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Extreme Power Dispersion Profiles for Nakagami-m
Fading Channels with Maximal-Ratio Diversity

Moe Z. Win, Fellow, IEEE, and Yonggang Wen, Student Member, IEEE

Abstract— Using nonlinear optimization theory, we derive
extreme power dispersion profiles (PDPs) for wireless channels
with maximal-ratio diversity. Specifically, we obtain the best and
worst PDPs that respectively minimize and maximize the symbol
error probability in Nakagami-m fading channels having not
necessarily identical means.

Index Terms— Best and worst power dispersion profiles, di-
versity combining, maximal-ratio diversity, Nakagami-m fading,
nonlinear optimization.

I. INTRODUCTION

THE PERFORMANCE of diversity combining receivers
depends on the relative powers or signal-to-noise ratios

(SNRs) of the diversity branches.1 As such, relative powers
among the diversity branches, referred to as power dispersion
profiles (PDPs), have been used to classify different wireless
environments [1], [2]. Among them, the uniform PDP gives
rise to the best performance for maximal-ratio combining
(MRC) of Rayleigh fading diversity branches [3]. This implies
that the performance of MRC based on a uniform PDP
can serve as a benchmark in Rayleigh fading environments.
Note that performance based on a uniform PDP has been
investigated to study different aspects of wireless systems (for
example, see [4]–[8]).

Here, we consider the Nakagami-m fading channels as these
channels have received considerable attention in the study for
various aspects of wireless systems [9]–[12]. In particular,
it was shown recently that the amplitude distribution of the
resolved multipaths in ultra-wide bandwidth (UWB) indoor
channels can be well-modeled by the Nakagami-m distribution
[13]. The Nakagami-m family of distributions, also known as
the “m-distribution,” contains Rayleigh fading (m = 1) as a
special case; along with cases of fading that are more severe
than Rayleigh (1/2 ≤ m < 1) as well as cases less severe
than Rayleigh (m > 1).

In this letter, we derive the best and worst PDPs that respec-
tively minimize and maximize the symbol error probability
(SEP) for coherent detection of two-dimensional signaling
constellation with polygonal decision boundaries using MRC.
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1Unless otherwise stated, the terms power and SNR will be used inter-

changeably in the following to denote the mean power and the mean SNR
(averaged over the fast fading).

Specifically, we formulate this problem as a simple application
of nonlinear optimization theory and obtain the extreme PDPs
for Nakagami-m fading channels. We obtain a proof that
uniform PDPs give the minimum SEP in a broader class of
Nakagami-m fading channels, spanning from the one-sided
Gaussian distribution (m = 1/2) to the non-fading channel
case (m = ∞). In the context of UWB systems, this implies
that the SEP performance based on a uniform PDP serves as
a lower bound for the performance in various environments.

II. POWER DISPERSION PROFILES

As the performance of wireless systems depends on PDPs,
they have been used to characterize different wireless environ-
ments. The PDP is typically defined as follows:

Definition 1: The power dispersion profile (PDP) of a wire-
less environment e is defined by2

e � (e1, e2, . . . , eN ) ∈ R
N
+ , (1)

where the quantity ek represents the normalized SNR of the
kth diversity branch, i.e., ek � Γk/Γtot with Γk denoting the
SNR of the kth diversity branch and Γtot =

∑N
k=1 Γk is the

total SNR among all diversity branches.3

The SEP for coherent detection of M -ary phase-shift keying
(MPSK) in Nakagami-m fading channels was derived in [14],
[15], and can be written explicitly in terms of PDP and Γtot

as

Pe (e,Γtot) =
1
π

∫ Θ

0

N∏
k=1

[
sin2 θ

sin2 θ + cMPSKΓtotek/m

]m

dθ (2)

where cMPSK = sin2 (π/M), and Θ = π (M − 1) /M .

III. EXTREME POWER DISPERSION PROFILES

In this section, we formulate our problem in the framework
of nonlinear optimization theory and obtain explicit expres-
sions for extreme PDPs for Nakagami-m channels.

A. Best Power Dispersion Profile

Definition 2: The best PDP, denoted by eb, is the value
of e that results in the minimum SEP under the total SNR

2The notation R+ denotes the set of non-negative real numbers.
3Another common characterization is the un-normalized PDP. However the

definitions are consistent up to a scale factor as the performance of diversity
combining receivers depends on the shape of the PDP. In this paper, we will
use the normalized PDP given in (1).
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constraint
∑N

i=1 ek ≤ 1. Mathematically, eb is the solution to
the following nonlinear optimization problem:

min
e

1
π

∫ Θ

0

N∏
k=1

[
sin2 θ

sin2 θ + cMPSKΓtotek/m

]m

dθ

s.t.
N∑

k=1

ek ≤ 1 .

(3)

Theorem 1: The best PDP for Nakagami-m fading channel
with MRC is given by,

eb = (ē, ē, . . . , ē) , (4)

where ē = 1
N , i.e., the best PDP exhibits equal average SNR

among the diversity branches.

Proof: In order to obtain the best PDP for Nakagami-m
fading channels with MRC, we will solve the optimization
problem given by (3). Since the integrand of (3) is non-
negative, minimizing it for each θ ∈ [0,Θ] is equivalent to
minimizing the SEP. Moreover, the contribution of the point
θ = 0 to the integral in (3) is zero since the integrand is finite
at that point. Thus, the point-wise minimization can be relaxed
to the region θ ∈ (0,Θ]. Thus, (3) is equivalent to

min
e

[
N∏

k=1

sin2 θ

sin2 θ + cMPSKΓtotek/m

]m

s.t.
N∑

k=1

ek ≤ 1 ,

(5)

for each θ ∈ (0,Θ].
Note that, for x > 0 and for each m > 0, the function

f (x) = xm is monotonically increasing in x, and therefore
minimizing xm is equivalent to maximizing 1/x. Hence, (3)
is equivalent to

max
e

N∏
k=1

[
1 +

cMPSKΓtot

m sin2 θ
ek

]

s.t.
N∑

k=1

ek ≤ 1 ,

(6)

for each θ ∈ (0,Θ].
Using the arithmetic and geometric mean inequality [16],

[17] with pk = 1
N and xk = 1+ cMPSKΓtot

m sin2 θ
ek for k = 1, 2, . . . , N ,

we have

N∏
k=1

[
1 +

cMPSKΓtot

m sin2 θ
ek

]
≤

[
1 +

cMPSKΓtot

Nm sin2 θ

N∑
k=1

ek

]N

(7)

≤
[
1 +

cMPSKΓtot

Nm sin2 θ

]N

. (8)

The equality in (7) is achieved if and only if

ei = ej for 1 ≤ i, j ≤ N , (9)

and the equality in (8) is achieved if and only if

N∑
k=1

ek = 1 . (10)

Equations (9) and (10) imply that the maximum in equation
(6) is achieved if and only if ei = 1/N for all i = 1, 2, . . . , N .

Therefore, the best PDP is the one where all diversity branches
have equal average SNR, i.e., eb = (ē, ē, . . . , ē), with ē =
1/N .

Under this best PDP, the minimum SEP is achieved and is
given by

Pe,min (Γtot) =
1
π

∫ Θ

0

[
sin2 θ

sin2 θ + cMPSKΓtot/(Nm)

]Nm

dθ .

(11)
Note that (11) is the SEP for N -branch MRC in independent
and identically distributed (i.i.d.) Nakagami-m channel with
total SNR Γtot.

B. Worst Power Dispersion Profile

Definition 3: The worst PDP, denoted by ew, is the value of
e that results in the maximum SEP under total SNR constraint∑N

k=1 ek = 1. Mathematically, ew is the solution to the
following nonlinear optimization problem:

max
e

1
π

∫ Θ

0

N∏
k=1

[
sin2 θ

sin2 θ + cMPSKΓtotek/m

]m

dθ

s.t.
N∑

k=1

ek = 1 .

(12)

Theorem 2: The worst PDP for Nakagami-m fading chan-
nel with MRC is given by

ew = (1, 0, . . . , 0) . (13)

In other words, the worst PDP is a degenerate one with all
the energy concentrated in a single branch, i.e., there is no
diversity.

Proof: Similar to the derivation for the best PDP, it can
be shown that (12) is equivalent to

min
e

N∏
k=1

[
1 +

cMPSKΓtot

m sin2 θ
ek

]

s.t.
N∑

k=1

ek = 1 ,

(14)

for θ ∈ (0,Θ]. Using the polynomial expansion, we have

N∏
k=1

[
1 +

cMPSKΓtot

m sin2 θ
ek

]
= 1+

N∑
k=1

[
cMPSKΓtot

m sin2 θ

]k

Ek(e) , (15)

where Ek(e), the kth elementary symmetric function (ESF) of
e, defined as the sum of all possible products (k at a time) of
the elements of e [16]. Mathematically,

Ek(e) �
∑

S∈Sk

∏
n∈S

en , (16)

where Sk = {S ⊂ ZN : |S| = k} and |S| denotes the
cardinality of the set S.4

4The notation ZN is used to denote ZN � {1, 2, . . . , N}.
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Since e ∈ R
N
+ , each of the ESFs satisfy Ek(e) ≥ 0. Noting

the fact that E1(e) = 1, the equation (15) can be lower
bounded as

N∏
k=1

[
1 +

cMPSKΓtot

m sin2 θ
ek

]
≥ 1 +

[
cMPSKΓtot

m sin2 θ

]
, (17)

where the equality in (17) can be achieved if and only if

N∑
k=2

[
cMPSKΓtot

m sin2 θ

]k

Ek(e) = 0 . (18)

The condition in (18) is satisfied for each θ ∈ (0,Θ] if and
only if the ESFs satisfy

Ek(e) = 0 k = 2, . . . , N. (19)

Without loss of generality, considering the ordered PDP e1 ≥
e2 ≥ · · · ≥ eN ≥ 0, the condition in (19) together with
feasibility condition of the optimization problem in (14) imply
that

e1 = 1 , (20)

ek = 0 k = 2, 3, . . . , N. (21)

Therefore, the worst PDP is the one in which all the SNRs
are concentrated at only one of the branches, and the rest of
the branches have no energy, i.e., the worst PDP is given by
ew = (1, 0, . . . , 0).

This worst PDP gives rise to the maximum SEP which is
given by

Pe,max (Γtot) =
1
π

∫ Θ

0

[
sin2 θ

sin2 θ + cMPSKΓtot/m

]m

dθ. (22)

Note that (22) is the SEP of single-branch reception in
Nakagami-m fading channel (i.e., without diversity).

C. Extensions

Our analysis thus far considers the coherent detection of
MPSK modulation in independent Nakagami-m channels with
non-identical means. We deliberately restrict our analysis to
this case as it captures all of the essential ideas. We now
describe the two immediate extensions of our methodology.
First, Definitions 2 and 3 and Theorems 1 and 2 are valid
for any two dimensional modulation schemes with polygonal
decision regions, whose SEP can be written as a weighted
sum of canonical integrals in the form of (2) with positive
weights [14], [18]. Second, our analysis can be extended
to characterize the effect of channel correlations by using
eigenvalues of the correlation matrix. It was shown in [14]
that SEP in correlated Nakagami-m channels can be written
in terms of the eigenvalues of the correlation matrix. Similar
analysis shows that the best correlation matrix has equal
eigenvalues implying i.i.d. channels as given by Theorem 1.
Similarly, the worst correlation matrix has only one non-zero
eigenvalue, which is positive, implying no diversity as given
by Theorem 2.

IV. CONCLUSIONS

In this paper, we derived the best and worst power disper-
sion profiles for the MRC receiver in Nakagami-m channels.
The results are valid for a large class of two dimensional
modulation schemes. We proved that uniform PDPs give the
minimum SEP in a broader class of Nakagami fading channels.
As expected, our results for the special case of m = 1 agree
with the results of [3] for Rayleigh fading.
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[7] M. Z. Win and Z. A. Kostić, “Virtual path analysis of selective Rake
receiver in dense multipath channels,” IEEE Commun. Lett., vol. 3, pp.
308–310, Nov. 1999.

[8] M. Z. Win, G. Chrisikos, and N. R. Sollenberger, “Performance of
Rake reception in dense multipath channels: implications of spreading
bandwidth and selection diversity order,” IEEE J. Select. Areas Commun.,
vol. 18, pp. 1516–1525, Aug. 2000.

[9] Q. T. Zhang, “Outage probability in cellular mobile radio due to Nak-
agami signal and interferers with arbitrary parameters,” IEEE Trans. Veh.
Technol., vol. 45, pp. 364–372, May 1996.

[10] T. Eng and L. B. Milstein, “Coherent DS-CDMA performance in
Nakagami multipath fading,” IEEE Trans. Commun., vol. 43, pp. 1134–
1143, Feb./Mar./Apr. 1995.

[11] V. A. Aalo, “Performance of maximal-ratio diversity systems in a cor-
related Nakagami-fading environment,” IEEE Trans. Commun., vol. 43,
pp. 2360–2369, Aug. 1995.

[12] P. Lombardo, G. Fedele, and M. M. Rao, “MRC performance for binary
signals in Nakagami fading with general branch correlation,” IEEE Trans.
Commun., vol. 47, pp. 44–52, Jan. 1999.

[13] D. Cassioli, M. Z. Win, and A. F. Molisch, “The ultra -wide bandwidth
indoor channel: from statistical model to simulations,” IEEE J. Select.
Areas Commun., vol. 20, pp. 1247–1257, Aug. 2002.

[14] M. Z. Win, G. Chrisikos, and J. H. Winters, “MRC performance for
M -ary modulation in arbitrarily correlated Nakagami fading channels,”
IEEE Commun. Lett., vol. 4, pp. 301–303, Oct. 2000.

[15] M. K. Simon and M.-S. Alouini, Digital Communication over Fading
Channels: A Unified Approach to Performance Analysis, 1st ed. New
York: John Wiley & Sons, Inc., 2000.

[16] M. Z. Win et al., “On the SNR penalty of MPSK with hybrid selec-
tion/maximal ratio combining over IID Rayleigh fading channels,” IEEE
Trans. Commun., vol. 51, pp. 1012–1023, June 2003.

[17] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed.
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