
Abstract—Network management and control contribute to at 

least half of the operating cost of current optical networks. All-

optical networks with end-to-end transparent lightpaths promise 

significant cost savings using optical switching at network nodes. 

However, this cost saving cannot be realized unless the cost of 

network management is also reduced. In this paper we explore a 

promising technique towards that goal. The fault diagnosis 

problem for all-optical networks is investigated via an 

information theoretic approach, with the objective to minimize 

the operating ‘cost’ of failure detection and localization in the 

optical layer. Under a probabilistic link failure model, we first 

interpret the run-length probing scheme previously developed for 

Eulerian graphs as a constrained source-coding algorithm, and 

characterize its performance via the code rate of its 

corresponding run-length code.  We then extend the run-length 

probing scheme to non-Eulerian graphs via two alternative 

approaches: the disjoint-trail decomposition approach and the 

path-augmentation approach, and obtain their performance 

analytically. The analytical and numerical results indicate that 

the run-length probing scheme is asymptotically optimum for 

both Eulerian and non-Eulerian graphs of large size. The 

property of the run-length probing scheme also suggests that each 

probe in an efficient probing scheme should provide 

approximately one bit of network state information and thus the 

total number of probes (or equivalently, the operating cost of 

failure identification) is lower-bounded and approximated by the 

entropy of the network states. We believe that our approach using 

Information Theory in an inter-disciplinary effort can provide 

new insights on network management, and substantial cost-

reduction for all-optical networks can be realized.   

I. INTRODUCTION 

With the emerging deployment of all-optical networks, 

broadband network services have the potential to become 

available to the mass population at much lower cost than what 

can be achievable today.  Present day network management 

constitutes a significant fraction of the cost of operating a 

network, (~50%) [1]. Future all-optical networks promise 

significant cost savings via optical switching of high data rate 

lightpaths at network nodes, reducing electronic processing 

costs. However, the side benefit of electronic switching 

namely parity checks at the end of each SONET line is now 

absent and the network management system must develop a 

new mechanism to diagnose link and node failures. Otherwise 

the promised cost savings will not be realized. Therefore, it is 

desirable to architect a cost-efficient network management 

system for all-optical networks of the future. 

Network management consists of five functions: fault, 

configuration, performance, security and account management. 

For optical networks, a lot of emphasis has been put on fault 

management, whose cost is dominated by detection and 

isolation of problems that cause failures. Current standard 

Synchronous Optical Networks (SONET) infer the health of 

each SONET link by verifying the parity bits embedded in the 

overhead of the data frames. This approach is a manifestation 

of the “single-hop” test model [2]: signals are transmitted 

between adjacent nodes in a network to determine the state of 

the link connecting them. For future all-optical networks, due 

to the unique property that optical signals can be carried over a 

lightpath of many interconnected links without necessarily 

being detected by optically-switched intermediate nodes, we 

proposed a “multi-hop” test model [3] to diagnose several 

links simultaneously. Specifically, probing signals are 

sequentially sent along a set of lightpaths over an all-optical 

network to probe their state of health; and the network state 

(i.e., failure pattern) is then inferred from this set of end-to-end 

measurements (i.e., probe syndromes). Each successive probe 

is dynamically chosen among the set of permissible probes 

according to the previous probe syndromes to minimize the 

number of probes. 

Theoretically, fault diagnosis can be understood from an 

information theoretic perspective. The network state can be 

viewed as a collection of binary-valued random variables; 

where each variable is associated with a network element, 

indicating failure/no-failure of that element. A fault diagnosis 

algorithm uses a number of tests, whose results are called the 

‘syndromes’, to uniquely identify the network state. The 

objective of the fault diagnosis process is to encode the set of 

network states with the set of probe syndromes such that the 

average syndrome length (thus the operating cost of diagnosis) 

is minimized. The source-coding problem in Information 

Theory shares a similar objective, which suggests that the 

single-hop and the multi-hop test models can be compared 

using an information theoretic framework. As an example, 

consider a linear network with two links, each of which fails 

independently with probability of 0.2.  With the single-hop 

tests, the result of each test is ‘0’ (for no failure) with a 

probability of 0.8 and ‘1’ (for failure) with a probability of 0.2. 

The information contained in this syndrome is the entropy 

Hb(0.8) = 0.72 bit where Hb(x) = - xlog2x - (1-x) log2(1-x) is 

the Shannon entropy function. In comparison, the two-hop test 

contains Hb(0.64) = 0.94 bit of state information. This 

observation indicates that multi-hop tests can be more 

informative than single-hop tests, and should be chosen when 

the failure probabilities are in the ‘right’ ranges. 
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Using the information theoretic approach [3], we have first 

established a mathematical equivalence between the fault 

diagnosis problem and the source-coding problem, and have 

developed the asymptotically-optimal run-length probing 

scheme for Eulerian networks. In this paper, we extend the 

application of the run-length probing scheme to general non-

Eulerian networks via two alternative mechanisms: the 

disjoint-trail decomposition approach and the path-

augmentation approach. This investigation verifies the 

guideline for efficient probing schemes [3]: each probe should 

provide approximately 1-bit of network state information and 

the number of probes required is approximately lower-

bounded by and equal to the information entropy of the 

network states.  

II. FAULT DIAGNOSIS PROBLEM FOR ALL-OPTICAL NETWORKS 

WITH PROBABILISTIC LINK FAILURES 

A. Formulation of Fault Diagnosis Problem 

In our research, all-optical networks are abstracted as 

undirected graphs. An undirected graph G  is a pair of sets 

( ),V E , where V  is the set of network nodes of size n , and E  

is the set of optical links of size m . To illustrate the technique 

succinctly, the nodes are assumed to be invulnerable in this 

work (the vulnerable node case is being treated in [4]); links 

are assumed to fail independently with probability p  

( )0 0.5p≤ ≤ . Moreover, the states of links are assumed not to 

change over the duration of the fault diagnosis process. It 

follows that each link state can be modeled by a Bernoulli 

random variable, taking the value 1 with probability p  for link 

failure and the value 0 with probability 1 p−  for no failure. A 

network state s S∈  is referred to as a realization of all link 

states, where S  denotes the set of all possible network states.  

To detect and localize all failures, optical probing signals 

are sequentially sent along a set of permissible lightpaths in the 

network. The result of each probe is called the probe 

syndrome, denoted as 0tr =  if all the links along the probe are 

UP (no failure) and the probing signal arrives successfully; and 

1tr =  if any of the links along the probe is DOWN (at least one 

failure) and the probing signal never reaches the destination. In 

addition, to reduce the diagnosis effort, each successive probe 

is determined sequentially according to the previous 

syndromes. A sequential employment of permissible probes to 

identify any network state is called a probing scheme 

( )Gπ ∈Π , where ( )GΠ  is the set of all probing schemes for 

the network G .  

We can associate a probing scheme with the network 

operating cost by assigning each probe with a cost value 

according to a pre-determined cost function. In this research, 

each probe, if employed, is assumed to cost one unit of 

diagnosis effort. Consequently, the probing cost of state s , 

denoted by sl
π ,  is equal to the number of probes to identify 

network state s  with the probing scheme π . Normalizing over 
the network size (i.e., the number of links m ), we associate 

the probing scheme π  with a figure of merit (cost) of the 

average number of probes per link as 

( )1
Pr ss S
s l

m

π
π

∈
= ∑L ,  (1) 

where ( )Pr s  is the prior probability of occurrence of the 

network state s .  

For a network G , the objective is to find the probing 

scheme that minimizes the average number of probes per link, 

and thus minimizing the operating cost of fault diagnosis. This 

can be achieved by solving the following optimization 

problem,  

( )

( )

1
min   Pr

. .    

ss S
s l

m

s t G

π
π

π

π

∈
=

∈Π

∑L
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The resulted minimum average number of probes per edge is 

written as  

( )
( ) ( )

* 1 1
min Pr Prs ss S s SG

s l s l
m m

π π

π

∗

∈ ∈∈Π

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
∑ ∑L ,  (3) 

where π ∗  is the optimum probing scheme. 

B. A Source-Coding View of Fault-Diagnosis Problem 

The fault-diagnosis problem can be understood as the 

source-coding problem in Information Theory under some 

physical constraints. This association has important 

implications in designing efficient network diagnosis schemes. 

For the probing scheme π , we denote the probe syndrome 

of the network state s  as ( ) ( ) ( ) ( )1 2
s

s s s

l
r s r t r t r t π= � , where 

{ }1 2, ,
s

s s s

l
t t t π…  is the sequence of probes applied to identify the 

network state s . The set of all probe syndromes is denoted as 

{ }( ),R r s s S= ∈ . The diagnosability of any valid probing 

scheme requires that a one-to-one mapping exists between the 

set of network states and the set of probe syndromes. In fact, it 

has been shown [3] that the set of probe syndromes R  of a 

probing scheme π  forms a uniquely-decodable code. It 

follows that the fault diagnosis problem is mathematically 

equivalent to the well-established source-coding problem in 

Information Theory. Specifically, the objectives of both 

problems are equivalent, i.e. to design a probing/coding 

scheme mapping the set of network-states/source-alphabets 

into a set of probe-syndromes/codewords such that the average 

syndrome/codeword length is minimized.  

This mathematical equivalence between the fault-diagnosis 

problem and the source-coding problem suggests that we can 

exploit the rich set of results from the source-coding literature 

to construct efficient fault-diagnosis algorithms. First, it 

follows from the lossless source coding theory that the 

minimum average number of probes per link is lower bounded 

by the information entropy of individual link, i.e., 

( )bH p
∗
≥L ,  (4) 

where ( )bH p  is the Shannon information entropy function. 

Second, this alternative interpretation also suggests that we can 

translate optimal and/or sub-optimal source coding algorithms 

into efficient fault diagnosis schemes. However, not all source 

coding algorithms, e.g. the optimal Huffman coding algorithm, 
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can be transformed into fault diagnosis algorithms. The 

Huffman algorithm can be understood as a sequence of 

YES/NO questions in the form of “Is the source realization in 

some set A?” Translated into the context of fault diagnosis, 

they correspond to questions such as “Is link 1 UP?” or “Is 

Link 1 UP and link 3 DOWN and link 5 UP?” Not all of such 

questions are physically realizable probes, which can only 

probe consecutive links, corresponding to one particular class 

of questions such as “Are links 2, 3, 4 all UP?” Thus, the 

nature of permissible probes posts an extra restriction that only 

a special class of questions can be asked. In our research, we 

refer to this restriction as the “consecutive probing 

constraint”, and study the fault diagnosis problem, or the 

equivalent source coding problems, under this constraint.   

III. RUN-LENGTH PROBING SCHEMES FOR EULERIAN ALL-

OPTICAL NETWORKS 

In this section we interpret, from an information theoretic 

perspective, the run-length probing scheme [3] previously 

developed for any Eulerian network, which contains at least 

one Euler trail (i.e., a sequence of interconnected links 

containing all the links in the topology without repetition).  

For an Eulerian network, we can introduce a natural order to 

any network state by indexing all the link states along an Euler 

trail in the network. Specifically, any network state must have 

the format of 1 2 10 10 1 0 10L Li i i i−
�  where 1 1, , Li i i�  are non-negative 

integers and 0i  means a run of i  ‘0’, and each of the segments, 

01i , is called a sub-state. Considering that any probe can locate 

at most one faulty link at a time, each of such sub-states should 

be encoded separately. This idea suggests that we should, 

instead of coding for binary input streams, code on the symbol 

set of { }
00 0 1i iZ

∞

==  with a geometrical probability distribution. 

In the context of source coding, the optimal code for the set 

{ }
00 0 1i iZ

∞

==  with geometrical distributions has been shown as 

the run-length code [5]. A natural question is whether the run-

length coding algorithm can be translated to some 

corresponding fault diagnosis algorithm under the consecutive 

probing constraint. The run-length codeword of alphabet 01i  is 

a concatenation of two prefix codes: the unary code for the 

integer i K⎢ ⎥⎣ ⎦  followed by the Huffman code for the alphabet 

mod0 1i K , where ( )1log 2pK p−⎡ ⎤= − −⎢ ⎥ . The unary code for an 

integer j  is the codeword with j  zeros followed by a single 

one, i.e., ( ) 0 1ju j = . In the fault diagnosis context, such a 

unary code can be implemented by sending 1j +  back-to-back 

probes of length K  along the Euler trail. At the same time, the 

Huffman codeword for the alphabet 0 1k  ( 0 1k K≤ ≤ − ) can be 

implemented by the 2
m
-splitting binary searching algorithm 

developed in [3], which balances the Huffman code tree and 

maximizes the information gain of each probe. Therefore, the 

concatenation structure of the run-length code guarantees its 

transferability to a corresponding fault diagnosis algorithm, 

called the ‘run-length probing scheme’.  

Algorithmically, as a mirror of its concatenation structure in 

the run-length code, the run-length probing scheme alternates 

two diagnosis phases to identify each faulty link: the failure 

detection phase and the failure localization phase. In the 

failure detection phase, a detection probe is sent over a set of 

K  (called the maximum probing length) consecutive links 

along the Euler trail. If all the links are fault-free, we move 

onto the next set of K  consecutive links along the Euler trail. 

If on the other hand the detection probe returns the syndrome 

‘1’, the algorithm enters the failure localization phase. In this 

phase, given that there is some failure in the detection probe, 

the “2
m
-splitting” binary searching algorithm [3] is employed 

to locate the leftmost faulty link. After the fault is localized, 

the algorithm resumes the failure detection phase by sending 

another probe spanning K  links along the trail right after the 

failure. As an illustration, Fig. 1 demonstrates how to employ 

the two-phase probing scheme for efficient fault diagnosis. 

Since the probe syndrome of any network state under the 

run-length probing scheme is a concatenation of a series of 

run-length codewords for the set of sub-states { }01: 0i i ≥ , we 

can approximate the average number of probes per link 

required for the run-length probing scheme by the code rate of 

its corresponding run-length code [5], i.e., 

( ) ( )
( )

2

1 1
log 1       0

21 1

L

K

p
p p K p

p
∞

⎛ ⎞−
⎜ ⎟= ⋅ + + < ≤⎢ ⎥⎣ ⎦⎜ ⎟− −⎝ ⎠

L , (5) 

where ( ) ( )
1

log 2
p

K p−
⎡ ⎤= − −⎢ ⎥

 and 2log 1
2

K
L K

+⎢ ⎥⎣ ⎦= − . Comparing 

Fig. 2. The information inefficiency of run-length probing schemes for 

different link failure probability (adapted from [3]) is uniformly upper 

bounded by ( ) 4.2%pε ≤ , where the equality is achieved when the link 

failure probability equals to the golden ratio of ( )3 5 2p = − . 
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Fig.1. Demonstration of the run-length probing scheme over an Eulerian 

network. It contains a sequence of concatenations of two alternating 

phases: the failure detection phase (dotted lines) and the failure 

localization phase (solid lines). 
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(5) to the entropy bound (4), we have also proved that the run-

length probing scheme is ε -optimal, i.e., 

( ) ( ) ( )1b bH p p H pε∞ ⎡ ⎤≤ ≤ +⎣ ⎦L ,  (6) 

where the information inefficiency, ( )pε , tends to decrease 

with smaller link failure probability and is uniformly upper 

bounded by ( ) 4.2%pε ≤  where the equality is achieved at 

( )3 5 2p = −  (the golden ratio)  as illustrated in Fig. 2. This 

indicates that the performance of the run-length probing 

scheme is always less than 5% larger than the entropy lower 

bound. In practical networks with fairly reliable components, 

both the upper and the lower bounds in (6) are reduced to the 

entropy of individual link, suggesting that the run-length 

probing scheme is asymptotically optimum for large Eulerian 

all-optical networks, even if much of topological information 

is suppressed by probing over an Euler trail.  

IV. RUN-LENGTH PROBING SCHEMES FOR NON-EULERIAN 

ALL-OPTICAL NETWORKS 

To employ the run-length probing scheme, we assume in 

Section III that the network is Eulerian. This requires that all 

(or except two) the nodes in the network have even degrees 

[6]. However, practical all-optical networks may not satisfy 

this condition and thus the run-length probing schemes cannot 

be applied directly. In this section, we propose two alternative 

approaches to apply the run-length probing scheme to non-

Eulerian topologies and characterize their corresponding cost 

performance analytically.  

A. The Disjoint-Trail Decomposition Approach 

Any non-Eulerian graph can be decomposed into a set of 

link-disjointed trails, among which no two trails share the 

same link. The set of link-disjointed trails can be identified via 

a sequential deletion procedure. We start from any node and 

walk along the graph until we have to pass some link twice. 

The set of passed links forms a trail (a sequence of 

interconnected links without repetition), and are deleted from 

the graph. The same trail deletion process is resumed from any 

other node of non-zero degree until the graph is empty. For 

example, in Fig. 3(a), the sequential deletion procedure results 

in two link-disjointed trails in the non-Eulerian network, i.e., 

trail A-B-C-D-E-F-G-H-I-J-B and trail C-M-L-K-J.  

After the decomposition step, the run-length probing scheme 

can be applied to each link-disjointed trail sequentially. The 

network state is uniquely identified after all the trails have 

been probed.  

Unfortunately, the decomposition could potentially break 

one sub-state 01i  into two sub-states of '0i  and '0 1i i−  on two 

link-disjointed trails. The number of probes to identify sub-

state 01i  is at least less than the number of probes to identify 

two sub-states of  '0i  and '0 1i i− , where the additional number 

of probes is upper bounded by 1. If the number of individual 

link-disjointed trails is T , the average number of probes per 

link is given by 

( ) ( )
non Euler

run lengthp p T m
−

∞ − ∞≤ ≤ +L L L . (7) 

Since each link-disjointed trail reduces the number of odd-

degree nodes by two, we conclude that 2oT n= , where on  is 

the number of odd-degree nodes in the network, and thus the  

upper bound becomes ( ) 2op n m∞ +L .  

In particular, we are interested in the class of non-Eulerian 

regular topologies, considered for cost-optimized all-optical 

network architectures in [7]. A graph is said to be regular of 

degree d  if the degrees of all the nodes are equal to d . For 

example, the d -nearest neighbors Graph, the symmetric 

Hamilton Graph and the Moore Graph (with the fully-

connected graph as a special case) are the most popular regular 

graphs considered for all-optical network architectures. The 

non-Eulerian property suggests that degree d  is odd and thus 

on n= . Notice that for a regular graph of degree d , the 

handshake property suggests 2 1n m d= . It follows that, for a 

non-Eulerian regular graph of degree d , the average number 

of probes per link is given by 

( ) ( ) 1
non Euler

run lengthp p d
−

∞ − ∞≤ ≤ +L L L .  (8) 

For cost-optimized  architectures (to the first order) of all-

optical networks with optical cross-connect (OXC) switches, 

Guan and Chan [7] have recently shown that, under the 

assumption of all-to-all uniform traffic, the optimal node 

degree d  asymptotically approaches infinity as the network 

size (in particular, the number of nodes) approaches infinity 

while their ratio approaches zero. It follows that, for a cost-

optimally architected all-optical network, the upper bound in 

(8) converges to the lower bound, indicating that the run-

length probing scheme is asymptotically optimum for large 

non-Eulerian regular networks with cost-optimized 

architectures. 

B. The Path-Augmentation Approach 

 In any network, we can replicate each link once along the 

shortest path between any two nodes of odd degree to make 

their degrees even. We call the shortest path between two odd-

degree nodes an augmenting path and the above replication 

operation a path augmentation. Notice that the path 

augmentation does not change the degree parity of any other 

nodes along the augmenting path, but reduces the number of 

Fig. 3. (a) Each non-Eulerian graph can be decomposed into a set of 

non-overlapping trails. (b)The complete graph M  to identify the 

minimum set of replicated links.
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odd-degree nodes in the network by two. Since the number of 

odd-degree nodes in a finite network is always even due to the 

handshake property (i.e., the sum of node degrees is even) [6], 

we can convert any non-Eulerian graph into an Eulerian graph 

via a finite number of path augmentations.  

After the path-augmentation step, the run-length probing 

scheme can be applied along the nominal Euler trail in the 

resulting Eulerian graph. Upon termination, all the link states 

have been identified except that a set of redundant links have 

been probed more than once. If possible, to reduce the 

diagnosis effort, we can skip those redundant links whose 

states have been identified previously. 

Moreover, we would like to minimize the number of 

replicated links resulted from the path-augmentation step, via a 

minimum-weight perfect matching approach. As illustrated in 

Fig. 3, this approach includes the following four steps:  

(1) an all-pair shortest-path algorithm (for example, the 

Floyd-Warshall algorithm [8]) is run to identify the set of all-

pair shortest paths among the set of odd-degree nodes  in the 

original graph (e.g., six distinct shortest paths for the set of 

odd-degree nodes {A, B, C, J} in Fig. 3(a));  

(2) a complete graph M  (i.e., Fig 3(b)) is created with the 

set of odd-degree nodes (i.e., {A, B, C, J}) and the weight of 

each link as the length of the shortest path connecting the two 

nodes in the original graph (e.g., the weight of link AJ is 2 

because the shortest path connecting node A and node J in Fig. 

3(a) is A-B-J);  

(3) a minimum-weight perfect matching algorithm (a perfect 

matching of a graph is a subset of links in the graph that touch 

all the nodes exactly once [8], which can be identified by the 

Edmonds' blossom algorithm [8]) is run over graph M  to 

obtain a perfect matching (e.g., {AJ, BC} is the minimum 

weight perfect matching in Fig. 3(b));  

(4) the original network G   is augmented along the set of 

paths chosen by the resulted minimum perfect matching except 

for the augmenting path with the maximum weight, because a 

graph with two odd-degree nodes is Eulerian. As a result, path 

B-C is augmented in Fig 3(a) via the dotted link. 

In the augmented graph, we can identify a nominal Euler 

trail, i.e., trail A-B-C-D-E-F-G-H-I-J-B-C-M-L-K-J, which 

passes link B-C twice. Notice that the number of replicated 

links is 1, which is significantly less than the number of links 

(14 in this case) in the graph. Moreover, this observation is in 

general true, as shown for the class of non-Eulerian regular 

network topologies. 

For non-Eulerian regular topologies (i.e., the d -nearest 

neighbors Graph, the symmetric Hamilton Graph and the 

Moore Graph) considered for all-optical networks [7], each 

contains a Hamilton path (a path containing each node exactly 

once) of size n .  It follows that all the augmenting paths can 

reside along the path and the number of replicated links is 

2n . Therefore, for a regular graph of degree d , the average 

number of probes per link under the path-augmentation 

approach is given by 

( ) ( ) ( )
non Euler

run lengthp p p d
−

∞ − ∞ ∞≤ ≤ +L L L L .  (10) 

For cost-optimized architecture whose optimal node degree d  

asymptotically approaches infinity as the network size (in 

particular, the number of nodes) tends to infinity [7], the upper 

bound in (10) converges to the lower bound, verifying that the 

run-length probing scheme is asymptotically optimum for large 

non-Eulerian regular networks with cost-optimized 

architectures. 

V. CONCLUSION 

In this paper, we address a very important cost driver for 

future networks by proposing a new network diagnosis 

technique that can substantially reduce network operating 

costs. We investigated the fault diagnosis problem for all-

optical networks with probabilistic link failures via an 

information theoretic approach.  Our research reveals that the 

complexity of the fault management system of all-optical 

networks can be related to the problem of how to represent the 

network states efficiently. In particular, we have shown that 

the failure identification cost can be kept as low as the 

information entropy of the network state by our proposed run-

length probing scheme, which exploits the unique property of 

all-optical networks. We believe that this research suggests 

fruitful connections between the two distinct research areas, 

i.e., Information Theory and network management, and will 

provide substantial insights and cost savings over current 

practices. 

For future research, it would be interesting to address the 

problem of how to diagnose failures when the network 

management system has no or limited prior knowledge of the 

link failure probability via an information theoretic approach.   
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