologies
(ICT) are commanding new challenges to future Internet, for
which ubiquitous accessibility, high bandwidth, and dynamic man-
agement are crucial. However, traditional approaches based on
manual configuration of proprietary devices are cumbersome and
error-prone, and they cannot fully utilize the capability of physi-
cal network infrastructure. Recently, software-defined networking
(SDN) has been touted as one of the most promising solutions
for future Internet. SDN is characterized by its two distinguished
features, including decoupling the control plane from the data
plane and providing programmability for network application
development. As a result, SDN is positioned to provide more
efficient configuration, better performance, and higher flexibility
to accommodate innovative network designs. This paper surveys
latest developments in this active research area of SDN. We first
present a generally accepted definition for SDN with the afore-
mentioned two characteristic features and potential benefits of
SDN. We then dwell on its three-layer architecture, including
an infrastructure layer, a control layer, and an application layer,
and substantiate each layer with existing research efforts and its
related research areas. We follow that with an overview of the de
facto SDN implementation (i.e., OpenFlow). Finally, we conclude
this survey paper with some suggested open research challenges.

Index Terms—Software-defined networking, SDN, network vir-
tualization, OpenFlow.

Manuscript received May 31, 2013; revised December 7, 2013 and March 19,
2014; accepted May 15, 2014. Date of publication June 13, 2014; date of
current version March 13, 2015. The work of H. Xie was supported in part
by the National Natural Science Foundation of China under Grant 61073192,
by the Grand Fundamental Research Program of China (973 Program) under
Grant 2011CB302905, by the New Century Excellent Talents Program, and
by the Fundamental Research Funds for Central Universities under Grant
WK0110000014. The work of Y. Wen was supported in part by NTU under
a Start-Up Grant, by the Singapore MOE under MOE Tier-1 Grant (RG 31/11),
by Singapore EMA under a EIRP02 Grant, and by the Singapore National Re-
search Foundation under its IDM Futures Funding Initiative and administered
by the Interactive & Digital Media Programme Office, Media Development
Authority. The work of W. Xia was supported by NSFC under Grant 61073192,
by 973 Program under Grant 2011CB302905, and by Singapore EMA under
an EIRP02 Grant.

W. Xia is with the School of Computer Science, University of Science
and Technology of China, Hefei 230026, China, and also with the School of
Computer Engineering, Nanyang Technological University, Singapore 639798
(e-mail: wenfeng_xia@ntu.edu.sg).

Y. Wen and D. Niyato are with the School of Computer Engineer-
ing, Nanyang Technological University, Singapore 639798 (e-mail: ygwen@
ntu.edu.sg; dniyato@ntu.edu.sg).

C. H. Foh is with Centre for Communication Systems Research at the
University of Surrey, Guildford GU2 7XH, U.K. (e-mail: c.foh@surrey.ac.uk).

H. Xie is with the Cyberspace and Data Science Laboratory, Chinese
Academy of Electronics and Information Technology, Beijing 100846, China,
and also with the School of Computer Science and Technology, University of
Science and Technology of China, Hefei 230026, China (e-mail: haiyong.xie@
acm.org).

Digital Object Identifier 10.1109/COMST.2014.2330903

I. INTRODUCTION

EMERGING mega trends in the ICT domain [1], in par-
ticular, mobile, social, cloud [2] and big data [3], [4],

are urging computer networks for high bandwidth, ubiquitous
accessibility, and dynamic management. First, the growing
popularity of rich multimedia contents and increasing demand
for big data analytics of a diverse set of data sources, are
demanding higher network connection speed than ever. For ex-
ample, social TV [5]–[7] and Ultra High Definition (UHD) tele-
vision bring “north-south” client-server traffic tsunami to data
centers, and big data analytic applications, like MapReduce
[8], trigger large “east-west” server-to-server traffic in data
centers to partition input data and combine output results.
Second, a wide penetration of mobile devices and social net-
works is demanding ubiquitous communications to fulfill the
social needs of general population. The number of mobile-
connected devices is predicted to exceed the number of people
on earth by the end of 2014, and by 2018 there will be nearly
1.4 mobile devices per capita [9]. Social networks have also
experienced a dramatic growth in recent years. For instance,
Facebook expanded from 1 million users in December 2004 to
more than 1 billion active users in October 2012 [10]. Finally,
cloud computing has added further demands on the flexibility
and agility of computer networks. Specifically, one of the key
characteristics for Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS) is the self-
managed service [2], dictating a high level of automatic config-
uration in the system. At the same time, with more computing
and storage resources placed remotely in the cloud, efficient
access to these resources via a network is becoming critical to
fulfill today’s computing needs. As such, computer networking
has become the crucial enabling technology to move forward
these emerging ICT mega trends.

In response to the aforementioned requirements for computer
networks, one immediate solution would be to make additional
investment in the network infrastructure to enhance the capa-
bility of existing computer networks, as practiced in reality.
It is reported that the worldwide network infrastructure will
accommodate nearly three networked devices and 15 gigabytes
data per capita in 2016, up from over one networked device
and 4 gigabytes data per capita in 2011 [11]. However, such an
expansion of network infrastructure would result in an increase
in complexity. First, networks are enormous in size. Even the
network for a medium size organization, for example, a campus
network, could be composed of hundreds or even thousands
of devices [12]. Second, networks are highly heterogeneous,
especially when equipment, applications, and services are
provided by different manufacturers, vendors, and providers.
Third, networks are very complex to manage. Human factors

1553-877X © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

28 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

are reported to be the biggest contributor to network downtime,
responsible for 50 to 80 percent of network device outages [13].
This growing complexity further demands novel approaches
to future computer networks, in which the complexity can be
managed.

Owing to size, heterogeneity, and complexity of current
and, possibly, future computer networks, traditional approaches
for configuration, optimization, and troubleshooting would be-
come inefficient, and in some cases, insufficient. For example,
Autonomous System (AS) based approaches often focus on
managing a subset of networks and optimizing performance
or quality of user experience for some network services, as in
the case of network-oblivious P2P applications [14] and video
streaming rate picking [15]. As a result, they often lead to
suboptimal performance with a marginal global performance
gain. Moreover, implementation of local optimizations in a
single domain, without cross-domain coordination, may cause
unnecessary conflicting operations with undesirable outcomes.
The situation could be made worse as legacy network platforms
does not have inbuilt programmability, flexibility and support to
implement and test new networking ideas without interrupting
ongoing services [16]. Even when new network configuration,
optimization, or recovery methods are developed, implementa-
tion and testing can take years from design to standardization
before a possible deployment. A protocol can take years to be
standardized as an RFC [17], [18]. These observations have
demanded a novel approach for future networks to support
implementation, testing, and deployment of innovative ideas.

Indeed, networking research community and industry have
long noticed the aforementioned problems. Previously a few
new ideas have been introduced for a better design of future
networks [19], including Named Data Networking (NDN) [20],
programmable networks [21], “HTTP as the narrow waist” [22]
and Software-Defined Networking (SDN) [23]. In particular,
SDN is touted as a most promising solution. The key idea
of SDN is to decouple the control plane from the data plane
and allow flexible and efficient management and operation
of the network via software programs. Specifically, devices
(e.g., switches and routers) in the data plane perform packet
forwarding, based on rules installed by controllers. Controllers
in the control plane oversee the underlying network and provide
a flexible and efficient platform to implement various network
applications and services. Under this new paradigm, innova-
tive solutions for specific purposes (e.g., network security,
network virtualization and green networking) can be rapidly
implemented in form of software and deployed in networks
with real traffic. Moreover, SDN allows logical centralization
of feedback control with better decisions based on a global
network view and cross-layer information.

In this article, we survey the SDN literature and aim at
presenting the definition of SDN and its architectural principle,
providing an overview of the recent developments in SDN,
and discussing about research issues and approaches for future
SDN developments. The rest of this article is organized as
follows. We first present the definition of SDN and its key
benefits and challenges in Section II. The next three sections
describe the SDN architecture with three layers in detail.
Specifically, Section III focuses on the infrastructure layer,

which discusses approaches to build SDN-capable switching
devices and challenges of utilizing different transmission me-
dia. Section IV deals with the control layer, which introduces
operations of an SDN controller and performance issues of
the controller. Section V addresses issues at the application
layer. This section presents some applications developed on
SDN platforms, including adaptive routing, boundless mobility,
network management, network security, network virtualization,
green networking, and a special SDN use case with cloud
computing. Section VI covers OpenFlow, which is considered
as the de facto implementation of SDN. A brief conclusion
with some discussion on current implementations and further
developments of SDN is presented in Section VII.

II. SDN: DEFINITION, BENEFITS, AND CHALLENGES

Lately SDN has become one of the most popular subjects in
the ICT domain. However, being a new concept, a consensus
has not yet been reached on its exact definition. In fact, a lot
of different definitions [23]–[28] have surfaced over the last
couple of years, each of which has its own merits. In this
section, we first present a generally accepted definition of SDN,
and then outline a set of key benefits and challenges of SDN,
and finally introduce an SDN reference model as the anchor of
this survey paper.

A. Definition of SDN

The Open Networking Foundation (ONF) [29] is a non-
profit consortium dedicated to development, standardization,
and commercialization of SDN. ONF has provided the most
explicit and well received definition of SDN as follows:

Software-Defined Networking (SDN) is an emerging
network architecture where network control is decoupled
from forwarding and is directly programmable [23].

Per this definition, SDN is defined by two characteristics,
namely decoupling of control and data planes, and programma-
bility on the control plane. Nevertheless, neither of these two
signatures of SDN is totally new in network architecture, as
detailed in the following.

First, several previous efforts have been made to promote
network programmability. One example is the concept of active
networking that attempts to control a network in a real-time
manner using software. SwitchWare [30], [31] is an active net-
working solution, allowing packets flowing through a network
to modify operations of the network dynamically. Similarly,
software routing suites on conventional PC hardware, such as
Click [32], XORP [33], Quagga [34], and BIRD [35], also at-
tempt to create extensible software routers by making network
devices programmable. Behavior of these network devices can
be modified by loading different or modifying existing routing
software.

Second, the spirit of decoupling between control and data
planes has been proliferated during the last decade. Caesar et al.
first presented a Routing Control Platform (RCP) in 2004
[36], in which Border Gateway Protocol (BGP) inter-domain
routing is replaced by centralized routing control to reduce
complexity of fully distributed path computation. In the same

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 29

year, IETF released the Forwarding and Control Element Sepa-
ration (ForCES) framework, which separates control and packet
forwarding elements in a ForCES Network [37]–[40]. In 2005,
Greenberg et al. proposed a 4D approach [41]–[43], introducing
a clean slate design of the entire network architecture with
four planes. These planes are “decision”, “dissemination”, “dis-
covery”, and “data”, respectively, which are organized from
top to bottom. In 2006, the Path Computation Element (PCE)
architecture was presented to compute label switched paths
separately from actual packet forwarding in MPLS and GMPLS
networks [44]. In 2007, Casado et al. presented Ethane, where
simple flow-based Ethernet switches are supplemented with
a centralized controller to manage admittance and routing of
flows [45]–[48]. In this latest development, the principle of
data-control plane separation has been explicitly stated. Com-
mercial networking devices have also adopted the idea of data-
control plane separation. For example, in the Cisco ASR 1000
series routers and Nexus 7000 series switches, the control plane
is decoupled from the data plane and modularized, allowing
coexistence of an active control plane instance and a standby
one for high fault tolerance and transparent software upgrade.

In the context of SDN, its uniqueness resides on the fact
that it provides programmability through decoupling of control
and data planes. Specifically, SDN offers simple programmable
network devices rather than making networking devices more
complex as in the case of active networking. Moreover, SDN
proposes separation of control and data planes in the network
architectural design. With this design, network control can be
done separately on the control plane without affecting data
flows. As such, network intelligence can be taken out of
switching devices and placed on controllers. At the same time,
switching devices can now be externally controlled by software
without onboard intelligence. The decoupling of control plane
from data plane offers not only a simpler programmable en-
vironment but also a greater freedom for external software to
define the behavior of a network.

B. SDN Benefits

SDN, with its inherent decoupling of control plane from
data plane, offers a greater control of a network through
programming. This combined feature would bring potential
benefits of enhanced configuration, improved performance, and
encouraged innovation in network architecture and operations,
as summarized in Table I. For example, the control embraced
by SDN may include not only packet forwarding at a switching
level but also link tuning at a data link level, breaking the barrier
of layering. Moreover, with an ability to acquire instantaneous
network status, SDN permits a real-time centralized control of
a network based on both instantaneous network status and user
defined policies. This further leads to benefits in optimizing
network configurations and improving network performance.
The potential benefit of SDN is further evidenced by the fact
that SDN offers a convenient platform for experimentations of
new techniques and encourages new network designs, attributed
to its network programmability and the ability to define isolated
virtual networks via the control plane. In this subsection, we
dwell on these aforementioned benefits of SDN.

1) Enhancing Configuration: In network management, con-
figuration is one of the most important functions. Specifically,
when new equipment is added into an existing network, proper
configurations are required to achieve coherent network oper-
ation as a whole. However, owing to the heterogeneity among
network device manufacturers and configuration interfaces, cur-
rent network configuration typically involves a certain level of
manual processing. This manual configuration procedure is te-
dious and error prone. At the same time, significant effort is also
required to troubleshoot a network with configuration errors.
It is generally accepted that, with the current network design,
automatic and dynamic reconfiguration of a network remains
a big challenge. SDN will help to remedy such a situation in
network management. In SDN, unification of the control plane
over all kinds of network devices [50], including switches,
routers, Network Address Translators (NATs), firewalls, and
load balancers, renders it possible to configure network devices
from a single point, automatically via software controlling. As
such, an entire network can be programmatically configured
and dynamically optimized based on network status.

2) Improving Performance: In network operations, one of
the key objectives is to maximize utilization of the invested net-
work infrastructure. However, owing to coexistence of various
technologies and stakeholders in a single network, optimizing
performance of the network as a whole has been considered
difficult. Current approaches often focus on optimizing perfor-
mance of a subset of networks or the quality of user experience
for some network services. Obviously, these approaches, based
on local information without cross-layer consideration, could
lead to suboptimal performance, if not conflicting network
operations. The introduction of SDN offers an opportunity
to improve network performance globally. Specifically, SDN
allows for a centralized control with a global network view
and a feedback control with information exchanged between
different layers in the network architecture. As such, many
challenging performance optimization problems would become
manageable with properly designed centralized algorithms. It
follows that new solutions for classical problems, such as data
traffic scheduling [51], end-to-end congestion control [52],
load balanced packet routing [53], energy efficient operation
[54], and Quality of Service (QoS) support [55], [56], can be
developed and easily deployed to verify their effectiveness in
improving network performance.

3) Encouraging Innovation: In the presence of continuing
evolution of network applications, future network should en-
courage innovation rather than attempt to precisely predict and
perfectly meet requirements of future applications [57]. Unfor-
tunately, any new idea or design immediately faces challenges
in implementation, experimentation, and deployment into ex-
isting networks. The main hurdle arises from widely used
proprietary hardware in conventional network components, pre-
venting modification for experimentation. Besides, even when
experimentations are possible, they are often conducted in
a separate simplified testbed. These experimentations do not
give sufficient confidence for industrial adaptation of these
new ideas or network designs. The idea behind community
efforts like PlanetLab [58] and GENI [59] to enabled large
scale experimentations, cannot solve the problem completely.

30 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

TABLE I
COMPARISONS BETWEEN SDN AND CONVENTIONAL NETWORKING

In comparison, SDN encourages innovation by providing a
programmable network platform to implement [60], experiment
[61], and deploy new ideas, new applications, and new revenue
earning services conveniently and flexibly. High configurabil-
ity of SDN offers clear separation among virtual networks
permitting experimentation on a real environment. Progressive
deployment of new ideas can be performed through a seamless
transition from an experimental phase to an operational phase.

C. SDN Challenges

Given the promises of enhanced configuration, improved
performance, and encouraged innovation, SDN is still in its
infancy. Many fundamental issues still remain not fully solved,
among which standardization and adoption are the most urgent
ones.

Though the ONF definition of SDN is most received one,
OpenFlow sponsored by ONF is by no means the only SDN
standard and by no means a mature solution. An open-source
OpenFlow driver is still absent for SDN controller develop-
ment, a standard north-bound API or a high level programming
language is still missing for SDN application development. A
healthy ecosystem combining network device vendors, SDN
application developers, and network device consumers, has yet
to appear.

SDN offers a platform for innovative networking techniques,
however the shift from traditional networking to SDN can
be disruptive and painful. Common concerns include SDN
interoperability with legacy network devices, performance and
privacy concerns of centralized control, and lack of experts
for technical support. Existing deployments of SDN are often
limited to small testbed for research prototypes. Prototypes for
research purpose remain premature to offer confidence for real
world deployment.

D. SDN Reference Model

ONF has also suggested a reference model for SDN, as
illustrated in Fig. 1. This model consists of three layers, namely
an infrastructure layer, a control layer, and an application layer,
stacking over each other.

The infrastructure layer consists of switching devices (e.g.,
switches, routers, etc.) in the data plane. Functions of these
switching devices are mostly two-fold. First, they are respon-
sible for collecting network status, storing them temporally in
local devices and sending them to controllers. The network sta-
tus may include information such as network topology, traffic

Fig. 1. SDN Reference Model: a three-layer model, ranging from an infras-
tructure layer to a control layer to an application layer, in a bottom-up manner.

statistics, and network usages. Second, they are responsible for
processing packets based on rules provided by a controller.

The control layer bridges the application layer and the infras-
tructure layer, via its two interfaces. For downward interacting
with the infrastructure layer (i.e., the south-bound interface), it
specifies functions for controllers to access functions provided
by switching devices. The functions may include reporting
network status and importing packet forwarding rules. For up-
ward interacting with the application layer (i.e., the north-bound
interface), it provides service access points in various forms, for
example, an Application Programming Interface (API). SDN
applications can access network status information reported
from switching devices through this API, make system tuning
decisions based on this information, and carry out these deci-
sions by setting packet forwarding rules to switching devices
using this API. Since multiple controllers will exist for a large
administrative network domain, an “east-west” communication
interface among the controllers will also be needed for the
controllers to share network information and coordinate their
decision-making processes [62], [63].

The application layer contains SDN applications designed to
fulfill user requirements. Through the programmable platform
provided by the control layer, SDN applications are able to
access and control switching devices at the infrastructure layer.
Example of SDN applications could include dynamic access
control, seamless mobility and migration, server load balanc-
ing, and network virtualization.

In this survey, we adopt this reference model as a thread to
organize existing research efforts in SDN into three sections.

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 31

Fig. 2. SDN Infrastructure Architecture: switching devices are connected to formulate a mesh topology via various transmission media, including copper wires,
wireless radio and optical fibre.

Fig. 3. Switching Device Model in SDN: a two-layer logical model consisting
of a processor for data forwarding and onboard memory for control information.

III. INFRASTRUCTURE LAYER

At the lowest layer in the SDN reference model, the in-
frastructure layer consists of switching devices (e.g., switches,
routers, etc.), which are interconnected to formulate a single
network. The connections among switching devices are through
different transmission media, including copper wires, wireless
radio, and also optical fibers. In Fig. 2, we illustrate an SDN-
enabled reference network. In particular, the main research
concerns associated with the infrastructure layer include both
efficient operations of switching devices and utilization of
transmission media, as detailed in the next two subsections.

A. Switching Devices

In Fig. 3, we illustrate the architectural design of an SDN
switching device, consisting of two logical components for
the data plane and the control plane. In the data plane, the
switching device, in particular, through its processor, performs
packet forwarding, based on the forwarding rules imposed by
the control layer. Examples of network processors include XLP
processor family (MIPS64 architecture) from Broadcom, XS-
cale processor (ARM architecture) from Intel, NP-x NPUs from
EZChip, PowerQUICC Communications Processors (Power
architecture) from freescale, NFP series processors (ARM

architecture) from Netronome, Xelerated HX family from
Marvell, OCTEON series processors (MIPS64 architecture)
form Cavium and general purpose CPUs from Intel and AMD.
In the control plane, the switching device communicates with
controllers at the control layer to receive rules, including packet
forwarding rules at a switching level and link tuning rules
at a data-link level, and stores the rules in its local memory.
Examples of memory include TCAM and SRAM.

This new architectural principle lends SDN competitive ad-
vantages. Unlike conventional switching devices that also run
routing protocols to decide how to forward packets, routing de-
cision makings are stripped from switching devices in SDN. As
a result, the switching devices are simply responsible for gather-
ing and reporting network status as well as processing packets
based on imposed forwarding rules. It follows that the SDN
switching devices are simpler and will be easier to manufacture.
The reduced complexity in turn leads to a low cost solution.

This new architecture, however, requires new hardware de-
sign for SDN-enabled switching devices. In this subsection,
we describe recent research progresses in switching device
hardware design, focusing on both the control plane and the
data plane. We will also classify the most popular switching
device platforms, and discuss testing and evaluation of these
switching devices.

1) Control Plane: In the control plane of SDN switching
devices, one of the main design challenges resides on the effi-
cient use of onboard memory. Fundamentally, memory usage in
a switching device depends on the network scale. Specifically,
switching devices in a larger scale network would need a larger
memory space; otherwise, they may need constant hardware
upgrades to avoid memory exhaustion. In case of insufficient
memory space, packets would be dropped or directed to con-
trollers for further decisions on how to process them, resulting
in a degraded network performance [64].

Memory management techniques in traditional switch design
can be extended to optimize the SDN switch design for rule
storage in order to reduce memory usage and use the limited

32 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

TABLE II
SDN SWITCHING DEVICES

memory efficiently. Specifically, to deal with massive routing
records, conventional routers use techniques such as route
aggregation or summarization and proper cache replacement
policy [65], [66]. Route aggregation or summarization can re-
duce the memory usage by aggregating several routing records
with a common routing prefix to a single new routing record
with the common prefix. A proper cache replacement policy
can improve packet forwarding rule hit rate of all packets, thus
the limited memory can be used efficiently. These techniques
can be adopted to improve SDN switching device design.

Another major principle in improving SDN switching device
design is judicious combination of different storage technolo-
gies to achieve desired memory size, processing speed, and
flexibility with reasonable price and complexity. Different stor-
age hardware exhibits different characteristics [67], [68]. For
example, Static Random Access Memory (SRAM) can be eas-
ily scaled up and is more flexible; Ternary Content Addressable
Memory (TCAM) offers a faster searching speed for packet
classification. SRAM and TCAM can be used jointly to balance
the trade-off between packet classification performance and
flexibility.

2) Data Plane: The main function of an SDN switching
device’s data plane is packet forwarding. Specifically, upon
receiving of a packet, the switching device first identifies the
forwarding rule that matches with the packet and then forwards
the packet to next hop accordingly. Compared to packet for-
warding in legacy networks based on IP or MAC addresses,
SDN packet forwarding can also be based on other parameters,
for example, TCP or UDP port, Virtual Local Area Network
(VLAN) tag, and ingress switch port. Using a long vector for
forwarding decision would undoubtedly increases processing
complexity in computation, resulting a fundamental trade-off
between cost and efficiency in SDN packet processing. Several
solutions conceived for fast data path packet processing have
been proposed, among which two are explained as follows.

First, in PC-based switching devices, using software for
packet processing may result in inefficient performance. As an
improvement, Tanyingyong et al. suggest using hardware clas-
sification to increase processing throughput [69], [70]. In this
design, incoming packets are directed to an onboard Network
Interface Controller (NIC) for hardware classification based on
flow signatures. As a result, a CPU is exempted from the lookup
process.

Second, the different nature for the “elephant” and “mice”
flows can be exploited. Contrary to “elephant” flows, “mice”
flows are numerous, but each of them has few packets. Web
page retrieving flows are examples of “mice” flows. In fact,

“mice” flows contribute primary to the frequent events to be
handled by switching devices, but they have little influence
on the overall network performance. Taking this observation,
Lu et al. suggest offloading “elephant” flows to an ASIC while
leaving “mice” flows to be handled by a CPU with relatively
slower processing speed [71].

3) Classification and Evaluation of Switching Devices: Cur-
rently, SDN switching devices can be classified to three major
categories, according to their hardware specifications, as show
in Table II, including:

• Implementation on general PC hardware: SDN switches
can be implemented as software running on a host operat-
ing system (OS), usually Linux. The host OS can run on
standard x86/x64 PC hardware or other compatible hard-
ware. Examples of software switches include Pantou [72]
and OpenFlowClick [73]. Pantou is based on OpenWRT,
which is a Linux distribution for embedded devices, es-
pecially routers. OpenFlowClick is based on Click [32],
which is implemented on general-purpose PC hardware
as an extension to the Linux kernel. Software switches
provide a port density limited to the number of NICs
onboard and relatively slow packet processing speed using
software processing. A significant advantage of software
implemented SDN switches is that they can provide virtual
switching for VMs in the popular paradigm of server vir-
tualization and cloud computing. Software implemented
SDN switches like Open vSwitch [74], [75] can provide
network visibility and control in a straightforward way.
Traffic among VMs hosted by the same physical server is
kept on the server, while in hairpin switching, all traffic is
redirected to the physical switch connected with the server
then bounces off.

• Implementation on open network hardware: Open network
hardware platform offers a vendor independent and pro-
grammable platform to build networks for research and
classroom experiments. The industry is also paying more
attention to open network hardware platforms. Examples
of open network hardware platform based SDN switching
device implementations include NetFPGA [76] based im-
plementations such as SwitchBlade [77] and ServerSwitch
[78], and Advanced Telecommunications Computing Ar-
chitecture (ATCA) based implementations such as ORAN
[79]. Open network hardware platform based switches
are the most commonly used to build SDN prototypes in
laboratories [80], [81], since they are more flexible than
vendor’s switches and provide higher throughput than that
of software implemented ones.

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 33

• Implementation on vendor’s switch: Nowadays, more and
more networking hardware vendors are releasing their
SDN strategies and solutions, along with a vast variety
of SDN-enabled switches, including NEC PF5240, IBM
G8264, and Pica8 3920. There are also projects, for exam-
ple, Indigo [82], to enable SDN features using firmware
upgrades on vendor’s switches that do not support SDN
features originally.

Performance benchmark plays an important role in further
innovation in switching devices. For example, testing and eval-
uation of switching devices can ensure proper operations and
facilitate to performance improvement. In this aspect, empirical
comparison conducted by Bianco et al. shows higher forward-
ing performance and better fairness of Linux software SDN
switching than that of Linux software layer-2 Ethernet switch-
ing and layer-3 IP routing [83]. This result gives confidence
on performance of SDN switching over conventional non-SDN
switching. To facilitate performance benchmark, Rotsos et al.
present the OpenFLow Operations Per Second (OFLOPS)
framework that supports multiple packet generation, captur-
ing, and timestamping mechanisms with different precisions
and impacts [84]. OFLOPS measures performance metrics of
control plane operations like rule insertion delay and traffic
statistic query delay. OFLOPS permits detailed performance
measurement control plane operations for both software imple-
mentations and hardware implementations of SDN switching
devices and will be useful to evaluate performance of SDN
switching devices.

B. Transmission Media

As illustrated in Fig. 2, SDN should embrace all possible
transmission media, including wired, wireless and optical en-
vironments, in order to fulfill a ubiquitous coverage. At the
same time, different transmission media have their unique char-
acteristics, which in turn often result in specific configuration
and management technologies. As such, SDN should integrate
with these technologies in wireless and optical networks. For
example, Software-Defined Radio (SDR) [85] supports cost-
effective evolution of radio devices and Generalized Multi-
Protocol Label Switching (GMPLS) [86] is the de facto control
plane for wavelength switched optical networks. Integrating
these technologies gives SDN controllers a great opportunity
to have a widespread control over all the network behaviors,
including packet forwarding, wireless mode or channel, and op-
tical wavelength. It follows that SDN can gain more appropriate
control of the network infrastructure and achieve more efficient
infrastructure resource utilization.

1) Wireless Radio: Many advanced wireless transmission
technologies have been developed to maximize spectrum uti-
lization in wireless networks. Among them, Software-Defined
Radio (SDR) permits control of wireless transmission strategy
via software [85]. Given its similar nature, the SDR technology
can be easily integrated with SDN. For example, Bansal et al.
point out that many computationally intensive processing
blocks are common at the physical layer of all modern wireless
systems, differing only in configurations [87]. One instance is
that almost all wireless systems use Fast Fourier Transform

(FFT) with probably different FFT-lengths. This observation
motivates them to propose OpenRadio to decouple wireless
protocol definition from the hardware and use a declarative
interface to program wireless protocols. In another study,
Murty et al. present Dyson where a wireless NIC driver is
modified to support statistic collection and Dyson command
API [88]. Clients and Access Points (APs) passively report
measurement information, including total number of packets,
total packet size, and total airtime utilization, to a central
controller. The central controller can manage link association,
channel selection, transmission rate and traffic shaping for both
clients and APs through the API based on current and historical
measurement information.

Essentially, both OpenRadio and Dyson allow physical layer
functions to be controlled by software. In this sense, they are
SDR systems. Moreover, the Software Communication Archi-
tecture (SCA) [89], [90] is designed by the US Military’s Joint
Tactical Radio System (JTRS) and has been sponsored by the
main SDR proponent, namely Wireless Innovation Forum [91].
Software reconfigurability of an SDR system like SCA gives
SDN controllers an interface to control the SDR system. In
fact, SDR can benefit from the central control and global view
of SDN, as used in Dyson [88]. In return, SDN controllers can
control SDR systems and have a widespread and precise control
of all the network devices.

2) Optical Fibers: Optical fibers offer a high capacity with
low power consumption. They are widely used in backbones for
aggregated traffic. The idea of software reconfiguration used
in wireless networks can also be adopted in optical networks
by employing Reconfigurable Optical Add/Drop Multiplexers
(ROADMs) [92]. Integrating these technologies into the SDN
control plane helps achieve more precise and efficient control
of the data plane [93].

Unified approaches with a single SDN control plane over
both packet switching domains and circuit switching domains
are firstly considered, as shown in Fig. 2 where “Controller B”
manages an optical circuit switching domain and the “Packet
Switching Domain A”. Das et al. suggest extending parameters
used in forwarding rule matching from layer 2, 3, and 4 headers
of a packet to include layer 1 switching technologies, such as
time-slot, wavelength, and fiber switching. Thus it provides a
single unified control plane over packet and optical networks
[94]–[97]. The proposed scheme provides a simplified control
model, but needs to upgrade optical circuit switching devices to
support this extension. Liu et al. propose to use a virtual switch
on each optical switching node to obtain unified control plane
[98]–[103]. Each physical interface of an optical switching
node is mapped to a virtual interface correspondingly. Messages
between the controller and the virtual switch are converted
to commands acceptable by the optical switching devices. A
similar idea is applied to reuse and integrate legacy equipment
with SDN switching devices. During deployment, there will be
an extra layer to bridge controllers and legacy switches [104].
Though these approaches can reuse legacy network equipment,
they cause extra communication latency by using message
proxying.

Given its long haul nature in an optical network, an end-to-
end data path from source to destination can be controlled by

34 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

Fig. 4. Controller Logical Design: a high level language for SDN applications
to define their network operation policies; a rule update process to install rules
generated from those policies; a network status collection process to gather
network infrastructure information; a network status synchronization process to
build a global network view using network status collected by each individual
controller.

multiple stakeholders, each of which controls parts of the data
path. In this case, it may not be practical to have a single control
plane along the data path. Split-control approaches, as shown
in Fig. 2 where “Controller B” manages an optical circuit
switching domain and “Controller C” manages the “Packet
Switching Domain B”, may be a natural choice and can reuse
advanced techniques in optical circuit switching. For example, a
GMPLS control plane that manages the optical network. Along
this line of logic, Casado et al. suggest decoupling transport
edge and core [105], [106]. They present “Fabric” where edge
controllers handle operator requirements; ingress edge switches
along with their controllers handle host requirements; switches
in the“Fabric” just forwardpackets.Similarly,Azodolmolkyet al.
propose to integrate the GMPLS control plane to an SDN
controller to unify the packet switching and optical circuit
switching domains [107]–[109]. The GMPLS control plane
manages the core optical domain and interacts with an extended
SDN controller that manages the packet switching domain.

IV. CONTROL LAYER

As illustrated in Fig. 1, the control layer bridges the applica-
tion layer and the infrastructure layer. In this section, we first
present a logical design for SDN control layer, which consists
of four main components, namely a high level language, a
rule update process, a network status collection process and a
network status synchronization process, as illustrated in Fig. 4.
Following that, we focus on two critical issues at the control
layer, namely policy and rule validation, and performance chal-
lenges and possible solutions for the control layer.

A. Controller Design

The controller is the most important component in the SDN
architecture, where the complexity resides. In this subsection,
we adopt a “divide-and-conquer” strategy to present a logical
controller architecture. Our proposed architecture, as depicted
in Fig. 4, is based on two principles, including:

• Objects: the SDN controller deals with two types of
objects. One is used for network controlling, including
policies imposed by the application layer and packet for-

warding rules for the infrastructure. The other is related
to network monitoring, in the format of local and global
network status. It follows that the logical architecture has
two counter-directional information flows, as illustrated in
Fig. 4. In the downward flow, the controller translates the
application policy into packet forwarding rules, in respect
to network status. The main concern of this process is to
ensure validity and consistency of the forwarding rules.
In the upward flow, the controller synchronizes network
status collected from the infrastructure for networking
decision making.

• Interfaces: the SDN controller has two interfaces. The
south-bound interface, which is marked as the controller-
infrastructure interface in Fig. 1, deals with transactions
with the infrastructure layer, i.e., collecting network status
and updates packet forwarding rules to switching devices
at the infrastructure layer accordingly. The north-bound
interface, which is marked as the application-controller
interface in Fig. 1, handles transactions with the applica-
tion layer, i.e., receiving policies described in high level
languages from SDN applications and providing a syn-
chronized global view.

Leveraging these architectural principles, the logical design
for SDN controllers can be decoupled into four building com-
ponents, namely, a high-level language, a rule update process,
a network status collection process, and a network status syn-
chronization process. In this subsection, we adopt this structure
to explain existing research efforts in controller design into the
aforementioned groups.

1) High Level Language: One of the key controller func-
tions is to translate application requirements into packet
forwarding rules. This function dictates a communication pro-
tocol (e.g., a programming language) between the application
layer and the control layer. One straightforward approach is
to adopt some common configuration languages, for example,
the Command Line Interface (CLI) for Cisco Internetwork Op-
erating System (IOS). However, these common configuration
languages only offer primitive abstractions derived from capa-
bilities of underlying hardware. Given that they are designed
for hardware configurations, they are typically inadequate to
accommodate dynamic and stateful network status. Moreover,
they are error-prone and demanding extra effort in the pro-
cess of programming. Therefore, it is imperative to provide
a high level language for SDN applications to interface with
controllers. Such a high-level language should embrace an
expressive and comprehensive syntax for SDN applications to
easily describe their requirements and network management
strategies.

Strategies to design qualified high-level languages for SDN
controllers take at least two formats. One strategy is to utilize
existing mature high-level languages, such as, C++, Java and
Python, for application development. This approach normally
provides a Software Development Kit (SDK) with libraries for
desirable features, such as security, guaranteed bandwidth and
on-demand provisioning. One example in the category is the
One Platform Kit (onePK) from Cisco [110]. The other strategy
adopts a clean-state design to propose new high-level languages
with special features to achieve efficient network behavior

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 35

control for SDN. Compared to the first approach, few published
work or released implements of SDKs can be found currently,
nor does a dominating new high level language exist. In the
following paragraphs, we review several high-level languages
for SDN, including the earlier work on this domain called Flow-
based Management Language (FML) [111], a well-developed
programming language for SDN called Frenetic [112], [113],
and another high level language called Nettle [114]–[117].

Flow-based Management Language (FML) [111], previously
known as Flow-based Security Language (FSL) [118], is a lan-
guage for convenient and expressive description of network con-
nectivity policies in SDN. FML offers fine granular operations
on unidirectional network flows and supports expressive con-
straints in allowing/denying traffic and limiting bandwidth,
latency, and jitter. Order irrelevance of FML makes it straight-
forward to combine a set of independent policies. Moreover, a
long-policy code can easily be understood without knowledge
of the context. Ferguson et al. present PANE that extends FML
with queries and hints for network status and a time dimension
[55]. Such an extension can define how long a request for gua-
ranteed bandwidth could be fulfilled. PANE improves policy
expressiveness with precise knowledge and predictions of net-
work status. PANE also introduces hierarchical flow tables to
realize hierarchical policies for better policy management [119].

Frenetic [112], [113] is proposed to eliminate complicated
asynchronous and event-driven interactions between SDN ap-
plications and switching devices. In particular, Frenetic in-
troduces an SQL-like declarative network query language for
classifying and aggregating network traffic statistics. Moreover,
a functional reactive network policy management library is
introduced to handle details of installing and uninstalling switch
level rules. The query language includes a rich pattern algebra,
for example, set operations, which provides a convenient way
to describe sets of packets. After the appearance of Frenetic,
several functional and performance enhancements are intro-
duced. Monsanto et al. introduce the use of wild card rules and
proactive generation. As a result, more packets can be matched
by wild card rules than that of exact match rules, and the
packets can be processed on switching devices without requests
to controllers [120]. Gutz et al. add syntaxes to describe isolated
network slices and enable network virtualization using Frenetic
[121]. Pyretic [122] introduces sequential composition that
allows one rule to act on packets already processed by another
rule, and topology abstraction that maps between physical
switches and virtual switches.

Voellmy et al. present Nettle to improve responsiveness to
dynamic network changes. Nettle uses reactive languages to de-
scribe policies by combining functional reactive programming
(FRP) and domain-specific languages (DSLs) [114]–[117].
FRP enables programming for real-time interactive network
control in a declarative manner. A piece of Nettle program
takes network events as input, for example, detection of a
new user. The program then outputs rule updates for specific
usage, for example, user authentication. A single one-size-
fits-all language may not be possible, given the diversity of
network management concerns. DSLs enable Nettle to provide
an extensible family of DSLs, each of which is designed for a
specific issue, for example, user authentication and traffic en-

gineering. Nettle uses Haskell as the host language because of
its remarkable flexibility in supporting embedded DSLs. Later,
Voellmy et al. present “Maple” to simplify SDN programming
by allowing a programmer to use a standard programming
language to design an arbitrary centralized algorithm for every
packet entering the network, hence removing low-level details
[123]. Maple consists of two key components, namely an
“optimizer” and a “scheduler”. The optimizer uses a “trace
tree” data structure to record the invocation of the programmer-
supplied algorithm on a specific packet, then generalizes rules
in the flow table of individual switches. A trace tree captures the
reusability of previous computations and hence substantially
reduces the number of invocations of the same algorithm. The
optimizer uses various techniques to improve the efficiency,
including trace tree augmentation, trace tree compression, and
rule priority minimization. Flow table missed packets have
to be processed at the controller, and the scheduler applies
“switch-level parallelism” on multi-core servers, binding the
controller’s thread, memory, and event processing loop to a
particular “client” switch.

2) Rules Update: An SDN controller is also responsible
for generating packet forwarding rules describing the policies
and installing them into appropriate switching devices for
operation. At the same time, forwarding rules in switching
devices need to be updated because of configuration changes
and dynamic control, such as directing traffic from one replica
to another for dynamical load balancing [124], Virtual Machine
(VM) migration [125], and network recovery after unexpected
failure. In the presence of network dynamics, consistency is a
basic feature that rule update should preserve to ensure proper
network operations and preferred network properties, such as,
loop free, no black hole, and security.

Rule consistency can be established in different flavors. In
literature, two alternative consistency definitions are discussed,
including:

• Strict Consistency: it ensures that either the original rule
set or the updated rule set is used. Strict consistency could
be enforced in a per-packet level, where each packet is
processed, or in a per-flow level, where all packets of a
flow are processed by either the original rule set or the
updated rule set.

• Eventual Consistency: it ensures that the later packets use
the updated rule set eventually after the update procedure
finishes and allows the earlier packets of the same flow
to use the original rule set before or during the update
procedure.

In the former category, Reitblatt et al. propose a strict
consistency implementation that combines versioning with rule
timeouts [126], [127]. The idea is to stamp each packet with
a version number at its ingress switch indicating which rule
set should be applied. Then, the packet will be processed
depending on the version number. The later packets will be
stamped to take the updated rule set. Thus, no more packets
will take the original rule set after a time long enough. Then, the
original rule set will be removed. Nevertheless, both the original
and updated rule sets are kept in switching devices before the
original rule set expires and is removed.

36 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

In the latter category, McGeer et al. implement eventual con-
sistency to conserve switch memory space by ensuring that only
a single set of rules is presented in a switching device at any
time [128]. When a new policy is about to be implemented, all
corresponding switching devices are first informed to direct af-
fected packets to a controller. The controller then generates new
packet forwarding rules based on the policy and replaces rules
in corresponding switching devices with these new rules. When
the replacements are completed, affected packets buffered in the
controller earlier are released back into switching devices for
processing. A flow will take the original rule set before the flow
is directed to the controller and the updated rule set after the
flow is released back to switching devices. This is an undesired
condition that may occur in eventual consistency. Nonetheless,
eventual consistency could be a choice when memory space is
scarce.

3) Network Status Collection: In the upward flow, con-
trollers collect network status to build a global view of an
entire network and provide the application layer with necessary
information, for example, network topology graph [129], for
network operation decisions. One main network status is traffic
statistics, such as, duration time, packet number, data size, and
bandwidth share of a flow. Typically network status collection
works in the following way. Each switching device collects
and stores local traffic statistics within its own storage. These
local traffic statistics may be retrieved by controllers (i.e.,
a “pull” mode), or proactively reported to controllers (i.e.,
a “push” mode). Different mode and strategy have different
characteristics in measurement overhead and accuracy. In this
manner, a key research objective is to find a “sweet spot” (i.e.,
optimal point) with adequate accuracy yet maintaining low
measurement overhead.

A useful and commonly used form for network status data is
Traffic Matrix (TM). TM reflects volume of traffic that flows
between all possible pairs of sources and destinations in a
network [130]. Tootoonchiane et al. present OpenTM that reads
byte and packet counters maintained by switching devices (i.e.,
a “pull” mode) for active flows to estimate the TM [131].
Querying the last switching device in a path from source to
destination results in the most accurate measurement of traffic
from source to destination, since typically the receiver will have
the most complete picture of the path. However, this approach
may result in overloading the last switching device in the path.
OpenTM uses selective query strategies with various query
distributions along the path to balance the trade-off between
measurement accuracy and query load on individual switching
devices. Based on the observation that the amount of data
observed in hosts’ TCP buffers rises much quicker than that
observed at the network layer for a flow. Curtis et al. propose
Mahout to detect “elephant” flows at the hosts. Type of Service
(ToS) byte is marked by the host to notify “elephant” flows to
the controller [132].

In addition to the aforementioned strategy, ignoring “mice”
flows in measurement can be another strategy to relieve over-
head while causing little side effects. For example, Jose et al.
suggest using a hierarchical heavy hitters algorithm to identify
“elephant” flows and ignore “mice” flows [133]. Switching
devices match packets against a small collection of rules and

update traffic counters for the highest-priority match. Thus only
traffic statistics of the “elephant” flows will be updated and
collected.

Streaming algorithms show low memory usage, bounded
estimation error, and high processing speed accommodating
high arrive speed of input data in processing data steams
[134], [135]. They are naturally suitable for network traffic
flow monitoring [136]–[138]. Yu et al. present OpenSketch,
which is a network traffic measurement architecture for SDN
leverage the advantages of streaming algorithms [139]. The data
plane of OpenSketch consists of a three stage pipeline, namely
hashing, filtering, and counting. First, fields of interest of an
incoming packet are hashed to save memory space, the hash
code is then filtered to decide whether the packet should be
counted, last corresponding counters are updated. OpenSketch
also provides a measurement library in the control plane that
automatically configures the pipeline and allocates resources
for various measurement tasks, including unique source and
destination count, heavy hitters, flow size distribution. Their
prototype implementation of OpenSketch on NetFPGA shows
no effect on data plane throughput and about 200 nanoseconds
processing delay for 5 counter updates per packet.

4) Network Status Synchronization: Delegating control to
a centralized controller can cause performance bottleneck at
the centralized controller. A common solution to overcome
this bottleneck is deploying multiple controllers acting peer,
backup, or replicate controllers [140]. Maintaining a consistent
global view among all controllers is essential to ensure proper
network operations. Inconsistent or stale states may result in the
application layer making incorrect decisions, which then leads
to inappropriate or suboptimal operations of the network [141].

Publish/subscribe systems are widely used to achieve a syn-
chronized global network view. For example, Tootoonchian et al.
introduce HyperFlow that allows sharing of a synchronized
consistent network-wide view among multiple controllers
[142]. HyperFlow uses a publishing mechanism to maintain a
consistent global view across controllers. Whenever a system
status change is detected, each controller selectively publishes
an event about the change through a publish/subscribe system.
New status is then pushed to subscribed controllers for
immediate updating.

Communication among multiple controllers is another
method that can achieve synchronized global network view.
In this category, Yin et al. propose “SDNi” for interconnec-
tivity and message exchange among multiple SDN domains
[62], [63]. An SDN domain is defined as the portion of the
network being managed by a particular SDN controller. Specif-
ically, “SDNi” is a more general purpose interface with a dual
function. It can be used to share and synchronize network
status information, and coordinate controllers’ decision-making
processes.

SDN applications also play an important role in that they
might have different requirements on durability and consis-
tency of the global network view. Using this observation,
Koponen et al. present Onix allowing programmers to deter-
mine a trade-off between potentially simplified application and
strict durability and consistency guarantee [143]. With Onix, an
SDN application can choose and use a transactional persistent

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 37

database backed by a replicated state machine that ensures dura-
bility and consistency. As a result, this application can be sim-
ple without consistency consideration. The SDN applications
can also choose a one-hop, eventually-consistent, memory-only
Distributing Hash Table (DHT) that accommodates high update
rate; however these applications need to handle inconsistencies
themselves.

B. Policy and Rule Validation

Consistency in policies and rules stands out as an important
design issue to stabilize the routing choice in SDN networks.
This is due to the fact, in SDN networks, multiple applications
could connect the same controller, and multiple controllers
could be figured for performance improvement. As a result,
conflicting configurations might surface, demanding an internal
coordination among different participating units. Specifically,
policies and rules should be validated to identify potential
conflicts. Further, many well-developed methods, for example,
role-based source authentication with priority [144], can be
adopted to resolve these conflicts. In this subsection, we survey
several existing research efforts to ensure validity of inter-
domain and intra-switch policies as well as packet forwarding
rules.

Model Checking, which is widely used to automatically ver-
ify correctness of a finite-state system, can be readily adopted for
policy and rule validation. Along this line of research, Flow-
Checker is proposed to identify intra-switch misconfigurations
and inter-switch inconsistencies leveraging model checking
[145], [146]. Specifically, FlowChecker uses Binary Decision
Diagrams (BBDs) to encode network configurations and mod-
els global behavior of a network in a single state machine
for “what-if” analysis. FlowChecker further provides a generic
property-based interface to verify reachability and security
properties written in Computational Tree Logic (CTL), using
BDD-based symbolic model checking and temporal logic. The
use of CTL language makes it easier to write queries to validate
certain properties or extract statistics to be used for further
analysis. In another example, Canini et al. present NICE (No
bugs In Controller Execution), which also adopts model check-
ing to check correctness properties in SDN [147]–[149]. NICE
takes an SDN application, network topology and correctness
properties, for example, loop-free, as inputs, and then performs
a state space search and produces traces of property violations.
It uses model checking to explore system execution paths, sym-
bolic execution to reduce space of inputs and search strategies
to reduce state space. In practice, OFTEN (OpenFlow Testing
Environment) is built based on NICE using physical switching
devices whose states are synchronized with the switch models
used in NICE [150]. OFTEN can be used for physical switching
device black-box testing.

From another perspective, rules can be validated statically or
dynamically. On one hand, the rules can be checked statically
for certain network invariants, such as reachability, loop-free,
and consistency, based on network topology [151]. On the other
hand, it is also useful to check rules in real-time, as network
state evolves. However, achieving extremely low latency during
these checks is ultimately important. Khurshid et al. present

VeriFlow to show that the goal of extremely low latency during
real-time checks is achievable [152]–[154]. In their design, a
proxy is introduced between a controller and switching devices
to check network-wide invariant violations dynamically as each
forwarding rule is updated. It first divides rules into equivalence
classes based on prefix overlapping and uses prefix tree data
structure to quickly find overlapping rules. Then, the proxy
generates individual forwarding graphs for all the equivalent
classes. As a result, queries for loops or black holes can
be quickly replied by traversing a corresponding forwarding
graph.

C. Control Layer Performance

The performance of SDN networks highly depends on the
control layer, which, in turn, is constrained by the scalabil-
ity of centralized controllers. Indeed, all the transactions in
the control plane are involved with controllers. Switching de-
vices need to request controllers for packet forwarding rules
reactively when the first packet of each flow arrives. Rule
update and network status collection also involve in frequent
communication between controllers and switching devices. In
this aspect, bandwidth consumption and latency of frequent
communication affect control layer scalability significantly.

To address the scalability issue with an SDN controller,
researchers have previously proposed multiple controllers with
proper geographical placement [155], which would need net-
work status synchronization. Alternative research efforts are
also sought from a design aspect to increase processing ability
of a single controller or decrease frequency of requests to be
processed. We describe these research efforts in this subsec-
tion, and present performance benchmark techniques for SDN
controllers.

1) Increasing Processing Ability: A controller is essentially
a piece of software. As such, conventional software optimiza-
tion techniques like parallelism and batching can be used to
improve controller’s performance on request processing, which
is used in Maestro [156], [157], NOX-MT [158], and McNettle
[159], [160]. Specifically, Maestro [156], [157] is a Java based
controller implementation. It exploits parallelism together with
additional throughput optimization techniques, such as, input
and output batching, core and thread binding. It is demon-
strated that this design leads to improved performance and
near linear performance scalability on multi-core processors. In
another case, NOX-MT is a multi-thread controller based on
the single thread C++ implementation of Network Operating
System (NOX) [158]. Benchmarking on different controllers,
including NOX, NOX-MT, Maestro, and Beacon [161], shows
performance advantages of NOX-MT over the others in terms
of minimum and maximum response time, as well as maximum
throughput. McNettle is an SDN controller written in Haskell,
leveraging the multi-core facilities of the Glasgow Haskell
Compiler (GHC) and runtime system [159], [160]. McNettle
schedules event handlers, allocates memory, optimizes message
parsing and serialization, and reduces the number of system
calls in order to optimize cache usage, OS processing, and
runtime system overhead. Experiments show that McNettle
can serve up to 5000 switches using a single controller with

38 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

46 cores, achieving throughput of over 14 million flows per
second.

2) Reducing Request Frequency: Heavy request load on a
controller could result in a longer delay in SDN controllers
[162]. As such, many strategies can be adopted to decrease
request frequency. One of them is to modify switching devices
so as to handle requests in the data plane or near the data plane.
Another strategy is to refine the structure in which switching
devices are organized. We discuss these two strategies in the
following paragraphs.

Following the strategy of handling requests in the data plane,
Yu et al. suggest distributing rules across “authority switches”
[163]. Packets are diverted through “authority switches” as
needed to access appropriate rules, thus all packets can be
handled in the data plane without requesting to controllers.
However, some packets may have to be directed through a
long path to get appropriate rules. Similarly, Curtis et al.
present DevoFlow to handle most “mice” flows in switching
devices [164]. DevoFlow proactively installs a small set of
possible packet forwarding rules in switching devices. As a
result, Equal-Cost Multi-Path (ECMP) routing and rapid re-
routing after designated output port goes down can be supported
without requesting controllers. DevoFlow also uses sampling,
triggering report after a threshold condition has been met, and
approximates counters that only track statistics of the top-k
largest “mice” flows. As a result, the amount of data in commu-
nication with controllers during statistic collection is reduced.

Proper organization and labour division of switching devices
can also improve the overall control layer performance. For
example, Yeganeh and Ganjali propose Kandoo, a framework
for preserving scalability without changing switching devices
[165]. Specifically, Kandoo has a two-layer architecture to han-
dle most of frequent events locally. The bottom layer is a group
of controllers without a network-wide view that handle most of
frequent events. “Elephant” flow detection, which needs to con-
stantly query each switching device to see whether a flow has
enough data to be an “elephant” flow, can be done at the bottom
layer. At the same time, the top layer is a logically centralized
controller that maintains a network-wide view and handles
rare events, for example, requesting for routing decisions. As
a result of the two-layer architecture, heavy communication
burden is offloaded to highly replicable local controllers at the
bottom layer.

3) Performance Benchmarking: Controller performance
benchmarking can be used to identify performance bottlenecks
and is essential to increase processing ability of a controller.
Cbench (controller benchmarker) [166] and OFCBenchmark
[167] are two tools designed for controller benchmarking.
Cbench [166] tests controller performance by generating
requests for packet forwarding rules and watching for responses
from the controller. Cbench offers aggregated statistics of
controller throughput and response time for all the switching
devices. Aggregated statistics may not be sufficient enough
to explore detailed controller behavior. On this consideration,
Jarschel et al. present OFCBenchmark with fine-grained statis-
tics for individual switching devices [167]. OFCBenchmark
provides statistics of response rate, response time, and number
of unanswered packets for each switching device.

V. APPLICATION LAYER

As illustrated in Fig. 1, the application layer resides above
the control layer. Through the control layer, SDN applications
can conveniently access a global network view with instanta-
neous status through a northbound interface of controllers, for
example, the Application Layer Traffic Optimization (ALTO)
protocol [168], [169] and the eXtensible Session Protocol
(XSP) [170]. Equipped with this information, SDN applications
can programmatically implement strategies to manipulate the
underlying physical networks using a high level language pro-
vided by the control layer. In this aspect, SDN offers “Platform
as a Service” model for networking [171]. In the section, we
describe several SDN applications built on this platform.

A. Adaptive Routing

Packet switching and routing are the main functions of a
network. Traditionally, switching and routing designs are based
on distributed approaches for robustness. However, such dis-
tributed designs have many shortcomings, including complex
implementation, slow convergence [180], and limited ability to
achieve adaptive control [181]. As an alternative solution, SDN
offers closed loop control, feeding applications with timely
global network status information and permitting applications
to adaptively control a network. Seeing this opportunity, several
proposals have been made to utilize the SDN platform for
better routing designs. In the following paragraphs, we describe
two popular SDN applications in this domain, namely load
balancing and cross-layer design.

1) Load Balancing: Load balancing is a widely used tech-
nique to achieve better resource usage. A common practice
of load balancing in data centers is deploying front-end load
balancers to direct each client’s request to a particular server
replica to increase throughput, reduce response time, and avoid
overloading of network. Dedicated load balancers, however, are
usually very expensive. SDN enables an alternative approach.
In the following paragraphs, we first discuss algorithms to
balance load using packet forwarding rules, and then present
uses cases in various scenarios.

Wang et al. make initial efforts to build a model and develop
algorithms for load balancing using packet forwarding rules
of SDN [124]. They assume uniform traffic from all clients
with different IP addresses and propose to use a binary tree to
arrange IP prefixes. The traffic is then divided using wild card
rules, so that a server replica will handle a traffic whose volume
is in proportion to processing ability of the server replica.
Although the assumption may not be true in most cases, this
work establishes a basis for future research on load balancing
leveraging packet forwarding rules of SDN. Besides computing
a path for each traffic flow proactively to achieve balanced load,
another methodology is to migrate traffic from heavy loaded
switching devices to lightly loaded ones reactively [182].

While algorithm development is essential, others make
efforts to deploy load balancing with SDN in various scenarios.
Different services or tenants may need their own dedicated
and specialized load balancing algorithm implementations
and do not want to affect each other, even if some load

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 39

balancing implementations break down. On this consideration,
Koerner et al. introduce differentiated load balancing algo-
rithms for different types of traffic, for example, web traffic
and email traffic, to achieve dedicated and specialized balanc-
ing algorithm implementations depending on requirements of
services and workloads [183]. In another situation, a front-end
load balancer needs to direct every request and can become the
bottleneck of a data center. To solve this problem, Handigol et al.
present Plug-n-Serve (now called Aster∗x [53]), which balances
load over an arbitrary unstructured network using an imple-
mentation of SDN [172]. It directly controls paths taken by
new HTTP requests to minimize average response time of web
services.

2) Cross-Layer Design: A cross-layer approach is a highly
touted technique to enhance integration of entities at different
layers in a layered architecture, for example, the OSI reference
model, by allowing entities at different layers to exchange
information among each other. As SDN offers a platform for
applications to easily access network status information, cross-
layer approaches can be easily developed on this platform. In
the following paragraphs, we present use cases to provide guar-
anteed QoS and improved application performance leveraging
the cross-layer design technique.

Many network applications require a certain level of QoS
support. Utilizing QoS information for appropriate network
resource reservation represents one effective cross-layer ap-
proach to achieve guaranteed QoS. For example, Ferguson et al.
demonstrate better QoS for video conferencing by retrieving
schedule of available bandwidth from an SDN controller. Then,
the earliest time at which a video call or alternatively an audio
call can be made with guaranteed quality is calculated [55].
As another example, Jeong et al. present QoS-aware Network
Operating System (QNOX) to offer QoS guaranteed services,
such as QoS-aware virtual network embedding and end-to-
end network QoS assessment [56]. For a request demanding a
virtual network with QoS requirements on bandwidth of virtual
link and delay between virtual nodes, QNOX will make QoS-
aware mapping for the virtual network on the substrate network.
QNOX also monitors end-to-end QoS offering measured results
to help make operational changes.

Similarly, adaptive routing can also improves applications’
performance. For example, Wang et al. propose a cross-layer
approach to configure underlying network at runtime based
on big data application dynamics [184], taking advantages
of high reconfigurability of SDN switching devices as well
as high speed and reconfigurability of optical switches. They
use Hadoop as an example and design Hadoop job schedul-
ing strategies to accommodate dynamic network configura-
tion on a hybrid network with Ethernet and optical switches.
Their preliminary analysis reports improved application perfor-
mance and network utilization with relatively low configuration
overhead.

B. Boundless Roaming

Smartphones and tablets are becoming dominating devices
in the Internet access. These mobile devices access the Inter-
net wirelessly. To ensure continuous connectivity while these

devices move from one location to another, connections may
be handed over from one base station to another, or even
from one wireless network to another. Seamlessness handover
is critical for applications to provide uninterrupted services.
Handover in the current literature is often limited to networks
of a single carrier with the same technology. In SDN, networks
of different carriers with different technologies could have a
common unified control plane. This enables boundless mobility
with seamless wireless connection handover between different
technologies and carriers, as shown in Fig. 2.

Various handover schemes have been developed based on
SDN. For example, Yap et al. propose handover algorithms be-
tween Wi-Fi and WiMAX networks including Hoolock, which
exploits multiple interfaces on a device, and n-casting, which
duplicates traffic across n distinct paths [173]–[175]. These
handover schemes can be easily implemented with SDN to re-
duce packet loss and improve TCP throughput during handover.
Another use case is Odin, which is a prototype SDN framework
for enterprise WLANs [176]. Odin allocates a unique Basic
Service Set Identification (BSSID) for each client connected.
Handover is performed by removing the BSSID from one
physical wireless Access Point (AP) and spawning it to an-
other. Odin exhibits low delay in re-association, no throughput
degradation and minimum impact on HTTP download in either
a single or multiple handovers.

C. Network Maintenance

Configuration errors are common causes of network failures.
It is reported that more than 60% of network downtime is due to
human configuration errors [185]. What makes it worse is that
existing network tools that deal with individual diagnosis such
as ping, traceroute, tcpdump, and NetFlow, fail to provide an
automated and comprehensive network maintenance solution.
As a comparison, centralized and automated management and
consistent policy enforcement, inherent in SDN networks, help
reduce configuration errors. Moreover, with a global view and
central control of configuration, SDN offers opportunities to
design comprehensive network diagnosis and prognosis mech-
anisms for automated network maintenance, as described in the
following paragraphs.

Network diagnosis tools like ndb [186] and OFRewind [177]
are crucial to detect causes of network failure. Inspired by
gdb, ndb is a network debugger providing backtrace of network
events. Every time a packet visits a switching device, a small
“postcard” is sent back to a controller. The controller will then
build a backtrace for network debugging. Taking a similar strat-
egy, OFRewind constantly records network events appearing
in a network. A novel feature of OFRewind is that it replays
recorded events later to troubleshoot the network.

A key benefit of SDN-based prognosis mechanisms is that
central control of an SDN implementation can directly resolve
network failures with shorter routing convergence time [180].
For example, Sharma et al. propose a fast restoration mecha-
nism for SDN [187]. After detection of failure, the controller
calculates new forwarding paths for affected paths and updates
packet forwarding rules immediately without waiting for old
forwarding rules to expire.

40 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

D. Network Security

Network security is a notable part of cyber security and
is gaining attentions. Traditional network security practices
deploy firewalls and proxy servers to protect a physical net-
work. Due to the heterogeneity in network applications, en-
suring exclusive accesses by legitimate network applications
involves implementation of a network-wide policy and tedious
configuration of firewalls, proxy servers, and other devices. In
this aspect, SDN offers a convenient platform to centralize,
merge and check policies and configurations to make sure that
the implementation meets required protection thus preventing
security breaches proactively.

Moreover, SDN provides better ways to detect and defend
attacks reactively. Ability to collect network status of SDN
allows analysis of traffic patterns for potential security threats.
Attacks, such as low-rate burst attacks and Distributed Denial-
of-Service (DDoS) attacks, can be detected just by analyzing
traffic pattern [71], [188]. At the same time, SDN provides
programmatic control over traffic flows. Consequently, traffic
of interest can be explicitly directed to Intrusion Prevention
Systems (IPSs) for Deep Packet Inspection (DPI) [189], [190].
If attacks are detected, SDN can install packet forwarding rules
to switching devices to block the attack traffic from entering
and propagating in a network [55], [119]. Centralized control
of SDN permits dynamically quarantine of compromised hosts
and authentication of legitimate hosts based on information ob-
tained through requesting end hosts [191], requesting a Remote
Authentication Dial In User Service (RADIUS) [192] server for
users’ authentication information [193], [194], tainting traffic
[195], [196] or system scanning during registration [197].

Finally, SDN is further capable of providing direct and
fine-grained control over networks, and gives opportunities to
implement novel security protection strategies. For example,
Jafarian et al. develop Moving Target Defense (MTD) based
on efficient control of SDN. A virtual IP is associated with
each host for data transmission and is randomly mutated with
high unpredictability and rate while a real IP of the host is
static. Controllers will specify translation between the virtual IP
and real IP while maintaining configuration integrity [178]. As
another example, Mendonca et al. present AnonyFlow, an in-
network endpoint anonymization service designed to provide
privacy to users. AnonyFlow performs translation between
AnonID, Network IP and Machine IP using an implementation
of SDN [179].

E. Network Virtualization

Network virtualization is a popular technique to allow multi-
ple heterogeneous network architectures to cohabit on a shared
infrastructure [198] and plays a significant role in the IaaS
model. A common practice of network virtualization is to slice
a physical network into multiple virtual instances and assign
them to different users, controllers, or SDN applications, as
illustrated in Fig. 5. Conventional virtualization methods using
tunnels and VLAN or MPLS tags require tedious configurations
on all the involved network devices. As a comparison, SDN of-
fers a platform allowing configuration of all switching devices

Fig. 5. Network virtualization: Multiple virtual networks can be created on the
same physical network, sharing infrastructure resources. An SDN application
can only oversee and user resources of its own virtual network.

in a network from a controller, for example, libNetVirt [199],
[200]. With this platform, different strategies can be developed
at the application layer to automate configuration for network
slicing.

In SDN research, FlowVisor is one leading example that pro-
vides functions to slice the network resources, including band-
width, topology, flow space, switching device CPU, forwarding
table space, and control channel [201], [202]. FlowVisor is
located between guest controllers and switching devices acting
as a transparent proxy to filter control messages such that a
guest controller can only see and manipulate its own virtual
network. FlowVisor is a useful tool to create virtual networks
from a physical network for research experimentations [203]
and to share a physical network with various users with clear
isolation [204]. In another approach, Gutz et al. introduce a
network virtualization approach by providing isolation at a lan-
guage level [121]. In this approach, taking a collection of slice
definitions and their associated applications as an input, a list of
packet forwarding rules is generated for each switching device
to create an appropriate virtual network for each application.

F. Green Networking

Green networking has become important in network design
and deployment for economic and environmental benefits. Dif-
ferent approaches have been considered to achieve green net-
working, including, but not limited to, energy-aware data link
adaptation, energy-aware traffic proxying, energy-aware infras-
tructure and energy-aware application, as suggested in [205].

It turns out that SDN switching devices may not directly
offer benefits in energy reduction in network operation [206].
However, SDN could offer significant promises in supporting
minimization of network-wide energy consumption. As a proof,
Heller et al. demonstrate energy-aware data link adaptation
with SDN [54]. They propose a mechanism to determine mini-
mum data links and switching devices for a data center network
based on traffic loads and dynamically power down redundant
links and switching devices for energy efficient operations.

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 41

TABLE III
EXPERIMENT SETUP OF SDN APPLICATIONS

G. SDN for Cloud Computing

Cloud computing is changing the way people do computing
and business. It provisions computing and storage resources
on demand and charges on usage with server and network
virtualization. SDN provides opportunities to extend the service
provisioning model of IaaS beyond computing and storage re-
sources to include a rich set of accompanying network services
for more flexible and efficient cloud computing [207].

Data center networks for cloud computing have a few key
requirements, including scalability for large scale deployment,
location independence for dynamic resource provision, QoS
differentiation for different tenants, and network visibility and
fine-grained control [208]. As aforementioned in previous sub-
section, SDN can fully meet these requirements. In the fol-
lowing paragraphs, we discuss two unique issues for cloud
computing, namely virtual switching and VM migration.

Virtual switching is used for communication among VMs in
the same host. Conventional virtual switching provided with
hypervisors, however, does not provide sufficient visibility and
control. As a solution, Open vSwitch provides virtual edge
switching for VMs with visibility and control leveraging the
idea of SDN [74], [75]. These vSwitches also report network
status to and receive packet forwarding rule from SDN con-
trollers, just like SDN switching devices. However, vSwitches
offer limited storage and processing resources compared with
physical switches. Moshref et al. present a virtual Cloud
Rule Information Base (vCRIB) to overcome these resource
constraints [209]. vCRIB automatically finds the optimal rule
placement among physical and virtual switches while minimiz-
ing traffic overhead and adapting quickly to cloud dynamics
such as traffic changes and VM migrations.

VM migration is widely used in data centers for statistical
multiplexing or dynamic communication pattern changing to
achieve higher bandwidth for tightly coupled hosts [210]. Con-
ventional VM migration is often limited to a single broadcast
domain, since IP addresses should be preserved across broad-
cast domains. However, Address Resolution Protocol (ARP)
messages cannot go beyond a broadcast domain. Mobile IP and
Locator/Identifier Separation Protocol (LISP) based solutions
[211]–[213] can fix this issue and have inspired SDN solu-

tions. Specifically, the OpenDaylight [214] SDN controller has
added a LISP-based mapping service. SDN can preserve VM
connectivity during intra and inter data center VM migration
[182], [215]–[221] by inserting proper packet forwarding rules
in switching devices to direct traffic to the new VM location.
As an example of inter data centers VM migration, Mann et al.
present CrossRoads to migrate VM across data centers seam-
lessly using an implementation of SDN [218]. CrossRoads
extends the idea of location independence based on pseudo ad-
dresses proposed in cloud networking to work with controllers
governing their own data center network. Cross subnet ARP
resolution is used to distinguish an IP address outside a subnet
after inter data center migration. The resolution will then direct
packets with this IP address to their destination in an external
data center. As a result, VM connections can be maintained
during inter data center migration.

VI. CASE IN POINT: OPENFLOW

OpenFlow is first proposed by McKeown et al. with an objec-
tive to enable easy network experiments in a campus network
[222] and is currently used in most SDN practices as shown in
Table III. Early phase experiments using OpenFlow mainly aim
at creating a separate software controllable network focusing on
controlling forwarding of packets. Later, researches discovered
that the implementation of a separate software controllable
network using OpenFlow is actually a practical enabler of the
so called “Software-Defined Networking”.

OpenFlow takes advantages of the fact that most modern
Ethernet switches and routers contain flow tables for essential
networking functions, such as routing, subnetting, firewall pro-
tection, and statistical analysis of data streams. In an OpenFlow
switch, each entry in the flow table has three parts, “header”
for matching received packets, “action” to define what to do
for the matched packets, and “statistics” of the matched traffic
flow. As illustrated in Fig. 6, the OpenFlow protocol offers
convenient flow table manipulation services for a controller to
insert, delete, modify, and lookup the flow table entries through
a secure TCP channel remotely.

OpenFlow may be seen as just a protocol specification used
in switching devices and controllers interfacing. Its idea of

42 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

Fig. 6. OpenFlow Switch. The flow table is controlled by a remote controller
via the secure channel [222].

creating a separate network solely for network control mani-
fests the key concept of SDN and lays foundation for network
programmability and logically centralized control. In the de-
velopment of SDN and OpenFlow, their concepts and design
approaches go hand in hand with each other. On one hand,
many concepts in SDN are based on the design of OpenFlow.
On the other hand, as the concept of SDN becomes clearer
and more mature, then it influences the future development of
OpenFlow. In other words, OpenFlow defines initial concept of
SDN and SDN governs future development of OpenFlow. In the
following subsections, we first present standardization process
and deployment cases of OpenFlow. Then we introduce some
widely used OpenFlow software projects, and lastly compare
OpenFlow with ForCES, which is also a protocol to separate
the control and data planes [37]–[40].

A. Standardization and Deployment

The OpenFlow specification is continuously evolving with
new features in every new release. With more and more vendors
releasing their OpenFlow-enabled products and solutions, more
software projects being developed on OpenFlow and more or-
ganizations deploying OpenFlow-enabled networks, a complete
and well-functioned ecosystem is being built around OpenFlow.

The OpenFlow Switch Consortium [223] released the first
OpenFlow reference implementation, version 0.1.0, with source
code on November 30, 2007. It then published the OpenFlow
version 1.0 on December 31, 2009, which added multiple
queues per output port for minimum bandwidth guarantees. The
next version 1.1 was released on February 28, 2011, which in-
troduced multiple tables pipeline processing. After that, the role
of standardizing OpenFlow specification was moved to ONF
[29]. In December 2011, the ONF board approved OpenFlow
version 1.2 and published it in February 2012, which added sup-
port for IPv6. Later on April 19, 2012, ONF further approved
OpenFlow version 1.3 and on June 25, a rectified version was
released with OF-Config 1.1, which is a protocol to configure
and manage OpenFlow switches and controllers.

Along with the process of OpenFlow standardization, many
OpenFlow switches and controllers surface. The first OpenFlow

switches are built using open network hardware, for example,
NetFPGA [80], [81]. After the first appearance, vendors, in-
cluding NEC, IBM, Juniper, HP, Cisco, Huawei, Pica8/Pronto,
Centec, Dell/Force10, Extreme, Mellanox, NoviFlow, Arista,
Brocade, NetGear and many more, start to release their Open-
Flow switches. For controllers, there are commercial con-
trollers, such as ProgrammableFlow Controller from NEC and
Big Network Controller from Big Switch, as well as open
source controllers, such as OMNI [224], Trema [225], Ryu
[226], Floodlight [227], NOX [228], [229], and OpenDaylight
[214], as listed in Table IV. Other networking related projects
also start to utilize OpenFlow, for example, OpenStack Quan-
tum for cloud computing networks.

With so many OpenFlow switches and controllers available,
OpenFlow networks have been and are being deployed for
both research and production purposes. The first large scale
OpenFlow network is deployed by the Stanford OpenRoads
project [230]. The Stanford OpenRoads deployment consists
of five 48-port 1GE OpenFlow Ethernet switches, 30 Wi-Fi
APs and 1 WiMAX base station. In this testbed, SSIDs are
used to identify network slices. A DHCP server is used to
allocate IP addresses to mobile clients. OpenRoads also has a
logging system, data graphing tools and real-time visualization
to monitor the system. These tools are carefully designed to
be complementary yet independent, and they are reusable for
other deployments. The OpenRoads deployment opens the road
to deploy OpenFlow in campus networks with both wired and
wireless connections. Other than research purpose deployments
in campus networks, OpenFlow has also been deployed in
production networks. Google has deployed a software defined
WAN called “B4” connecting Google’s data centers across the
planet for three years [231]. B4 is a hybrid approach with
simultaneous support of existing routing protocols and novel
OpenFlow SDN approach. For the data plane, Google builds
its own OpenFlow enabled switches from multiple merchant
silicon switch chips. To support legacy routing protocols like
BGP and IS-IS, B4 runs an open source Quagga [34] stack on
the control plane. Routing protocol packets are redirected to
Quagga from the data plane. Routing table updates of Quagga
are then translated to flow table updates on the switches.
With techniques like centralized traffic engineering to share
bandwidth among competing applications with possibility to
use multiple paths, remarkably, B4 shows near 100% link uti-
lization. B4 supports existing routing protocols and OpenFlow,
thus offers a less disruptive and more economical solution
for OpenFlow deployment in production networks for busi-
nesses. OpenFlow networks have expanded rapidly, since its
first deployment. Now, OpenFlow products are permeating into
laboratories, classrooms [232], testbed networks [58], [59],
[233]–[237], data centers, and service provider networks [238].

B. OpenFlow Software Projects

Many OpenFlow software projects exist today. Among them
NOX controller [228], [229] and Mininet simulator [239] are
the most frequently used tools in SDN related researches.

NOX is the first OpenFlow controller. It allows applications
to be implemented based on a centralized network view using

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 43

TABLE IV
OPENFLOW CONTROLLERS

Fig. 7. IETF ForCES Architecture. A ForCES network element consists two
kinds of components, namely control elements (CEs) and forwarding elements
(FEs). CE Manager and FE Manager, which reside outside of the ForCES NE,
provide configuration to the corresponding CE or FE in the pre-association
phase.

high level names as opposed to distributed algorithms over low-
level addresses. Applications are written in either Python or
C++ and are loaded dynamically. Core infrastructure and speed-
critical functions of NOX are implemented in C++.

Mininet is a network simulator for rapidly prototyping of a
large OpenFlow network. A virtual network is created accord-
ing to specified links, hosts, switching devices and controllers.
A Command-Line Interface (CLI) is provided to interact with
the virtual network, for example, checking connectivity be-
tween two hosts using ping. Since Mininet provides a simulated
environment for experimentation, new ideas can be developed
and tested in Mininet before deployed onto a real environment
in a straightforward way. Usage of lightweight OS-level virtual-
ization features, including processes and network namespaces,
to create virtual networks allows Mininet to scale to hundreds
of nodes in a single computer.

C. OpenFlow and ForCES

OpenFlow aims at separating the control plane from the
data plane. Another well known effort to separate the control
plane from the data plane and standardize information exchange
between the control and data planes is ForCES [37]–[40]
proposed by IETF. As shown in Fig. 7, a ForCES Network
Element (NE) consists of multiple Forwarding Elements (FEs)
and multiple Control Elements (CEs). FE provides per-packet
processing and is instructed by CEs on how to process packets.

TABLE V
COMPARISONS BETWEEN OPENFLOW AND FORCES

ForCES uses ForCES Protocol Layer (ForCES PL) to define
the protocol between FEs and CEs, and ForCES Protocol
Transport Mapping Layer (ForCES TML) to transport the PL
messages. Thus, ForCES allows coexistence of multiple TMLs
from various vendors and interoperability is guaranteed as long
as both endpoints support the same TML. Packet forwarding
in FE is based on abstraction of Logical Functional Blocks
(LFBs) [240], each of which has a single specific function of
processing packets. In the following paragraphs, we present
a comprehensive comparison between OpenFlow and ForCES
in terms of their goals, architecture, forwarding model and
protocol interface, as summarized in Table V [241], [242]:

• Goal: ForCES is not designed with a long-term vision to
implement SDN. The goal of ForCES is separating the
data plane from the control plane, while OpenFlow is
designed for SDN;

• Architecture: ForCES NEs are functionally equivalent to
conventional routers and they still run routing protocols
just as conventional routers. Unlike ForCES, OpenFlow
switches will be controlled by a controller and can run
without any routing protocols;

• Forwarding Model: OpenFlow forwarding model provides
programmability that is restricted to predefined capabili-
ties of OpenFlow switches. For example, only predefined
actions can be chosen to process a packet with OpenFlow.
ForCES forwarding engine is more flexible, since function
of each LFB and LFB topology can be dynamically speci-
fied. Thus, new packet processing actions can be created;

• Protocol Interface: In terms of protocol messages, ForCES
supports more features than OpenFlow, such as mes-
sage batching, execution mode selection, and command
pipelining.

44 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

TABLE VI
SDN RELATED RESEARCHES

In summary, ForCES provides more flexible forwarding
model and richer protocol features. However, because of the
disruptive business model brought by the LFB forwarding
model and lack of open source support, ForCES is not so widely
adopted as OpenFlow. OpenFlow can still learn a lot from both
merits and shortcomings of ForCES for further success.

VII. CONCLUSION, DESIGN GUIDELINES

AND FUTURE RESEARCH

To conclude, we first present a brief summary of the whole
article. Then we list design principles that have been adopted
in SDN related researches. Finally, we point out a few SDN
related open issues that need future research efforts.

A. Summary and Conclusion

Recent developments in ICT domain, for example, mobile,
multimedia, cloud, and big data, are demanding for more con-
venient Internet access, more bandwidth from users, as well
as more dynamic management from service providers. SDN
is considered as a promising solution to meet these demands.
In this paper, we have presented the concept of SDN and
highlighted benefits of SDN in offering enhanced configuration,

improved performance, and encouraged innovation. Moreover,
we have provided a literature survey of recent SDN researches
in the infrastructure layer, the control layer, and the application
layer, as summarized in Table VI. Finally, we have introduced
OpenFlow, the de facto SDN implementation.

B. Design Guidelines

The success of SDN requires improvements and develop-
ments at all the three layers, including the infrastructure layer,
the control layer, and the application layer. It needs collabora-
tion of different organizations including vendors, academia, and
communities, and interdisciplinary knowledge covering both
hardware and software. In the following paragraphs, we outline
a few design guidelines for further development and future
research in SDN:

• An SDN switching device is relatively simple with a sepa-
rate control plane. The SDN switching device can be easier
to manufacture and its cost will be cheaper using merchant
silicon. However, issues on switching device hardware
design are still open. Specifically, SDN switching devices
need more memory space and higher processing speed
with an economically viable cost. Integration of various
new hardware technologies is necessary.

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 45

TABLE VII
CURRENT RESEARCH PROJECTS

• SDN is originally developed for IP based networks on
campuses. Therefore, scaling ubiquitous coverage of SDN
requires unification and integration with advanced tech-
nologies in wireless and optical transmission (i.e., SDR
and GMPLS, respectively). These technologies give op-
portunities for an SDN controller to have a widespread
control over all the network parameters and behavior.
Integrated with these technologies, SDN will obtain more
appropriate control of the infrastructure to achieve more
efficient infrastructure resource utilization.

• To enhance advantages of decoupling the control plane
from the data plane, a high level expressive and compre-
hensive interface to access and control switching devices
should be provided to further ease network configuration
and management. Skills from various computer science
areas, such as programming language theory, formal meth-
ods, and distributed systems, should be applied to enable
automated generation from high level language described
policies to low level rules without conflicts and to guaran-
tee consistency during rule update procedure.

• Network measurement techniques are also useful for net-
work status collection. For large scale networks, multi-
ple controllers are necessary. Synchronization algorithms
studied in distributed systems and database systems can
be adopted to synchronize collected network status among
multiple controllers.

• An SDN controller has to handle a massive amount of
interaction events with its associated switching devices.
To guarantee efficiency of network operations, methods
in software optimization and algorithm analysis can be
used to improve controller’s performance, and properly
designed architecture can help decrease request frequency.

• SDN provides a platform to implement various SDN ap-
plications. SDN applications can access a global network
view and cross-layer information to make better network
operation decisions. SDN controllers ensure that these de-

cisions are carried out properly at the infrastructure layer.
Still, participation of software developers is required to
turn innovative ideas to solutions that can bring economic,
social, and environmental benefits.

C. Future Research

Many challenges in SDN still need further research attention
and many organizations have started research projects in var-
ious aspects of SDN as shown in Table VII. In the following
paragraphs, we list the open issues covering the whole lifecycle
of SDN from standardization, implementation, to deployment:

• Standardization of SDN: Being the de facto implemen-
tation of the SDN concept, OpenFlow is by no means
the only SDN implementation. IETF has also released an
SDN framework [255]. The ETSI Industry Specification
Group (ISG) for Network Functions Virtualization (NFV)
has been formed recently to promote NFV, which is highly
complementary to SDN [256]. Upon maturity of SDN
implementations, a comprehensive comparison among all
potential SDN implementations should be conducted. In
the control layer, we have witnessed many projects aiming
at similar problems using similar approaches. However, a
dominating solution has not yet arisen. Fragmentation in
controller functions and APIs provided by the controllers
may be a potential barrier for commercial development
of SDN. Besides, OpenFlow specification evolves rapidly
and allows different interpretations. Therefore, different
implementations may behave inconsistently and cause un-
predictable disorders [257].

• Implementation of SDN: The current SDN approach of
decoupling control plane completely from data plane sug-
gests a total removal of any onboard routing protocols
from switching devices. This approach may be too idealis-
tic, which may prevent SDN from widespread adaptation.
An immediate and direct transform to idealistic SDN will

46 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

need a lot risky investment to replace all the conventional
network devices. In the transition phase from conven-
tional switching devices to fully decoupled SDN switching
devices, semi-decoupled switching devices, which run
routing protocols and can also be remotely controlled are
helpful to smooth the evolution to idealistic SDN. Some
other design drawbacks in the current SDN implementa-
tion do exist. For example, in OpenFlow, a long header
is used for matching to allow more granular control, i.e.,
twelve tuples in OpenFlow 1.0 and more in OpenFlow 1.1.
This may require more space in rule storage and more time
in lookup. Besides, widely used proxy design between
switching devices and controller has already shown a
negative effect on performance [152], [204].

• Deployment of SDN: Further study of SDN in carrier
networks with carrier-grade requirements [258], wireless
mesh networks with fast client mobility [259], and wire-
less sensor networks which require high reliability and
reachability [260], [261] is also needed for wide deploy-
ment of SDN.

Finally, we note that these issues pointed out here are not
meant to be exhaustive. However, many more issues remain to
be attended in this active and promising area of SDN.

REFERENCES

[1] IDC Predictions 2013: Competing on the 3rd Platform, IDC,
Framingham, MA, USA, Nov. 2012, White Paper. [Online]. Available:
http://www.idc.com/research/Predictions13/downloadable/238044.pdf

[2] P. Mell and T. Grance, “The NIST definition of cloud computing (draft),”
NIST Special Publication, vol. 800-145, p. 7, 2011.

[3] J. Gantz and D. Reinsel, “Extracting value from chaos,” IDC,
Framingham, MA, USA, White Paper, Jun. 2011. [Online]. Available:
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-
from-chaos-ar.pdf

[4] J. Manyika et al., “Big data: The next frontier for innovation,
competition, and productivity,” McKinsey Global Inst., Mumbai, India,
pp. 1–137, 2011.

[5] P. Cesar and D. Geerts, “Past, present, and future of social TV: A cate-
gorization,” in Proc. IEEE CCNC, 2011, pp. 347–351.

[6] Y. Jin, X. Liu, Y. Wen, and J. Cai, “Inter-screen interaction for session
recognition and transfer based on cloud centric media network,” in Proc.
IEEE ISCAS, 2013, pp. 877–880.

[7] Y. Jin, Y. Wen, G. Shi, G. Wang, and A. Vasilakos, “CoDaaS:
An experimental cloud-centric content delivery platform for user-
generated contents,” in Proc. Int. Conf. Comput. Netw. Commun., 2012,
pp. 934–938.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[9] “Cisco visual networking index: Global mobile data traffic forecast up-
date, 2013–2018,” San Jose, CA, USA, White Paper, Feb. 2014.

[10] Facebook Timeline. [Online]. Available: http://newsroom.fb.com/
Timeline

[11] “Cisco visual networking index: Forecast and methodology,
2011–2016,” San Jose, CA, USA, White Paper, May 2012. [Online].
Available: http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

[12] H. Kim, T. Benson, A. Akella, and N. Feamster, “The evolution of net-
work configuration: A tale of two campuses,” in Proc. ACM SIGCOMM
Conf. Internet Meas. Conf., 2011, pp. 499–514.

[13] “What’s Behind Network Downtime?” Sunnyvale, CA, USA, May 2008,
White Paper. [Online]. Available: https://www-935.ibm.com/services/
sg/gts/pdf/200249.pdf

[14] H. Xie, Y. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz, “P4p:
Provider portal for applications,” ACM SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 351–362, Aug. 2008.

[15] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “Con-
fused, timid, and unstable: Picking a video streaming rate is hard,” in
Proc. ACM Conf. Internet Meas. Conf., 2012, pp. 225–238.

[16] X. Chen, Z. M. Mao, and J. Van Der Merwe, “ShadowNet: A platform for
rapid and safe network evolution,” in Proc. Conf. USENIX Annu. Tech.
Conf., 2009, p. 3.

[17] R. Perlman, “Rbridges: Transparent routing,” in Proc. 23rd Annu. Joint
Conf. IEEE INFOCOM, 2004, vol. 2, pp. 1211–1218.

[18] R. Perlman, D. Eastlake, III, S. Gai, D. Dutt, and A. Ghanwani, Routing
bridges (RBridges): Base Protocol Specification, Jul. 2011, RFC 6325.
[Online]. Available: http://tools.ietf.org/rfc/rfc6325.txt

[19] J. Pan, S. Paul, and R. Jain, “A survey of the research on future In-
ternet architectures,” IEEE Commun. Mag., vol. 49, no. 7, pp. 26–36,
Jul. 2011.

[20] L. Zhang et al., “Named Data Networking (ndn) project,” Relatório
Técnico NDN-0001, Xerox Palo Alto Research Center-PARC, Palo Alto,
CA, USA, 2010.

[21] A. T. Campbell et al., “A survey of programmable networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 29, no. 2, pp. 7–23, Apr. 1999.

[22] L. Popa, A. Ghodsi, and I. Stoica, “HTTP as the narrow waist of the
future internet,” in Proc. 9th ACM SIGCOMM Workshop Hotnets-IX,
2010, pp. 6:1–6:6.

[23] “Software-defined networking: The new norm for networks,” Palo Alto,
CA, USA, White Paper, Apr. 2012. [Online]. Available: https://www.
opennetworking.org/images/stories/downloads/white-papers/wp-sdn-
newnorm.pdf

[24] T. Nadeau and P. Pan, Software Driven Networks Problem Statement,
Oct. 2011, Internet Draft. [Online]. Available: http://www.cisco.
com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/
white_paper_c11-481360.pdf

[25] Open Networking Summit. [Online]. Available: http://www.
opennetsummit.org/archives/oct11/site/tutorials.html

[26] Hot Topics in Software Defined Networking (HotSDN). [Online]. Avail-
able: http://conferences.sigcomm.org/sigcomm/2012/hotsdn.php

[27] European Workshop on Software Defined Networks. [Online]. Avail-
able: http://www.ewsdn.eu/previous/ewsdn12.html

[28] “Software defined networking: A new paradigm for virtual, dynamic,
flexible networking,” Hopewell Junction, NY, USA, White Paper,
Oct. 2012. [Online]. Available: http://ict.unimap.edu.my/images/doc/
SDN%20IBM%20WhitePaper.pdf

[29] Open Networking Foundation (ONF). [Online]. Available: https://www.
opennetworking.org/

[30] J. Smith et al., “Switchware: Accelerating network evolution,” CIS
Dept., Univ. Pennsylvania, Philadelphia, PA, USA, White Paper, 1996.

[31] D. Alexander et al., “The SwitchWare active network architecture,”
IEEE Netw., vol. 12, no. 3, pp. 29–36, May/Jun. 1998.

[32] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
Aug. 2000.

[33] M. Handley, O. Hodson, and E. Kohler, “XORP: An open platform for
network research,” ACM SIGCOMM Comput. Commun. Rev., vol. 33,
no. 1, pp. 53–57, Jan. 2003.

[34] Quagga Routing Software Suite. [Online]. Available: http://www.
nongnu.org/quagga/

[35] The BIRD Internet Routing Daemon. [Online]. Available: http://bird.
network.cz/

[36] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der
Merwe, “The case for separating routing from routers,” in Proc. ACM
SIGCOMM Workshop FDNA, 2004, pp. 5–12.

[37] L. Yang, R. Dantu, T. Anderson, and R. Gopal, Forwarding and Con-
trol Element Separation (ForCES) Framework, Apr. 2004, RFC 3746.
[Online]. Available: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

[38] T. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo, “The
softrouter architecture,” in Proc. ACM SIGCOMM Workshop Hot Topics
Netw., 2004, pp. 1–6.

[39] W. Wang et al., “Design and implementation of an open programmable
router compliant to IETF ForCES specifications,” in Proc. 6th ICN,
2007, pp. 1–6.

[40] A. Doria et al., Forwarding and Control Element Separation (ForCES)
Protocol Specification, Mar. 2010, RFC 5810. [Online]. Available:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/
ns705/ns827/white_paper_c11-481360.pdf

[41] J. Rexford et al., “Network-wide decision making: Toward a wafer-thin
control plane,” in Proc. HotNets, 2004, pp. 59–64.

[42] A. Greenberg et al., “A clean slate 4D approach to network control
and management,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 5,
pp. 41–54, Oct. 2005.

[43] H. Yan et al., “Tesseract: A 4D network control plane,” in Proc. 4th
USENIX Conf. NSDI, 2007, p. 27.

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 47

[44] A. Farrel, J.-P. Vasseur, and J. Ash, A Path Computation Element
(PCE)-Based Architecture, Aug. 2006, RFC 4655. [Online]. Available:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/
ns705/ns827/white_paper_c11-481360.pdf

[45] M. Casado et al., “SANE: A protection architecture for enterprise net-
works,” in Proc. 15th Conf. USENIX-SS, Berkeley, CA, USA, 2006,
vol. 15, p. 10.

[46] J. Luo, J. Pettit, M. Casado, J. Lockwood, and N. McKeown, “Prototyp-
ing Fast, Simple, Secure Switches for Etha,” in Proc. 15th Annu. IEEE
Symp. HOTI, 2007, pp. 73–82.

[47] M. Casado et al., “Ethane: Taking control of the enterprise,” in Proc.
Conf. SIGCOMM Appl., Technol., Archit., Protocols Comput. Commun.,
2007, pp. 1–12.

[48] M. Casado et al., “Rethinking enterprise network control,” IEEE/ACM
Trans. Netw., vol. 17, no. 4, pp. 1270–1283, Aug. 2009.

[49] S. Shenker, M. Casado, T. Koponen, and N. McKeown, “The future of
networking, and the past of protocols,” presented at the Open Network-
ing Summit, Stanford, CA, USA, 2011. [Online]. Available: http://www.
opennetsummit.org/archives/apr12/site/talks/shenker-tue.pdf

[50] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward software-
defined middlebox networking,” in Proc. 11th ACM Workshop Hot Top-
ics Netw., 2012, pp. 7–12.

[51] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
7th USENIX Conf. NSDI, 2010, p. 19.

[52] M. Ghobadi, S. Yeganeh, and Y. Ganjali, “Rethinking end-to-end con-
gestion control in software-defined networks,” in Proc. 11th ACM Work-
shop Hot Topics Netw., 2012, pp. 61–66.

[53] N. Handigol, S. Seetharaman, M. Flajslik, R. Johari, and N. McKeown,
“Aster∗ x: Load-balancing as a network primitive,” in Proc. 9th GENI
Eng. Conf. (Plenary), 2010, pp. 1–2.

[54] B. Heller et al., “ElasticTree: Saving energy in data center networks,” in
Proc. 7th USENIX Conf. NSDI, 2010, p. 17.

[55] A. Ferguson, A. Guha, J. Place, R. Fonseca, and S. Krishnamurthi,
“Participatory networking,” in Proc. Hot-ICE, San Jose, CA, USA,
2012, p. 2.

[56] K. Jeong, J. Kim, and Y. Kim, “QoS-aware network operating system
for software defined networking with generalized OpenFlows,” in Proc.
IEEE NOMS, 2012, pp. 1167–1174.

[57] T. Koponen et al., “Architecting for innovation,” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 3, pp. 24–36, Jul. 2011.

[58] PlanetLab. [Online]. Available: http://www.planet-lab.org/
[59] Global Environment for Network Innovations (GENI). [Online]. Avail-

able: http://www.geni.net/
[60] A. Sharafat, S. Das, G. Parulkar, and N. McKeown, “MPLS-TE and

MPLS VPNS with OpenFlow,” ACM SIGCOMM Comput. Commun.
Rev., vol. 41, no. 4, pp. 452–453, Aug. 2011.

[61] N. Blefari-Melazzi, A. Detti et al., “An OpenFlow-based testbed for
information centric networking,” in Proc. Future Netw. Mobile Summit,
2012, pp. 4–6.

[62] H. Yin et al., SDNi: A Message Exchange Protocol for Software Defined
Networks (SDNS) across Multiple Domains, Jun. 2012, Internet draft.
[Online]. Available: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

[63] H. Xie et al., “Software-defined networking efforts debuted at IETF 84,”
IETF J., Oct. 2012. [Online]. Available: http://www.internetsociety.org/
fr/node/45708

[64] R. Birke et al., “Partition/aggregate in commodity 10G ethernet
software-defined networking,” in Proc. IEEE 13th Int. Conf. HPSR,
2012, pp. 7–14.

[65] E. Karpilovsky, M. Caesar, J. Rexford, A. Shaikh, and J. van der
Merwe, “Practical network-wide compression of IP routing tables,”
IEEE Trans. Netw. Serv. Manage., vol. 9, no. 4, pp. 446–458,
Dec. 2012.

[66] T. Pan, X. Guo, C. Zhang, W. Meng, and B. Liu, “ALFE: A replacement
policy to cache elephant flows in the presence of mice flooding,” in Proc.
IEEE ICC, Jun. 2012, pp. 2961–2965.

[67] O. Ferkouss et al., “A 100 Gig network processor platform for
OpenFlow,” in Proc. 7th Int. CNSM, 2011, pp. 1–4.

[68] J. C. Mogul and P. Congdon, “Hey, you darned counters!: Get off my
ASIC!” in Proc. 1st Workshop HotSDN, 2012, pp. 25–30.

[69] V. Tanyingyong, M. Hidell, and P. Sjodin, “Improving PC-based
OpenFlow switching performance,” in Proc. ACM/IEEE Symp. ANCS,
2010, pp. 1–2.

[70] V. Tanyingyong, M. Hidell, and P. Sjodin, “Using hardware classification
to improve pc-based OpenFlow switching,” in Proc. IEEE 12th Int. Conf.
HPSR, 2011, pp. 215–221.

[71] G. Lu, R. Miao, Y. Xiong, and C. Guo, “Using CPU as a traffic co-
processing unit in commodity switches,” in Proc. 1st Workshop HotSDN,
2012, pp. 31–36.

[72] Pantou: OpenFlow 1.0 for OpenWRT. [Online]. Available: http://www.
openflow.org/wk/index.php/Pantou_:_OpenFlow_1.0_for_OpenWRT

[73] Y. Mundada, R. Sherwood, and N. Feamster, “An OpenFlow switch
element for click,” presented at the Symposium Click Modular Router,
Ghent, Belgium, 2009.

[74] B. Pfaff et al., “Extending networking into the virtualization
layer,” in Proc. HotNets, New York, NY, USA, 2009. [On-
line]. Available: http://conferences.sigcomm.org/hotnets/2009/papers/
hotnets2009-final143.pdf

[75] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby, “Virtual switching
in an era of advanced edges,” in Proc. 2nd Workshop DC-CAVES, 2010,
pp. 1–7.

[76] J. Lockwood et al., “NetFPGA-an open platform for gigabit-rate
network switching and routing,” in Proc. IEEE Int. Conf. MSE, 2007,
pp. 160–161.

[77] M. Anwer, M. Motiwala, M. Tariq, and N. Feamster, “SwitchBlade: A
platform for rapid deployment of network protocols on programmable
hardware,” ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 4,
pp. 183–194, Oct. 2010.

[78] G. Lu et al., “Serverswitch: A programmable and high performance
platform for data center networks,” in Proc. NSDI, 2011, p. 2.

[79] A. Rostami, T. Jungel, A. Koepsel, H. Woesner, and A. Wolisz, “ORAN:
OpenFlow routers for academic networks,” in Proc. IEEE 13th Int. Conf.
HPSR, 2012, pp. 216–222.

[80] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and
N. McKeown, “Implementing an OpenFlow switch on the NetFPGA
platform,” in Proc. 4th ACM/IEEE Symp. ANCS, 2008, pp. 1–9.

[81] J. Kempf et al., “OpenFlow MPLS and the open source label switched
router,” in Proc. 23rd ITC, 2011, pp. 8–14.

[82] Indigo—Open Source OpenFlow Switches. [Online]. Available: http://
www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/
ns827/white_paper_c11-481360.pdf

[83] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Openflow switching:
Data plane performance,” in Proc. IEEE ICC, 2010, pp. 1–5.

[84] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for OpenFlow switch evaluation,” in
Proc. 13th Int. Conf. PAM, 2012, pp. 85–95.

[85] T. Ulversoy, “Software defined radio: Challenges and opportunities,”
IEEE Commun. Surveys Tuts., vol. 12, no. 4, pp. 531–550, May 2010.

[86] E. Mannie, Generalized Multi-Protocol Label Switching (GMPLS) Ar-
chitecture, Oct. 2004, RFC 3945. [Online]. Available: http://tools.ietf.
org/rfc/rfc6325.txt

[87] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: A pro-
grammable wireless dataplane,” in Proc. 1st Workshop HotSDN, 2012,
pp. 109–114.

[88] R. Murty, J. Padhye, A. Wolman, and M. Welsh, “Dyson: An architecture
for extensible wireless LANs,” in Proc. USENIXATC, 2010, p. 15.

[89] Joint Program Executive Office (JPEO) for the Joint Tactical Radio
System (JTRS), Software Communications Architecture Specification,
San Diego, CA, USA 2012. [Online]. Available: http://jpeojtrs.mil/sca/
Documents/SCAv4_0/SCA_4.0_20120228_ScaSpecification.pdf

[90] G. Jianxin, Y. Xiaohui, G. Jun, and L. Quan, “The software communica-
tion architecture specification: Evolution and trends,” in Proc. PACIIA,
2009, vol. 2, pp. 341–344.

[91] Wireless Innovation Forum (Previously the SDRForum). [Online]. Avail-
able: http://www.wirelessinnovation.org/

[92] J. Elbers and A. Autenrieth, “From static to software-defined optical
networks,” in Proc. 16th Int. Conf. ONDM, 2012, pp. 1–4.

[93] A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi, “OpenFlow and PCE
Architectures in Wavelength Switched Optical Networks,” in Proc. 16th
Int. Conf. ONDM, 2012, pp. 1–6.

[94] S. Das, G. Parulkar, and N. McKeown, “Simple unified control for packet
and circuit networks,” in Proc. IEEE/LEOSST Meet., 2009, pp. 147–148.

[95] S. Das, G. Parulkar, and N. McKeown, “Unifying packet and circuit
switched networks,” in Proc. IEEE GLOBECOM Workshops, 2009,
pp. 1–6.

[96] S. Das et al., “Packet and circuit network convergence with OpenFlow,”
in Pro. OFC/NFOEC, 2010, pp. 1–3.

[97] S. Das et al., “Application-aware aggregation and traffic engineering
in a converged packet-circuit network,” in Proc. OFC/NFOEC, 2011,
pp. 1–3.

[98] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “OpenFlow-based
wavelength path control in transparent optical networks: A proof-of-
concept demonstration,” in Proc. 37th ECOC, 2011, pp. 1–3.

48 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

[99] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental valida-
tion and performance evaluation of OpenFlow-based wavelength path
control in transparent optical networks,” Opt. Exp., vol. 19, no. 27,
pp. 26 578–26 593, Dec. 2011.

[100] L. Liu et al., “First field trial of an OpenFlow-based unified control
plane for multi-layer multi-granularity optical networks,” presented at
the Optical Fiber Communication Conference, Los Angeles, CA, USA,
2012, Paper PDP5D.2.

[101] L. Liu et al., “First field trial of an OpenFlow-based unified con-
trol plane for multi-layer multi-granularity optical networks,” in Proc.
OFC/NFOEC, 2012, pp. 1–3.

[102] L. Liu, T. Tsuritani, and I. Morita, “Experimental demonstration of
OpenFlow/GMPLS interworking control plane for IP/DWDM multi-
layer optical networks,” in Proc. 14th ICTON, 2012, pp. 1–4.

[103] L. Liu, T. Tsuritani, and I. Morita, “From GMPLS to PCE/GMPLS
to OpenFlow: How much benefit can we get from the technical evo-
lution of control plane in optical networks?” in Proc. 14th ICTON, 2012,
pp. 1–4.

[104] F. Farias, J. Salvatti, E. Cerqueira, and A. Abelem, “A proposal manage-
ment of the legacy network environment using OpenFlow control plane,”
in Proc. IEEE NOMS, 2012, pp. 1143–1150.

[105] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A
retrospective on evolving SDN,” in Proc. 1st Workshop HotSDN, 2012,
pp. 85–90.

[106] B. Raghavan et al., “Software-defined internet architecture: Decoupling
architecture from infrastructure,” in Proc. 11th ACM Workshop Hot
Topics Netw., 2012, pp. 43–48.

[107] V. Gudla et al., “Experimental demonstration of OpenFlow control of
packet and circuit switches,” presented at the Optical Fiber Communica-
tion Conference, San Diego, CA, USA, 2010, Paper OTuG2.

[108] D. Simeonidou, R. Nejabati, and S. Azodolmolky, “Enabling the future
optical Internet with OpenFlow: A paradigm shift in providing intelligent
optical network services,” in Proc. 13th ICTON, 2011, pp. 1–4.

[109] S. Azodolmolky et al., “Integrated OpenFlow-GMPLS control plane: An
overlay model for software defined packet over optical networks,” Opt.
Exp., vol. 19, no. 26, pp. B421–B428, Dec. 2011.

[110] Cisco’s One Platform Kit (onePK). [Online]. Available: http://www.
cisco.com/en/US/prod/iosswrel/onepk.html

[111] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. 1st ACM WREN,
2009, pp. 1–10.

[112] N. Foster et al., “Frenetic: A high-level language for OpenFlow net-
works,” in Proc. Workshop PRESTO, 2010, pp. 6:1–6:6.

[113] N. Foster et al., “Frenetic: A network programming language,”
SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, Sep. 2011.

[114] A. Voellmy and P. Hudak, “Nettle: A language for configuring routing
networks,” in Proc. IFIP TC 2 Working Conf. DSL, 2009, pp. 211–235.

[115] A. Voellmy et al., “Don’t configure the network, program it!
Domain-specific programming languages for network systems,” Defense
Tech. Inf. Center, Fort Belvoir, VA, USA, DTIC Doc. Tech. Rep.,
2010.

[116] A. Voellmy and P. Hudak, “Nettle: Taking the sting out of programming
network routers,” in Proc. 13th Int. Conf. PADL, 2011, pp. 235–249.

[117] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-
level reactive network control,” in Proc. 1st Workshop HotSDN, 2012,
pp. 43–48.

[118] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker, “Express-
ing and enforcing flow-based network security policies,” Univ. Chicago,
Chicago, IL, USA, Tech. Rep, 2008.

[119] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Hierarchical policies for software defined networks,” in Proc. 1st Work-
shop HotSDN, 2012, pp. 37–42.

[120] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” in Proc. 39th
Annu. ACM SIGPLAN-SIGACT Symp. POPL, 2012, pp. 217–230.

[121] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: A
slice abstraction for software-defined networks,” in Proc. 1st Workshop
HotSDN, 2012, pp. 79–84.

[122] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing
software-defined networks,” in Proc. 10th USENIX Conf. NSDI, 2013,
pp. 1–14.

[123] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: Sim-
plifying SDN programming using algorithmic policies,” in Proc. ACM
SIGCOMM Conf., 2013, pp. 87–98.

[124] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load
balancing gone wild,” in Proc. 11th USENIX Conf. Hot-ICE Netw. Serv.,
2011, p. 12.

[125] S. Ghorbani and M. Caesar, “Walk the line: Consistent network updates
with bandwidth guarantees,” in Proc. 1st Workshop HotSDN, 2012,
pp. 67–72.

[126] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM Conf.
Appl., Technol., Archit., Protocols Comput. Commun., 2012,
pp. 323–334.

[127] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software-defined networks: Change you can believe in!” in Proc. 10th
ACM Workshop HotNets-X, 2011, pp. 7:1–7:6.

[128] R. McGeer, “A safe, efficient update protocol for OpenFlow networks,”
in Proc. 1st Workshop HotSDN, 2012, pp. 61–66.

[129] R. Raghavendra, J. Lobo, and K.-W. Lee, “Dynamic graph query primi-
tives for SDN-based cloudnetwork management,” in Proc. 1st Workshop
HotSDN, 2012, pp. 97–102.

[130] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
“Traffic matrix estimation: Existing techniques and new directions,”
ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 4, pp. 161–174,
Oct. 2002.

[131] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic matrix
estimator for OpenFlow networks,” in Passive and Active Measurement.
Berlin, Germany: Springer-Verlag, 2010, pp. 201–210.

[132] A. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead data-
center traffic management using end-host-based elephant detection,” in
Proc. IEEE INFOCOM, 2011, pp. 1629–1637.

[133] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches,” in Proc. 11th USENIX Conf. Hot-
ICE Netw. Serv., 2011, p. 13.

[134] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approxi-
mating the frequency moments,” in Proc. 28th Annu. ACM STOC, 1996,
pp. 20–29.

[135] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data
streams,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1530–1541, Aug. 2008.

[136] A. Kumar, M. Sung, J. J. Xu, and J. Wang, “Data streaming algo-
rithms for efficient and accurate estimation of flow size distribution,”
SIGMETRICS Perform. Eval. Rev., vol. 32, no. 1, pp. 177–188,
Jun. 2004.

[137] A. Kumar, M. Sung, J. J. Xu, and J. Wang, “Data streaming algo-
rithms for efficient and accurate estimation of flow size distribution,” in
Proc. Joint SIGMETRICS Int. Conf. Meas. Model. Comput. Syst., 2004,
pp. 177–188.

[138] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Trans. Netw., vol. 14,
no. 5, pp. 925–937, Oct. 2006.

[139] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
OpenSketch,” in Proc. 10th USENIX Conf. NSDI, 2013, pp. 29–42.

[140] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication compo-
nent for resilient OpenFlow-based networking,” in Proc. IEEE NOMS,
2012, pp. 933–939.

[141] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: State distribution trade-offs in software defined
networks,” in Proc. 1st Workshop HotSDN, 2012, pp. 1–6.

[142] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proc. INM/WREN, 2010, p. 3.

[143] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. 9th USENIX Conf. OSDI, 2010, pp. 1–6.

[144] P. Porras et al., “A security enforcement kernel for OpenFlow networks,”
in Proc. 1st Workshop HotSDN, 2012, pp. 121–126.

[145] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated OpenFlow infrastructures,” in Proc. 3rd ACM
Workshop Assurable Usable Security SafeConfig, 2010, pp. 37–44.

[146] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, “Network con-
figuration in a box: Towards end-to-end verification of network reacha-
bility and security,” in Proc. 17th IEEE ICNP, 2009, pp. 123–132.

[147] P. Perešíni and M. Canini, “Is your OpenFlow application correct?” in
Proc. ACM CoNEXT Student Workshop, 2011, pp. 18:1–18:2.

[148] M. Canini, D. Kostic, J. Rexford, and D. Venzano, “Automating the
testing of OpenFlow applications,” presented at the 1st International
Workshop Rigorous Protocol Engineering, Portland, OR, USA, 2011.

[149] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, “A nice
way to test OpenFlow applications,” in Proc. 9th USENIX Conf. NSDI,
2012, p. 10.

[150] M. Kuźniar, M. Canini, and D. Kostić, “OFTEN testing OpenFlow net-
works,” in Proc. 1st EWSDN, Oct. 2012, pp. 54–60.

[151] H. Mai et al., “Debugging the data plane with anteater,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 290–301,
Aug. 2011.

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 49

[152] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow: Ver-
ifying network-wide invariants in real time,” in Proc. 1st Workshops
HotSDN, 2012, pp. 49–54, New York, NY, USA.

[153] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” SIGCOMM Comput.
Commun. Rev., vol. 42, no. 4, pp. 467–472, Sep. 2012.

[154] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying network-wide invariants in real time,” in Proc. 10th USENIX
Conf. NSDI, 2013, pp. 15–28.

[155] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proc. 1st Workshop HotSDN, 2012, pp. 7–12.

[156] Z. Cai, “Maestro: Achieving scalability and coordination in centralized
network control plane,” Ph.D. dissertation, Rice Univ., Houston, TX,
USA, 2011.

[157] Z. Cai, A. L. Cox, and T. E. Ng, “Maestro: A system for scalable
OpenFlow control,” Rice Univ., Houston, TX, USA, Tech. Rep. TR
10-08, Dec. 2010.

[158] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Proc. 2nd
USENIX Conf. Hot-ICE Netw. Serv., 2012, p. 10.

[159] A. Voellmy and J. Wang, “Scalable software defined network con-
trollers,” in Proc. ACM SIGCOMM Conf. Appl., Technol., Archit.,
Protocols Comput. Commun., 2012, pp. 289–290.

[160] A. Voellmy, B. Ford, P. Hudak, and Y. R. Yang, “Scaling software-
defined network controllers on multicore servers,” Comput. Sci., Yale
Univ., New Haven, CT, USA, Yale CS TR 1468, 2012.

[161] Beacon. [Online]. Available: https://openflow.stanford.edu/display/
Beacon/Home

[162] M. Jarschel et al., “Modeling and performance evaluation of an
OpenFlow architecture,” in Proc. 23rd ITCP, 2011, pp. 1–7.

[163] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-
based networking with DIFANE,” in Proc. ACM SIGCOMM, 2010,
pp. 351–362.

[164] A. R. Curtis et al., “DevoFlow: Scaling flow management for high-
performance networks,” SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. 254–265, Aug. 2011.

[165] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proc. 1st Workshop
HotSDN, 2012, pp. 19–24.

[166] Cbench (Controller Benchmarker). [Online]. Available: http://www.
openflow.org/wk/index.php/Oflops

[167] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A flexible
OpenFlow-controller benchmark,” in Proc. EWSDN, 2012, pp. 48–53.

[168] R. Alimi, R. Penno, and Y. Yang, ALTO Protocol, Feb. 2013,
Internet Draft. [Online]. Available: http://tools.ietf.org/id/
draft-ietf-alto-protocol-14.txt

[169] V. Gurbani, M. Scharf, T. Lakshman, V. Hilt, and E. Marocco, “Abstract-
ing network state in Software Defined Networks (SDN) for rendezvous
services,” in Proc. IEEE ICC, 2012, pp. 6627–6632.

[170] E. Kissel, G. Fernandes, M. Jaffee, M. Swany, and M. Zhang, “Driving
software defined networks with XSP,” in Proc. Workshop SDN/IEEE Int.
Conf. Commun., 2012, pp. 6616–6621.

[171] E. Keller and J. Rexford, “The “Platform as a service” model for net-
working,” in Proc. INM/WREN, 2010, p. 4.

[172] N. Handigol et al., “Plug-n-Serve: Load-balancing web traffic us-
ing OpenFlow,” in Proc. ACM SIGCOMM Demo, Barcelona, Spain,
2009. [Online]. Available: http://conferences.sigcomm.org/sigcomm/
2009/demos/sigcomm-pd-2009-final26.pdf

[173] K.-K. Yap et al., “Blueprint for introducing innovation into wireless
mobile networks,” in Proc. 2nd ACM SIGCOMM Workshop VISA, 2010,
pp. 25–32.

[174] K.-K. Yap et al., “OpenRoads: Empowering research in mobile net-
works,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 125–126,
Jan. 2010.

[175] K. Yap, S. Katti, G. Parulkar, and N. McKeown, “Delivering capacity
for the mobile internet by stitching together networks,” in Proc. ACM
Workshop Wireless Students, 2010, pp. 41–44.

[176] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise WLANS with Odin,” in Proc. 1st
Workshop HotSDN, 2012, pp. 115–120.

[177] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind:
Enabling record and replay troubleshooting for networks,” in Proc.
USENIX Annu. Tech. Conf., 2011, p. 29.

[178] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “OpenFlow random
host mutation: Transparent moving target defense using soft-
ware defined networking,” in Proc. 1st Workshop HotSDN, 2012,
pp. 127–132.

[179] M. Mendonca, S. Seetharaman, and K. Obraczka, “A flexible
in-network IP anonymization service,” in Proc. IEEE ICC, 2012,
pp. 6651–6656.

[180] J. Fu, P. Sjödin, and G. Karlsson, “Intra-domain routing convergence
with centralized control,” Comput. Netw., vol. 53, no. 18, pp. 2985–2996,
Dec. 2009.

[181] K. K. Lakshminarayanan, I. Stoica, S. Shenker, and J. Rexford, “Routing
as a service,” EECS Dept., Univ. California, Berkeley, CA, USA, Tech.
Rep. UCB/EECS-2006-19, Feb. 2006.

[182] P. Pisa et al., “OpenFlow and Xen-based virtual network migration,” in
Communications: Wireless in Developing Countries and Networks of the
Future. Berlin, Germany: Springer-Verlag, 2010, pp. 170–181.

[183] M. Koerner and O. Kao, “Multiple service load-balancing with Open-
Flow,” in Proc. 13th IEEE Int. Conf. HPSR, 2012, pp. 210–214.

[184] G. Wang, T. E. Ng, and A. Shaikh, “Programming your network at run-
time for big data applications,” in Proc. 1st Workshop HotSDN, 2012,
pp. 103–108.

[185] Z. Kerravala, “As the value of enterprise networks escalates, so
does the need for configuration management,” Enterprise Comput-
ing & Networking, The Yankee Group Report, Boston, MA, USA,
2004.

[186] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proc. 1st
Workshop HotSDN, 2012, pp. 55–60.

[187] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “En-
abling fast failure recovery in OpenFlow networks,” in Proc. 8th Int.
Workshop DRCN, 2011, pp. 164–171.

[188] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in Proc. 35th IEEE Conf. LCN, 2010,
pp. 408–415.

[189] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network functional-
ity,” in Proc. 1st Workshop HotSDN, 2012, pp. 73–78.

[190] G. Huang, C. Chuah, S. Raza, and S. Seetharaman, “Dynamic
measurement-aware routing in practice,” IEEE Netw., vol. 25, no. 3,
pp. 29–34, May/Jun. 2011.

[191] J. Naous, R. Stutsman, D. Mazieres, N. McKeown, and N. Zeldovich,
“Delegating network security with more information,” in Proc. 1st ACM
WREN, 2009, pp. 19–26.

[192] C. Rigney, A. Rubens, W. Simpson, and S. Willens, Remote Authenti-
cation Dial in User Service (RADIUS), Jun. 2000. [Online]. Available:
http://tools.ietf.org/rfc/rfc2865.txt

[193] Y. Yamasaki, Y. Miyamoto, J. Yamato, H. Goto, and H. Sone, “Flexible
access management system for campus VLAN based on OpenFlow,” in
Proc. IEEE/IPSJ 11th Int. SAINT , 2011, pp. 347–351.

[194] S. Kinoshita, T. Watanabe, J. Yamato, H. Goto, and H. Sone, “Imple-
mentation and evaluation of an OpenFlow-based access control system
for wireless LAN roaming,” in Proc. 36th Annu. COMPSACW, 2012,
pp. 82–87.

[195] A. Ramachandran, Y. Mundada, M. Tariq, and N. Feamster, “Secur-
ing enterprise networks using traffic tainting,” Georgia Inst. Technol.,
Atlanta, GA, USA, Tech. Rep. GTCS-09-15, 2009.

[196] N. Feamster et al., “Decoupling policy from configuration in campus
and enterprise networks,” in Proc. 17th IEEE Workshop LANMAN, 2010,
pp. 1–6.

[197] A. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: Dynamic
access control for enterprise networks,” in Proc. 1st ACM Workshop Res.
Enterprise Netw., 2009, pp. 11–18.

[198] N. Chowdhury and R. Boutaba, “Network virtualization: State of
the art and research challenges,” IEEE Commun. Mag., vol. 47, no. 7,
pp. 20–26, Jul. 2009.

[199] D. Turull, M. Hidell, and P. Sjodin, “Using libNetVirt to control
the virtual network,” in Proc. IEEE Int. Conf. CLOUDNET , 2012,
pp. 148–152.

[200] D. Turull, M. Hidell, and P. Sjodin, “libNetVirt: The network virtualiza-
tion library,” in Proc. IEEE ICC, 2012, pp. 5543–5547.

[201] R. Sherwood et al., “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, OPENFLOW-TR-2009-1, 2009. [On-
line]. Available: http://archive.openflow.org/downloads/technicalreports/
openflow-tr-2009-1-flowvisor.pdf

[202] R. Sherwood et al., “Can the production network be the testbed?” in
Proc. 9th USENIX Conf. OSDI, 2010, pp. 1–6.

[203] R. Sherwood et al., “Carving research slices out of your production
networks with OpenFlow,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 129–130, Jan. 2010.

[204] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown, “Slic-
ing home networks,” in Proc. 2nd ACM SIGCOMM Workshop Home-
Nets, 2011, pp. 1–6.

50 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

[205] A. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, “A survey of green
networking research,” IEEE Commun. Surveys Tuts., vol. 14, no. 1,
pp. 3–20, Dec. 2012.

[206] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester, “Soft-
ware defined networking: Meeting carrier grade requirements,” in Proc.
18th IEEE Workshop LANMAN, 2011, pp. 1–6.

[207] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: A cloud
networking platform for enterprise applications,” in Proc. 2nd ACM
SOCC, 2011, pp. 8:1–8:13.

[208] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying
NOX to the datacenter,” in Proc. HotNets, New York, NY, USA,
2009. [Online]. Available: http://conferences.sigcomm.org/hotnets/
2009/papers/hotnets2009-final103.pdf

[209] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “Scalable rule man-
agement for data centers,” in Proc. 10th USENIX Conf. NSDI, 2013,
pp. 157–170.

[210] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art
and research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18,
May 2010.

[211] Q. Li, J. Huai, J. Li, T. Wo, and M. Wen, “HyperMIP: Hypervisor
controlled mobile IP for virtual machine live migration across networks,”
in Proc. 11th IEEE HASE Symp., 2008, pp. 80–88.

[212] P. Raad et al., “Achieving sub-second downtimes in internet-wide virtual
machine live migrations in LISP networks,” in Proc. IFIP/IEEE Int.
Symp. IM, 2013, pp. 286–293.

[213] M. Coudron, S. Secci, G. Maier, G. Pujolle, and A. Pattavina, “Boosting
cloud communications through a crosslayer multipath protocol architec-
ture,” in Proc. IEEE SDN4FNS, Nov. 2013, pp. 1–8.

[214] OpenDaylight. [Online]. Available: http://www.opendaylight.org/
[215] F. Hao, T. Lakshman, S. Mukherjee, and H. Song, “Enhancing dynamic

cloud-based services using network virtualization,” in Proc. 1st ACM
Workshop Virtualized Infrastruct. Syst. Archit., 2009, pp. 37–44.

[216] B. Boughzala, R. Ben Ali, M. Lemay, Y. Lemieux, and O. Cherkaoui,
“OpenFlow supporting inter-domain virtual machine migration,” in
Proc. 8th Int. Conf. WOCN, 2011, pp. 1–7.

[217] J. Matias, E. Jacob, D. Sanchez, and Y. Demchenko, “An OpenFlow
based network virtualization framework for the cloud,” in Proc. 3rd Int.
Conf. CloudComp Technol. Sci., 2011, pp. 672–678.

[218] V. Mann, A. Vishnoi, K. Kannan, and S. Kalyanaraman, “CrossRoads:
Seamless VM mobility across data centers through software defined
networking,” in Proc. IEEE NOMS, 2012, pp. 88–96.

[219] Y. Pu, Y. Deng, and A. Nakao, “Cloud rack: Enhanced virtual topo-
logy migration approach with open vswitch,” in Proc. ICOIN, 2011,
pp. 160–164.

[220] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, “Live migration of an
entire network (and its hosts),” in Proc. 11th ACM Workshop HotNets-
XI, 2012, pp. 109–114.

[221] H. Qian, X. Huang, and C. Chen, “Swan: End-to-end orchestration for
cloud network and wan,” in Proc. IEEE 2nd Int. Conf. CloudNet, Nov.
2013, pp. 236–242.

[222] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
Mar. 2008.

[223] OpenFlow Switch Consortium. [Online]. Available: http://www.
openflow.org/

[224] D. Mattos et al., “OMNI: OpenFlow management infrastructure,” in
Proc. Int. Conf. NOF, 2011, pp. 52–56.

[225] Trema. [Online]. Available: http://trema.github.com/trema/
[226] Ryu. [Online]. Available: http://osrg.github.com/ryu/
[227] Floodlight. [Online]. Available: http://www.projectfloodlight.org/
[228] N. Gude et al., “NOX: Towards an operating system for networks,”

SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul. 2008.
[229] NOX. [Online]. Available: http://www.noxrepo.org/
[230] K.-K. Yap et al., “The Stanford OpenRoads deployment,” in Proc. 4th

ACM Int. WINTECH, 2009, pp. 59–66.
[231] S. Jain et al., “4: Experience with a globally-deployed software defined

WAN,” in Proc. ACM SIGCOMM Conf., 2013, pp. 3–14.
[232] N. Feamster and J. Rexford, “Getting students’ hands dirty with clean-

slate networking,” in Proc. SIGCOMM Educ. Workshop, Toronto, ON,
Canada, 2011. [Online]. Available: http://edusigcomm.info.ucl.ac.be/
pmwiki/uploads/Workshop2011/20110430002/clean-slate.pdf

[233] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for
introducing disruptive technology into the Internet,” ACM SIGCOMM
Comput. Commun. Rev., vol. 33, no. 1, pp. 59–64, Jan. 2003.

[234] Federated E-Infrastructure Dedicated to European Researchers
Innovating in Computing Network Architectures (FEDERICA).
[Online]. Available: http://www.fp7-federica.eu/

[235] JGN-X (JGN-eXtreme). [Online]. Available: http://www.jgn.nict.go.jp/
english/index.html

[236] Future Internet Testbeds Experimentation Between Brazil and Europe
(FIBRE). [Online]. Available: http://www.fibre-ict.eu/

[237] R. Riggio, T. Rasheed, and F. Granelli, “Empower: A testbed for network
function virtualization research and experimentation,” in Proc. IEEE
SDN4FNS, Nov. 2013, pp. 1–5.

[238] U. Holzle, OpenFlow @ Google, Apr. 2012. [Online]. Available: http://
www.opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf

[239] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid pro-
totyping for software-defined networks,” in Proc. 9th ACM SIGCOMM
Workshop HotNets-IX, 2010, pp. 19:1–19:6.

[240] L. Dong, F. Jia, and W. Wang, “Definition and implementation of logical
function blocks compliant to ForCES specification,” in Proc. 15th ICON,
2007, pp. 531–536.

[241] Z. Wang, T. Tsou, J. Huang, X. Shi, and X. Yin, Analysis of
Comparisons Between OpenFlow and ForCES, Mar. 2012, Inter-
net Draft. [Online]. Available: http://tools.ietf.org/id/draft-wang-forces-
compare-openflow-forces-01.txt

[242] E. Haleplidis, S. Denazis, O. Koufopavlou, J. Salim, and J. Halpern,
“Software-defined networking: Experimenting with the control to for-
warding plane interface,” in Proc. EWSDN, 2012, pp. 91–96.

[243] P. Lin, J. Bi, and H. Hu, “ASIC: An architecture for scalable intra-domain
control in OpenFlow,” in Proc. 7th Int. Conf. Future Internet Technol.,
2012, pp. 21–26.

[244] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, and
M. F. Magalhães, “QuagFlow: Partnering Quagga with OpenFlow,”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 441–442,
Aug. 2010.

[245] M. R. Nascimento et al., “Virtual routers as a service: The RouteFlow
approach leveraging software-defined networks,” in Proc. 6th Int. CFI
Technol., 2011, pp. 34–37.

[246] Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A management method of
IP multicast in overlay networks using openflow,” in Proc. 1st Workshop
HotSDN, 2012, pp. 91–96.

[247] K.-K. Yap, T.-Y. Huang, B. Dodson, M. S. Lam, and N. McKeown, “To-
wards software-friendly networks,” in Proc. 1st ACM APSys Workshop,
2010, pp. 49–54.

[248] T.-Y. Huang et al., “PhoneNet: A phone-to-phone network for
group communication within an administrative domain,” in Proc.
2nd ACM SIGCOMM Workshop Netw., Syst., Appl. MobiHeld, 2010,
pp. 27–32.

[249] B. Koldehofe, F. Dürr, M. A. Tariq, and K. Rothermel, “The power
of software-defined networking: Line-rate content-based routing using
OpenFlow,” in Proc. 7th Workshop MW4NG Internet Comput., 2012,
pp. 3:1–3:6.

[250] D. Kotani, K. Suzuki, and H. Shimonishi, “A design and implementation
of OpenFlow controller handling IP multicast with fast tree switching,”
in Proc. IEE/IPSJ Int. SAINT , 2012, pp. 60–67.

[251] R. Ravindran, X. Liu, A. Chakraborti, X. Zhang, and G. Wang, “Towards
software defined icn based edge-cloud services,” in Proc. IEEE 2nd Int.
Conf. CloudNet, Nov. 2013, pp. 227–235.

[252] T. Li, N. Van Vorst, R. Rong, and J. Liu, “Simulation studies of
OpenFlow-based in-network caching strategies,” in Proc. 15th CNS
Symp., 2012, pp. 12:1–12:7.

[253] G. Stabler, A. Rosen, S. Goasguen, and K.-C. Wang, “Elastic IP and
security groups implementation using OpenFlow,” in Proc. 6th Int.
Workshop VTDC, 2012, pp. 53–60.

[254] J. Rubio-Loyola et al., “Scalable service deployment on software-
defined networks,” IEEE Commun. Mag., vol. 49, no. 12, pp. 84–93,
Dec. 2011.

[255] T. Nadeau and P. Pan, Framework for Software Defined Networks,
Oct. 2011, Internet Draft. [Online]. Available: http://tools.ietf.org/id/
draft-nadeau-sdn-framework-01.txt

[256] ETSI Industry Specification Group for Network Functions Virtualization
(ISG NFV), Network Functions Virtualisation, An Introduction, Bene-
fits, Enablers, Challenges & Call for Action, Oct. 2012, White Paper.
[Online]. Available: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

[257] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostic, “A SOFT
way for openflow switch interoperability testing,” in Proc. 8th Int. Conf.
Emerging Netw. Exp. Technol., 2012, pp. 265–276.

[258] M. Kind, F. Westphal, A. Gladisch, and S. Topp, “SplitArchitecture:
Applying the software defined networking concept to carrier networks,”
in Proc. WTC, 2012, pp. 1–6.

[259] P. Dely, A. Kassler, and N. Bayer, “Openflow for wireless mesh net-
works,” in Proc. 20th ICCCN, 2011, pp. 1–6.

XIA et al.: A SURVEY ON SOFTWARE-DEFINED NETWORKING 51

[260] A. Mahmud and R. Rahmani, “Exploitation of OpenFlow in wireless
sensor networks,” in Proc. ICCSNT , 2011, vol. 1, pp. 594–600.

[261] A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of flow-sensors
in internet of things’ virtualization via OpenFlow,” in Proc. 3rd FTRA
Int. Conf. MUSIC, 2012, pp. 195–200.

Wenfeng Xia received the B.S. degree in com-
puter science from the University of Science and
Technology of China, Hefei, China, in 2011. He
is currently working toward the M.S. degree at
the School of Computer Science and Technology,
USTC. He is currently working as a Project Officer
with the School of Computer Engineering, Nanyang
Technological University, Singapore. His research
interests include computer networks and software
engineering.

Yonggang Wen (S’99–M’08–SM’14) received
the Ph.D. degree in electrical engineering and
computer science (minor in western literature)
from Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA. He has worked in Cisco
to lead product development in content delivery
networks, which had a revenue impact of $3 billion
globally. He has published over 100 papers in top
journals and prestigious conferences. He is currently
an Assistant Professor with the School Of Computer
Engineering, Nanyang Technological University,

Singapore. His research interests include cloud computing, green data centers,
big data analytics, multimedia networks, and mobile computing. His latest
work in multiscreen cloud social televisions has been featured by global media
(more than 1600 news articles from over 29 countries) and recognized with
ASEAN ICT Award 2013 (Gold Medal) and IEEE Globecom 2013 Best
Paper Award. He serves on the editorial boards of IEEE TRANSACTIONS ON

MULTIMEDIA, IEEE ACCESS JOURNAL, and Elsevier Ad Hoc Networks.

Chuan Heng Foh (S’00–M’03–SM’09) received
the M.Sc. degree from Monash University, Clayton,
Vic., Australia, in 1999 and the Ph.D. degree from
the University of Melbourne, Parkville, Vic., in 2002.
After his Ph.D. studies, he spent six months as
a Lecturer with Monash University. From 2002 to
2012, he was an Assistant Professor with Nanyang
Technological University, Singapore. He is currently
a Senior Lecturer with the University of Surrey,
Surrey, U.K. He is the author or coauthor of over
100 refereed papers in international journals and

conferences. His research interests include protocol design and performance
analysis of various computer networks such as wireless local area and mesh
networks, and mobile ad hoc and sensor networks, fifth-generation networks,
and data center networks. He actively participates in IEEE conference and
workshop organization, including the International Workshop on Cloud Com-
puting Systems, Networks, and Applications (CCSNA), where he is a steer-
ing member. He is currently an Associate Editor for IEEE ACCESS, IEEE
WIRELESS COMMUNICATIONS, and International Journal of Communications
Systems. He is also the Chair of the Special Interest Group on Green Data
Center and Cloud Computing under the IEEE Technical Committee on Green
Communications and Computing.

Dusit Niyato received the B.Eng. degree in computer
engineering from King Mongkut’s Institute of Tech-
nology Ladkrabang, Bangkok, Thailand, in 1999 and
the Ph.D. degree in electrical and computer engi-
neering from the University of Manitoba, Winnipeg,
MB, Canada, in 2008. He is currently an Associate
Professor with the School of Computer Engineering,
Nanyang Technological University, Singapore. His
research interests include radio resource manage-
ment in cognitive radio networks and broadband
wireless access networks.

Haiyong Xie received the B.S. degree from the Uni-
versity of Science and Technology of China, Hefei,
China, in 1997 and the M.S. and Ph.D. degrees in
computer science from Yale University, New Haven,
CT, USA in 2005 and 2008, respectively. He is
currently the Executive Director of the Cyberspace
and Data Science Laboratory, Chinese Academy of
Electronics and Information Technology, Beijing,
China, and a Professor with the School of Computer
Science and Technology, University of Science and
Technology of China, Hefei, China. He was the Prin-

cipal Researcher for Huawei U.S. Research Labs and the P4P Working Group
(P4PWG) and Distributed Computing Industry Association. He proposed P4P
(proactive provider participation in P2P) to coordinate network providers and
peer-to-peer applications in a seminal paper published in ACM SIGCOMM
2008, and led and conducted original research and large-scale tests on P4P.
Encouraged by and based upon his research and results on P4P, the P4PWG
was formed to promote academic studies and industrial adoptions of P4P,
which was later adopted by IETF to form a new Application Layer Traffic
Optimization (ALTO) Working Group. His research interest includes content-
centric networking, software-defined networking, future Internet architecture,
and network traffic engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

