
 
 

Abstract— A scalable fault management system, including 
fault detection and localization capability, is crucial for future 
all-optical networks. In our previous work [5-7], we have 
proposed adaptive fault diagnosis schemes that deploy proactive 
lightpath probes to identify network failures, and have developed 
an asymptotically optimal run-length probing scheme to 
minimize the diagnostic effort (i.e., the number of lightpath 
probes). In this research, we aim to investigate the diagnostic 
hardware cost, i.e., the cost resulted from transmitter/receiver 
(Tx/Rx) pairs for probe transmission and detection. As a 
benchmark, we first show that, in order to identify all possible 
network failures, all the network nodes have to be equipped with 
diagnostic Tx/Rx pairs. We then develop a probabilistic analysis 
framework to characterize the trade-off between hardware cost 
(i.e., the number of nodes equipped with Tx/Rx pairs) and 
diagnosis capability (i.e., the probability of successful failure 
detection and localization). Our results suggest that, for practical 
situations, the hardware cost can be reduced significantly by 
accepting a small amount of uncertainty about the failure status. 

I. INTRODUCTION 
All-optical networks [1-2], where data traverses lightpaths 
without any optical-to-electrical conversion at intermediate 
nodes, promise significant cost benefits that will enable 
broadband network services to be delivered to large 
populations at a much lower cost (per bit)  than with today’s 
technologies. The cost savings are mainly due to the 
replacement of electronic switching with optical switching of 
high date-rate lightpaths at intermediate nodes, thus 
eliminating the expensive process of optical-to-electrical-to-
optical (OEO). However, all-optical networks are susceptible 
to various physical failures, e.g., fiber cuts, switch node 
failures, transmitter/receiver breakdowns, and optical 
amplifier breakdowns [3]. These failures can lead to costly 
disruption in communication, and their detection and 
localization can constitute a significant fraction of recurring 
networking operating costs [3]. Therefore, to ensure specified 
levels of quality of service at an affordable cost, an efficient 
network management system – including an efficient fault 
diagnosis function – should be in place when all-optical 
networks are fully deployed. In this work, we focus on 
developing cost-efficient fault diagnosis schemes, which 
detect and localize failures in the optical layer, for all-optical 
networks. 

The significant difference between envisioned all-optical 
networks and current optical networks suggests that new fault 
diagnosis mechanisms are required. Presently, Synchronous 

Optical Network (SONET) and G.709 networks infer the 
health of each link by verifying the parity check bits 
embedded in the overhead of data frames at intermediate OEO 
nodes [3]. In some cases, optical spectrum analyzers 
embedded in nodes may try to infer the health of an optical 
link. These approaches are based on passive monitoring 
mechanisms that obtain network state information from 
existing traffics. However, such an approach cannot be 
extended to all-optical networks efficiently. If the passive 
monitoring scheme is to be deployed in all-optical networks, 
optical signals need to be tapped out at intermediate nodes for 
fault identification. This process of tapping out optical signals 
for fault detection and localization would diminish much of 
the cost benefits of all-optical networks. Moreover, because all 
of these measurements are piggybacked onto existing 
lightpaths, the states of infrequently used links might be 
obsolete when they are accessed. This will cause serious 
problems in some real-time applications with critical time 
deadlines [4]. 

Motivated by these shortcomings of the passive monitoring 
approach, we have proposed adaptive fault diagnosis schemes 
in [5-7], based on a proactive lightpath probing technique. In 
an all-optical network, optical signals traverse a lightpath 
without being detected by intermediate nodes.  This property 
of all-optical networks permits lightpath probes to test the 
health of several links/nodes simultaneously. Our approach 
exploits this fact to develop cost-effective fault diagnosis 
schemes. Specifically, optical probe signals are sequentially 
sent along a set of lightpaths over an all-optical network to test 
their states of health; and the network state (i.e., the failure 
pattern) is then inferred from this set of end-to-end 
measurements. Each successive probe is dynamically chosen 
among the set of permissible probes according to the results of 
previous probe signals (i.e., probe syndromes), with the 
objective of minimizing the total number of probes.  

We are interested in two design metrics for these proactive 
fault diagnosis schemes: the diagnostic effort (i.e., the number 
of lightpath probes) and the diagnostic transmitter/receiver 
(Tx/Rx) cost.  Previously in [5-7], we have established a 
theoretical framework to minimize the number of probes and 
have developed asymptotically optimal fault diagnosis 
schemes (i.e., the run-length probing scheme). At the same 
time, the hardware cost, i.e., Tx/Rx pairs needed to transmit 
and detect optical probe signals, contributes a significant 
portion of the fault-diagnosis cost. In this paper, we aim to 
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characterize this Tx/Rx hardware cost and understand its 
implications on practical network design. 

We develop a probabilistic framework to investigate the 
Tx/Rx cost for the proactive fault diagnosis paradigm. As a 
benchmark, we first show that all the network nodes should be 
equipped with diagnostic Tx/Rx pairs in order to identify all 
possible network states. This result prompts us to investigate 
the impact on the diagnosis performance when only a small 
fraction of nodes is equipped with diagnostic Tx/Rx pairs. Our 
analytical results suggest a trade-off between the number of 
nodes equipped with diagnostic Tx//Rx pairs and the diagnosis 
capability. The metric we employ for the diagnosis capability 
is the probability of all identifiable network states, defined as 
the cumulative diagnosability probability. This trade-off can 
be illustrated via the following example.  

Consider a linear network with 3 nodes and 4 directed arcs, 
where nodes do not fail and arcs fail independently with 
probability p , as illustrated in Fig. 1. First, if only one node is 
equipped with a Tx/Rx pair (either A, B or C), one can only 
diagnose the network state with zero arc failure, and the 
cumulative diagnosability probability is ( )41 p− . Second, if 
two nodes are equipped with Tx/Rx pairs (e.g., node A and C), 
the identifiable network state set is { Φ , {1}, {2}, {3}, {4}, 
{1,2}, {3,4}, {1,4}, {2,3}}, where Φ  denotes the network 
state with zero arc failures and {1} denotes the network state 
with arc 1 failure, and so on. In this arrangement, only a subset 
of the network states with two arc failures can be uniquely 
identified (e.g., network states {1,3} and {2,4} cannot be 
uniquely diagnosed). The cumulative diagnosability 
probability thus is ( ) ( ) ( )4 3 221 4 1 4 1p p p p p− + − + − . Finally, if all 
the nodes are equipped with diagnostic Tx/Rx pairs, any 
network state can be identified and thus the cumulative 
diagnosability probability is 1 . The cumulative diagnosability 
probability increases as the number of nodes equipped with 
Tx/Rx pairs increases.   

This example suggests an opportunity to reduce the 
diagnostic Tx/Rx hardware cost, by accepting a reduced 
cumulative diagnosability probability. In particular, when the 
network is relatively reliable, only a small fraction of nodes 
equipped with Tx/Rx pairs is needed to provide high diagnosis 
fidelity. It follows that a significant portion of the worst-case 
fault-diagnosis hardware cost can be saved in exchange for an 
acceptable amount of uncertainty about the network’s state.  

This paper is organized as follows. In Section II, we present 
the proactive fault-diagnosis architecture for all-optical 
networks including the network model, the fault-diagnosis 

design metrics, and the probabilistic analysis framework.  In 
Section III, we derive the cumulative diagnosability 
probability for any ring network by decomposing the network 
into a set of canonical linear networks with Tx/Rx pairs at 
both end nodes, and characterize the trade-off between the 
number of nodes equipped with Tx/Rx pairs and the 
cumulative diagnosability probability for ring networks. In 
Section IV, the trade-off for mesh networks is characterized 
via two alternative approaches: the cutset-based approach and 
the Euler-Trail-based approach. 

II. PROACTIVE FAULT DIAGNOSIS ARCHITECTURE FOR ALL-
OPTICAL NETWORKS 

A. Network Model 
All-optical networks can be abstracted as undirected graphs. 

An undirected graph G  is a pair of sets ( ),V E , where V  is the 
set of network nodes of size n , and E  is the set of optical 
links of size m . For example, Fig. 2(a) illustrates an optical 
network with 6 nodes arranged in a ring structure. However, in 
practice, connections between adjacent nodes are bidirectional 
and are usually achieved via two parallel optical fibers 
transmitting optical signals in opposite directions. To capture 
this practical constraint, we replace each undirected edge in 
the undirected graph with two directed arcs in opposite 
directions. It follows that the original undirected graph is 
transformed into a directed graph, as illustrated in Fig. 2(b). 
The number of arcs in the directed graph is 2m .  

We assume in this paper that nodes are invulnerable (the 
node failure case can be investigated via similar approaches as 
in [6]), and that arcs fail independently with probability p  
( )0 0.5p≤ ≤ . Moreover, we assume that the state of an 
individual arc does not change over the duration of the fault- 
diagnosis process. Therefore, each arc state can be modeled by 
a Bernoulli random variable, taking value 1 with probability 
p  for arc failure, and value 0 with probability 1 p−  for no 

failure. A network state s S∈  is referred to as a realization of 
all arc states, where { }2

0,1
m

S =  denotes the set of all possible 
network states. 

To detect and localize possible arc failures, we adopt the 
adaptive fault-diagnosis paradigm, based on the proactive 
lightpath-probe mechanism developed in [5-7]. In particular, 

Fig. 1. A motivational example: the trade-off between the cumulative 
diagnosability probability and the number of nodes equipped with 
diagnostic Tx/Rx pairs. 
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(a)             (b) 
Fig. 2: Network topology for all-optical networks: (a) undirected 
graph, and (b) directed graph. Each undirected link in the undirected 
graph is replaced by two directed arcs in opposite directions, to 
illustrate bidirectional connections between adjacent nodes. 
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optical probing signals are sequentially sent along a set of 
permissible lightpaths in the network and network failures are 
identified through the set of probe results. The result of each 
probe is called the probe syndrome, denoted as 0tr =  if all the 
arcs along the probed lightpath are UP (no failure) and the 
probe signal arrives successfully; and 1tr =  if any of the arcs 
along the probed lightpath is DOWN (at least one failure) and 
the probe signal never reaches the destination. Moreover, each 
successive probe is determined according to previous probe 
syndromes, with the objective of minimizing some preset cost 
function. 

B. Design Metrics for Fault Diagnosis Schemes 
We are interested in two design metrics for fault diagnosis 

schemes: the diagnostic effort (i.e., the number of lightpath 
probes) and the diagnostic Tx/Rx hardware cost. Optical 
Tx/Rx pairs are used in the data plane for probe transmission 
and detection. This part of the diagnostic cost is a one-time 
cost and is proportional to the number of nodes equipped with 
diagnostic Tx/Rx pairs. The diagnostic effort indicates the 
effort expanded to scheduling, transmitting and detecting 
optical probes and reporting probe syndromes. The diagnostic 
effort is recurring and is proportional to the number of 
lightpath probes deployed to identify the network state. 

For each design metric, there is a trade-off associated with 
it. When the diagnostic effort [5-7] is of interest, a trade-off 
exists between the diagnostic effort (i.e., the number of 
lightpath probes) and the diagnostic delay (i.e., the number of 
diagnostic steps), via three alternative diagnosis paradigms: 
adaptive diagnosis, non-adaptive diagnosis and multi-stage 
diagnosis. In this paper, our concern is to minimize the 
diagnostic Tx/Rx cost (i.e., the number of nodes equipped 
with diagnostic Tx/Rx pairs). Specifically, we investigate a 
trade-off between the fraction of nodes equipped with 
diagnostic Tx/Rx pairs and the cumulative diagnosability 
probability (i.e., the probability of successful diagnosis). 

C. Probabilistic Analysis Framework 
To identity all possible network states, any fault diagnosis 

scheme has to diagnose the network state with all the arcs 
failing simultaneously. This, in turn, requires the diagnosis 
scheme to be able to probe each directed arc individually, 
which can be achieved only if each node in the network is 
equipped with a pair of diagnostic transmitter and receiver. It 
follows that, for a network of n  nodes and m  links (or 
equivalently 2m  arcs), the number of nodes equipped with 
diagnostic Tx/Rx pairs is  

 dn n= , (1) 

in order to identify all possible network states. However, the 
cost of such a worst-case approach could be prohibitively high 
and limits its application for future all-optical networks. 

The fact that the probability mass is not evenly distributed 
among all network states provides us an opportunity to reduce 
the diagnosis hardware cost, with little loss in diagnosis 
capability. Due to the probabilistic arc failure model, some 

network states can occur with extremely small probability. 
However, in the worst-case analysis, the diagnosis scheme has 
to identify these network states by paying a high cost. Here, 
we propose a probabilistic analysis under which the objective 
of fault diagnosis is to identify the majority of network states 
by deploying less Tx/Rx pairs than the number of nodes in the 
network. This is similar to the lossy source coding problem in 
Information Theory [9] by encoding only the “typical sets”.  

The probabilistic analysis works as follows. We assume that 
dn  nodes are equipped with diagnostic Tx/Rx pairs. The 

fraction of network nodes equipped with Tx/Rx pairs is then 
defined as 

 dn
n

η = , (2) 

where 0 1η< < . For a given subset of nodes equipped with 
diagnostic Tx/Rx pairs, the set of all network states, denoted 
as S , is partitioned into two mutually exclusive and 
collectively exhaustive subsets: the set of identifiable network 
states ( IS ), and the set of unidentifiable network states ( US ), 
with I US S S= ∪ .  We define the cumulative diagnosability 
probability as the sum probability of all the network states in 
the set of identifiable network states, i.e., 

 ( ) ( ), , Pr
I

D d s S
n n p sβ

∈
=∑ , (3) 

where ( ) ( )2Pr 1 m iis p p −= −  is the probability of any network state 
with 0 2i m≤ ≤  arc failures. Similarly, we define the cumulative 
undiagnosability probability as the sum probability of all the 
networks in the set of unidentifiable network states, 

 ( ) ( ), , Pr
U

F d s S
n n p sα

∈
=∑ . (4) 

The example of a 3-node linear network in Section I suggests 
a trade-off between the cumulative diagnosability probability 
(or the cumulative undiagnosability probability) and the 
number of nodes equipped with diagnostic Tx/Rx pairs. That 
is, the cumulative diagnosability probability increases as the 
number of nodes equipped with diagnostic Tx/Rx pairs 
increases and more network states can be identified uniquely. 
In the rest of this paper, we characterized this trade-off for 
ring networks and mesh networks, and develop useful insights 
for practical network design. 

III. EFFICIENT TX/RX DEPLOYMENT FOR RING NETWORKS 
In this section, we present a systematic approach to 

calculate the cumulative diagnosability probability for any 
ring network with a fraction of nodes equipped with Tx/Rx 
pairs, by decomposing the network into a set of canonical 
linear networks, both end nodes of which are equipped with 
diagnostic Tx/Rx pairs. For example, in Fig. 2(b), if node 1 
and node 4 are equipped with diagnostic Tx/Rx pairs, the 
network can be decoupled into two canonical linear networks, 
i.e., 1-2-3-4 and 4-5-6-1. In both canonical linear works, only 
end nodes are equipped with diagnostic Tx/Rx pairs. 
Therefore, we can first derive the cumulative diagnosability 
probability of canonical linear networks, and then synthesize 
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the cumulative diagnosability probability for any ring network 
with a subset of nodes equipped with Tx/Rx pairs. Using this 
result, we then characterize the trade-off between the target 
cumulative diagnosability probability and the required fraction 
of nodes equipped with diagnostic Tx/Rx pairs. 

A. Canonical Network Analysis: Linear Network with 
Diagnostic Tx/Rx Pairs at Both End Nodes 
In this subsection, we consider a canonical linear network 

with 1k +  nodes and 2k  unidirectional arcs. As illustrated in 
Fig. 3, only the two end nodes (i.e., node 0 and node k) are 
equipped with diagnostic Tx/Rx pairs. 

Only a subset of network states can be identified uniquely 
as a result of only two diagnostic Tx/Rx pairs. We have 
looked at the case of 2k =  in the motivational example. 
Generalized from this simple case, for the canonical linear 
network, any network state with more than three arc failures 
can not be uniquely identified. Among the set of network 
states with two or less arc failures, three types of failure 
patterns can be identified with adaptive fault diagnosis 
schemes:  

1. The first type of identifiable failure patterns contains 
network states with zero arc failure. The number of 
network states in the first category is 1 and the probability 
of that network state is ( )21 kp− . As illustrated in Fig. 4(a), 
this network state can be uniquely identified by two 
probes from node 0 to node k and from node k to node 0.  

2. The second type of identifiable failure patterns contains 
network states with a single arc failure. The number of 
network states in the second category is 2k  and the 
probability of such network state is ( )2 11 kp p −− .  As 
illustrated in Fig. 4(b), any network state in this category 
can be uniquely identified by two probes from node 0 to 
node k and from node k to node 0 to detect, followed by a 
binary searching algorithm to localize. 

3. The third type of identifiable patterns contains a subset of 
the network states with two arc failures. In particular, 
among all the ( )1 2k k −  network states with two arc 
failures, the following two classes of failure patterns are 
diagnosable, i.e., failure patterns with two arc failures in 
both directions of one bidirectional link (i.e., arc failures 
at {1, 2k}, {2,2k-1,…,  {k-1,k+2} or {k,k+1}}, and 
failure patterns with two arc failures in two consecutive 
arcs in the same direction (i.e., arc failures at {1,2}, {2,3}, 
…, {k-1,k}, {k+1, k+2}, …, {2k-1,2k}. As illustrated in 
Fig. 4(c) and (d), any network state in this category can be 
uniquely identified by two probes from node 0 to node k 

and from node k to node 0 to detect, followed by two 
binary searching procedures from both ends to localize. 
The total number of network states in the third category is 
3 2k −  and the probability of such network state is 

( )2 22 1 kp p −− .  

The cumulative diagnosability probability for the canonical 
linear network is thus equal to the sum probability of all the 
identifiable network states,  

 
( ) ( ) ( )

( ) ( )

2 2 1†

2 22

, 1 2 1

                 3 2 1

k k
D

k

k p p kp p

k p p

β −

−

= − + −

+ − −
, (5) 

for 1k ≥  and  0 1p< < . Notice that the ratio between the 
number of identifiable network states with two arc failures and 
the number of network states with two arc failures is on the 
order of 1 k  (i.e., ( ) ( )( )3 2 1 / 2k k k− − ). When the arc failure 
probability is small, the contribution of the subset of 
identifiable network states with two arc failures is negligible. 
However, when the arc failure probability is high, we need to 
keep the length of the canonical linear network small so that 

Fig. 3. The canonical linear network with k+1 nodes and 2k arcs: nodes 
at both ends are equipped with diagnostic Tx/Rx pairs. 
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(d) 
Fig. 4. Diagnosis schemes for canonical linear networks under three 
types of diagnosable failure patterns: (a) failure pattern with zero arc 
failure, (b) failure patterns with single arc failure, (c) failure patterns 
with two arc failures in both directions of one bidirectional link and (d) 
failure patterns with two arc failures in two consecutive arcs in the same 
direction. 
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the contribution of this subset of identifiable network states 
with two arc failures is kept insignificant.  

B. Cumulative Diagnosability Probability for Ring 
Networks 
In this subsection, the cumulative diagnosability probability 

for a ring network is derived by decomposing it into a set of 
canonical linear networks.  

Consider a ring network with n  nodes, among which a 
subset of dn  nodes are equipped with diagnostic Tx/Rx pairs. 
The ring network is decoupled into dn  canonical linear 
networks, both end nodes of which are equipped with 
diagnostic Tx/Rx pairs. We denote the length of each 
canonical linear network as ik , 1, 2, , di n= " . Using the 
cumulative diagnosability probability for the canonical linear 
network, we can synthesize the cumulative diagnosability 
probability for the ring network as 

 ( ) ( )†

1

, , ,
dn

D d D i
i

n n p k pβ β
=

= ∏ . (6) 

For a given number of nodes equipped with Tx/Rx pairs, it 
is natural to maximize the cumulative diagnosability 
probability by optimally distributing them among all the 
network nodes. We have not yet derived the optimum 
distribution, but have assumed that the set of dn  diagnostic 
Tx/Rx pairs are evenly distributed among all the network 
nodes and derive the cumulative diagnosability probability 
under such a deployment policy. Although the uniform 
distribution policy may not be optimal, it is a reasonable 
starting point, especially for symmetric graphs. 

Under the uniform Tx/Rx deployment policy, the length of 
each decomposed canonical linear networks is made as equal 
as possible and the length of each canonical linear network 
could be k ∗  and 1k ∗ + , where dk n n∗ =    . Moreover, the 

number1 of decomposed canonical linear networks with length 
k ∗  is ( )1 dk n n∗ + − , and the number of decomposed canonical 
linear networks with length 1k ∗ +  is dn k n∗− . Notice that, when 

dn n  is an integer, all the decomposed canonical linear 
networks have the same length of k ∗ . It follows that the 
cumulative diagnosability probability is given by 

 ( ) ( ){ }( ) ( ){ }1† †, , , 1,
d dk n n n k n

D d D Dn n p k p k pβ β β
∗ ∗+ − −∗ ∗= ⋅ + ,(7) 

where the first term results from the decomposed canonical 
linear networks of length k ∗  and the second term is due to the 
decomposed canonical linear networks of length 1k ∗ + .  

In practice, the cumulative diagnosability probability of (7) 
can be further approximated as a function of the fraction of 
nodes equipped with Tx/Rx pairs. For the special case that 

dn n  is an integer, the cumulative diagnosability probability 

of (7) would be reduced to be ( ) ( ){ }† 1, , ,
n

D Dn p p
η

β η β η −= . 

In general, using the approximation �( ) �( )† †, 1,D Dk p k pβ β≈ + , 

we can approximate the cumulative diagnosability probability 
as 

 ( ) ( ){ }† 1, , ,
n

D Dn p p
η

β η β η −≈ . (8) 

Therefore, for the rest of this paper, we use (8) to approximate 
the cumulative diagnosability probability for ring networks. 

C. Diagnostic Cost-Performance Trade-Off  
In this sub-section, we characterize the trade-off between 

the diagnostic hardware cost (i.e., the number of nodes 
equipped with diagnostic Tx/Rx pairs) and the diagnostic 
performance (i.e., the cumulative diagnosability probability). 
Our results demonstrate that the diagnostic hardware cost can 
be reduced significantly by accepting some reasonable amount 
of uncertainty about the network state.   

For practical engineering design, we would like to calculate 
the fraction of nodes equipped with Tx/Rx pairs required to 
provide a target cumulative diagnosability probability (or a 
tolerable cumulative undiagnosability probability). Indeed, for 
a given cumulative diagnosability probability of Dβ , we can 
identify the minimum fraction of nodes equipped with 
diagnostic Tx/Rx pairs  by exhaustively searching over (8).  

In Fig. 5, we plot the required faction of nodes equipped 
with diagnostic Tx/Rx pairs, for different target cumulative 
diagnosability probabilities, as a function of the arc failure 
probability, for a ring network with 100 nodes. Notice that all 
the curves share a similar “S” shape. In one extreme, when the 
arc failure probability is small, the number of nodes with 
 

1 Let x  and y  be the number of canonical linear networks with length *k  

and 1k ∗ + , respectively.  First, because the total number of canonical linear 
network is dn , we have dx y n+ = . Second, because the total number of 

segments is n , we have ( )* 1xk y k n∗ + + = . Solving these two equations, we 

obtain ( )1 dx k n n∗= + −  and dy n k n∗= − .  

Fig. 5. The required fraction of nodes with Tx/Rx pairs for different target 
cumulative diagnosability probabilities is plot against the arc failure 
probability. They share similar “S” shapes. 

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

Arc Failure Probability, p

F
ra

ct
io

n
 o

f 
N

o
d

es
 w

it
h

 T
x/

R
x 

P
ai

rs
, η

 

 

Exact:α
F
=10−2

Exact:α
F
=10−6

Exact:α
F
=10−10

Approximate:α
F
=10−2

Approximate:α
F
=10−6

Approxmiate:α
F
=10−10

Analytical:α
F
=10−2

Analytical:α
F
=10−6

Analytical: α
F
=10−10

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

5363



 
 

Tx/Rx pairs is either 1 or 2. In the other extreme, when the arc 
failure probability is high, the required fraction of nodes 
equipped with Tx/Rx pairs is close to 1. Between these two 
extreme cases, there is a transition phase from a small fraction 
of nodes equipped with diagnostic Tx/Rx pairs to a large 
fraction of nodes equipped with diagnostic Tx/Rx pairs.  

These observations can be understood as follows. The 
cumulative diagnosability probability in (8) can be expanded 
as 

 ( ) ( ) ( ) ( )2 2 1 21 2 1n n
D p np p pβ η −= − + − +Ο , (9) 

where ( )2pΟ  denotes a polynomial of p  with an order of at 
least 2.   Notice that each term in (9) corresponds to one class 
of identifiable network states. The first term of ( )21 np−  
corresponds to the subset of network states with zero arc 
failure. The second term of ( )2 12 1 nnp p −−  corresponds to the 
subset of network states with a single arc failure. The third 
term corresponds to the subset of network states with two or 
more arc failures. The significance of these terms depends on 
the arc failure probability.  

In one extreme, when the arc failure probability is small, the 
cumulative diagnosability probability is first dominated by the 
first term and then by the first two terms. In the former case, 
when the target cumulative diagnosability probability is less 
than ( )21 np− ,  it is sufficient to diagnose the network state 
without any arc failure with one diagnostic Tx/Rx pair. In the 
latter case, when the target cumulative diagnosability 
probability is less than the sum of the first two terms, it is 
sufficient to diagnose the subset of network states containing 
zero or a single arc failure, achieved by two diagnostic Tx/Rx 
pairs. Therefore, there exist two thresholds as the arc failure 
probability increases, as shown in Fig. 5.  

In the other extreme, when the arc failure probability is 
high, the probability mass of all network states is mostly 

contributed by networks states with multiple arc failures. In 
this case, almost all of the nodes have to be equipped with 
Tx/Rx pairs in order to identify the subset of network states 
with multiple arc failures.  

Between these two extreme cases, for a target cumulative 
diagnosability probability, the required fraction of nodes 
equipped with Tx/Rx pairs increases as the arc failure 
probability increases. In this regime, we first hypothesize that, 
the cumulative diagnosability probability in each decomposed 
canonical linear network is dominated by the subset of 
network states with zero and a single arc failure. To verify this 
hypothesis, we can approximate the cumulative diagnosability 
probability in (8) as, 

 ( ) ( ) ( ){ }1 12 2 111 2 1
n

D p p p
η

η ηβ η η
− − −−≈ − + − , (10) 

where the contribution from the subset of identifiable network 
states with two arc failures in each decomposed linear network 
is suppressed. In Fig. 5, we also plot the fraction of nodes 
equipped with Tx/Rx pairs to provide a target cumulative 
diagnosability probability, obtained by exhaustively searching 
over (10). We observe that, the approximation is very close to 
the exact solution derived from (8), especially when the arc 
failure probability is small. With this approximation, the 
required fraction of nodes equipped with Tx/Rx pairs can be 
derived by solving the following equation, 

 ( ) ( ){ }1 12 2 111 2 1 1
n

Fp p p
η

η ηη α
− − −−− + − = − , (11) 

for a tolerable cumulative undiagnosability probability of Fα . 
Solving (11) by using a second-order Taylor expansion, we 
can approximate the required fraction of nodes equipped with 
diagnostic Tx/Rx pairs as 

 ( )
22

F
F

npη α
α

∗ ≈ , (12) 

(a)                           (b) 
Fig. 6. (a) Harary graph with 8 nodes and 16 links. (b) The number of identifiable link failures and the required number of nodes equipped with diagnostic 
Tx/Rx pairs as a function of cumulative undiagnosability probability. 
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for small Fα  and 21 2 1Fn np α≤ ≤ . In Fig. 5, we also plot the 
required fraction of nodes equipped with diagnostic Tx/Rx 
pairs to provide a tolerable cumulative undiagnosability 
probability, based on the analytical result in (12). Notice that 
the analytical result matches the exact solution from (8) 
closely, especially when the arc failure probability is small.  

IV. EFFICIENT TX/RX DEPLOYMENT FOR MESH NETWORKS 
In this section, we address the problem of efficient Tx/Rx 

deployment for mesh networks via two alternative approaches. 
One approach progressively identifies all the network states 
with up to κ  link failures. The other approach extends our 
results for ring networks to Eulerian graphs.  

A. Cutset-based Approach 
For a given mesh network of n  nodes and m  links, we can 

order all the network states, based on the number of link 
failures contained in the network state, into a sequence of 
disjoint subsets, 0 1, , , mS S S" ,  where iS  denotes the set of 
network states containing i  link failures. The sum probability 
of all the network states in state set iS  is  

 ( )1 m ii
i

m
P p p

i
− = − 

 
, (13) 

for 0,1, ,i m= " .  
For a target cumulative diagnosability probability Dβ , 

starting from the set 0S , we can progressively identify all the 
network states with up to κ  link failures by deploying more 
diagnostic Tx/Rx pairs, so that the sum probability of all the 
identifiable sets of network states is larger than the target 
diagnosability probability, i.e., 

 
0

i D
i

P
κ

β
=

≥∑ . (14) 

Solving inequality (14) numerically, we can obtain the number 
κ  so that all the networks states with up to κ  link failures are 
identifiable. 

The number of Tx/Rx pairs required can be determined by 
the following cutset approach. In order to identify the network 
state set iS  (i.e., all the network states with i  link failures), 
we need to deploy one Tx/Rx pair in each nontrivial subgraph 
(i.e., containing at least one link), resulted from any edge 
cutset of order i . Otherwise, it is not possible to uniquely 
identify the states of some edges in the cutset. It follows that 
the efficient Tx/Rx deployment problem can be translated into 
the following combinatorial problem: for an integer number 
κ ,  what is the minimum set of nodes in a graph such that a 
node from the minimum set exists in each nontrivial subgraph 
resulted from any cutset with an order up to κ ?   

As an example, we consider a Harary graph with 8 nodes 
and node degree 4d =  as illustrated in Fig. 6(a). We plot the 
required number of nodes equipped with diagnostic Tx/Rx 
pair, dn , and the number of identifiable link failures, κ ,  as a 
function of the cumulative undiagnosability probability Fα  in 

Fig. 6(b). We can see that the required number of nodes 
equipped with diagnostic Tx/Rx pairs decreases as the 
cumulative undiagnosability probability increases.  

However, for a generalized mesh network, this problem is a 
NP-hard problem (in the worst case) in graph theory2, and thus 
we will seek an alternative approach, based on ring network 
results, in the next sub-section. 

B. Euler-Trail-based Approach 
The analysis for ring networks can be extended to derive 

performance bounds for network topologies with an embedded 
ring structure, such as Eulerian graphs (an Eulerian graph 
contains a path that passes through all the links without 
repetition.) Non-Eulerian graphs can be approximated well 
with Eulerian graphs by a path augmentation approach [7].  

In particular, as illustrated in Fig. 7, all the links in an 
Eulerian graph can be re-arranged into a ring network by 
replicating each node with 2d  virtual nodes, where d  is the 
node degree. Under such a network transformation, our 
analysis for ring networks can be applied directly. However, 
the transformation suppresses a rich set of possible probing 
paths in the original network. It follows that the derived 
cumulative diagnosability probability is a lower bound, i.e.,   

 ( ) ( ) ( ){ }1 1
1

1 211 1
nd

D p p p
η

η ηβ η η
− − −−≥ − + − , (15) 

for the transition phase. Due to the bidirectional graph model 
used here, (15) is different from (10). This result, in turn, 
suggests that the resulting fraction of nodes equipped with 
Tx/Rx pairs for any target cumulative diagnosability 
probability is an upper bound on the required fraction of nodes 
equipped with diagnostic Tx/Rx pairs, i.e., 

 ( )
2

4F
F

ndpη α
α

∗ ≤ , (16) 

where Fα  is the tolerable cumulative undiagnosability 
probability. Notice that the required fraction of nodes 

 
2 When 4κ ≥ , this problem can be converted into the vertex cover 

problem in graphs with maximum vertex degree of 3, since any edge can be 
turned into a connected component by deleting all other edges adjacent to its 
endpoints. 

Fig. 7. Node replication approach: (a) a node of degree d has d/2 in 
degree and d/2 out degree, (b) the node is replicated with d/2 virtual 
nodes, each of which has 1 in degree and 1 our degree. 

(a) (b)

d/2

d/2
d/2
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equipped with diagnostic Tx/Rx pairs decreases as the 
cumulative diagnosability probability increases. The result of 
(16) is plot in Fig. 6(b) for the Harary graph of 8 nodes and 
node degree 4. Notice that the number of nodes equipped with 
Tx/Rx pairs is larger than the result from the cutset approach, 
because rich connection in mesh networks is not exploited in 
the Euler-Trail-based approach.  

 The tightness of these performance bounds depends on 
both the arc failure probability and the node degree. When the 
arc failure probability is small and/or the node degree is small, 
these bounds are expected to be tight. When the arc failure 
probability is small, the cumulative diagnosability probability 
in each decomposed network is dominated by network states 
with zero and a single arc failure. When the node degree is 
small, the benefit of additional node degree is not significant 
enough to change the order of magnitude. However, when the 
node degree is large, these bounds could be loose. In this case, 
the rich set of connections in the mesh network of degree 
larger than 2 should be explored to identify failure patterns 
with multiple arc failures, and thus reduce the number of 
nodes equipped with Tx/Rx pairs.  

V. CONCLUSION 
In this paper, we built upon our previous research on 

proactive lightpath probing schemes to investigate the cost-
effective Tx/Rx deployment for probe transmission and 
detection in all-optical networks. We developed a probabilistic 
framework to characterize the trade-off between the number of 
nodes equipped with diagnostic Tx/Rx pairs and the 
cumulative diagnosability probability. Our investigation 
suggested that the diagnostic hardware cost can be reduced 
significantly by accepting a reasonable amount of uncertainty 

about network failure status.  
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