
 
 

Abstract—We investigate the fault diagnosis problem for all-
optical networks with probabilistic link and node failures in this 
paper. Our major contribution is the development of diagnosis 
algorithms that minimize the operating effort to identify failures. 
We achieve this by employing the fault diagnosis approach based 
on proactive probing with perfect feedback: knowledge of the 
network state is progressively refined through a sequence of 
optical probe signals, each of which is determined upon the 
results of previous probe signals (i.e. probe syndromes). To detect 
and localize failures in all-optical networks with probabilistic 
node and link failures, we introduce a network transformation 
that maps both link and node failures in an undirected graph into 
arc failures in a directed graph and apply our previously 
developed run-length probing scheme [1] to the directed graph. 
Our analytical and numerical investigation verifies our 
previously established guideline for efficient fault diagnosis 
algorithms: each probe should provide approximately 1-bit of state 
information, and thus the total number of probes required is 
approximately equal to the entropy of the network state. Hence the 
complexity of optical network fault management functionality is 
fundamentally related to the information entropy of the network 
state.   

I. INTRODUCTION 

Owing to the recent explosion in internet traffic [2], optical 
fiber, with its vast transmission bandwidth (~35THz) [3], has 
emerged as the only realistic transmission medium for 
backbone networks.  Moreover, all-optical networks [4], 
where data traverses lightpaths without any optical-to-
electrical conversion, will be increasingly prevalent in future 
broadband networks as a result of its expected lower cost and 
full transparency to different signal formats and protocols. 
However, as in the case of other networks, all-optical 
networks are vulnerable to physical failures [5] such as fiber 
cuts, switch node failures, optical amplifiers and transceivers 
breakdowns. These failures can lead to costly disruptions in 
communication, and their detection and localization can 
constitute a significant fraction of reoccurring network 
operating costs. To ensure specified levels of quality of 
service at an affordable cost, an efficient network management 
system – including efficient fault diagnosis capability - should 
be in place when all-optical networks are fully deployed in 
future. In this work, we focus on developing efficient fault 
diagnosis algorithms, which detect and localize failures in the 
optical layer, for all-optical networks. 

Presently, Synchronous Optical Network (SONET) infers 
the health of each SONET link by verifying the parity bits 
embedded in the overhead of data frames [3]. This approach is 

a manifestation of the fault diagnosis paradigm based on 
passive monitoring, as illustrated in Fig. 1(a). The monitoring 
module generates the events - alarms, warnings, parameters of 
network elements - as inputs to the fault diagnosis engine. 
Using various algorithms, such as neural networks [6] and 
Finite-state Machines [7], the fault diagnosis engine identifies 
a set of network elements whose failures may have caused the 
input events. Because the monitoring module is decoupled 
from the fault diagnosis engine, the network manager can 
follow a “divide-and-conquer” approach in designing different 
modules separately, and thus reducing design complexity. 
However, the absence of feedback from the diagnosis engine 
to the monitoring module could entail tremendous inefficiency 
in the fault diagnosis process. For example, one single failure 
could trigger a large number of redundant alarms, all of which 
are fed into the fault diagnosis engine. Combined with the 
network growth and faster switching speed, the redundancy in 
the input events could generate a large amount of management 
information. It will consume a fair amount of network source 
to transfer and store this large amount of management 
information, and thus the operating cost will be increased 
significantly. To make matters worse, because all these 
measurements are piggybacked onto real traffic, the states of 
infrequently used links might be obsolete when they are 
accessed. This will cause serious problems in some real-time 
applications with critical time deadlines. 

Motivated by these shortcomings of the passive monitoring 
approach to fault diagnosis, we proposed the fault diagnosis 
scheme in [1], based on proactive probing with perfect 
feedback. In an all-optical network, optical signals traverse a 
lightpath - a succession of interconnected links and nodes - 
without being detected by the intermediate nodes.  This 
property of optical networks permits lightpath probes to test 
the health of several links/nodes simultaneously. Our approach 
exploits this fact via a dynamic algorithm which chooses 
subsequent lightpath probes based upon the results of previous 
probe signals with the objective of minimizing the total 
number of probes (i.e., the overhead cost of fault diagnosis). 
This approach corresponds to the proactive fault diagnosis 
paradigm shown in Fig 1(b), where feedback from the fault 
diagnosis engine to the probing module (i.e., the event 
generator) provides the flexibility to minimize the number of 
probes required. 

Physically, these probing measurements can be 
implemented via two methods, depending on whether the 
chosen probing lightpath presently carries traffic or not. If 
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traffic exists along the chosen lightpath, the probing signal can 
be piggybacked onto the existing traffic, similar to the SONET 
parity check technique. On the other hand, if there is no traffic 
along the chosen lightpath, the probing signal can be sent out 
by an unused transmitter at the source node and received by an 
unused receiver at the destination node. On rare occasions 
when no transmitter/receiver can be used for probing, an 
alternative lightpath may be chosen to probe or the length of 
the original lightpath may be adjusted. For large networks, the 
impact of a small set of deviations from the optimal probe 
sequence on the overall efficiency of the fault diagnosis 
process can be negligible.  

Compared with the passive monitoring solution, our 
proposed adaptive lightpath probing approach has two 
significant advantages.  First, because all of the probes can be 
implemented without additional hardware provisions, no 
additional capital expenditure is required. Second, because 
each successive probe is dynamically chosen according to the 
results of previous probes (i.e, probe syndromes), we can 
reduce the operating cost of diagnosing failures to its 
minimum by solving an optimization problem, as shown in 
[1]. 

Our present work complements and extends our previous 
research in [1] from a more practical perspective.  In [1], we 
have investigated the fault diagnosis problem for all-optical 
networks with Eulerian topologies [9] under a probabilistic 
link failure model. In particular, we have established the 
mathematical equivalence between the fault diagnosis problem 
and the source-coding problem, which implies an entropy 
lower bound on the minimum average number of probes 
required and an information theoretic approach to translating 
efficient source coding algorithms into efficient fault diagnosis 
algorithms under the physical probing constraints (e.g., the 
run-length probing scheme based on the run-length code [10]). 
Here, we focus on fault diagnosis for all-optical networks with 
both node and link failures. To diagnose both node and link 
failures, we introduce a network transformation that converts 

the original undirected graph into a directed graph: each link 
in the original graph is replaced by two parallel directed arcs 
in opposite directions, and each node of degree d is replaced 
by a d ¥ d directed complete bi-partite graph [9], where any 
node in the left column is connected to any node in the right 
column via a directed arc. Under this transformation, both link 
and node failures in the undirected graph are mapped into arc 
failures in the directed graph. Moreover, the directed topology 
can always be made Eulerian, rendering the run-length 
probing scheme applicable. Depending on the relative 
dominance between link failure probability and node failure 
probability, different probing strategies are obtained through 
analytical and numerical investigations.  

This paper is organized as follows. In Section II, we review 
the near-optimum run-length probing scheme and present its 
performance in closed-form. In Section III, we introduce the 
network transformation that converts both link and node 
failures in the undirected graph into arc failures in the directed 
graph. In Section IV, we apply the run-length probing scheme 
to all-optical networks with probabilistic link/node failures, 
and characterize its corresponding performance compared to 
the entropy lower bound. 

II. RUN-LENGTH PROBING ALGORITHMS FOR FAULT 
DIAGNOSIS IN ALL-OPTICAL NETWORKS 

In [1], we have developed and characterized the run-length 
probing scheme to diagnosis link failures for Eulerian 
networks, which contains an Euler trail (i.e., a path containing 
all the links in the network topology without repetition).  The 
run-length probing scheme has two attractive features. First, 
the computational complexity of the scheme is on the 
polynomial order of network size (i.e., the number of edges in 
the network m). Second, the run-length probing scheme is 
asymptotically optimal because it achieves the minimum 
average number of probes per link for large networks. 

Essentially, the run-length probing scheme performs a two-
phase procedure to identify each individual failure along an 
Euler trail of the network: the failure detection phase and the 
failure localization phase. In the failure detection phase, a 
detection probe is sent over a set of ( ) pK p −−= − 2log1  
consecutive links along the Euler trail, where p is the edge 
failure probability. If all the links are fault-free, we move onto 
the next set of K consecutive links along the Euler trail. On the 
other hand, if the detection probe reveals that there is at least 
one faulty link in this set of links, the algorithm enters the 
failure localization phase. In this phase, given that there is 

(a)           (b) 
Fig. 1. Two alternative paradigms for fault diagnosis systems: (a) Fault 
diagnosis based on passive monitoring of events; (b) Fault diagnosis 
based on proactive probing of network elements.  
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Fig. 2. Demonstration of run-length probing scheme over a network. It 
contains a sequence of concatenations of two phases: the failure detection 
phase (dotted lines) and the failure localization phase (solid lines). 
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some failure in the detection probe, the “2m-splitting” binary 
searching algorithm [1] is employed to locate the closest faulty 
link to the source. After the fault is localized, the algorithm 
resumes the failure detection phase by sending another probe 
spanning K links along the trail immediately following the 
failure. Fig. 2 illustrates, through a simple example, the two-
phase probing scheme for efficient fault diagnosis with K = 8, 
where the dashed lines denote the fault detection phases and 
the solid lines denote the fault localization phases.  

Using the information theoretical interpretation of the run-
length probing scheme, we have approximated in [1] the 
average number of probes per link required by the run-length 
probing scheme by 

( ) ( ) ( ) 11     0
2bL p p H p pε∞ ≈  +  < ≤  , (1) 

where ( ) ( ) ( )2 2log 1 log 1bH p p p p p= − − − −  is the entropy 
function, and ( ) 5%pε <  for 0 0.5p< ≤ . Asymptotically, it 
can be shown that  

( )0
2

lim
logp

cp
p

ε→ ≈
−

,  (2) 

where ( )( )2 2 22 log log logc e e= − +  is a constant. (2) indicates 
that ( )pε  approaches zero asymptotically as the failure 
probably decreases, and thus the run-length probing scheme is 
asymptotically optimal when the network is reliable.  

III. NETWORK TRANSFORMATION FROM UNDIRECTED 
TOPOLOGIES TO DIRECTED TOPOLOGIES  

A. Optical Links and Link Failure Model 
In optical networks, bidirectional communication between 

adjacent nodes is typically achieved by means of two contra-
directional optical fiber links.  Thus, an optical link may be 
abstracted as an undirected graph edge in an undirected graph, 
or equivalently as a pair of contra-directional arcs in a directed 
graph.  In the following, we adopt the latter abstraction. We 
further assume that, in addition to being a representation of the 
physical optical fiber, each directed arc represents the optical 
amplifier to compensate for the power loss of optical signals. 
Any of these components can fail due to physical defects or 
mechanical fatigues. We assume that the state of transmitter 
and receiver associated with a directed arc can be locally 
monitored, so that the network management system can poll 
this information when it signals the probe.  

We assume that each directed optical link fails 
independently with probability of p ( )0 0.5p≤ ≤  over a fixed 
interval of time, which represents the time duration between 
fault diagnoses. This assumption of statistical independence 
among failures is reasonable when “normal” operation of the 
network is considered, because the equipments (mostly, 
optical amplifiers) abstracted into each arc operates 
independently from the equipment abstracted into other arcs.  
In the event of a catastrophic failure, however, this model is 
inapplicable and other approaches to ensure network 
reliability, such as lightpath diversity [5], can be resorted. 

B. Optical Nodes and Node Failure Model 
In an undirected graph representation of an optical network, 

a node is an abstraction of an optical switch that is responsible 
for optically routing signals from input fibers to output fibers. 
We assume that each network node of degree d is equipped 
with a dd ×  optical switch fabric, switching the optical beam 
from each input port to any desired output port, as shown in 
Fig 3(a). We further assume that each input/output port of the 
optical switch is equipped with a low-cost transponder 
(economically viable due to the VCSEL technology [11]), 
whose state of health is locally monitored and reported to the 
network management system upon polling.  We focus on the 
active components (e.g., the mirrors in MEMS optical 
switches) in the switch fabric, which could fail from 
manufacture defects and/or fatigue from normal use. 

Under these assumptions, each node i  of degree d  with a 
dd ×  optical switch fabric can be modeled by a directed 

bipartite graph, defined as follows: 
1. d virtual input nodes correspond to all the input ports of 

the switch, denoted as dki I
k ,,2,1, = ; 

2. d virtual output nodes correspond to all the output ports of 
the switch, denoted as dkiO

k ,,2,1, = ;  
3. Each virtual input node is connected to all the virtual 

output nodes via d directed arcs, as shown in Fig. 3(a). 
For each node of degree d, there exist d! different non-
blocking directed configurations, each comprised of a set of d 
directed arcs from input nodes to output nodes where no two 
arcs share the same head/tail node. For example, Fig. 3(b) 
shows some of the possible configurations for a node of 
degree 4. At any instance, the switch can take one and only 
one non-blocking configuration. Therefore, we can use one 
sample non-blocking directed configuration to model the 
corresponding network node for the purpose of fault diagnosis. 

In an analogy to the link failure model, we assume an 
independent failure model for each configuration of the optical 
switch: each input-output connection in the switch fabric fails 
independently with probability q ( )0 0.5q≤ ≤ . We assume 
that, once an input-output connection fails, all switching 
functions related to the responsible physical component fail 
simultaneously, that is, the optical signal in the input port 
cannot be switched to any output port. For any possible 
configuration of the network node, the independent 
component assumption suggests that each arc fails 
independently with probability of  q. This simplified node 
failure model captures the essence of practical switching node 
failures, and more practical node failure models can be 
addressed by appropriate extension of this simple model.  

(a)               (b) 
Fig. 3. Optical network node model: (a) an illustration of 4x4 optical 
switch fabric; (b) an illustration of some non-blocking directed 
configurations of a 4x4 optical switch fabric. 
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C. Network Transformation from Undirected Topologies to 
Directed Topologies 
The run-length probing algorithm developed in [1] can only 

diagnose link failures, whereas, nodes are also vulnerable to 
failures in practical all-optical networks. To diagnose failures 
in all-optical networks with directed optical links and possible 
node failures, we propose a network transformation as 
follows:  

1. We index all the links of each node in the undirected 
topology, as shown in Fig 4(a).  

2. We replace each link (i, j) in the undirected graph with 
two directed arcs, ji →  and ij → , in opposite 
directions.  

3. We replace each network node of degree d with an 
empty bipartite graph comprised of 2d nodes (i.e., two 
columns of indexed nodes without any arc connecting 
them).  

4. For each link (i, j) in the original graph, if its index in 
node i is k and its index in node j is l, we connect the 
output node O

ki  to the input node I
lj  with the directed 

arc ji → , and also connect the output node O
lj  to the 

input node I
ki  with the directed arc ij → . 

5. For each node, we choose an appropriate directed 
configuration such that the transformed graph is 
Eulerian (details will be elaborated later in this 
section.)  

Fig. 4 demonstrates how the network transformation described 
above converts an undirected graph into a directed graph.  In 
particular, Fig. 4 (a) depicts the original undirected graph, and 
Figures 4(b) and 4(c) depict two different directed graphs 
resulted from choosing different network node configurations. 

The transformed directed graph can always be made 
Eulerian for some appropriate set of node configurations. To 
see this, first note that the transformation replaces each 
undirected link with two directed arcs in opposite directions, 
and the in-degree of each network node (upon step 2 of the 
transformation) is therefore equal to its out-degree. It follows 
from the Euler Theorem [9] that the directed graph is Eulerian.  

The existence of an Euler trail in the directed graph depends 
on how the configurations are chosen for all the network 
nodes. As shown in Fig. 4(a), the original graph has an Euler 
trail of 4-2-3-4-1-2. However, Fig. 4(b) shows that the 

directed graph is decomposed into two disjointed cycles and is 
thus non-Eulerian. On the other hand, in Fig. 4(c), the Eulerian 
property of the graph is maintained by appropriately choosing 
the configurations of all the nodes. The set of appropriate node 
configurations can be identified as follows. After step 2 of 
replacing each link in the undirected graph with two parallel 
directed arcs, the resulting directed graph has an Euler trail 
since the in-degree of each node is equal to its out-degree. To 
maintain the Eulerian property, each node should be 
configured to match the way in which some chosen Euler trail 
passes through the node. For example, in Fig 4(a), the Euler 
trail passes node 1 from its link 2 to its link 1. It follows that 
node 1 should be configured as the across state as in Fig. 4(c), 
instead of the through state as in Fig 4(b). As a result, Fig 4(c) 
is Eulerian, while Fig. 4(b) is non-Eulerian. 

Through the proposed network transformation, both links 
and nodes in the undirected graph are mapped into directed 
arcs in the directed graph. Any directed arc connecting two 
virtual nodes in different switches corresponds to a directed 
optical fiber link in the all-optical network, which we shall call 
a link arc; and any directed arc connecting two virtual nodes in 
the same switch corresponds to a switching component (e.g., a 
MEMS mirror) in the all-optical network, which we shall call 
a switch arc. For an original undirected graph of m links and n 
nodes, the directed graph has 2m links arcs, and 2m switch 
arcs. In this way, the transformation maps both link and node 
failure in the original graph into arc failures in the transformed 
graph, which can be identified by the run-length probing 
scheme as shown in next section. 

IV. APPLICATIONS OF RUN-LENGTH PROBING SCHEMES FOR 
ALL-OPTICAL NETWORKS WITH PROBABILISTIC LINK/NODE 

FAILURES  
In this section, we address how to employ the run-length 

probing scheme for fault diagnosis to all-optical networks with 
probabilistic link/node failures through our proposed network 
transformation. 

To detect and localize node/link failures in an all-optical 
network, we first employ the network transformation to obtain 
the directed network topology, and then identify a directed 
Euler trail in the transformed graph. We observe that link arcs 
and switch arcs appear alternatively along any Euler trail. 
Without loss of generality, we assume that the directed Euler 

(a)                (b)                  (c) 
Fig. 4 An illustration of the network transformation from undirected topologies to directed topologies. (a) the original undirected graph, (b) one 
transformed directed graph without any Euler trail, (c) one transformed directed graph with an Euler trail.  
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trail starts from a link arc and ends with a switch arc. 
However, the difficulty here is that the failure probability of 
each arc along the Euler trail is heterogeneous, while the run-
length probing scheme requires that all the arcs fail 
independently with the same probability. Our proposed 
solution is to combine an adjacent switch arc and link arc into 
a virtual arc with failure probability of: 

pqqpr −+= .  (3) 
This combination results in a directed Euler trail of length 2m, 
in which the failure probability of each virtual arc in the Euler 
trail is homogenous.  Hence, the run-length probing scheme is 
now applicable.  

After the virtual arc combination step, the probing scheme 
follows a two-stage procedure. In the first stage, we employ 
the run-length probing scheme along the Euler trail to identify 
all the faulty virtual arcs. For a reasonably large network, the 
average number of probes per virtual arc is approximately 
equal to: 

( ) 3 5   if 0
2

3 51                          if 
2

arc
L p q pq p q pq

L
p q pq

∞
 −+ − < + − <= 

− + − ≥

. (4) 

where ( )pqqpL −+∞  is defined in (1).  Note that when the 

failure probability is higher than ( )3 5 2−  (the golden ratio), 

the run-length probing scheme always probes each virtual arc 
individually. Hence, in this case, the average number of 
probes per arc is always equal to 1 as indicated in (4). 

After this first stage, among all the 2m virtual arcs, the 
average number of failures is 2m(p + q - pq). Conditioning on 
the fact that one virtual arc fails, there are three possible 
failure scenarios: (1) a single switch arc failure with 
probability of (1-p)q/r, (2) a single link arc failure with 
probability of p(1-q)/r, or (3) a combined switch/link arc 
failure with probability of pq/r.  

During the second stage of the scheme, we deploy 

additional probes, using the built-in lasers in the optical 
switch, to determine which of the above three scenarios has 
occurred for each faulty virtual arc. At this point, we have two 
alternatives to proceed. If we probe the link arc first, with 
probability of (1-p)q/r the link arc is fault-free and we 
conclude, with only one probe, that the switch arc has failed; 
or with probability of 1-(1-p)q/r that the link arc has failed and 
we have to continue to probe the switch arc with a second 
probe. Under this alternative, the number of additional probes 
for each faulty virtual arc is given by 

( ) ( )
r
q

r
pq

r
qp

r
qpL

c
−+=



 −−⋅+−⋅= 2112111 . (5) 

Similarly, the second alternative is to probe the switch arc first 
and probe the link arc subsequently, if necessary. Under this 
alternative, the number of additional probes for each faulty 
virtual arc is given by: 

( ) ( )
r
p

r
pq

r
qp

r
qpL

c
−+=



 −−⋅+−⋅= 2112112 . (6) 

Comparing (5) with (6), we conclude that the optimal strategy 
depends on the relationship between the link arc failure 
probability p and the switch arc failure probability q. If p > q, 

we have 
cc

LL 21 > , which suggests that the switch arc should 

be probed first. On the other hand, if p < q, we have 
cc

LL 21 < , 
which suggests that the link arc should be probed first. It 
follows that the average number of additional probes for each 
faulty virtual arc is given by: 







−+=

r
q

r
p

r
pqL

c
,max2 . (7) 

Now, by combining our efforts in first identifying all the 
faulty virtual arcs, and then determining the sources of failure 
for each faulty virtual arc, we obtain the average number of 
probes per directed arc (or vulnerable component) as 

(a)                          (b) 
Fig. 5 The performance of the run-length probing scheme for all-optical networks with probabilistic link/node failures. (a)The average number of probes per 
component is compared to the entropy lower bound. (2) The probing algorithm inefficiency is plot for different link arc failure probability and switch arc 
failure probability pairs. 

0
0.2

0.4
0.6

0.8 0
0.2

0.4
0.6

0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Switch Arc Failure 
Probability, q     

Link Arc Failure 
Probability, p   

A
ve

ra
g

e 
N

u
m

b
er

 o
f 

P
ro

b
es

 p
er

 A
rc

Run−Length
Probing Scheme
Performance

Entropy Lower
Bound

10
−6

10
−4

10
−2

10
0

10
−6

10
−4

10
−2

10
0
0

0.1

0.2

0.3

0.4

0.5

Switch Arc Failure 
Probability, q     

Link Arc Failure
Probability, p  

P
ro

b
in

g
 A

lg
o

ri
th

m
 

In
ef

fi
ci

en
cy

, η

©1-4244-0357-X/06/$20.00     2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.



 
 

( )

( ) carc

carc
failuremixed

LpqqpL

LpqqpmLm
m

L

−++=





 −++≈−

2
1

2
1                      

22
4
1

. (8) 

We compare (8) with the entropy lower bound of (Hb(p) + 
Hb(q))/2 in Fig. 5. An immediate observation from Fig. 5(a) is 
that the average number of probes per arc is close to the 
entropy lower bound, as expected from our previous results on 
the near-optimality of the run-length probing scheme. This 
observation also lends support to our approach to fault 
diagnosis involving network transformations. A second 
observation, from Fig. 5(b), is that the probing algorithm 
inefficiency, which is defined in [1, equation (16)] as the ratio 
between the number of additional probes compared to the 
entropy lower bound and the entropy lower bound, increases 
as the difference between the link arc failure probability and 
the switch arc failure probability increases. This can be 
understood as follows. When the difference between p and q 
increases, one kind of failure occurs more probably than the 
other kind of failure. The general approach treats both the link 
arc failure and the switch arc failure equivalently. As a result, 
we pay the penalty for not exploiting in our algorithm the fact 
that one type of failure dominates the other. Our third 
observation, from Fig. 5(b), is that when p is equal to q and 
both approach zero, the probing algorithm inefficiency does 
not converge to zero as in the link-failure case [1]. In fact, if p 
= q, the link/node failure diagnosis problem is equivalent to 
the link failure diagnosis problem with twice as many links. It 
would be better to treat switch arcs and link arcs on equal 
basis, and thus employ the run-length probing scheme along 
an Euler trail of 4m links. On the other hand, the combination 
of switch arcs and link arcs definitely sacrifices performance 
when the failure probability is fairly low, because the two-
stage probing procedure is different from the optimal run-
length probing scheme.  

In summary, the numerical analysis suggests the following 
rules of thumb for applying the run-length probing scheme to 
all-optical networks with probabilistic link/node failures. First, 
when the link failure probability is equal to the switch failure 
probability, it is better to treat them equivalently and employ 
the run-length probing scheme over an Euler trail of 4m links. 
Second, when one type of failures dominates, we should focus 
on the dominant failure. Finally, for all other cases between 
the aforementioned two extremes, we should choose the 
proposed virtual arc approach. 

V. CONCLUSION 
In this paper, we investigated the fault diagnosis problem 

for all-optical networks with vulnerable links and nodes.  To 
apply our previous run-length probing scheme to all-optical 
networks with probabilistic link/node failures, we introduced a 
network transformation which converts the original undirected 
graph to the transformed directed graph. Both the link and 
node failures in the original graph are mapped into arc failures 
in the transformed graph, thus rendering the run-length 
probing scheme applicable. 

Complementing our previous work in [1], our present 

investigation reveals that the complexity of the fault diagnosis 
problem for all-optical networks is related to the information 
entropy of the network state. In particular, the operational 
network diagnosis cost can be kept as low as the information 
entropy of the network state by cleverly designed fault 
diagnosis algorithms, such as our run-length probing scheme.  
Our performance analysis verifies that the information entropy 
is the correct metric in the design of efficient network fault 
management system, and suggests different approaches to 
employ the run-length probing scheme efficiently.  More 
broadly, the connection between the distinct research areas of 
information theory and network management suggests that 
additional insights into network management issues can be 
gained from the more mature field of information theory.   

As a further step toward the practical fault diagnosis 
applications, we would like to investigate how often the run-
length probing scheme should be employed as a trade-off 
between the total operating cost and the timeliness of network 
state.  
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