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Abstract—This paper investigates the fault-diagnosis prob-
lem for all-optical wavelength-division-multiplexing (WDM) net-
works. A family of failure-localization algorithms that exploit
the unique properties of all-optical networks is proposed. Optical
probe signals are sequentially sent along a set of designed light-
paths, and the network state is inferred from the result of this set
of end-to-end measurements. The design objective is to minimize
the diagnosis effort (e.g., the average number of probes) to locate
failures. By establishing a mathematical equivalence between the
fault-diagnosis problem and the source-coding problem in infor-
mation theory, we obtain a tight lower bound for the minimum
average number of probes per edge (of the network modeled as a
graph) as Hb(p), the entropy of the individual edges. Using the
rich set of results from coding theory to solve the fault-diagnosis
problem, it is shown that the “2m -splitting” probing scheme is
optimum for the special case of single failure over a linear network.
A class of near-optimum run-length probing schemes that have low
computation complexity is then developed. Analytical and numer-
ical results suggest that the average number of probes per edge
for the run-length probing scheme is uniformly bounded above
by (1 + ε)Hb(p) and converges to the entropy lower bound as
the failure probability decreases. From an information-theoretic
perspective, it is shown that the run-length probing scheme out-
performs the greedy probing scheme of the same computational
complexity. The investigation reveals a guideline for efficient
fault-diagnosis schemes: Each probe should provide approxi-
mately 1 bit of information, and the total number of probes required
is approximately equal to the entropy of the state of the network.
This result provides an insightful guideline to reduce the overhead
cost of fault management for all-optical networks and can further
the understanding of the relationship between information en-
tropy and network management. Several practical issues are also
addressed in the implementation of run-length probing schemes
over all-optical WDM networks.

Index Terms—All-optical networks, fault diagnosis, fault man-
agement, network management, run-length code.

I. INTRODUCTION

A LL-OPTICAL networks [1], [2], where data traverses
along lightpaths without any optical-to-electrical con-

version, will be increasingly prevalent in future broadband
networks due to its inherent large transmission bandwidth,
lower cost, and transparency to different signal formats and
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communication protocols. However, similar to other networks,
all-optical networks are also vulnerable to failures [3], such
as fiber cuts and transmitter/receiver breakdowns. Moreover,
there are new types of failures that are unique to all-optical
networks—failures related to subtle changes in signal power,
optical signal-to-noise ratio, crosstalk, Kerr effects, or other
nonlinear effects. These failures can result in the disruption
of communication and can be difficult to detect, localize, and
repair. Hence, when parts of a network are malfunctioning,
it is critical to locate and identify these failures as soon as
possible. At the same time, the cost to detect and locate fail-
ures must be small to keep the network cost low. This paper
proposes a family of efficient fault-diagnosis algorithms that
exploit the unique property of all-optical wavelength-division-
multiplexing (WDM) networks, where optical signals are not
usually detected at intermediate nodes along lightpaths (mostly
for cost reasons).

According to the scale of their effect, failures in all-optical
WDM networks can be classified into two categories. One
category is the wavelength-level failure, which impacts the
quality of transmission of each individual lightpath, e.g.,
transmitter/receiver failures in the case of one dedicated
transmitter/receiver per wavelength, optical-filter failures, and
individual-channel failures of a frequency-selective switch.
The other category is the fiber-level failure, which affects
all the lightpaths on an individual fiber, for example, fiber
cuts, erbium-doped fiber amplifiers (EDFAs) breakdowns, and
transmitter/receiver failures in the case of only one tunable
transmitter/receiver per fiber. From a graph-theory perspective,
we can attribute both categories to edge failures in a net-
work (graph) topology. In this paper, we focus on the ON/OFF

edge failure, which is modeled by a binary-value function of
value 0 if the required quality of transmission is met and of
value 1 otherwise. Besides, all the failures that do not belong
to the same risk group are considered independent. In real
life, there may be failure correlation among risk groups due
to physical proximity or accessibility from the same malicious
attack entry point. In those cases, the results in this paper
can still provide very useful upper and lower bounds on the
diagnostic effort required to localize the failures.

Since the fault-diagnosis problem [4] was first proposed in
1967, it has been investigated extensively in electrical networks
under a system-diagnosis context [5]–[7]. In this context, most
current research is focused on a “single-hop”-test model, i.e.,
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signals are transmitted between adjacent nodes to determine
whether failure occurs on the edge connecting them. The result
of each test can be represented as one bit of diagnosis informa-
tion: 1 or 0, corresponding to “failure” or “no failure.” Indeed,
for a Synchronous Optical Network (SONET), each SONET
link (single hop) checks the health of the link using parity
checks within the SONET receiving chips. However, in all-
optical networks, this single-hop-test assumption will usually
not be applicable due to the unique property that optical signals
are not typically detected at every (optically switched) node
along the lightpath.

For SONET networks, the network-management system
employs mechanisms such as BER measurement, optical trace,
and alarm management to perform fault management at each
regenerator. In particular, these functionalities may be carried
over various types of optical-layer overhead [8], including pilot
tone, subcarrier-modulated overhead, optical supervisory chan-
nel, rate-preserving overhead, and digital-wrapper overhead.
To some degree, all these overheads are detected at some
intermediate nodes along the lightpath. This, in fact, breaks the
spirit of the transparency paradigm and adds to the complexity
and cost of future all-optical networks that do not need signal
detection along a lightpath.

Currently, to diagnose failures in all-optical WDM net-
works, researchers typically consider an optical (channel)
performance-monitoring solution, where optical performance
monitors are employed at a set of network nodes to watch for
possible failures and report them to the network-management
system [9]. However, little work has been done to quantify
the overhead cost that this monitoring solution might incur.
Instead, most research literatures [10], [11] follow essen-
tially the same design approach as their electrical counter-
parts, implicitly assuming that each network node, or even
each active optical component such as optical amplifiers and
optical add–drop multiplexers (OADMs), is equipped with a
performance-monitoring module that is active and reporting
all the time. While this is an acceptable solution in the near
term since signal detection comes for free at every regeneration
point, it is desirable to develop more efficient and less costly
methods when the all-optical network paradigm is fully im-
plemented and the network size grows significantly. Reduced
complexity is good for the following reasons. First, the total
amount of monitored information and signaling grows quickly
with the number of network elements (i.e., network nodes and
edges). The huge amount of management information, together
with faster switching speeds in the network, complicates the
network-management system and stresses the limited capability
of current network processing units, and a mechanism based on
constant sensing and reporting of numerous individual active
monitors does not scale well with the size and tuning agility
of future all-optical networks. Second, since each monitor
only tests one component without taking into consideration
its failure statistics, the diagnosis overhead cost [e.g., the re-
quired number of tests per unit time with the interval between
monitoring drawn from quality of service (QoS) specifications]
of such a mechanism can be prohibitively high, limiting the
efficacy and ultimately ubiquitous deployment of all-optical
networks.

Fig. 1. Comparison between diagnosis paradigms of electrical networks
and all-optical networks: (a) three-node ring network; (b) diagnosis with
three single-hop tests; and (c) diagnosis with one three-hop test and three
single-hop tests.

This paper seeks more efficient and elegant methods that
greatly lower the hardware and computational complexity and
cost of such functions for future all-optical WDM networks.
Specifically, a family of failure-identification algorithms are
developed that exploit the unique properties of all-optical net-
works to reduce the average number of diagnostic probes per
unit time. In particular, optical signals will be sequentially sent
along a set of lightpaths over an all-optical network to probe
its state of health. The network state (i.e., failure pattern) is
then inferred from the “syndromes” of this set of end-to-end
measurements. To keep the required number of probes small,
each successive probe is dynamically chosen among the set
of permissible probes according to the results of the previous
tests. Under this generalized model, the traditional diagnosis
mechanism based on single-hop probes is then a special case
and will be proven to be rather inefficient compared with the
proposed designs.

In all-optical networks, the fact that optical signals can be
carried over a lightpath of a number of interconnected edges
without necessarily being detected by the intermediate nodes
allows “multihop” tests to probe several edges simultaneously.
This technique can be used to greatly reduce the amount of
diagnosis effort, as illustrated with the three-node ring network
in Fig. 1. In this example, we assume that each edge fails
independently with probability of 0.1. If only single-hop tests
are allowed, as in Fig. 1(b), the total number of tests to identify
all edge states is three, by employing three single-hop tests
(A-B, B-A, C-A). Note that the number of tests required is
independent of the edge-failure probability. On the other hand,
if multihop tests are allowed, we can first perform a three-hop
test (A-B-C-A) as shown in Fig. 1(c). With a probability of
0.93 = 0.729, it will be found that all edges are fault free and
the diagnosis is concluded with only one test. We will resort
to the single-hop tests only if we know there is at least one
failure from the result of the first test, which has a probability
of 1 − 0.729 = 0.271. Thus, on the average, it requires only
0.729 × 1 + 0.271 × (1 + 3) = 1.813 tests to fully diagnose
this network. Intuitively, in most cases, the probability that a
particular edge has failed is low when network diagnosis is
performed; hence, it makes sense to test several edges together.
Here, reducing the average number of tests required for net-
work diagnosis, which is used in this paper as a measure of
the cost, or efficiency, of the diagnosis process, is equivalent to
reducing the network-diagnosis information bits [14] obtained
in the probing sequence.
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This example suggests that the fault-diagnosis problem
can be better understood from an information-theoretic pro-
spective. The network state can be viewed as a collection of
binary-valued random variables, each associated with an edge
in the network, indicating failure/no failure on that edge. The
objective of a fault-diagnosis algorithm is to use a number of
tests, whose results, also called the “syndromes,” can be used
to uniquely identify the network state. To put it simply, we use
probes to dig out all the information hidden in the unknown
network state. In the above example, with the single-hop
tests, the result of each test is “0” (for no failure) with a
probability of 0.9 and “1” (for failure) with a probability of
0.1. Thus, the information about the network state contained
in this test result is the entropy Hb(0.1) = 0.469 bit, where
Hb(x) = −x log2 x − (1 − x) log2(1 − x). In comparison,
the three-hop test (A-B-C-A) contains Hb(0.271) = 0.843 bit
of information. The information contained in a three-hop test is
obviously larger than that of the single-hop test, indicating that
multihop tests are more informative than single-hop tests for
this case. As a result, in the second approach, the network state
can be identified by a smaller number of probes, or equiva-
lently, the network state is represented by the test syndromes in
a more efficient way (this can be understood as encoding the
network state with syndromes). Similar approaches can be used
to determine the efficiency of a probe in a general network.
More important, the design of an efficient fault-diagnosis
algorithm is thus similar to the well-studied source-coding
problem, whose goal is to use the minimum average number
of bits to represent the source, which is also a collection of
random variables.

Applying the above approach under a probabilistic failure
model, where each edge is assumed to fail independently
with a prior failure probability, we obtain the following main
results. First, we establish the mathematical equivalence be-
tween the fault-diagnosis problem and the source-coding prob-
lem, which indicates that the minimum average number of
probes required is lower bounded by the entropy of the net-
work states. Second, since the sequential diagnosis problem
for general network topology is NP-complete, we develop a
family of novel near-optimal polynomial-time algorithms based
on run-length codes [12], whose performance asymptotically
approaches the theoretical entropy limit for large networks.
Analytical and numerical investigation reveals a guideline for
efficient probing schemes: Each probe should be designed to
provide approximately one bit of information on the network
state, and the number of probes required is approximately
equal to the information entropy of the network states. Finally,
we apply the family of near-optimum fault probing schemes
to different WDM network scenarios. This general approach
provides good insights and can be generalized to study other
network failure models, including failures on both nodes and
edges, correlated failures, and transient failures.

This paper is organized as follows. In Section II, we formu-
late the fault-diagnosis problem under a probabilistic edge-
failure model. In Section III, we establish the source-coding/
fault-diagnosis equivalence, which suggests a tight lower
bound for the minimum average number of probes required,
and show an optimal probing scheme for the special case of

finding a single failure in the network. In Section IV, we de-
velop the near-optimum run-length probing scheme and analyze
its performance in closed form. In Section V, we compare
the performance of the run-length probing scheme to that of
the greedy probing scheme within the same framework. In
Section VI, we address some practical issues in the implemen-
tation of the run-length probing scheme.

II. FAULT-DIAGNOSIS-PROBLEM FORMULATION

A. Probabilistic Edge-Failure Model

In this paper, all-optical networks are abstracted as undi-
rected graphs. An undirected graph G is an ordered pair of sets
(V,E), where V is the set of nodes of size n, and E is the set
of edges of size m. In this paper, we first focus on Eulerian
network topologies that have at least one Euler trail [13], which
is a sequence of interconnected edges containing all the edges
in the topology without repetition. Our results obtained in this
paper can also be generalized to non-Eulerian topologies.

In this paper, we characterize the vulnerability of future
all-optical WDM networks by the following probabilistic edge-
failure model.

1) Nodes are invulnerable (the vulnerable node case will be
treated later).

2) Edges are vulnerable and assumed to fail independently
with a prior probability of p(0 ≤ p ≤ 1).

3) We assume that the states of the edges do not change
over the duration of the fault-diagnosis process (or only
nonergodic failures occur) [14].

For a given network topology, we label each edge along
an Euler trail with an index β = 1, 2, . . . ,m. The state of the
βth edge is represented by a Bernoulli random variable Fβ ,
called the edge state. We assume for the moment that the
edge states Fβ , β = 1, . . . , m are statistically independent and
identically distributed with Pr(Fβ = 1) = p for an edge failure
and Pr(Fβ = 0) = q(= 1 − p) for no failure.

We refer to the network state as a realization of the set
of edge states {Fβ}m

β=1, written as s = f1f2 · · · fm ∈ S =
{0, 1}m. The set of all possible network states is denoted as S.
Using the fact that all edges fail independently, we obtain
the prior probability of a particular realization of the network
state s = f1f2 · · · fm as the product of prior probabilities of
all edges, i.e.,

Pr(s) = p

∑m

β=1
fβq

m−
∑m

β=1
fβ . (1)

B. Sequential Probing Model

In this paper, we focus on diagnosing network states via
the measurements of end-to-end probing signals. Specifically,
each probe corresponds to sending an optical signal along some
lightpath. We will illustrate the probing model in this section.

A permissible probe over an Eulerian network topology is
a trail (a sequence of adjoined edges without repetition) over
the graph. For a finite network, we label each probe with an
index t ∈ T = {1, 2, . . . , |T |} where |T |, the cardinality of the
set T , is the number of distinct probes over the network. As
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Fig. 2. (a) Set of permissible probes over the three-node ring topology. Total number of probes is 7. Each probe is indexed with a number near the arrow.
(b) Probing scheme (decision tree) for the three-node ring topology.

an example, the three-node ring topology has seven permissible
probes, as shown in Fig. 2(a).

When an optical signal is sent along a permissible probing
trail, the signal either arrives at the destination when all the
edges along the probe are ON or never reaches the destination
(or the quality of the signal is unacceptable) when any of the
edges along the probe is OFF. The result of each probe is called
the probe syndrome, denoted as rt = 0 if the probing signal
arrives successfully; and rt = 1 otherwise.

A probing scheme, denoted as π, is a sequential employment
of probes such that any network state can be identified. The suc-
cessive probe can be sequentially determined according to the
syndromes of previous probes. Due to this sequential decision-
making property, any probing scheme is equivalent to a binary
decision tree, whose leaves are network states and inner nodes
are probes. For example, a probing scheme for the three-node
ring network is shown in Fig. 2(b), where each inner node is la-
beled with the probe employed. We adopt the convention that at
any inner node, if the probe syndrome is 0 (no failure), the sub-
sequent probe is given in the left child; otherwise, if the probe
syndrome is 1, the probing process continues on the right child.

The set of all probing decision trees for the topology G is
denoted as Π(G). Without loss of optimality, we assume that
any efficient probing scheme has the following properties.

1) A probe will not be employed if its syndrome can be
inferred from previous syndromes. For example, if a
probe returns no failure, it means that no edge in that
probe has failed; hence, no probe that involves only a
subset of these edges is performed thereafter.

2) When two probes are expected to reveal the same in-
formation, the probe with fewer hops is preferred. For
example, if the state of an individual edge is known, then
one should not start or end a probe with this edge, since
dropping it loses no information.

C. Fault-Diagnosis Problem

To analyze the additional effort that different probing
schemes incorporate into the network-management system, we
need to associate a probing scheme with some cost metric.

In this paper, each probe t ∈ T , if employed, is assumed to
cost one unit of diagnosis effort. Consequently, the probing cost
of the state s, denoted by lπs , is equal to the number of probes
from the root to the leaf node s in the probing decision tree π,
called the probing depth of the state s. For example, as shown
in Fig. 2(b), the probing depth of state 110 is 4.

Given a probing scheme π ∈ Π(G), the average number of
probes is

Lπ =
∑
s∈S

Pr(s)lπs (2)

where lπs is the probing depth of network state s, and Pr(s) is
the prior probability of this state given by (1). We observe that
the average number of probes scales with the size of network
topologies. In this research, to suppress the scaling effect, we
focus on the average number of probes per edge, which is
defined as

Lπ =
1
m

∑
s∈S

Pr(s)lπs (3)

where m is the number of edges in the network topology. We
use the average number of probes per edge as the cost metric to
design optimum probing schemes.

For a given network topology G(V,E), we want to find the
optimal probing scheme that minimizes the average number of
probes per edge, and thus, to minimize the network-monitoring
overhead cost. Mathematically, it is formulated as the following
optimization problem:

min
π

Lπ =
1
m

∑
s∈S

Pr(s)lπs ,

s.t. π ∈ Π(G). (4)

The resulting minimum average number of probes per edge is
written as

L∗
= min

π∈Π(G)

{
1
m

∑
s∈S

Pr(s)lπs

}
=

1
m

∑
s∈S

Pr(s)lπ
∗

s (5)

where π∗ is the optimum probing decision tree.
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III. OPTIMUM FAULT-DIAGNOSIS SCHEMES

In this section, we characterize some properties of the op-
timal probing schemes for Eulerian networks and the achiev-
able performance. The insights developed in this section
will provide guidance for designing near-optimum diagnosis
schemes.

A. Source-Coding/Fault-Diagnosis Equivalence

In this section, we first build a connection between the fault-
diagnosis problem and the source-coding problem. This con-
nection inspires the use of the source-coding theory to design
efficient network-diagnosis schemes.

Given a probing scheme π ∈ Π(G), we denote the probe
syndrome of network state s as r(s) = r(ts1)r(t

s
2) · · · r(tslπs ),

where lπs is the probing depth of state s, and {ts1, ts2, . . . , tslπs }
is the sequence of probes employed to identify state s. For
example, the sequence of probes for state s = 110 in Fig. 2(b)
is {2, 4, 5, 7}, and the probe syndrome is r(s) = 1101.

We observe that, given a probing scheme π ∈ Π(G), there
is a one-to-one correspondence between any network state s
and its probe syndrome r(s). Besides, we have the following
conceptual mapping between the fault-diagnosis problem and
the source-coding problem:

Network states ⇔Source symbols

Prior probability of states ⇔Prior probability of symbols

Probe syndromes ⇔Coded symbols

Average # of probes ⇔Average code length.

(6)

It follows that the set of probe syndromes constitutes a uniquely
decodable code for the set of network states [15], summarized
as follows.
Theorem 1: For any valid probing decision tree π ∈ Π(G),

the set of probe syndromes R(π) = {r(s), s ∈ S} forms a
uniquely decodable code.

This source-coding/network-probing equivalence has some
important implications. First, our design objective, to minimize
the average number of probes per edge, is the same as that of the
source-coding problem: to use the minimum number of coded
symbols to represent the source. It follows from the lossless
source-coding theory [16] that the minimum average number
of probes per edge is larger than the information entropy of
the individual edge, i.e.,

L∗ ≥ Hb(p). (7)

Second, inspired by the source-coding problem, we observe
that it is easier to focus on the diagnosis of large networks and
develop simpler algorithms to find optimal probing schemes
that minimize the average number of probes per edge as the
network size, or the number of edges m, grows large. Note
that this objective is weaker than the original optimization
problem (4) because the result applies to large-size networks.
However, from the engineering perspective, the difference be-
tween the two, say, a few more probes in the diagnosis of the

moderately sized network, is usually insignificant. On the other
hand, the design of such near-optimal schemes can be much
simpler.

Finally, this equivalence suggests an information-theoretic
approach to translating existing source-coding algorithms into
efficient network-diagnosis schemes. However, this translation
is not trivial. In fact, not all source-coding algorithms can
be transformed into fault-diagnosis algorithms. For instance,
the well-known optimal source-coding algorithm, the Huffman
code, is in general not applicable to fault-diagnosis problems.
Huffman codes can be best understood as a sequence of yes/no
questions, each of which corresponds to an inner node of the
code tree. The optimality of the Huffman code comes from the
optimal sequence of questions in the form of “Is the source
realization in the set A?” Translated into the context of fault
diagnosis, this corresponds to questions such as “Is edge 1 UP?”
or “Is Edge 1 UP and edge 3 DOWN and edge 5 UP?” Clearly,
not all of such questions are physically realizable probes, which
can only test consecutive edges and ask questions such as
“Are edges 2,3, and 4 all UP?” Thus, the nature of realizable
probes posts an extra restriction that only a special class of
questions can be asked. In the rest of this paper, we refer to this
restriction as the “consecutive probing constraint” and study
the fault-diagnosis problems, or the equivalent source-coding
problems, under this constraint.

B. Edgewise Probing Schemes

As discussed in the Section I, the edgewise probing scheme,
by probing each individual edge separately, is in general not
optimal, especially when the failure probability of each edge
p is small. On the other hand, if each edge fails with a high
probability (which is unrealistic), the edgewise probing scheme
becomes more efficient. Generalizing from the break-point
theorem of the group-testing problem [23], we obtain the con-
dition under which the edgewise probing scheme is optimal.
Theorem 2: For any nontrivial network topology with m ≥ 2

edges and at least one path of more than one edge, the edgewise
probing scheme is optimal if and only if the edge-failure prob-
ability is larger than (3 −

√
5)/2.

The theorem suggests that the edgewise probing schemes
based on single-hop tests, as used in the electrical networks
and some of the current optical monitoring schemes, are
strictly suboptimal in all-optical networks if p < (3 −

√
5)/

2(≈ 0.382), which is the situation in most network-monitoring
scenarios.

According to the theorem, the edgewise probing scheme is
optimal for the case that p > 1/2. As p increases to 1, the lower
bound Hb(p) decreases, while the optimal approach is always
one probe per edge. Intuitively, for large values of p, if all the
edges fail with a high probability, we could reduce the number
of probes required if there were a probe to test the scenario
where a collection of edges are all in OFF states. Since such
a probe cannot be implemented, our information-theoretical
bound becomes less meaningful in the range of p > 1/2.
Nevertheless, in almost all practical situations, the edge-failure
probabilities are small; thus, in the remainder of this paper,
we always assume p ≤ 1/2.
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C. Optimal Probing Schemes for Lightpath
With Single Failure

In this section, as a special case to illustrate the technique, we
focus on a linear network topology (i.e., bus) with h edges and
only one faulty edge. In an all-optical network context, this can
be understood as the case where there is only one failure along
a particular lightpath. Conditioning on the fact that there is one
and only one faulty edge, each edge has a uniform distribution
of being the faulty one. For this case, the optimum probing
scheme to minimize the average number of probes (per edge)
has been found in [17].

The optimum probing scheme works as follows. Given that
the linear network topology has h edges and the number of
faulty edges is 1, we first split the path of length h into two
subpaths of length hl and hr according to the following criteria:

hl = g(h)

=
{

2�log2 h	−1, if 2 ≤ h ≤ 3 · 2�log2 h	−1

h−2�log2 h	, if 3 · 2�log2 h	−1 <h ≤ 2�log2 h	+1−1

(8)

and

hr = h − hl. (9)

Now we probe the first subpath of length hl. If the syndrome
is 1, meaning the faulty edge is in the first subpath, we continue
to split the first subpath according to rule (8) and probe the
resulting first subpath. If the syndrome is 0, meaning that the
first subpath is fault free and the faulty edge is in the second
subpath, we split the second subpath using (8) and probe the
resulting first subpath. This process continues until the faulty
edge is located.

Intuitively, when dividing the path into two subpaths of
length hl and hr, respectively, it is desirable to cut the path
into equal halves; thus, the probability that the faulty edge is
in the first subpath is as close to 1/2 as possible. However,
this approach is in fact only locally optimal: it makes the probe
over the current hl edges information efficient but may cause
the subsequent probes to be inefficient. Equation (8) says that
it is globally optimal to balance the two halves while making
sure one of the subpaths has a length of an integer power
of 2. The resulting probing scheme is called the “2m-splitting”
probing scheme. Note that, in both local and global optimums,
we are trying to balance the probabilities of syndrome 0 and
syndrome 1, indicating that each efficient probe should provide
approximately one bit of network state information.

To illustrate the “2m-splitting” probing scheme, let us con-
sider a linear topology with seven edges. As shown in Fig. 3,
we assume that the second edge (BC) fails. The probing algo-
rithm outputs the syndrome 101 for the network state 0100000.

It is also important to observe that, if the problem is changed
into the scenario where there is at least one faulty edge in the
linear network, and our objective is to locate the first (leftmost)
one, the optimal probing scheme is exactly the same as the
one described above, since the algorithm never tests a subpath

Fig. 3. Optimal probing scheme for the linear network with seven edges and
one faulty edge of BC. The syndrome is 101.

without knowing that every edge to the left is fault free. It turns
out that this is crucial in developing the run-length probing
algorithm (RLPA) in the next section.

IV. RUN-LENGTH PROBING ALGORITHMS

The optimization problem (4) is, in fact, equivalent to design-
ing an optimal binary decision tree for an equivalent decision
problem. In general, the design of an optimal binary deci-
sion tree has been approached with well-established dynamic-
programming algorithms [18], [19]. However, it has been
shown that the sequential diagnosis problem is co-NP-complete
[20], meaning that the computational complexity of probing
algorithms grows exponentially with the network size. From a
practical point of view, we are thus more interested in finding
simpler algorithms to design near-optimum probing schemes.

In this section, as a tradeoff between complexity and perfor-
mance, we seek a class of near-optimum probing schemes
whose computational complexity is on the polynomial order of
network size m. This class of near-optimum probing schemes
have probe syndromes consisting of a series of cascaded run-
length codes. We show that this probing scheme is asymptot-
ically optimal in that it achieves the minimum average number
of probes per edge for large-enough networks. Furthermore,
the RLPA is easy to implement and its performance can be
obtained in closed form.

A. Probing Schemes Based on Run-Length Codes

In Section III-C, we have shown the optimal probing scheme
for the scenario where only one failure exists over a linear
topology. We have also shown that the same probing scheme
is optimal for the scenario where multiple failures exist, and
the objective is to locate the first (leftmost) failure on the
linear topology.

At the same time, given any network state s = f1f2 · · · fm,
it must have the format of 0i110i21 · · · 0iL where i1, i2, . . . , iL
are nonnegative integers and 0i means a run of i “0,” and
each of the segments 0ij 1 is called a substate. In order to
encode the network state, it is natural to encode each of such
substates separately, since any probe can locate at most one
faulty edge at a time. This idea suggests that we can, instead
of coding for binary input streams, code on the symbols in
the set Z0 = {0i1}∞i=0, corresponding to always finding out the
first (leftmost) faulty edge along the Euler trail.

The problem of such an approach is that the input alphabet
has a size of infinity, which makes it difficult to encode. To
this end, it is natural to have an upper limit on the number of
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Fig. 4. Run-length probing decision trees for K = 3, 4, 5, 6, which are also the optimal Huffman code trees for the corresponding intermediate symbol sets Z.

edges being considered at a time, that is, to code over the finite
alphabet set

Z = {0K , 0i1}K−1
i=0 . (10)

This corresponds to finding the first faulty edge, if any, in
K consecutive edges. The prior probability distribution of the
possible symbols in Z is given by

Pr(0i1) = qip, 0 ≤ i ≤ K − 1 (11)

and

Pr(0K) = qK . (12)

Given this setup, a simple probing scheme follows. First, a
probe is sent over a set of K consecutive edges along the Euler
trail. If all the edges are fault free, we move onto the next set
of K consecutive edges along the Euler trail. If, on the other
hand, the first probe says that there is at least one faulty edge
in this group, we can employ the “2m-splitting” approach,
described in Section III-C, to locate the first faulty edge. The
process resumes with another group of K edges along the trail
right after this faulty edge.

The parameter K is called the maximum probing length.
Intuitively, for small values of p, or in other words if the edges
are more reliable, one should probe more edges at a time,
i.e., choose a larger value of K. The optimal value of K can be
chosen such that the first probe of K consecutive edges returns
ON or OFF with approximately equal probabilities so that this
probe is more information efficient. This can be achieved
by choosing K as the unique positive integer satisfying the
inequality

qK + qK+1 ≤ 1 < qK + qK−1. (13)

Solving this inequality, we obtain the maximum probing length
as K = �− logq(1 + q)�.

It turns out that the probing algorithm developed here is
equivalent to the run-length coding procedure for the source-
coding problem. For a detailed description of the run-length
code, please refer to [12] and [21]. For the rest of this paper,
we refer to the algorithm above as the run-length probing
scheme. A detailed description of this algorithm is given below.

Let P j
i be a path (i.e., a permissible probe) that covers edge

i to edge j over the Euler trail. When that path is being probed,

it is active. Let hl denote the number of edges in the current
active path, and hr denote the number of edges in the subse-
quent active path that is to be probed if all the edges in the
current active path are fault free or the current active path has
only one edge and it fails, and let i be the start point of the active
path. The run-length probing scheme is given by the following
algorithm:

Run-Length Probing Algorithm (RLPA):
Step 0:
Set i = 0.

Step 1:
Set hl = hr = K.

Step 2:
Probe the path P i+hl

i+1 ;

If the syndrome r(P i+hl
i+1 ) = 0

Set i = i + hl, hl = hr and hr = K,
Go to Step 2;

Else if the syndrome r(P i+hl
i+1 ) = 1

Set h = hl,
Set hl = g(h) [function g(·) is given
by (8)],
Set hr = g(h − hl),
If hl ≥ 2
Go to Step 2,

Else if hl = 1
The edge P i+hl

i+1 fails,
Set hl = hr = K, i = i + 1,
Go to Step 2.

To understand the run-length probing scheme pictorially, we
illustrate the corresponding probing decision trees for differ-
ent K ′s in Fig. 4. Note that, these trees are also the optimal
Huffman code trees for the finite symbol set (10) for different
K ′s. It turns out that for the particular set Z = {0K , 0i1}K−1

i=0 ,
the Huffman code can in fact be implemented under the con-
secutive probing constraint. This should not be very surprising
since we have already known that 1) the Huffman code is
always optimal for any given alphabet and 2) the algorithm
above is optimal in locating the first faulty edge on a lightpath.
The only missing logical step is that the symbol 0K is always
assigned to a length-1 codeword, corresponding to a single
probe. It can be shown that this is optimal from a coding
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Fig. 5. Simulated average number of probes per edge for an Eulerian topology with 50 edges is compared with the run-length code rate and the entropy
lower bound.

perspective since K is chosen such that the symbol 0K is much
more likely than the other symbols in Z. In fact, one can easily
verify that the probability of 0K is larger than 2/5, which as-
sures the optimality of assigning to it a length-1 codeword [16].

In summary, the RLPA is natural for the fault-diagnosis
problem due to the following two reasons.

1) Each probe can at most locate one faulty edge; thus, it
makes sense to split the network state into substates and
locate the faulty edges one by one.

2) The probing algorithm can achieve the information-
theoretical optimum in locating the individual faulty
edges.

Note that the RLPA is restricted on an Euler trail of the
network and ignores other connections. In general, this restric-
tion may seriously reduce the set of admissible probes; thus,
one cannot claim a general optimality of this algorithm over
all possible sequential probing schemes. However, this probing
scheme is optimal within the class of “nested” probing schemes
where each successive probe includes only a subset of edges
from the previous probe or a set of edges that are not tested in
the previous probe. Wolf [22] has derived similar results under
a totally different context of using group-testing approach to
resolve the conflict in multiaccess communications and showed
that a similar scheme is optimal within the class of nested
group-testing algorithms [23].

One advantage of the run-length probing scheme is that it
outperforms the greedy algorithm, although it has the same
minimum computational complexity as the greedy probing
scheme [19], which will be addressed in Section V. Another
distinguished advantage of the run-length probing scheme is
that, with information-theoretic insights, one can compare the
performance of the run-length algorithm against the entropy
lower bound of the global optimum as given in (7). To do that,
we will start in the next section by deriving the average number
of probes per edge of the run-length probing scheme, again

by taking advantage of the known results on the run-length
source codes.

B. Average Number of Probes Required for
Run-Length Probing Schemes

The following lemma characterizes the average number of
probes per edge required for run-length probing schemes.
Lemma 1: The average number of probes per edge required

by the run-length probing scheme to fully identify the network
state Lrun-length satisfies

L∞ ≤ Lrun-length ≤ L∞ +
1
m

(14)

where m is the total number of edges in the network, and

L∞
∆= p ·

(
�log2 K	 + 1 +

qk

1 − qK

)
(15)

with K = �− logq(1 + q)� and k = 2�log2 K	+1 − K.
This lemma can be proved using the results from the run-

length code [21].
We observe that for a reasonably large network, L∞ is inde-

pendent of the network size (n and m) and is a good approxi-
mation of the actual performance. To verify this, the values of
L∞, as a function of the edge-failure probability p ∈ (0, 1/2),
are plotted in Fig. 5, together with the simulated results of the
actual number of probes required Lrun-length, the performance
of the edgewise probing scheme, and the entropy lower bound
given in (7), for Eulerian networks with 50 edges. We have two
observations from this plot. First, the plot indicates that L∞
is a good approximation of the actual performance of the run-
length probing scheme over a broad range of reliability regime.
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Fig. 6. Information inefficiency of run-length probing schemes for different
edge-failure probabilities.

This suggests that for a large Eulerian network (m � K),
we can approximate the average number of probes for the
run-length probing scheme as Lrun-length ≈ m · L∞.

Second, when the edge-failure probability is small (of greater
engineering interests), the average number of probes required
is close to the entropy lower bound. For example, for an
Eulerian network with 1000 edges and edge-failure proba-
bility p = 0.01, the run-length probing scheme requires only
81.05 probes on the average. Compared to the entropy lower
bound of 80.79 probes, it requires only an additional number
of 0.26 probes. This suggests that even though most of the
information of the network topology is ignored, the run-length
probing scheme still achieves a near-optimal performance.

To gain a clearer view of this performance, we define the
information inefficiency of the probing scheme as the ratio
between the extra number of probes per edge (compared to the
entropy lower bound) and the entropy of each edge, i.e.,

ε(p) =
Lπ − Hb(p)

Hb(p)
(16)

where Lπ
is the average number of probes per edge of any prob-

ing decision tree π ∈ Π(G). In Fig. 6, we plot the information
inefficiency of the run-length probing scheme, again with the
actual value of Lrun-length approximated by L∞. As shown in
Fig. 6, when the edge-failure probability p decreases, the run-
length algorithm becomes more efficient, with the fluctuation
due to the change of the choice of the maximum probing length
K, which takes on only integer values. In particular, if the
edge-failure probability is less than 0.1, the average number
of probes per edge of the run-length probing scheme, for large
networks, is upper bounded by

Lrun-length ≤ 1.007Hb(p) (17)

which is only 0.7% higher than the entropy lower bound.
Moreover, the difference between the achieved performance

and the entropy lower bound is uniformly bounded. In the
range of p ∈ (0, 0.5], the worst case occurs at p = (3 −

√
5)/2,

where

Lrun-length ≈ 1.0423Hb(p) (18)

meaning that the actual performance of the run-length probing
scheme is less than 5% larger than the lower bound.

Combing (7), (17), and (18), we conclude that the perfor-
mance of the run-length probing scheme is bounded by the
following inequalities:

Hb(p) ≤ Lrun-length ≤ (1 + ε(p)) Hb(p) (19)

where ε(p) tends to decrease with smaller edge-failure prob-
ability, and we can approximate ε(p) < 0.01 for p ≤ 0.1 and
ε(p, q) < 0.05 for 0.1 < p ≤ 0.5.

Finally, the performance of the run-length probing scheme
can be used as an upper bound for the minimum average
number of probes per edge. In practical networks whose failure
probability is usually small, both the upper and lower bounds
are reduced to the entropy of the individual edge as indicated
in Fig. 5, and thus are both tight. The convergence of both
upper and lower bounds to the entropy and the scaling function
(19) indicate that the minimum probing effort approximately
equals the entropy of the network states. This actually follows
from the fact that, in an efficient probing scheme (e.g., the
run-length probing scheme), each probe is designed to provide
approximately 1 bit of state information. Since the amount
of unknown information in the network state is equal to the
entropy, the number of probes required to identify the network
state is, on the average, equal to the entropy.

C. Complexity of Run-Length Probing Schemes

In this section, we address the computational advantages of
run-length probing schemes, including the constant storage-
space requirement and the polynomial running time.

First, the run-length probing scheme is an online algorithm
that chooses the successive probes dynamically and does not
store the whole probing decision tree beforehand. In fact, the
run-length probing scheme only stores three variables (i.e., i,
hl, and hr) and reduces the requirement for the storage space
to a constant of 3 [i.e., O(1)]. On the contrary, for a network
with m edges, any offline algorithm, which the run-length
probing scheme does not belong to, stores the whole probing
decision tree, and thus, the requirement for the storage space
is 2 · 2m − 1 [i.e, O(2m)], which grows exponentially with the
network size.

Second, the complexity of the run-length probing scheme
is proportional to the number of executions of Step 2 in the
algorithm, since each execution of Step 2 in the RLPA costs
roughly a constant time. In the worst case, all the edges fail
simultaneously, and the run-length probing scheme employs
log K probes to identify each edge failure. This corresponds
to executing Step 2 log K times for each edge failure. For
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a network with m edges, the total number of executions of
Step 2 is at most m · log K, which suggests that the complexity
of the RLPA is O(m · log K). It follows that the run-length
probing scheme is a polynomial-time algorithm.

V. GREEDY PROBING ALGORITHMS

The information-theoretic perspective in the context of fault
diagnosis is in general also very useful in understanding, com-
paring, and improving the network probing schemes based
on existing heuristics. In particular, we will, in this sec-
tion, study the fault-diagnosis approaches based on dynamic
programming.

As previously mentioned, dynamic-programming solutions
to the network-diagnosis problem (equivalently, the optimal
binary decision-tree design) are in general Co-NP Complete.
As a compromise, various suboptimal greedy algorithms [25]
are proposed based on local optimization heuristics. The
performance of such heuristic algorithms is usually studied
only via simulations. With our information-theoretic viewpoint
of the problem, it is natural to connect these problems to
their counterparts of source-coding problems with dynamic-
programming approaches, which have been thoroughly studied
for decades.

In this section, we will first review the dynamic-program-
ming formulation of the network-diagnosis problem, with the
focus of a particular greedy algorithm that maximizes the local
information gain at each stage [25]. We will then compare
the performance of this scheme with that of the run-length
algorithm to gain more insights.

A. Dynamic-Programming and Greedy Algorithms

We first introduce some useful notations. The design of
optimal fault-diagnosis algorithms is equivalent to the design
of optimal binary decision trees. We denote Iπ as the set of
inner nodes of the decision tree π. Let ς ∈ Iπ denote one of
the inner nodes, and Pς the probability that ς is reached. It
follows that Pς equals the sum of the prior probabilities of
the network states that are descendents of the node ς [26].
Let tς be the probe employed at inner node ς , Pr(0|ς) and
Pr(1|ς) be the probabilities that this test returns 0 and 1, cor-
responding to the probabilities that the network state lies in the
left or right subtrees of inner node ς , respectively. Furthermore,
let Lς be the average number of successive probes required
when the inner node ς is reached.

Now, to design the diagnosis algorithm with the minimum
average number of probes, we need to, at each inner node ς ,
choose a probe tς to minimize

Lς = 1 + Pr(0|ς) × L∗
ς,0 + Pr(1|ς) × L∗

ς,1 (20)

where L∗
ς,0 and L∗

ς,1 are the minimum average number of
additional probes required by the left and right subtrees from
the inner node ς , respectively. In particular, taking ς as the
root of the entire tree, the solution of this optimization problem
gives the optimal fault-diagnosis scheme.

Note that the difficulty of such a problem comes from the fact
that the optimization problems at different steps are coupled.
In choosing tς , one needs to cater for the future optimizations
of L∗

ς,0 and L∗
ς,1. As a result, the computational complexity of

this problem grows exponentially with the number of edges m.
Some results of using dynamic programming in designing
binary decision trees can be found in [18] and [19].

Now, from an information-theoretic perspective, the perfor-
mance, in terms of the average number of probes, can be
computed from the local information efficiencies as follows.
For a given probing tree π, the average number of probes
required to reach the leaves can be computed as

Lπ =
∑
s∈S

Pr(s) × (number of probes to reach state s)

=
∑
s∈S

Pr(s) × (number of ancestors of s)

=
∑
ς∈Iπ

Pr(ς) × 1. (21)

On the other hand, one can write H(ς) as the amount of
information in bits, obtained by employing the probe tς as
node ς is reached, that is

H(ς) ∆= Hb (Pr(0|ς),Pr(1|ς)) . (22)

By running this fault-diagnosis algorithm, one can always
find out the network state, which contains, on the average,
m · Hb(p) bits of information and can be viewed as the sum
of the information obtained in each step, i.e.,

m · Hb(p) =
∑
ς∈Iπ

Pr(ς) × H(ς). (23)

Hence, the total inefficiency of the algorithm, in terms of the
average number of probes required in excess of the information
minimum m · Hb(p), is

Lπ − m · Hb(p) =
∑
ς∈Iπ

Pr(ς) × (1 − H(ς)) (24)

where (1 − H(ς)) is referred as the local inefficiency of the
algorithm π at the inner node ς . Intuitively, one probe is used
to return only H(ς) bits of information. Hence, the difference
between the two measures is the information inefficiency of
employing this probe and the weighted sum of the inefficiency
over the tree gives the total number of extra probes required by
the given probing scheme.

Following such discussions, we observe that in order to
design efficient network-diagnosis algorithms, it is desirable
to minimize the local inefficiency at each stage. Intuitively, by
always asking the question to which the answer is completely
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without bias, one would expect to figure out the network state
with fewer questions. This corresponds to making the left and
right subtrees as balanced as possible, i.e., to choose a probe
tς to minimize

t∗ς = arg min
tς

|Pr(0|ς) − Pr(1|ς)| . (25)

Such intuition of balancing the probabilities of the outcomes
of a probe is, in general, very useful. We have just used that
to design the maximum probing length K for the run-length
algorithm. For the first probe over K links, the probabilities
of UP and DOWN are, respectively, qK and 1 − qK . It can be
shown that the choice of K in inequality (13) indeed minimizes
the difference between these two probabilities.

It is important to note that such an approach, by maximizing
the local information gain H(ς), may not necessarily be the
globally optimum choice. As an example, in the example of
locating a single failure in Section III-C, it is globally optimal
to split the path as in (8), to make sure that the length of one
of the subpaths is an integer power of 2. On the other hand, a
greedy design based on local optimizations would simply split
the path into equal halves.

The greedy algorithm presented above, to maximize the local
information gain, is in fact one of many variations [25]. Such
algorithms are sometimes preferred due to their conceptual
simplicity. However, the run-length algorithm has the same
order of computational complexity as these algorithms. In the
next section, we will investigate the performance of the greedy
algorithm based on maximizing local information gains.

B. Performance Comparison

Using Monte Carlo simulation, we simulate the performance
of the greedy probing algorithm and compare it with that of the
RLPA in this section.

To compare these two algorithms in a finer scale, we plot
the probing inefficiency of the greedy probing scheme over the
run-length probing scheme, i.e.,

η(p) =
Lgreedy − Lrun-length

Lrun-length

(26)

as a function of the edge-failure probability p in Fig. 7. In
(26), Lrun-length and Lgreedy are the average number of probes
per edge for the RLPA and the greedy probing algorithm,
respectively.

We observe that for some range of link-failure probability,
both the run-length probing scheme and the greedy probing
scheme have the same average number of probes per edge.
It can be verified that this happens for all the edge-failure
probabilities such that the maximum probing length K is an
integer power of 2. Under this scenario, splitting a path of
length K automatically gives subpaths with lengths as powers
of 2; hence, the local and global optimums coincide. On the
other hand, when the edge-failure probability is in the range
such that K is not an integer power of 2, the greedy algorithms
are strictly suboptimal. As a result, in Fig. 7, there is a periodic

Fig. 7. Performance comparison between the RLPA and the greedy probing
algorithm.

pattern in the log plot: When p is such that K(p) equals a
power of 2, the probing inefficiency is equal to 0; as p increases
or decreases such that K(p) does not equal a power of 2, the
probing inefficiency is strictly nonzero.

Therefore, although both probing schemes have the same
computational complexity, the run-length probing scheme pro-
vides some cost-saving over the greedy probing scheme.
However, the difference between the two algorithms is quite
limited. Intuitively, this is because the global optimum solu-
tion always makes sure that all but one subpath have lengths
of powers of 2, in which case the greedy algorithm is also
optimum.

VI. APPLICATIONS OF RUN-LENGTH PROBING SCHEMES

FOR ALL-OPTICAL WDM NETWORKS

In this section, we first address some practical issues in the
implementation of the run-length probing scheme and then
apply the run-length probing scheme to different WDM net-
work scenarios.

To employ the run-length probing scheme, we assume, for
simplicity, that a centralized fault-management agent commu-
nicates with all the network nodes through a reliable out-of-
band control channel. In real life, this limit is approached even
with in-band signaling for fairly reliable networks and when
flood routing for signaling is used, as long as the network
remains connected. First, the fault-management agent pro-
cesses all the previous probe syndromes to decide the attributes
of the successive probe, including the source node, the desti-
nation node, and the routing path of the probe. Then, the agent
signals the source node to send the probe along the specified
lightpath to the destination node. After the destination node
determines the probe syndrome, it reports the syndrome to the
agent through the reliable out-of-band control channel. This
process continues until all the edge states have been identified
and the entire process is then repeated in a predetermined
or adaptive fashion.

In developing the run-length probing scheme, we have
made another assumption that the network is abstracted as an
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undirected graph, meaning that each optical link is bidirec-
tional. However, in practical all-optical networks, each optical
link is seldom bidirectional due to the prohibitively high cost
of incorporating two-way traffic in a single fiber. Instead, each
bidirectional logical edge includes two parallel unidirectional
optical fibers with signals in only one direction. To apply the
run-length probing scheme to such networks, we replace each
edge in the undirected graph with two parallel directed edges.
It follows that the undirected network is converted into a
directed graph. Under such a conversion, it can be shown that
an Euler trail always exists for a directed graph converted from
any undirected graph. To diagnose failures, we simply employ
the run-length probing scheme over a directed Euler trail in
the directed graph. When the maximal probing length is much
less than the number of edges, we can approximate the average
number of probes per edge required for a practical network with
unidirectional edges with the information entropy of individual
directed edge.

Without loss of generality, we assume that there are W
wavelengths per fiber in an all-optical WDM network, which is
subjected to different kinds of failures. According to the scale
of their effect, these failures can be classified into two cat-
egories. One category is wavelength-level failures, which af-
fect a particular wavelength channel, e.g., transmitter/receiver
failures with one dedicated transmitter/receiver per wavelength
and single-bandwidth optical filter or single-channel frequency-
selective switch failures. The other category is fiber-level
failures, which affect all the wavelength channels within an
individual fiber, such as fiber cuts, EDFA breakdowns, and
transmitter/receiver failures in the case of only one tunable
transmitter/receiver per fiber (which rarely happens).

We observe that, although the wavelength-level and the
fiber-level failures are statistically independent, all the wave-
length channels passing through an EDFA fail simultaneously
when the EDFA fails. This suggests that failures in different
wavelength channels on the same fiber are dependent in that
knowing one particular wavelength channel fails reveals some
information about the failures of other wavelength channels.
Therefore, the fault-diagnosis algorithm for practical all-optical
WDM networks must consider interdependence among failures
in different wavelength channels. In particular, the application
of the run-length probing scheme over practical all-optical net-
works depends on the relative dominance between wavelength-
level and fiber-level failures. In other words, the relationship
between pF (i.e., the prior probability of individual fiber-
level failure) and pW (i.e., the prior probability of individual
wavelength-level failure) determines how the run-length prob-
ing scheme should be implemented over practical all-optical
WDM networks.

In one extreme, for an all-optical network where the
wavelength-level failures dominate the fiber-level failures (i.e.,
pW � pF), we can view the network as a graph where each
physical link is represented with W parallel edges, and employ
the run-length probing scheme over an Euler trail of the result-
ing graph. We call this the wavelength-level implementation.
For a reasonable large number with m · W � K, the average
number of probes required by the run-length probing scheme
can be approximated by W · m · Hb(pW).

In the other extreme, for an all-optical WDM network where
the fiber-level failures dominate the wavelength-level failures
(i.e., pF � pW), we can view the network as a graph where
each physical link is represented with one edge, and employ the
run-length probing scheme over an Euler trail of the resulting
graph. We call this the fiber-level implementation. For a large
network of m � K, the average number of probes required is
approximately equal to m · Hb(pF).

Finally, for an all-optical WDM network subjected to a
comparable (in terms of probability of occurrence) mixture
of both fiber-level and wavelength-level failures, we can still
use the fault-diagnosis/source-coding equivalence to obtain a
useful lower bound for the minimum average number of probes
required as the information entropy of network states, i.e.,

L∗ ≥ m · H(F1, F2, . . . , FW ) (27)

where Fi’s are dependent random variables indicating states of
wavelength channel i’s, and H(·) is the information entropy
function. The entropy function H(F1, F2, . . . , FW ) can be
calculated through the summation of a sequence of conditional
entropy functions, i.e.,

H(F1, F2, . . . , FW ) =
W∑
i=1

H(Fi|F1, . . . , Fi−1). (28)

However, we are not yet clear whether the entropy lower bound
(27) can be achieved, or if achievable, how we can develop
probing schemes to achieve this lower bound. Fortunately, in
real life, either wavelength or fiber integrity, but not both at the
same time, is the dominant reliability factor.

Actually, we can view the network as a graph where each
physical link is represented with W parallel edges and employ
the run-length probing scheme over an Euler trail of the re-
sulting graph. The performance of this wavelength-level im-
plementation, which is hard to obtain due to the complicated
dependence among failures in different wavelength channels,
can certainly serve as an upper bound for the minimum average
number of probes required by an optimal probing scheme.
However, since the wavelength-level implementation does not
consider the dependencies among failures in different wave-
length channels, the run-length probing scheme is not optimum
in general. The same conclusion that the information entropy is
a lower bound and the run-length probing scheme might not
be near optimum can be extended to a more general failure
model that accommodates dependent failures and/or heteroge-
neous failures.

VII. CONCLUSION

In this paper, we investigated the fault-diagnosis problem for
all-optical wavelength-division-multiplexing (WDM) networks
under a probabilistic edge-failure model. Our investigation
reveals that the complexity of the fault-management system
of all-optical networks can be reduced and thus, the opera-
tional network cost can be kept low. This research can further
the understanding of the relationship between the amount of
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network information gathered and the performance of network
management.

Using the average number of probes required as the cost
metric, we characterized the optimal fault-diagnosis algorithms
from an information-theoretical perspective. In particular, the
mathematical equivalence between the fault-diagnosis problem
and the source-coding problems suggests that the minimum
average number of probes is lower bounded by the entropy
of the network states. We also showed that the “2m-splitting”
probing scheme is optimum for the special case of single
failure over a linear topology. Based on these heuristics, we
developed a class of efficient network-diagnosis algorithms,
i.e., run-length probing schemes. Its performance is uniformly
bounded above by (1 + ε)Hb(p) and converges to the entropy
lower bound as the edge-failure probability decreases to 0. We
also compared the run-length probing scheme to the “greedy”
probing schemes, which indicates that the run-length probing
scheme is the algorithm of choice since it outperforms the
greedy algorithm of the same computational complexity. Sev-
eral practical issues in implementing the run-length probing
scheme in future all-optical WDM networks were also ad-
dressed. The guideline for efficient probing schemes is that
each probe should provide approximately 1 bit of state informa-
tion, and thus, the number of probes required is approximately
equal to the information entropy of the network states.

Although this research is done for all-optical networks, full
understanding of the network-diagnosis problem for all-optical
networks can lead to deeper insight into network management
under more general models (e.g., transient failures). For future
work, the network-diagnosis problem with simultaneous edge
and node failures needs to be addressed. Other possible fu-
ture work includes extending the centralized run-length prob-
ing scheme into a distributed implementation. Finally, using
appropriate cost metrics, these diagnostic approaches can prob-
ably be applied to the diagnosis of network failures of other
networks including wireless and sensor networks.
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