
 

Abstract—In this paper we investigate the problem of sending 
data blocks containing finite number of packets over two 
independent routing paths in mesh networks. The objective is to 
minimize the average block delay by allocating packets into the 
two routing paths optimally. Previous researchers have shown 
that using more paths can reduce packet delay and the rate-based 
allocation policy is optimal, based on the delay metric solely 
depending on delay mean of each path. In our research, 
generalizing the multi-path routing scheme to accommodate data 
block transport, we first establish an upper bound for the average 
block delay, depending on both delay mean and variance of each 
path, and then solve a non-linear optimization problem to obtain 
the optimal packet allocation policy, which either allocates all the 
packets to the faster path  for blocks of small size or allocate all 
the packets to both paths in proportion to their service rates for 
blocks of large size. Contrary to conventional results, our analysis 
suggests that using additional slower routing path could increase 
the average block delay in some cases. We further characterize 
the whole spectrum of optimal packet allocation policies as a 
function of block sizes, and conclude that the existing rate-based 
allocation policy is a special case for large data block.     

I. INTRODUCTION 
Recently, network designers are facing new challenges to 
provide end-to-end communications with desirable quality of 
service (QoS), mainly due to the proliferation of content 
delivery over Internet [1, 2]. Traditionally, network designers 
have focused on optimizing performance metrics for individual 
packet, such as, the packet delay. Compared to the individual 
packet delay, new performance metrics resulted from novel 
network applications should be sought for better network 
architectures and operations. In particular, because date files 
are separated into blocks with finite number of packets in the 
BitTorrent [1], which contributes roughly 35% of the total 
Internet traffic [2], the data-block delay should be one of the 
key performance metrics for network designers. It follows that 
the central question addressed in this paper  is how to optimize 
network operations based on this emerging performance metric 
(i.e., the data block delay).  
  Technically, the delay performance of content delivery can be 
improved by exploiting multiple connections in mesh 
networks. The multi-path routing scheme [3, 4], where a 
source node allocates its data packets over multiple disjoint 
paths through the network to a destination node, presents 
improved performance compared to the traditional single-path 
routing.  Indeed, it has been considered in various contexts. 

Previously, the problem of two nodes communicating over 
multiple paths has been considered extensively in wireline 
networks [5, 6].  Lately, with advent of wireless networks such 
as the Roof-Net [7], Low-Earth-Orbit satellite network, and 
ad-hoc networks, there is a rising interest in multi-path routing 
research [6-7] for wireless networks. Specifically, the multi-
path routing scheme is sought for various operational benefits, 
for example, traffic balancing, higher aggregate capacity (or 
reduced packet delay) and path diversity for higher reliability. 
Multi-path routing, due to its diverse routing path, becomes an 
efficient means in mitigating the unreliable channels due to 
fading and interference, and thus provides an improved error 
performance as demonstrated in [4]. In [8], the authors 
propose models to analyze and compare single-path and multi-
path routing protocols in terms of overheads, traffic 
distribution and connection throughput in a mobile ad-hoc 
network. In addition, a good packet delay performance can be 
achieved by exploiting the flexibility inherent to multi-path 
routing. For example, in [9], the authors develop a framework 
for optimal rate allocation among multiple routing paths in 
multi-hop wireless networks, where analytical results for 
optimal rate allocation for Poisson arrivals at each node are 
derived. In this research, we address the problem of how to 
best exploit the available multi-paths to reduce the delay of 
sending a data block of finite size, for example, a file block 
(~16KB) in the BitTorrent transaction, over heterogeneous 
mesh networks. 

In this research, we start with the two-connected case, where 
the source node and the destination node are connected by two 
disjointed routing paths. Practically, two-connected source-
destination pairs are ubiquitous in current network 
infrastructures. One example is the commercial handset that 
can talk to both Wifi network and Cellular network [10], 
which route the packets through different infrastructures. 
Another example is the bandwidth sharing scheme for two 
residential neighbors, developed by Mushroom Networks [11] 
and WiBoost Inc [12].  Although this is a limited case, our 
investigation reveals deep insights to understanding data block 
delivery over multiple-connected source-destination pairs, as 
illustrated later. 

In particular, we consider the problem of minimizing the 
average delay of sending a data block consisting of n packets 
through two disjointed paths in heterogeneous mesh networks.  
For each path available for transmission, the time that takes for 
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each packet to traverse the path and reach its destination is 
modeled as an independent random variable with some known 
distribution (e.g., the exponential distribution). The data-block 
delay is then defined as the time interval from the transmission 
of the first packet to the time that all of the n packets are 
received on the destination side.  Our objective is to identify 
the optimal number of packets to be allocated to each path so 
as to minimize the average data-block delay. 

The results obtained in this research complement and 
generalize conventional results on the multi-path routing 
scheme. For the extreme case of infinite number of packets, 
previous researchers have shown that using more paths can 
reduce individual packet delay and the rate-based allocation 
policy [9, 13] is optimal, based solely on delay mean of each 
path. In our research, we generalize the multi-path routing 
scheme to accommodate data blocks of finite size and focus on 
the data-block delay. Under the assumption of exponential 
packet delay for each path, we first establish an upper bound 
for the average block delay, contributed by both the delay 
mean and the delay variance of each path. In addition, we 
solve a non-linear optimization problem to obtain an optimal 
packet allocation policy, which either allocates all the packets 
to the faster path for data blocks of small size or allocate all 
the packets to both paths in proportion to their service rates for 
data blocks of large size. Contrary to conventional results, our 
analysis suggests that using additional slower routing path 
could increase the average data-block delay in some cases, 
resulting from an empty queue phenomenon where the finished 
path has to wait for the other unfinished path. We further 
characterize the whole spectrum of optimal packet allocation 
policies in regarding to different block sizes, and conclude that 
the existing rate-based allocation policy [9, 13] is a special 
case for large data block.  

This paper is organized as follows. In Section II, the 
network model is introduced for the packet allocation problem 
over the two-connected source-destination pair. In Section III, 
the lower and upper bounds on the average data-block delay 
are established. In Section IV, we solve the packet allocation 
problem for the two-connected source-destination pair and 
characterize the whole spectrum of optimal packet allocation 
policies in regarding to different block sizes. Section V 
concludes this paper. 

II. DATA BLOCK TRANSPORT OVER TWO-CONNECTED MESH 
NETWORKS  

A. Network Delay Model 
  We model each routing path as an FIFO (first-input-first-

output) queue. The service time of each FIFO queue can be 
modeled as a random variable with a generalized distribution. 
Following the widely adopted exponential delay model in 
network research community, we assume that the packet delay 
along routing path i  is modeled as an exponential random 
variable with rate of iλ , 1,2i = . In addition, we assume that 
delays experienced by different packets on the same routing 
path are identically and independently distributed, and delays 
experienced by different packets on different routing paths are 
independent. Although it is a limited case to assume an 

exponential delay distribution, it provides deep insights in here 
understanding of more practical delay distributions and 
suggests useful operating rules for practical networks. 

We also assume that the source node has no access to 
instant channel state information, but the long-term average 
channel statistics, for example, the service rate vector 

( )1 2,λ λ=λ , are available to the source node. In practical 
networks, the real-time channel state information can be too 
expensive for the source node to acquire; or in some cases 
even unavailable to the source node in a timely fashion due to 
physical constraints such as long round-trip delay in satellite 
networks. 

B. Finite-Size Data Block Transport over Two-Connected 
Source-Destination Pairs 
For a heterogeneous mesh network, a data block containing 

n  packets of equal length, is to be transported between a two-
connected source-destination pair. 

The inefficiency of the finite-size data block transport over 
two-connected source-destination pairs results from an empty 
queue phenomenon, that is, one path could have finished its 
own packets and be waiting for the other path to finish its own 
packets. This happens with a non-zero probability because 
there are not always packets to transport. The empty queue 
situation means a waste of network resource and thus results in 
a prolonged block delay. Two alternative strategies can 
combat the empty queue phenomenon and improve the delay 
performance, as illustrated next.  

One approach is to design optimal packet allocation policies 
to minimize the occurrence frequency of an empty queue on 
either path. For the extreme case of infinite number of packets 
per block, previous researchers have shown that the rate-based 
allocation policy [9, 13-14] is optimal. We would like to 
generalize the optimal packet allocation polices to the whole 
spectrum of different block sizes.   

The other approach is based on an inter-packet encoding 
technique to fill the empty queue with redundant packets. At 
the source node, the set of n  original packets are encoded into 
a set of l  packets via some erasure channel codes such as the 
Digital Fountain code [15] to add some redundancy (i.e., 
l n≥ ). The coded packets are then allocated to the two 
disjointed paths based on their service rates. At the destination 
node, the original n  data packets can be decoded reliably after 
receiving more than n  packets. The block delay improvement 
comes from the fact that the destination can decode the 
original data block without waiting for all the packets, which 
could arrive much later due to the delay variance. However, 
injecting redundant packets into the network would increase 
the network congestion level and thus result in a prolonged 
packet delay. This increase packet delay will mitigate the 
benefit of redundancy packets. It follows that the trade-off 
between the average block delay and the code rate 
(i.e., R n l= ) should be characterized.  

Due to the limited space in this paper, we focus on 
characterizing the minimum-delay packet allocation policy 
without coding, and will present the inter-packet coding 
approach in a sequel paper. 
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III. LOWER AND UPPER BOUNDS ON AVERAGE BLOCK DELAY  
In this section, lower and upper bounds on the average 

block delay are developed for any fixed packet allocation 
policy over two disjoint routing paths.  

Without loss of generality, we assume the fixed packet 
allocation policy with x  packets allocated to path 1 of service 
rate 1λ  and y  packets for path 2 of service rate 2λ . We denote 

1D   and 2D  as the delays of transmitting all the allocated 
packets on path 1 and 2, respectively. The data-block delay is 
then defined as the total time for all the x y+  packets to arrive 
at the destination, i.e., 

{ }1 2max ,T D D= , (1) 
where 1D  and  2D  are two Erlang random variables of order 
x  and y ,  respectively. 

First, the upper bound can be derived through an ideal 
scenario. If the source node knows queue states of the two 
routing paths, it can allocate a packet to a routing path 
whenever the routing path has finished serving the previous 
one. Under such an allocation policy, the average block delay 
can be derived as 

( )1 2
LBT n λ λ= + ,  (2) 

which is a lower bound on the minimum average block delay 
with or without coding. Notice that this lower bound can be 
achieved with a simple inter-packet code. If we encode the 
original n  packets into 2n  data packets (i.e., the code rate 

1 2R = ) and allocate n  packets along each routing path, the 
average block delay is equal to the lower bound.  

Second, using the Chernoff bound (omitted due to limited 
space), we can derive an upper bound on the average block 
delay for the destination to receive all the packets as  

[ ] 2 2
1 2 1 2

max , 2 UBx y x yE T Tπ
λ λ λ λ

  
≤ + +       

,  (3) 

where 1x λ  and 2y λ  are average delays for sending x  
packets over path 1 and y  packets over path 2, respectively; 

and 2
1x λ  and 2

2y λ  are delay variances of sending x  
packets over path 1 and y  packets over path 2, respectively. It 
suggests that the delay upper bound is equal to the sum of the 
maximum of the delay mean along each path and the delay 
standard deviation bound timed by a constant. 

In Fig. 1, we plot the lower bound (2) and the upper bound 
(3) of the average block delay, compared with the simulated 
average block delay. We observe that the shape of the upper 
bound is similar to the shape of the simulated average block 
delay. The contours of the upper bound and the simulated 
average delay in Fig. 1 also verify the curvature similarity 
between them. This suggests that the delay upper bound can be 
used to investigate the optimal packet allocation policy for the 
two-connected source-destination pair, and the resulted 
optimal policies would be close to the one obtained by using 
the exact average block delay, which is hard to derive. 

IV. OPTIMAL PACKET ALLOCATION POLICIES  

A. Minimum-Delay Packet Allocation Policies 
In this subsection, we characterize the optimal policy of 

allocating any data block of finite size to two disjoint paths via 
a non-linear programming approach.  

Using the delay upper bound (3) as the cost metric, we can 
identify the optimal packet allocation policy by solving the 
optimization problem, 

1 2 1 2

22min    max ,

.        

yx y x

s t x y n

ππ
λ λ λ λ

 
+ + 

 
+ =

. (4) 

In the following, we first assume that  1 2λ λ≥  and all the 
results can be easily modified for the case of 1 2λ λ≤ . Under 
such a simplified assumption, we define two allocation policies 
as follows: 

Proportional allocation policy (PA): each path is allocated 
with a number of packets in proportion to its service rate, i.e.,  

Fig.2. Illustration of the optimal packet allocation policies for 100 
packets and different service rates.  
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( ) 1 2

1 2 1 2

, ,x y n nλ λ
λ λ λ λ

∗ ∗  
=  + + 

.  (5) 

Dominant allocation policy (DA): all the packets is 
allocated to the path with the dominant service rate,  
( ) ( ), ,0x y n∗ ∗ = .  (6) 

Solving the nonlinear optimization problem (4) in Appendix 
A, we obtain the following theorem for the optimal packet 
allocation policy. 
Theorem 1 To minimize the average delay of sending an 
uncoded data block of n  packets between two disjointed paths 
with service rates of 1 2λ λ≥ , the optimal allocation policy is 
either the proportional allocation policy (5) or the dominant 
allocation policy (6).   

As a sanity check, we plot the average block delay versus 
the number of packets allocated to path 1 for the case of 100 
packets and various settings of service rates in Fig. 2. We 
observe that the optimal packet allocation policy is either the 
proportional allocation policy or the dominant allocation 
policy.  

Theorem 1 has several important implications. First, it 
suggests that complexity of the optimal packet allocation 
problem can be reduced significantly. Since the optimal packet 
allocation policy can be identified by comparing the two 
candidate policies, the complexity to identify the optimal 
packet allocation policy is only ( )1O . On the other hand, if we 
apply the brute-force searching algorithm by comparing all the 

1n +  candidate policies as in Fig. 2, the complexity is 
( )logO n n . Second, it also suggests that the rate-based 

allocation policy [9, 13-14] is a special case of our minimum-
delay packet allocation solution for data blocks of large size. 
As to be shown in next sub-section, the optimal packet 
allocation policy evolves from the dominant allocation policy 
when n  is small and turns into the proportional allocation 
policy when n  is large.  

B. Characterization of Optimal Packet Allocation Policies 
In this sub-section, we characterize the optimality conditions 

for both candidate packet allocation policies, suggested in 
Theorem 1. This investigation discloses the whole spectrum of 
optimal allocation policies as a function of data block size. 

First, as shown in Appendix A, the dominant allocation 
policy (6) is optimal if the following condition is satisfied,  

2 2
11 2

1 1
2 2 1

n n nπ π
λλ λα α

− ≥
−

, (7) 

where ( )1 1 2α λ λ λ= + .  Using the fact that 1 2λ λ≥ , we can 
bound the left hand side of (7) as  

2 2
2 11 2

1 1
2 2 1

n n n nπ π π π
λ λλ λα α

− ≥ −
−

.  (8) 

To satisfy the condition of (7), it is sufficient to have 

2 1 1

n n nπ π
λ λ λ

− ≥ ,  (9) 

which suggests that 

1 2 1nλ λ π≥ + .  (10) 
When the number of packets n  is large enough, (10) can be 
approximated as 

( )2
1 2n π λ λ≤ ,  (11) 

which indicates that, when the number of packets in the data 
block is smaller than the threshold of 2 2

1 2πλ λ , we should 
assign all the packet to the path with the higher service rate. 

The optimality condition of the dominant allocation policy 
can be understood intuitively as follows. Using the O-notation, 
we can re-arrange (11) as  

( )2 2
1 21n Oλ λ= ,  (12) 

where 2
21 λ  is the delay variance of allocating one packet to 

path 2 with slower service rate and 2
1n λ  is the delay variance 

of assigning all the packets to path 1 with higher service rate. 
It suggests that, when the delay variance of assigning one 
packet to the slower path is comparable to or larger than the 
delay variance of assignment all the packets to the faster path, 
it is optimal to assign all the packets to the faster path. 
Accordingly, the intuition behind the dominant allocation 
policy is to avoid the empty queue situation where all the 
packets on the faster path have arrived but the destination has 
to wait for the packets from the slower path, which could 
arrive much later due to its large delay variance.   

Second, the optimality condition for the proportional 
allocation policy can be characterized by comparing the 
performance of the two candidate policies. On one hand, if we 
apply the proportional allocation policy, the average block 
delay is bounded above by 

( ) ( )1 2 1 1 2 2 1 2

2 2UB
PA

n n nT π π
λ λ λ λ λ λ λ λ

= + +
+ + +

.  (13) 

On the other hand, if we apply the dominant allocation policy, 
the average block delay is bounded above by  

2
1 1

2UB
DA

n nT π
λ λ

= + .  (14) 

Denoting 1 2c λ λ= ( 1c ≥  by assumption), the delay 
difference between these two policies can be bounded from 
below as  

1

2
11

UB UB
DA PA

n nT T c
cc

π
λ

 
− ≥ −  ++  

. (15) 

Specifically, the assumption of 31 4c n π≤ ≤  can make the 

Fig. 3. The whole spectrum of the optimal packet allocation policy is 
plot as a function of block size. As the block size increases, the optimal 
packet allocation policy evolves from the dominant allocation policy to 
the proportional allocation policy. 
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right hand side of (15) positive, indicating that the 
proportional allocation policy outperforms the dominant 
allocation policy. It suggests that when the number of packets 
in the data block satisfies  

( )3
1 24n π λ λ≥  , (16) 

the proportional allocation policy is the optimal.  
Combining (11) and (16), we conclude the following rules 

of thumb to decide the optimal packet allocation policy for the 
two-connected source-destination pair with 1 2λ λ≥ : 

1)When 2 2
1 2n π λ λ≤ , the optimal policy is the dominant 

allocation policy which allocates  all the packets to path 1; 
2)When 3 3

1 24n π λ λ≥ , the optimal policy is the 
proportional allocation policy which assigns all the packets 
to both paths according to their service rates; 
3)When 2 2 3 3

1 2 1 24nπ λ λ π λ λ< < , the optimal policy can be 
identified by comparing (13) with (14).  
Practically, this set of rules of thumb can be considered as 

the set of sufficient optimality conditions for optimal packet 
allocation policies. As illustrated in Fig. 3, for a given ratio of 

1 2λ λ , the optimal allocation policy evolves from the 
dominant allocation policy to the proportional allocation 
policy as the number of packets in a data block increases. 
When 2 2

1 2n π λ λ≤ , the dominant allocation policy prevails; 
when 3 3

1 24n π λ λ≥ , the proportional allocation policy 
outperforms; otherwise, the optimal allocation policy is 
determined by comparing (13) and (14).  

V. CONCLUSION 
In this paper we considered the problem of minimizing the 

average delay of sending a data block of fixed size through any 
two-connected source-destination pair in heterogeneous mesh 
networks.   

Previous research suggested that sending packets over two 
disjoint routing paths results in a smaller packet delay than the 
single path routing approach due to the utilization of more 
network resources. Generalizing the multi-path routing scheme 
to accommodate data block transport, we observed that the 
empty queue phenomenon, where the finish path has to wait 
for the unfinished path, is the critical issue in the optimal 
design. We first established that the average data-block delay 
takes contributions from the delay mean and the delay variance 
of each path, and then identified the minimum-delay packet 
allocation policy as a result of balancing the two components 
of delay contributions. On one hand, when the number of 
packets n in a data block is larger than a threshold, which 
depends on the ratio of two service rates, the optimal 
allocation policy is to assign all packets to both paths in 
proportion their service rates. On the other hand, when the 
number of packets n in a data block is less than a threshold 
such that the delay variance for one packet through the slower 
path is comparable to that for all the packets through the faster 
path, the optimal allocation policy is to assign all packets to 
the path with higher service rate. We also established the 
whole spectrum of optimal packet allocation policies as a 
function of the block size and concluded that the previous rate-

based packet allocation policy as a special case of the general 
two-path transmission packet allocation problem for large 
block size.  

In addition, we derived a lower bound on the minimum 
average data-block delay. This lower bound can be achieved 
by sending n coded packets along each routing path (i.e., total 
2n  coded packets) such that the destination can decode the 
original n  packets as long as it receives n  coded data packets. 
This simple observation motivates us to exploit the inter-
packet coding strategy and identify the optimal coding strategy 
to minimize the average data block delay in a sequel paper.  

APPENDIX 

A. Proof of Theorem 1 
The optimal packet allocation policy can be obtained by 

solving the following nonlinear optimization problem, 

1 2 1 2

22min    max ,

.        

yx y x

s t x y n

ππ
λ λ λ λ

 
+ + 

 
+ =

. (A.1) 

Alternatively, the optimization problem can be made 
simpler by the following transformation. If we denote x nα= , 
0 1α≤ ≤ , we must have ( )1y nα= − . It follows that the 
optimization problem (A.1) can be rewritten as 

( ) ( ) ( )
0 1

1 2 1 2

1
min   max , 1 2n nT n

α

ααα α α π
λ λ λ λ≤ ≤

 −   = − + +      
. (A.2) 

For the special case of 1 2λ λ= , the optimum is 1 2α ∗ =  by 
symmetry, which is a special case of  the proportional 
allocation policy. In the following, we assume that 1 2λ λ> . 
We observe that the objective function in (A.2) can be 
decomposed into two parts. The first term is denoted as 

Fig. 4. An illustration of the piece-wise linear V shape of function 
( )1T α  and the concavity of function ( )2T α with 1 10λ = , 2 5λ =  

and 100n = . 
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( ) ( )1
1 2

max , 1n nT α α α
λ λ

 
= − 

 
,  (A.3) 

and the sum of the second and third term is denoted as 

( ) ( )
2

1 2

2 12 nnT
π απ αα

λ λ
−

= + . (A.4) 

To solve the optimization problem (A.1), we first 
characterize the properties of (A.3) and (A.4).  
 First, it can be verified that ( )1T α  has a V shape within its 

support of [ ]0,1 , and a global minimum at ( )1 1 2α λ λ λ∗ = + . 

Within the range of ,1α ∗   , ( )1T α  increases linearly with 

slope of 1n λ  as α  increases; at the same time, within the 

range of 0,α ∗   , ( )1T α  increases linearly with slope of 2n λ  

as α  decreases. As an illustration, Fig. 4 plots function ( )1T α  
with 1 10λ = , 2 5λ =  and 100n = . 

Second, the first derivative of ( )2T α  is given by 

( )'
2 2 2

1 2

1 1
2 2 1

n nT π πα
λ λα α

= −
−

, (A.5) 

and its second derivative is given by 

( )
( )

"
2 2 23 3

1 2

1 1
8 8 1

n nT π πα
λ λα α

= − −
−

. (A.6) 

We observe that ( )"
2T α  must be negative since both terms in 

(A.6) have negative signs. It follows that ( )2T α  is a strictly 

concave function in the range of [ ]0,1 , as shown in Fig. 4. 

 At the point of ( )1 1 2α λ λ λ∗ = + , it can be verified that 

( )'
2 0T α ∗ < . It follows that, within the neighborhood of α ∗ , 

( )2T α  is a strictly decreasing function. Moreover, within the 

range of ( ,1α ∗  , ( )2T α  is a strictly decreasing function as α  
increases and the speed of decreasing increases due to the 
concave property. At the same time, within the range of 

),α δ α∗ ∗ −  for some small 0δ > , ( )2T α  increases as α  
decreases.  

Using the properties of ( )1T α  and ( )2T α , we can make the 
following observations. On one hand, if  

( )'
2

1

nT α
λ

∗ ≥ ,  (A.7) 

( )2T α  decreases faster than ( )1T α  increases as α  increases 

in the range of ( ,1α ∗  . In this case, ( ) ( ) ( )1 2T T Tα α α= +  

decreases as α  increases and is minimized at † 1α = . 
Therefore, the optimal allocation policy is to allocate all the 
packets to path 1, i.e., ( ) ( ), ,0x y n∗ ∗ = . On the other hand, if 

( )'
2

1

nT α
λ

∗ < ,  (A.8) 

( )2T α  decreases slower than ( )1T α  increases as α  increases 

in the range of ( ,1α ∗  . It follows that α ∗  is a local minimum 
of the block delay upper bound. In this case, as shown in Fig.4, 
another possible local minimum is † 1α = . Therefore, the set 
of local minimums are { }†,α α∗ , which are possible candidates 
for the global minimum. 

In summary, only two solution candidates of optimal 
allocation policies exist for the optimization problem (A.1). 
One is the service-rate proportional allocation policy, i.e., 

( ) 1 2

1 2 1 2

, ,n nx y λ λ
λ λ λ λ

∗ ∗  
=  + + 

.  (A.9) 

The other is the dominant assignment policy which allocates 
all the packets to the path with higher service rate, i.e., 
( ) ( ), ,0x y n∗ ∗ = .  (A.10) 
To identify the optimal assignment policy, one can simply 
compare the delay bounds for both policies and take the one 
with lower average block delay bound as the optimal policy.  
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