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Abstract— We propose using diversity via multiple disjoint 
lightpaths at the optical layer to achieve ultra-reliable 
communication with low delay between any source-destination 
pair of all-optical networks. A Doubly-Stochastic Point Process 
model is used to characterize the photo-events of a direct 
detection receiver. The error probability can be designed to be 
significantly lower than that of a system without lightpath 
diversity. System parameters, such as the number of lightpaths 
used, are optimized to achieve efficient utilization of the limited 
optical transmitter power. 

Keywords-all-optical network; lightpath diversity; share-risk 
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I.  INTRODUCTION  
When deployed, all-optical networks [1][2] will lead an 

architectural revolution for both long-haul and access networks. 
In all-optical networks, data traverse the network from source 
to destination without any optical-to-electrical conversion 
along the lightpath. During the past few years, optical networks 
have evolved from simple capacity expansion via wavelength- 
division multiplexing (WDM) to including other features, such 
as optical wavelength switching, dynamic reconfigurability and 
improved reliability. In this paper, we focus on the problem of 
providing ultra-high reliability for all-optical networks, which 
is crucial in many applications such as the interconnection of 
aircraft control systems. 

In all-optical networks, communication between the 
transmitter and the receiver can be interrupted by failures that 
are located at different layers and/or interfaces between 
adjacent layers. To provide ultra-reliable communication in all-
optical networks, two mechanisms can be used to counteract 
these failures: protection-switching and simultaneous lightpath- 
diversity.  

Currently, the prevailing scheme is protection-switching 
approach, as implemented commercially in SONET-based 
optical networks. In this scheme, if a failure interrupts a source-
destination connection, a detection algorithm locates the 
failure, and the connection is switched to another dedicated or 
shared backup lightpath. This scheme works well if the 50ms 
restoration time, specified by the SONET standard [3], is 

acceptable. However, due to the ultra-high data rate of optical 
networks (>10Gbps), a short-time interruption can result in a 
large amount of data loss. Furthermore, in some critical 
applications (e.g. when the network is used for transporting 
control signals between the cockpit and control surfaces in an 
aircraft), the time-deadline of control-message delivery needs 
to be shorter than 1-ms and probably ten times faster in failure 
detection. This is faster than the speed at which most optical 
components can switch. For these types of applications, the 
protection-switching mechanism cannot meet system 
requirements. Instead of increasing speeds of failure detection 
and lightpath switching to meet the increasing data rate and the 
critical time deadline, diversity via multiple disjoint lightpaths 
belonging to different shared-risk groups can provide reliable 
end-to-end data delivery in the presence of failures (e.g., fiber 
cuts and node crashes) [4][5].  

For the system proposed here, the entire mechanism is 
implemented at the Physical Layer, and the network must be 
designed with a densely-connected physical topology such that 
there are multiple lightpaths between the source-destination 
pair [13]. For each channel symbol, the modulated light is split 
and sent through multiple independent lightpaths.  At the 
receiver, received signals are combined optically before 
detection, or individually detected and electrically combined 
for symbol decisions. This allows a much faster response than 
protocols that provide end-to-end reliability at higher layers, 
such as TCP at the Transport Layer.  

Moreover, as we will show, if the received signal-to-noise 
ratio (SNR) is high enough, the symbol error probability when 
using the maximal lightpath diversity is asymptotically equal to 
the probability of disconnecting the source-destination pair 
(i.e., we cannot find a connected path between the source-
destination pair.) For any source-destination pair connected by 
M  independent lightpaths, the asymptotic error probability is 

Mf where f is the individual lightpath failure probability. By 
choosing an optimal M , this limit can be made arbitrarily 
small compared to the asymptotic error probability of using a 
single path between the source-destination pair. This scheme 
requires network topologies with good all-terminal 
connectivity, which has been investigated intensively in [14].  
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In this paper, we describe the lightpath-diversity network 
architecture and obtain a tight performance bound on the error 
probability, which is used to optimize overall system reliability. 
The remainder of this paper is organized as follows:  In Section 
II, we formulate the detection problem and introduce the 
structured receiver architecture. As a benchmark, we 
characterize the error probability performance of the proposed 
system via an idealized receiver in Section III. In Section IV, 
the network is optimized via (1) minimizing the error 
probability for a given amount of transmitted power and (2) 
minimizing the transmitted power for a target error probability. 

II. PROBLEM FORMULATION 

A. Network Model 
We assume that the physical topology of the optical 

network has dense enough connections such that M  
independent lightpaths can always be found between source-
destination pairs, as shown in Fig. 1 [13]. Physically, all the 
lightpaths must belong to different shared-risk groups to 
guarantee their independence. Each lightpath is modeled as an 
additive-noise channel with ON and OFF states. The OFF state 
corresponds to a disconnected lightpath and occurs with 
probability ( )0 1f f≤ ≤ . The ON state occurs with 
probability1 f−  and corresponds to a viable lightpath. 
Mathematically, the input-output relation of the channel can be 
expressed as Y FX N= +   , as shown in Fig. 2, where X  and 
Y are the input and the output, F  is a Bernoulli random 
variable with ( )Pr 0F f= =  and ( )Pr 1 1F f= = − , and N  is 
the additive noise (zero if no optical amplifier is used). For the 
source-destination pair, we define a lightpath state vector 

( )1 2, , , T
MF F F=F " , where 'siF  are identical and independent 

Bernoulli random variables.  The source-destination pair is also 
characterized by a delay vector ( )1 2, , , T

Mτ τ τ=τ "  and an 

attenuation vector ( )1 2, , , T
Ml l l=L " .  For simplicity, we 

assume all the attenuation parameters are equal and normalized 
to one. Note that this result can be generalized to non-equal 
attenuation case by employing a corresponding optimal power 
allocation algorithm in the source node.  

Binary Pulse-Position Modulation (BPPM) is used to 
simplify the receiver implementation by not having to 
adaptively set the decision threshold as in the case of On-Off-
Keying (OOK). The modulated signal is split into M  parts. 
Each is sent over an independent lightpath to the receiver. With 
the assumption of identical and independent lightpaths, a 
uniform power allocation algorithm is optimal (See Appendix 
A). At the destination node, the receiver combines the M  
optical signals received over the disjoint lightpaths to make 
symbol-by-symbol decisions.  

With direct detection, the photo-event count obeys Poisson 
statistics [6] if the optical signal is generated by a single-mode 
laser. The photo-event arrival rate λ  (the number of photo-
event per unit time) is determined by the received optical 
power. In our case, the received optical power is a random 
variable due to the random channel model. As a result, at the 
output of detectors, photo-event counting processes can be 
modeled as Doubly-Stochastic Point Processes [7].  

B. Structured Receiver Architecture 
We can design the optical receiver using two different 

approaches. Due to the quantum nature of weak optical signals, 
one method is to use a full quantum description of the receiver, 
and optimize it over the class of physically realizable 
measurements [8]. In this paper, we take a second “structured” 
or “semi-classical” approach [9]. These are not optimal 
quantum receivers but they are within a factor of two in energy 
efficiency of the optimum receiver for binary signaling. The 
infrastructure of all possible structured receivers can be 
separated into three cascaded processing modules as illustrated 
in Fig. 3: an optical signal processing module, an optical 
detection module, and an electrical signal processing module. 
The three modules must be jointly optimized to achieve a 
globally optimum performance. 

III. SYSTEM CHARACTERIZATIONS 
In this section, we characterize the lightpath-diversity 

scheme with a tight upper bound on the symbol error 
probability. We assume that an idealized receiver obtains the 
lightpath state vector F  from a “genie”. At the optical signal 
processing module, M optical delay lines are used to 

Fig. 1.  Network model for an M-connected source-destination pair in
densely-connected all-optical networks. 

 M independent paths 

     Source Sink

 X 

F N 

Y=FX+N

Fig. 2. Input-output model of an individual lightpath. X is the input, Y
is the output, F is a Bernoulli random variable, and N is the noise. 

Fig. 3.  Structured receiver architecture. It is separated into three
cascaded modules: an optical signal processing module, an optical
detection module and an electrical signal processing module. 
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compensate the delay variations among the M disjoint 
lightpaths (Since we use M  parallel detectors, fiber delay can 
also be replaced by time delay in the electrical signal 
processing stage). At the optical detection module, the photo-
events at the output of M  direct detectors are recorded for 
symbol decisions. At the electrical module, the Maximum 
Likelihood (ML) decision rule is applied to the vector output of 
the detectors to make optimal symbol decisions. 

A. Photo-event Counting Process 
With the BPPM signaling and uniform power allocation, 

the transmitted power over the thi  lightpath is 

( ) ( )0    0 2
0          2

s
i

P M t T
P t

T t T
≤ ≤

= 
≤ ≤  (1) 

under hypothesis 0H  (i.e., symbol “0”),  and the transmitted 
power over the thi  lightpath is  

( ) ( )1 0            0 2
   2i

s

t T
P t

P M T t T
≤ ≤

=  ≤ ≤  (2) 
under hypothesis 1H  (i.e., symbol “1”). In both cases, sP  is the 
average output power of the laser. 

If there is no noise in fiber channel, under hypothesis 0H , 
the recorded photo-event rate at the output of the thi  detector is 
given by 

( ) ( )0    0 2
0             2

i s
i

F M t T
t

T t T
λ

λ
≤ ≤

= 
≤ ≤   . (3)               

Under hypothesis 1H , the recorded photo-event rate at the 

output of the thi  detector is  

( ) ( )1 0               0 2
   2i

i s

t T
t

F M T t T
λ

λ
≤ ≤

=  ≤ ≤ .  (4) 
In both cases, s sP hλ η ν= (η is the detector quantum 
efficiency, hν  is the photon energy) is the rate parameter of 
the photo-event counting process. The received optical signals 
can be corrupted by amplifier noises if optical amplifiers are 
used.  We assume that the noise process receives contributions 
from many spatial-temporal modes and the probability of two 
successive photo-events coming from the same spatial-
temporal mode is close to zero. In this case, the Weak Photon-
Coherence Assumption holds, and we can approximate the 

noise-driven photo-event counting process by a Poisson 
Process with a constant rate nλ  equal to its mean arrival rate.  
Combining (3) and (4), the photo-event counting process has a 
random arrival rate ( ) ( )j

i i nF tλ λ+  for given hypothesis jH , as 
shown in Fig. 4 for 1iF = . It follows that recorded photo-event 
counting processes can be modeled as Doubly-Stochastic Point 
Processes.  

B. Optimum Decision Rule 
If m M≤  lightpaths are ON during the symbol duration, 

we can re-index them from 1  to m  for a genie-aided receiver. 
Under this scenario, the optimal decision rule is the same as the 
detection rule for the scenario with m perfectly reliable 
lightpaths [7], i.e., 

l

l

0

1

1 2
1 1

H H
m m

i i
i i

H H

k k
=

= =
=

>
<

∑ ∑
, (5) 

where 1ik  and 2ik  are the number of photo-events recorded 
during [ ]0, 2T  and [ ]2,T T  over the thi  lightpath, 
respectively. 

C. System Characterization: Error Probability Bound 
In this subsection, we derive a tight upper bound on the 

error probability for the genie-aided receiver via a two-step 
procedure: (1) the upper bound of the conditional error 
probability on the number of ON lightpaths is calculated, and 
then (2) the overall error probability upper bound is calculated 
by averaging the conditional error probability bound over the 
distribution of the number of ON lightpaths. 

Given that m lightpaths are ON during the transmission, the 
conditional error probability is given by 

( ) 0 1 2 0
1 1

1 1 2 1
1 1

1 2 0
1 1

Pr | Pr | ,

                Pr | ,

              Pr | ,

m m

i i
i i

m m

i i
i i

m m

i i
i i

m P k k H m

P k k H m

k k H m

ε
= =

= =

= =

 
= ≤ 

 
 

+ ≥ 
 

 
= ≤ 

 

∑ ∑

∑ ∑

∑ ∑
, (6) 

where the second equality is due to the symmetry of binary 
pulse-position modulation and 0 1 1 2P P= =  for equiprobable 
digital source . Since a closed form solution of ( )Pr | mε  is not 
available, we use the exponentially tight Chernoff upper bound 
[10], that is,  

( ) ( )

2 1
1 1

1 2 0 0 0
1 1

Pr | , | ,

            exp 1 1

M M

i i
i i

s k kM M

i i s
i i

s ss
n n

k k H m E e H m

mN
mN e mN e

M

= =

 
 − 
 

>
= =

−

 ∑ ∑   ≤ ≤   
    

  = − + + −  
  

∑ ∑

, (7) 

Fig. 4. Detected photo-event rates for two hypotheses with BPPM
signal when the lightpath is ON. 
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where 2s sN Tλ=  and 2n nN Tλ= are the number of data-
driven and noise-driven photo-events recorded over a period of 

2T . Since the inequality is valid for any value of 0s > , the 
bound can be tightened by minimizing right hand side of (7),  

( ) ( ) ( )
0

2

Pr | min exp 1 1

              exp

s ss
n ns

s
n n

mN
m mN e mN e

M

Nm N N
M

ε −

>

  ≤ − + + −  
  

   = − + −       , (8) 
where the minimum is achieved if and only if 

( )1s
s ne N MN= + .  

The overall error probability is then obtained by averaging 
the conditional error probability (8) over the distribution of m , 

( ) ( ) ( )
0

Pr Pr | Pr
M

m
m mε ε

=

= ∑
. (9) 

Let 
1

M
ii

m F
=

= ∑  be the number of ON lightpaths. Note that 
m has the binomial distribution, i.e., 

{ } ( ) ( )!Pr 1 .
! !

m M mMm f f
m M m

−= −
−  (10) 

Substituting (8) and (10) into (9), we obtain 

( ) ( ) ( ) ( ), ,

0

!Pr 1
! !

s n
M

m m N N MM m
GA

m

M f f e PB
m M m

ψε −−

=

≤ −
−∑ �

,
 (11) 

where ( ) ( )2
, ,s n s n nN N M N M N Nψ = + − . The right 

hand side of (11) has the form of the characteristic function of 
the random variable m . Using the fact that the characteristics 
function of a binomial random variable ( ),1X B n f−∼  is 

( )( )1
njvf f e+ −  [11], we obtain the overall error probability 

upper-bound as  

( ) ( ), ,1 s n
MN N M

GAPB f f e ψ− = + −  .  (12) 
For sanity check, if 0f = , (12) turns out to be 

( ){ }2
expGA s n nPB N MN MN= − + −

, (13) 
which is the error probability bound for the source-destination 
pair connected by M reliable lightpaths. 

The error probability upper-bound (12) is plotted in Fig. 5.  
In the high SNR regime, the error probability curves converge 
to error floors. These floors are due to the event that the source-
destination pair is disconnected, and are thus equal to Mf . It 
suggests that a network topology with high all-terminal 
connectivity is preferable [14]. In the medium SNR regime, the 
error performance depends highly on the number of lightpaths 
for a given amount of power. This indicates that we can 
optimize the number of lightpaths to achieve an efficient 

utilization of the transmitted power. We would avoid working 
in the low SNR regime due to its poor error performance. 

IV. SYSTEM OPTIMIZATIONS 
The output power of the transmitter is limited by physical 

constraints such as laser construction. To utilize this amount of 
power efficiently, we optimize the system for different 
objective functions over the choice of network parameters, 
such as the number of lightpaths used. 

A. Minimizing the Error Probability 
Given a limited amount of transmitter power, the number of 

lightpaths used can be optimized to minimize the error 
probability. Mathematically, this is equivalent to solving the 
following nonlinear programming problem, 

( ) ( ) ( )( )
( )

, ,min 1

. .     the set of positive integers

s n
MN N MG M f f e

s t M

ψ−= + −

∈` . (14) 
Instead of finding the exact solution, we relax the integer 

constraint, and assume M is a positive real number to solve the 
approximate problem without the integer constraint. Note that 
the minimum of ( )G M without the integer constraint is a 

lower bound of the minimum of ( )G M with the integer 
constraint. In the low SNR regime, we want to use only a few 
lightpaths. In the high SNR regime, we want to use as many 
lightpaths as possible. In the medium SNR regime 
with 0 1 2f< < , the optimum of M ∗  (See Appendix B) is 
approximated by 

( ),
sN

M
f Nnζ

∗ ≈ , (15) 

where ( ) ( ) ( ), ln 1 1 2 ln 1 1 0nf N f N fnζ = − + − > . This 

result indicates that the optimum M ∗  increases linearly with 
the transmitted power sN  with a slope of ( )1 ,f Nnζ , and 

each lightpath requires an optimal average number of photo-

Fig. 5.  The error probability bound for the idealized receiver with 
different number of lightpaths. 0.01, 2nf N= = . 
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events ( ),f Nnζ  determined by f and nN . For comparison, 

we have also found the optimal integer M ∗  by using an 
exhaustive search algorithm. In Fig. 6, the results from both the 
exhaustive search algorithm (bullets) and the analytical 
solution (lines) are plotted against different power levels, i.e., 
the average number of photo-events over duration of 2T . The 
analytical results match the numerical results well, and the 
slope, sM N∗ , is a monotonically increasing function of f . 

By substituting (15) into (12), the error probability bound is 
approximated by,  

( ){ }exp ,GA s nPB N f N≈ − Θ
, (16) 

where ( ) ( ) ( ), ln 2 , 0n nf N f f NζΘ = − > for 0 1 2f< < .  
The error exponent decreases linearly as the transmitted power 
with a slope of ( ), nf N−Θ , as shown in  Fig. 7. 

B. Minimizing the Total Transmitted Power 

In this subsection, we minimize the total transmitted power 
for a target error probability. In the low SNR regime, we want 
to use as few lightpaths as possible, but still satisfy the 
requirement of M

bP f≥ . It follows that the optimal number of 
lightpaths is given by ln lnbM P f=   

† .  In the high SNR 
regime, the optimum number of lightpaths is the same as the 
maximal number of available lightpaths. Both cases are trivial. 
For the medium SNR regime, the solution is derived as 
follows. 

For a given amount of transmitted power sN , from (16), the 
error probability is approximated by 

( ){ }exp ,b s nP N f N= − Θ
. (17) 

Using (17), for a given bP , the minimum optical power 
required is given by 

( )
( )

ln 1
,

b
s

n

P
N

f N
=
Θ

†

. (18) 
(18) suggests that the minimum transmitted power decreases 

Fig. 6.  The optimal number of lightpaths used is plot against different
signal power levels. As a reference, we also plot results from the
exhaustive search. ES: exhaustive search, AS: analytical solution. 
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linearly with the log of the error probability with a slope of 
( )1 , nf NΘ , as shown in Fig. 8(a) for both analytical and 

numerical solutions. 

By substituting (18) into (15), the optimal number of 
lightpaths to minimize the transmitted power is given by 

( )
ln

ln 2
bP

M
f

=†

. (19) 
(19) indicates that the optimal number of lightpaths decreases 
linearly with the log of the error probability with a slope of 

( )1 ln 2 0f < , as shown in Fig. 8(b). 

V. CONCLUSION 
In this paper, we proposed the use of lightpath-diversity to 

achieve ultra-reliable end-to-end communication in all-optical 
networks. For a network with dense connections, arbitrary 
reliability can be achieved if enough independent lightpaths are 
used. Since this approach is implemented entirely at the 
Physical Layer without the use of higher layer protocol such as 
ARQ’s, the response will be fast enough for applications with 
critical time deadlines. From a theoretical perspective, we have 
characterized the proposed lightpath-diversity system with a 
Doubly-Stochastic Point Process model. The fundamental limit 
on the error probability of the scheme has been obtained via a 
genie-aided receiver. This fundamental error metric could serve 
as a benchmark for other receiver architectures. Under typical 
operating scenarios, we have also optimized the system 
performance by choosing an optimal number of lightpaths used 
to utilize the limited optical power efficiently with different 
objective functions. 

From an engineering perspective, we will investigate the 
class of all structured receivers and explore the trade-off 
between the implementation complexity and the error 
probability in future research. 

APPENDIXES 

A. Optimum Power Allocation Algorithm 
For an M-connected source-destination pair, the power 

allocation vector is ( )1 2, , , T
MN N N=P … , and the state vector 

is ( )1 2, , , T
MF F F=F "  with a probability distribution 

of ( ) ( )1 1Pr 1
M M

i ii i
F M Ff f= =

−∑ ∑= −F . For the genie-aided receiver, 
the overall error probability upper-bound is given by 

( ) ( )( )
{ }

2

0,1
Pr

T T
n n

MGAPB e
− + −

∈
= ∑

F P N F N

F
F

 (A.1) 
where ( ), , , T

n n n nN N N=N …  is the noise power vector 

and{ }0,1 M  is the M-dimensional vector space over{ }0,1  field. 

To minimize the error probability, we solve the following 
nonlinear programming problem, 

( ) ( ) ( )( )
{ }

2

0,1
min   Pr

. .    

T T
n n

M

T
s

h e

s t N

− + −

∈
=

=

∑
F P N F N

F
P F

P 1 . (A.2) 
where ( )1,1, ,1 T

=1 …  . 

From the fact that, for each ( ) { }1 2, , , 0,1 M
MF F F= ∈F " , 

the function ( )( ){ }2

exp T T
n n− + −F P N F N  is a convex 

function defined over a compact convex set 

( ){ }1 2 1
, , , : M

M i si
N N N N N

=
=∑… ,   the minimization problem 

(A.2) has a unique solution.  

From the Karush-Kuhn-Tuck conditions [12], we obtain 

( ), 0L µ∇ =P P , (A.3) 
where ( ) ( ) ( ), T

sL h Nµ µ= − −P P P 1   , and µ is the Lagrange 
multiplier. From (A.3), the optimum power allocation vector is 
given by  

, , ,
T

s s sN N N
M M M

 =  
 

P …
. (A.4) 

(A.4) indicates that the uniform power allocation algorithm is 
optimal under the assumption of identical and independent 
multiple lightpaths. 

B. Optimum Number of Total Paths 
In this subsection, we solve the nonlinear programming 

problem given by 

( ) ( ) ( ){ }( )
0

min 1 exp , ,
M

s nM
G M f f N N Mψ

>
= + − −

. (B.1) 
From the Implicit Function Theorem [12], there exists a 

function ( ), ,s nM g N N f∗ = such that ( )G M  is minimized 

over the convex set{ }:M M +∈\ . We find an approximation 
of the function ( ), ,s nM g N N f∗ =  as follows. 

Let a f=  and ( ) ( ) ( ){ }1 exp , ,s nb M f N N Mψ= − − . Note 

that ( )0 , 1a b M≤ ≤  and ( ) ( )( )M
G M a b M= + . To first order 

approximation in the medium SNR regime, the optimum 
number M ∗  of lightpaths can be approximated by the value 
of M with which the curve Ma  and the curve Mb  meet, i.e.,   

( )MMa b M=  (B.2) 
If 0 0.5f< < , (B.2) has a unique solution given by  

1 1ln 2 ln

s

n

N
M

f fN
f f

∗ =
   − −

+   
    . (B.3) 

This approximation is found to be very good when compared to 
a numerical search for M ∗ . 
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