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Abstract—We consider the problem of optimally redirecting For example, [2] record8501 flash crowds appearing in the
user requests in a cloud-centric media network (CCMN) to CoralCDN over a 4-year span, i.e., aimost two flash crowds
multiple destination Virtual Machines (VMs), which elastically happen daily on average. The use of content delivery nesvork

scale their service capacities in order to minimize a cost fuction . .
that includes service response times, computing costs, analiting (CDNs), pioneered by Akamai [8], allows contents to be

costs. We also allow the request arrival process to switch beeen PuUshed towards the edge servers [9], which are closer to the
normal and flash crowd modes to model user requests to a end consumers. However, due to their inherent architdctura
CCMN. We quantify the trade-offs in flash crowd detection [imjtations, existing CDN solutions are inadequate to deal
delay and false alarm frequency, request allocation ratesand ity the exponential growth of multimedia traffic. First, ti
service capacities at the VMs. We show that under each requies . : . . ’ .
arrival mode (normal or flash crowd), the optimal redirection an increasing amoun_t O_f dynamic and _mEd'a Cor_]tents_ n
policy can be found in terms of a price for each VM, which the CDNs, web applications are becoming more intensive
is a function of the VM's service cost, with requests redireted in computation capability. As a result, the traditionalvssr

to VMs in order of nondecreasing prices, and no redirection selection mechanisms (e.g. forwarding requests to thesios
to VMs with prices above a threshold price. Applying our gerer designed for static contents may no longer be optima

proposed strategy to a YouTube request trace data set shows 101 S d. stati I f hani ff
that our strategy outperforms various benchmark strategies. [10]. Second, static resource allocation mechanisms rsuffe

We also present simulation results when various arrival tréfic  from poor resource dimensioning as multimedia traffic is
characteristics are varied, which again suggest that our psposed highly variable, as reflected by the high peak to valley ratio

strategy performs well under these conditions. [11] of user traffic. A static allocation based on peak hour
Index Terms—User request redirection, service capacity scal- traffic may have utilization rates as low as 5% to 10% [10],
ing, cost-aware provisioning, resource allocation, cloudentric [12], while an allocation based on average traffic may result

content network, quickest detection high latency during flash crowds. Therefore, one of our main
focus in this work is to develop robust allocation methods fo
I. INTRODUCTION multimedia CDNs that mitigate the under-utilization anghhi

There is an urgent need to design networks and protoctency problems of existing allocation methods.
that specifically address the many technical challenges-int The emergence of cloud computing offers a natural way
duced by the upsurge in Internet multimedia traffic [1], [2ff0 extend the capabilities of CDNs to support the growth
Cisco has predicted that Internet traffic will grow with arPf multimedia contents. In cloud computing, an organizatio
annual rate of 32% in next few years, i.e., nearly doubleyeve®r individual rents remote server resources dynamicalig, a
2.5 years [3], with the growth driven mostly by increaseHSers can add or remove server capacity at any time to meet
demand for video content and mobile data. By the yeHeir requirements [13]. In a cloud-centric media network
2015, video traffic, including TV, Internet, VoD and P2P, lwil (CCMN) architecture [14]-[16], virtual machines (VMs) are
constitute approximately 90% of global Internet traffic .[4]carved out of an underlying hybrid cloud, forming a con-
However, according to Broadband Properties Magazine, tif&it distribution overlay. The amount of system resources
annual growth rate of Internet infrastructure is mergl§o [5].  ¢an be dynamically scaled up and down, matching real-time
This mis-matched growth between supply and demand magplication demands. The introduction of cloud computimg i
trigger a quality-of-service (QoS) deterioration of netko CCMN poses additional technical challenges in its openatio
services, with end users starting to experience longendzge One particular example of importance is the user-redmecti
than before. mechanism, which should take into consideration the new
One feature of multimedia traffic is the higher frequerfesource allocation paradigm under cloud computing.
cy of flash crowds compared to normal Internet traffic [6]. In this paper, we address the problem of dynamically
A flash crowd occurs when there is an unexpectedly higi§aling the request allocation rates and service capaaifie
amount of user traffic during a short period of time [7]the VMs, where the request allocation rate of a VM is the
number of transaction requests allocated by a dispatcher to
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VMs incoming service requests to multiple VMs, while each VM
ALt receiving requests scales its service capacity in ordeyindly
" ...@ 51 minimize a cost function. Here, we assume that the arrival
request process consists of a stream of transactions, éach o
bortal Aoz » ...@ S, whic_h is to be gllocated to a si_ngle VM. This_reflects pradtica
architectures likeMapReducein which multiple VMs are
Y 4l Dispatcher F— A allocated transactions by thap function at the dispatcher.

[ ...@ S5 The topic of user request allocation or load balancing has
been well studied in the literature (see [19], [20] for sys/e
on this topic). We summarize some of the most relevant works

Arn below.
— lll@ Sn The earliest works on request allocation focus on servers
with known static service capacities. Several mechanisms i
Fig. 1. Request redirection model. cluding random balancing and weighted round robin methods

[21]-[23] were proposed. Subsequently, server loads [24],

. . . ) . . [25] and response times [26] are taken into consideration
derive optimal allocation and service capacity policiest take \,hen choosing the servers for redirection, leading to lower

into account detection delays as well as false alarms. Our Maervice response times. Due to the increasing complexity

contributions are the following: and heterogeneity of CDNs in terms of available computing,
« We develop a systematic framework for dynamic requegandwidth and memory resources, several works have pro-
allocation and service capacity scaling in a CCMN basgsbsed request allocation methods based on octree pairiiion
on quickest detection of changes in the arrival traffip7], directed graph models [28], and multilevel graph mesde
mode, which switches between normal and flash crowgo]. In addition, [30] propose load balancing by rediregti
modes depending on the traffic arrival rate. We considgfe requests to locations with the cheapest energy or by
an elastic cost model in which the service capacity of @aximizing energy reduction and minimizing the effect on
VM can be elastically scaled to model a cloud computinglient-perceived Service Level Agreements (SLAS).
environment. All the above works address the issue of request redirection
« We derive an optimal traffic mode change detectioi a traditional CDN, where the servers have fixed service
strategy, the optimal request allocation policy, and thgapacities. In contrast, in a CCMN, the VMs can elastically
optimal service capacity scaling policy under each traffiscale their service capacities to match the packet arraby
mode by introducing the concept of\éM price for each with the user paying a higher cost for a higher service capaci
VM. The price of a VM depends only on the service cosh [31], the request allocation problem is considered foatad
function of the VM itself, and determines the desirability.enter, in which a master server splits its request arrit@ls
of the VM to be allocated requests. We also show thall available computing servers, each with a different.réitee
there exists ¢hreshold pricewhich depends on the traffic authors consider a linear computing cost for each computing
arrival rate and the VM service costs. We interpret thiserver, and their goal is to optimize the service capacitgliof
threshold price as the maximum price the dispatcher d&rvers to minimize the system response time. In our pager, w
willing to pay for any VM. We show that the optimal VM consider a different request redirection model that is suinaé
selection policy consists of choosing only those VMs witkimpler but more suited to a CDN. Specifically, we assume that
a VM price less than the threshold price. there is a dispatcher that splits arrival requests to maltitMs
« We provide simulations that suggest that our proposed typtimally. Our goal is to minimize a weighted cost function
namic allocation and service capacity scaling mechanisggnsisting of the system response time, VM computing costs
outperforms other existing allocation methods when thgéhd routing costs. Furthermore, we aim to optimize not only
arrival request traffic has both normal and flash cromgie service capacities but also the allocation rates to ¥&th
modes. We test all strategies on a real world YouTuhg contrast to [31], which fix the allocation rates in advance
request data set, and we also use extensive simulatigis obtain the somewhat surprising conclusion that not all
to verify their performances when various arrival traffigyailable VMs should be utilized.
characteristics are varied. The reference [32] studies the interaction of service dapac
In the following, we first briefly review prior works that arescaling with load balancing, which is defined in the strict
related to this paper, and summarize some of the notatians tsense that a performance metric (like mean response time)
are commonly used in the paper. at all servers with allocated requests have the same value.
Equilibrium load balancing and service capacity scaling ar
derived. Our work in this paper differs from [32] in the
A. Related Works following ways. Firstly, we derive optimal allocation rate
In this paper, we develop cost-aware optimal request alland service capacities to minimize a cost function similar
cation and service capacity scaling mechanisms in a CCMbI [32] but without the strict load balancing constraint.isTh
under switching arrival traffic modes. In a user request ahodels a CCMN better since a CCMN is designed for e-
location system (cf. Figure 1), a dispatcher aims to retlirdastic rate allocation without the need to maintain the same
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equilibrium performance at each VM. Secondly, we do natith arrival rateay and a flash crowd mode (denoted E¥
restrict to monomial power cost functions at the VMs. Indteawith arrival ratear > aj at unknown times [12], [36].
we consider a general class of cost functions that is non-The dispatcher splits the arrival requests into independen
decreasing and convex in the service capacity (cf. Sectionsub-processes, which are redirected tonaximumof n >
for examples). This allows us to include various costs likeé destination VMsSy,...,S,. Suppose that the dispatcher
computation, power, storage, and routing costs. Lastly, was determined that the arrival process is in mddevhere
allow the arrival traffic to switch between different modes tJ € {N, F'}. Let \;; be theallocation rateor the rate of the
better model usage patterns in a CCMN, whereas [32] assumedirected Poisson arrival process at V#{ in traffic mode
that the arrival traffic statistics are fixed. J. A VM is said to beactive in mode J if the allocation
Minimizing content retrieval latency using caching andedgate A ;; > 0 (i.e., the dispatcher may choose to use less than
servers has been studied in [33], while [34] investigates th, VMs). Let n;; be theservice capacityprovided by S;,
joint problem of replica placement and building distriluti i.e., the number of arrival transactions that can be sedvice
paths in cloud CDNs. Although finding optimal distributiorby the VM per unit time. Similar to assumptions commonly
paths and replica placements are topics of importance ebpted in the CDN and multimedia cloud literature [31],][38
related to the problem of user request redirection, these are assume that the service time is an exponential distobuti
not within the scope of this paper. Instead we assume theth rate ;1 ;;. Each VM in Figure 1 is therefore modeled as
the redirection destinations have been fixed, and costs like M /M /1 queue. To ensure stability, we require that; <
the routing cost and computing cost function at each ofy; for all i and J. Let A\; = (Aj1,...,Asn) and py =
these destinations are known. The joint problem of contefit; i, ..., us,) be vectors of the allocation rates and service
placement and request redirection has been considere8]in [apacities respectively under traffic modeA pair (A, p.y)
under various constraints. However, the proposed alguorithis called apolicy.
is an integer linear program that has high complexity and isA redirection to VM S; incurs aservice costp; () =
sensitive to variations in request traffic, i.e., a new oation  s;(p;) + ¢; for each request, wherg is the unit routing
is required at each time step. It is still an open problem twmst, ands;(-) is the computing cost. For simplicity, we
find good approximations to the joint optimization problenassume that the total routing cokj,c; scales linearly with
that yield reasonable sub-optimal solutions. the allocation rate\ ;;. The computing cost;(-) at each VM
is non-decreasing in the service capacity. This models adclo
infrastructure where one or more VMs are initiated for each
application, and a larger cost is incurred if more computing
Throughout this paper, for each functigh : R — R, resources are requested by each VM. The computing cost
we used~ f(z) and 91 f(z) to denote the left and right includes the cost of the power used By, and the memory
derivatives of f(x) with respect to (w.r.t.)z, respectively. or storage costs required. The power cost is typically assum
For a convex functionf, the subdifferential at: is the set to be monomial in the service capacity [32], but we do not
[0~ f(x),0" f(x)]. We also use the notatior™ = max(0,z). restrict to such cost functions in this paper. Instead, wkema
For the readers’ convenience, we summarize some commottlg following assumptions regarding the computing cost.
used notations (which are formally defined in the sequel @her Assumption 1For each VMS;, i = 1,...,n, the computing
they first appear) in Table I. costs;(-) has the following properties:
The rest of this paper is organized as follows. In Section ll3) 5. () > 0 for all 1 > 0,

we pr.esent our syst(_am mer! ar!d problem formulation. V@) si(p) is a convex and non-decreasing function.of
describe the alternating optimization approach to dec@®po Assumption 1 models many computing costs of interest in

our optimization problem into several sub-problems inisect . o
. ) . loud architectures. To the best of our knowledge, all adst
lll. In Section IV, we consider the request redirection and . .
: . . . commercial cloud platforms like Amazon EC2, Rackspace,
service scaling sub-problem and present analytical swisti . . ;
. . . ) Google App Engine and Microsoft Windows Azure, charge
to it. In Section V, we present simulation results to vertig t . :
. flat hourly prices for a fixed amount of resources or each type
performance of our proposed strategy. Finally, we conclu e :
the paper in Section VI of instance. An exar_nple is the Amazon EC2 S_tandard On-
' demand Instance pricing model [39]. Under this plan, four
different types of VM instances are available (see Table II)
Il. PROBLEM FORMULATION These are called the Small, Medium, Large, and Extra Large

In this section, we describe our model and system setd stances, withl, 2, 4, and8 EC2 Compute Units respectively.

define some notations, and state our assumptions. We cons ch E(,:Z Compute Unit has a f!xed service C?p"?‘c'tWOf
the problem of redirecting an arrival request process attrgnsa_ctlons per hour, an_d the price of each unipeis, =
dispatcher or load balancer in a CCMN (cf. Figure 1), whic 06/ USD*" per transaction. The cost of an instarfecan
tends to experience sporadic bursts of user traffic [7]. &in en be modeled by

Poisson processes have been widely used to model request oy ) eipece, it p<eip,
arrivals under both normal and flash crowd traffic conditions si(p) = 00, if u> e,
[36], [37], we assume that the arrival process is a Poisson

process that switches between a normal mode (denotdd as 'USD is abbreviation for United States dollar.

B. Notations

)
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TABLE |
SUMMARY OF COMMON NOTATIONS.

Symbol Definition
oy traffic arrival rate to the dispatcher in mode J € {N, F'}
AJi request allocation rate to VM; in traffic modeJ
K service capacity of VMS; in traffic mode.J
T average fraction of time that the arrival traffic is in normabde N
n maximum number of VMs available to the dispatcher
si(+) computing cost of VMS;, as a function of its service capacity
Ci unit routing cost to VMS;
20 = s;(+) + ¢, service cost of VMS;
I6] weight for the total expected service cost incurred
T set of stopping times based on the number of request ariivaach time interval
Tn stopping time for detecting the switch of arrival traffic inaonode N to mode F’
Tr stopping time for detecting the switch of arrival traffic finanode /' to mode N
o(T) worst case detection delay of stopping tiffle
o(T) mean time between false alarms of stopping tife
- average additional cost incurred per request arrival duetection delays b’y or false alarms by
Tk
v(Ap, pr) | average additional cost per unit time due to false alarm&pyor detection delays by
ly mean time duration for each continuous time period that thiga traffic is in mode.J
ty maximum amount of time within which false alarms are restlve
Di VM price of VM §S;, see (16)
TABLE Il to (1), where an infinite cost is incurred when the service
AMAZON EC2INSTANCES AND PRICES capacity exceeds the maximum VM capacity.
Name No. of EC2 Compute Units Price . . . .
Small 1 0.06 USD/hour Assumption 1 implies that there is a trade off between the
Medium 2 0.12 USD/hour average mean response time [41] of the VMs given by
Large 4 0.24 USD/hour n
Extra Large 8 0.48 USD/hour Z Agi 1

b
= ooy iy — AL

and the total expected service cost incurred, given by
wheree; = 1,2, 4, or 8 depending on the type of instance that

S; belongs to. ThIS cost can be regarded as the “computing A

cost” if a dispatcher is redirecting application requess t Z ay pilpri)-

Amazon EC2 Standard On-demand instances, and it clearly =t

satisfies Assumption 1. Let 5 > 0 be a fixed weight and fod € {N,F}, A\; =
The Amazon EC2 pricing model and other similar commef it -y Adn)y s = (o, pyn), @nday > 0, let

cial cloud computing pricing models are designed with tetai n Asi

and enterprise consumers in mind, where lower level cdss li f(As, . ar) = Z 5 — )\ ﬂz i(p)-

power consumption and memory storage costs are transparent =1 W HI T AT

to a user, and included in a single pripgece. For the cloud @
service providers, to optimize a data center, the computilige are interested to find policies that minimize a weighted
cost can be more appropriately modeledsag:) = k;u%, average off(An, un,an) and f(Agr, pr, ar), while taking
wherek; > 0 anda; > 1 are positive constants. This cosinto consideration the switching traffic modes. To do this,
corresponds to the power used by the VM when its servieee divide time into equal unit intervals, and suppose that
capacity isu [40], and is adopted by [32]. In addition to theZ,,...,Z,_; are the number of arrivals in each interval
cost of power consumption, we can also include the cost when the arrival process is in mod¥, and 7, Z, 11, ...
processor and storage memory by lettipgu) = k;u® +r;u, are the number of arrivals in each interval when the arrival
wherer; > 0, and we have assumed that memory or storageocess has switched to modé The random variableg;,
cost scales linearly with service capacity [35]. (Such gahefori =1,...,v—1 are independent and identically distributed
cost functions are not considered in [32].) Furthermore, {ini.d.) Poisson random variables with ratg;, while Z;, for
practical systems, the maximum service capacity of any VM> v are i.i.d. Poisson random variables with ratge. The

is often limited; a fact that is not captured in smooth coshdexw is called a change point, and can take valueg ino],
functions. Our model allows us to define cost functions @imilwith » = oo corresponding to the case where the arrival
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process stays in mod® throughout. Asv is unknown, it is approximate the detection delayis to be independent and
inferred from the observations,;, Z,, .. .. Let 7 be the set of identically distributed for eacH. Finally, let F'; be the set of
stopping times associated witfy, 75, ... [18]. Each element arrivals at whichl’; incurs false alarms. Assuming that VMs'’

of 7 is a detection policy that can be used by the dispatchesponse times reach equilibrium and are independent of the
to determine if the arrival process has switched from md&de length of the traffic mode, the average equilibrium cost can b
to modeF'. Any detection policyl’ € 7 has a trade-off in the approximated as

worst case detection delay [18], [42] Ky K|
— (AN, pn,an) + —— f(Ar, ur, o
3(T) = supess SUEE[(T — ¢ + 1)* | Zu, ..., Z,_1], 11 (AN, N, an) ; {( Fy P, OF)
t>1
; N ; . . + 5 dicF afFp —an)+ =+ di’U AF,/LF
where E, is the expectation operator when= ¢, with its l ieZD:N ( ) l iEZD:F ( )
mean time between false alarms defined as |Fy| |Fre|
+ —trv(Ar, + —tsrep(ar — ayn). 3
0(T) = Eoo[T). T trv(Ar, pr) + ——trer(ap —an) (3)

. . . Far J € {N, F}, letl, be the mean time duration for each
One can similarly define the worst case detection delay and . . : . S
: continuous time period that the arrival traffic is in mode
mean time between false alarms for the case where the arrival ™~ . .
. Letting I — oo, we see that (3) can be approximately

traffic switches from modé’ to modeN. AR .
) : , i .. upper bounded by (4) below. Our optimization problem is then
Our goal is to find allocation rates; and service capacities formulated as

wy, for J € {N, F}, that are optimal in the sense that they
minimize a cost function that takes into account the trafie-o minimize 7 f(An, pun,an)+ (1 =) f(Ar, pr, ar)

in performance at each VM, the service cost incurred at each (1—m) (6(TN) ty
VM, and the costs incurred due to detection delays and false +er(ap —an) - I 0(Tr)
alarms. Suppose that the arrival traffic switches from mide (4)
to modeF'. When there is a delay in detecting the change in
. . . " . . m (5(TF) f,f
the arrival traffic mode, there will be a transient increase i +v(Ap, pp)— )
N lN G(TN)

the buffer length at each VM as the underlying arrival rate ha "
mcreasgd tavp. Tr_ns incurs qddltlonal memory or storage cost ¢ ;ch that Z Aji = ay, for J € {N, F},

and an increase in the service response time. We assume that =

the average adqmonal c_:c_)st per unit time is glvencb_YozF — 0< Asi < pigg for1<i<n,Je{N,F),
ay), wherecp is a positive constant that can be interpreted T ' '

as the average additional cost incurred per request ar@val N, Tr €T

the other hand, if a false alarm occurs, the system adopts fAehis paper, we suppose that the penalty functioNz, )

policy (Ar, ur) even though the policyAy, py) is optimal. s separable across VMs and satisfies the following assump-
This results in higher computing costs at the VMs. We assuiigns.

that false alarms are resolved within a fixed bounded time Assumption 2Let A = (A1, ..., An) andp = (11, - . ., i)
periodt s, with the average additional cost per unit time given

by a penalty functiorv(Ar, pur) incurred at the active VMs. (i) The penalty function/(A, u) has the form

A similar consideration can be made when the arrival traffic -

switches from modé” to modeN. For simplicity, we assume v(A, ) = Z)‘”’i(“” 3

that there is an ergodic stochastic process governingdlffectr =1

modes. For example, the sequence of traffic modes may be Wwhere¢ is a positive constant, and for eack:1,...,n,
modeled as a continuous time Markov process, with tramsitio v;(-) is a non-negative, convex, and non-decreasing func-
between modesvV and F. We do not require full knowledge tion.

of this underlying process, except that the average fraafo (i) We have minv(X, u) > 0, where the minimization is
time that the arrival process is in normal modeis given over all A and o such thatd < A; < p; for all i =

by = € (0,1), which can be estimated from historical data. ~ 1,...,7, and>_" | \; = ap.

In Section V, we present simulation results to show how the Assumption 2 covers many, but not all, practical cases
performance of our proposed algorithm is impacted by thg interest. For example, in designing a CCMN system, we
value ofr. can interpret the constagtin Assumption 2 as the average
Let Ty andTr be stopping times for detecting the switctcost (storage, service response time, computing cost etc.)
of arrival traffic from modeN to modeF, and vice versa, incurred per unit time when adopting the polityy, ) =
respectively. Consider a long interval consistinglaequest argmin f(Ay, pn,an) during normal traffic mode, while
arrivals, and let’{ ; be the set of requests at which the arrivahe functionv;(u) is the average cost incurred when V§)
process is in modd, for J € {N, F'}. Let Dy and Dp be provides a service capacity @f. Assumption 2(ii) ensures
the set of change points at which the arrival traffic switchekat the penalty function is always positive over all fessib
from mode N to mode F', and vice versa, respectively. Forallocation rates and service capacities, which is the casa f
eachJ € {N,F} andi € Dy, let d; be the length of practical system. We note that Assumption 2 does not cover
the detection delay incurred by the stopping tifig. We the most general case where the penalty function is of the
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formv(Ar, pr, AN, u), Which however introduces technical We now return to the optimization problem in (4). For

difficulties into the solution of (4) and its interpretatiom any fixed rates{A;, s | j € {N, F}}, finding the optimal

Section V, we provide simulation results that suggest thstopping timeTy is equivalent to solving the optimization

Assumption 2 does not significantly impact the performangeoblem (6), withA = (1—n)cp(ar—an)/(arly) andB =

of the policies derived from (4), compared to the “perfectit ;v(Ar, pr)/an, while to find the optimall'x, we setd =

strategy that knows the exact points in time when the traffie(Ar, pr)/(anly) and B = (1 — m)cpts(ar — an)/arp.

switches its mode. To simplify the mathematics, we use the approximations in
Proposition 1 to arrive at the following approximation foiet

A. Approximation for Detection Delay and False Alarm Freebjective function in (4),

guency
. . . . . Q()‘Nqu;)‘FaHFaO—NaO—F)

In this section, we briefly review the theory of quickest A 1 A

detection in a non-Bayesian setting, and derive approjamat  — 4 (AN s an) + (1= 1) f(Ap, pr. ar)
i i 1-— 1 1

to the change de_tectlon delay ;_and mean time betyve_en _false +eplap — aN)( ) ( <_ —141log 0N>
alarms, from which an approximation to the optimization aF lFMp \oNn
problem (4) is then obtained. tyMp

The problem of quickest detection is to optimally detect a or —logop — 1

change in the underlying distribution from which a sequence - 1 1
of observationsZ, Z,, ... is drawn from, subject to certain +v(Ap, pr)— (l Vi <— —1+log 0F>
false alarm constraints. The observations are drawn frbch AN \INAEN A OF

o tyM
distributionsQ, and @, before and after an unknown change +#) , (10)
pointv respectively. Since at each timewe only have access on —logon —1
to the previously observed random variabfgs for k£ < ¢, the where forJ € {N, F'}, o, is the threshold corresponding to
change detection policy is a stopping tirfiec 7. Ty and M, = |aylog(an/ar) + (ar — an)|.

A commonly used stopping time is Page’s CUSUM test With this approximation, in the rest of this paper, we
[18], [43] given by focus on obtaining the solution to the following optimizati

k problem:

=i >0: >
T, =inf{k >0 1%%; L(Z) > logo}, (5)
=J

minimize  Q(AN, uN, Ar, UF,ON,OF), (11)

where L(z) = log 93 (2) is the log-likelihood ratio ofQ, ~ Such that > Asi=ay, for J e {N,F},

w.rt. Q. It is well known that Page’s test is an optimal i=1 ‘
change detection policy in the sense that for anyhe test 0<Ayi <pui, forl<i<n, Je{N,F},
T, minimizes the detection dela§(7") among all stopping oy >1, for J € {N, F}.

timesT satisfyingd(T") > 6(T, ). The following result follows

directly from the optimality of Page’s CUSUM test, and We note that to s_olve (1_1)’ the param_ete:_st,aF,lN, .
Wald's approximations [18], and its proof is omitted. and [z need to be first estimated from historical data (using

Proposition 1:Supposed and B are positive constants, and®f €xample, the Maximum Likelihood Estimator (MLE) ap-
L(2) has no atoms undep,. There exists a threshold > 0 Proach [44]), while the remaining parametegs andt,, and

such that an optimal solution to the following optimizatio€Nlty functionu(Ar, pux) need to be chosen appropriately
problem depending on the application. We show an example in Section

V.
. B
minimize A§(T) + ——— (6)
0(T) I11. A LTERNATING OPTIMIZATION
such that T € 7, In this section, we apply the alternating optimization noeth
has the form (5). Furthermore, i > 1, then the optimal to simplify the optimization problem (11). We partition the
detection delay and the mean time between false alarms ¥&fiables in (11) into three subsetfAy,un), (Ar,pr)

be approximated as and the threshold&ry, o). We start with a random initial
1 1 guess ()‘N (O>a ”’N(O>a AR (O>a 1222 (0)7 ON (0)7 oFr (0>> for the
(Ty) = ﬁ(_ —1+logo), (7) optimization variables respectively. At each iteratignwe
11 7 perform the following series of optimizations,
0(T,) =2 — (o —1 —1), 8 .
o) = 50 ~logr =1 © w0 uv(0) = arg min QA v Ar(t = 1), el ~ 1),
and .the optimal threshold can be approximated as the on(t —1),0p(t — 1))
solution to (12)
Ao —logo —1)* = BMyMio, 9 (Ar(t), pur(t) = arg Arnin QAN (), un (1), AR, 1F,
FH MR
where fori = 0,1, M; = |Eq,[L(Z)]|, and Eg, is the on(t—1),0p(t—1))
expectation operator under the probability distribut@n (13)
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(on(t),0r(t)) = arg min QAN (), un(t), Ap(t), ur(t), Suppose that the dispatcher has to pay one dollar per
oNoE unit service time, ands dollars per unit cost (routing and
TN, OF) (14) computation), then the price of VM) is the expected total
where the minimizations in (12) and (13) are overXjl and Price that the dispatcher pays to VM. Interpreted in this
w, such that way, it is natural that the dispatcher should choose VMs with
n the lowest prices such that the system is stable. Thereiore,
Z)‘J-i —ay, follows that there is a threshold price, below which all VMs
= with a price cheaper than this threshold will be sent redibac
and requests. These are the active VMs. Furthermore, the VMs wil
provide service capacities that depend on this threshate pr
0<Aji<pgs, forl <i<n, We show that this intuitive argument holds in Theorems 1.
for J = N andJ = F respectively, and the minimization gqr eachi — 1,...,n, andp > 0, let
in (14) is over alloc > 1. The minimization in (14) can be
computgd by s_olving (9) with the gppropriateyaluesﬁ!oand. gi(p) = sup {u cwi(p) + pd " wi(p) < B} ) (17)
B substituted in. In the next section, we derive the solutions B
to the minimization problems (12) and (13). Sincew; is convex, we havéw;,(z) is non-decreasing, and

Since Q(An, pn; Ar; s on,0r) > 0 and the objective g () is a non-decreasing function. If the computing cost:)
function value is non-increasing at each iteration of theral s continuously differentiable over ajt € [0,0), g;(p) can
nating optimization procedure, the iterates converge tcall pe found as the implicit solution to

minimum of Q(-) ast — oo. To increase the chance of finding p
the global minimum, the procedure can be applied to several wi(p) + pwg(p) = 3
random initial guesses.

wherew}(u) is the first derivative w.r.ti. We make use of
IV. OPTIMAL REQUESTALLOCATION AND SERVICE gi(-) in Theorem 1 below to characterize the optimal number
CAPACITY of active VMs, service capacities and allocation rates. \g fi

In this section, we derive optimal allocation rates angrove a result regarding; (p;).
service capacities for the problems (12) and (13), which
correspond to policies the dispatcher adopts after it hastemma 1:Fori = 1,...,n, let i; > 0 be such thap; =
determined that the arrival process is in mode and F 1/fi; + Bw;(fi;). Then,fi; = g;(p;).
respectively. To simplify notations, we drop the iteratindex

¢ in the alternating optimization procedure in this sectibhe Proof: Since i; is the minimizer of the right hand side
problems (12) and (13) are both equivalent to the followind?-H-S.) in (16), there exists a subgradiénsuch that
optimization problem, 1 )
noy ny, s Biid. (18)
minimize ; i — N + ﬂ; Ewi(‘m’ (15)  Let w = gi(p;). From (17), we have
n -~ 1 5
such that » " \; = o, Bwi(p) + po~wi(p)) < 7 + Bw;(fii),
1=1

which together with (18) yields

where we lete = ay, \; = Ay; and p; = g, with J = wi(u) — wifi) < fiid — p0~w;(p). (19)
N and F' for (12) and (13) respectively. In addition, we lelSuppose that > ji,. Sincew;(-) is non-decreasing, we have
w;(p) = @i(r) and from (19) thatfi;d > pud~w; (). This is a contradiction since
0~ w;(pn) > d asw;(-) is convex. Therefore, we must have
u < f;. Similarly, from (17) and the convexity ab;(-), we
have

OS)\,L'</M, forlgign,

Topv; () (1/0F —1+logop
1— W)ﬂ()éN ZNMN

tyMy )

ON — log ON — 1 ’

for (12) and (13) respectively. We derive the general form of

the optimal solution for (15), which is applicable for botpj a"d the same argument as above implies fhat ji;. The
and (13). lemma is now proved. m

wi(p) = @i(p) + (

Bluwi(p) + 0" wi(p)) > =+ B (i),

3

A. VM Prices Theorem 1:Suppose that Assumptions 1 an_d 2 hold,. and
éhatpl < ... < pn < pn+1 = 0. Then, the optimal service

The form of the optimal solution to (15) is closely relate Lapacities for the optimization problem (15) are

to the price of each VM, which for=1, ..., n, we define as
1 . gi(p), forl <i<m*
C_mind = , P = 20
pi = min { . + sz(u)} (16) M { 0, form* <i<n, (20)
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and the optimal allocation rates are condition for.S; to be active comes from (24), which implies
. that if \¥ > 0, we haveb; = 0 and
. i — | ——t——, for1<i<m 1 .
Al = p— Bwi(u;) (21) P> + Bwip;) = pi-
0 for m* < i < )
’ " L= Now suppose that} = 0. From (24) and (27), we have
where 1
k p+b; < —— + Pwi(g:(p 28
. P TS sy T Pee®) @9
m” = arg max 1px | > | 9i(px) o Buosle o)) )
= o <p-a) (00 wlat) - —5 ). @)
< a}, (22) . e
where the last equality follows from (17). Sinée > 0, we
andp € (P, pm++1) is such thady """ | \F = a. have eitherg;(p) = 0 or B0~ w;(g:(p)) — 1/g:(p)* < 0. The
Proof: The Lagrangian for the convex optimization probsecond condition is equivalent t@(p) < f,;, wheref; is
lem (15) is the unique minimizer of the R.H.S. in (16). From Lemma 1,

"oy Y noy we haveg;(p) < gi(p:), and sinceg;(-) is a non-decreasing
L :Z il —+ 52 Zwi (i) —pZ(—Z —-1) function, we obtainp < p;. This implies that in the optimal
i1 AT A i1 @ -1 @ policy, the VMs are chosen in non-decreasing ordes,ofThe

n n number of active VMs needs to meet the constraiiit ; A} =
=D bihi = Y R — M), a, hence (22) holds, and the theorem is proved. [
i=1 i=1 From Theorem 1, the allocation rates follow a water-filling
wherep, b;, h; are Lagrange multipliers, with; > 0, 2; > 0 solution, with the Lagrange multiplier serving as a threshold

fori = 1,---,n. For eachi = 1,...,n, we obtain from price, and only VMs with prices below this threshold are sent
OL/ON; =0, redirection requests. In step (12) and (13) of the altengati
it optimization procedure, the optimal policy can be found by
W =p+alb; —h) — Bwi(k]), (23) using the following procedure:
and the Karush Kuhn Tucker (KKT) conditions yield b ggsre(::iazt%r:ggr.sorts{pz S L.-.;m} in-non
. + 2) The dispatcher chooses a set of VMs using (22), the op-
Af = <MZ‘ - \/ ot . ) , (24) timal allocation rated A}, using (21), and computes
p+ab; — Bwi(u;) the price thresholg.
where we have sét; = 0. 3) The dispatcher sends the price threshold the chosen
Sincew; (1) is a convex function, the KKT conditions for ~ active VMs. . _ .
subdifferentiable functions [45] give 4) Each active VMS; provides service capacity;(p).
1 The complexity of the first step i©(nlogn). To find the
A (ﬁ - 55+wi(u2‘)) <0 price thresholdp and the set of active VMs in the second
(i = A7) (25) step, a binary search on the sorted array obtained in the first
\F <; _ 53%(”;*)) > 0. step produces an intervgb,,«, p,,~+1] containingp, and the
CA\ (A ) optimal number of VMsn*. This has complexity)(n log n).
If A\* >0, we haveb; = 0, and from (24), we obtain Assuming that the price§p;}? , increases at most exponen-
) tially fast, a binary search in the interv@b,,«, p..-+1] takes
1 _ b~ Buwily >, (26) O(n) iterations. Therefore, the computation complexity at the
(w5 — A7)? 13 dispatcher isO(nlogn) for each iteration of the alternating
Substituting (26) into (25) , we obtain optimization procedure.

M O wi(pl)) <p< (s 0w, (u*
Blwi(pi) + pi 0~ wi(pi) < p < Blwi(pi) + pi0 wL(ué% B. Bounded Service Capacity

In this section, we consider the special case where each VM

. for i = 1,...,n, has bounded service capacjty, and
Ocpi(u) = v;(u) = ¢. An example of such a system is given
by the Amazon EC2 Standard On-demand Instance plan, as
described in Section Il. We have the following corollary for
solving (12), which follows from Theorem 1. A similar result
holds for the problem (13).

Corollary 1: Suppose that Assumptions 1 and 2 hold, and
the maximum service capacity at VI¥; is ji; with constant

2The only physically reasonable solution however corredpdn choosing service COStP(M) = ¢, fori=1,...,n. Suppose further that
pr =0 whenX\* = 0. pi = 1/fi; + Bé;, fori = 1,...,n, are such thap; < ... <

which implies thatu! = g¢;(p). Observe from (15) that if
A7 = 0 for somei, then the optimal.; can be chosen to be an
non-negative value without changing the objective functi
value. This implies that there are an infinite number of optim
solutions? We can still takeu! = g;(p), leth; = 0 and choose
b; appropriately to satisfy the KKT conditions.
We now show that VMS; is active only ifp > p;, and

is inactive only if eitherg;(p) = 0 or p < p,. The necessary
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Pn < Pn+1 = oo. Then, the optimal number of active VMs TABLE IlI
for the optimization problem (12) is SIMULATION PARAMETERS
k 7 Parameter | Value || Parameter | Estimated
* TP R Cr 100 7 0.497
s 1211321 {pk ; (uZ Pk — ﬂ@-) = a} ' 7 5 an 14.33
(30) k. 10 ar 4489
co 2 In 269.69 min.
Furthermore, the optimal service capacity foK i < m* is ty 5min. || Ir 295.83 min.
w; = p;, and the optimal allocation rates are
_ il ‘ y cost function has been widely used to model the relationship
i — — , for1<i<m . . o
Af = p — B¢ (31) between energy consumption and service capacities [32], [4
0 C form* <i<n, We let the unit routing cost to VMS; be ¢; = icy, where
- co > 0 is a constant.
wherep € (pp+, pm-41] is such thaty>"" | A¥ = . To compute the DRES strategy, we let the false alarm
penalty function in Assumption 2 be;(-) = ~s,(-), for
V. SIMULATION RESULTS eachi = 1,...,n, and wherey > 0 is a constant. We

In this section, we present simulation results to verify thehooset = ay f(AY, u™V, ay), where(AN, uV) is the policy
performance of our proposed request allocation and secaice adopted by theéV strategy. We chooseto be sufficiently large
pacity scaling policy. We test the performance of our akiponi to ensure that Assumption 2 holds. We also let the average
and various benchmark strategies on real YouTube requadtitional cost per request during a flash crowd detection
data collected by [46], and then on simulated request dat@lay becr = ¢r(f(AF, uf' ar) — f(AN, uV, an)), where
in order to verify the impact of traffic arrival characteigst (A", %) is the policy in theF strategy. The parameters used
on the algorthms’ performance. For ease of reference, \aee given in Table Ill, while the remaining parametersy y,
call the solution that we derive for the problem (11) viavr, [y andlr are estimated from the YouTube trace data.
the alternating optimization method described in Sectibn |
the Dynamic Request Redirection and Elastic Service SgaliA. YouTube Trace Data

(DRES) strategy. We use the sum of service delay and service/ouTube request trace data was collected by [46] from a

cost weighted by3 as our performance criteria (cf. (2)).  campus network over a period a8 days. A profile of the
We compare the performance of the DRES strategy Wif{ymber of requests per min is shown in Figure 3 for a typical
that of the following benchmark strategies: day in the dataset. It is clear from Figure 3 that there are

« N strategy.This strategy assumes that the arrival traffigyo periods (as indicated by the dotted lines) in which the
is always in the normal traffic mod® and the policy it average traffic arrival rate is significantly higher thanttima
adopts is obtained by minimizing(X, u, an). Let the other periods like the interval [0,400]. In order to define a
optimal allocation rates b and the service capaci-flash crowd, we first take a running average of the number
ties beu™N. For J € {N, F}, the dispatcher redirectsof requests over 30-minute windows to smooth out the data.
ayAY /ay amount of traffic to VM S;, which uses a Then, we define a flash crowd to be a period of at least 30
service capacity ofi’ regardless of the arrival rate at thaininutes, in which the running average traffic arrival ratads
VM. When the arrival traffic is in modé’, the service |ess thar35 requests per minute [36].
capacityu)Y may be smaller than the actual traffic arrival The first 5 days of the YouTube dataset are used for
rate atS;, leading to a rapidly increasing service responggarameter estimation. We find that on most of the days, flash
time. crowds occur twice a day, and each flash crowd has a mean

« I strategy.This strategy assumes that the arrival traffic igeriod ofl = 295.83 minutes, while the normal traffic mode
always in flash crowd modg' by adopting the allocation has a mean period aofy = 269.69 minutes. We plot the
rates and service capacities obtained when minimizimgstogram of the inter-arrival times for both normal traffic
(X, 1, ar). Suppose that the optimal allocation rates aigode and flash crowd mode for the first 5 days of Youtube
Af" and the service capacities gué’. In this strategy, we trace data in Figure 2. We see that the distribution of the
can guarantee that!” > A > a;Af'/ap for all J € inter-arrival imes of the requests approximates the ezptial
{N, F'}. However, when the arrival traffic is in mod€, distribution reasonably well, with a better fit for the flash
the policy used is not optimal, leading to higher servicerowd mode than the normal traffic mode. Therefore, it is
costs. reasonable to use Poisson arrival processes to model thal arr

« Perfect strategyWe assume that we can perfectly detraffic in both traffic modes. It can then be shown that the MLE
tect the change points when the arrival traffic switchggr the traffic arrival rate in each traffic mode is given by the
between modeN and modeF'. We adopt theN or average number of requests per minute over the traffic mode
F policies when the arrival traffic is in mod®& or F'  period [44]. We estimate thaty = 14.33 per minute and
respectively. This strategy is unrealizable, and serves @s = 44.89 per minute. Finally, the fraction of time occupied
a lower bound in our performance comparisons. by the normal traffic mode is given by = 0.497.

In our simulations, we adopt a cubic computing cost model, We first show the objective function value (10) in each

with s; (1) = k.p®, wherek, > 0 for everyi = 1,...,n. This iteration of the alternating optimization procedure used t
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Fig. 5. Performance simulated with YouTube data.

in CDNs are similar to one of th&’ or F' strategies, they are
poorly equipped to handle multiple traffic modes, with eithe
an upsurge in service delay during flash crowd traffic mode or
an under-utilization of resources in normal traffic mode.

No. of requests/min

B. Simulated Arrival Requests

In this subsection, we simulate various arrival traffic etar
teristics, which cannot be tested using the YouTube dajanset
order to verify the performance of our proposed algorithm. |
each simulation run, we consider an intervalldfl0 minutes,
Fig. 3. Rate of Youtube requests over a typical one day pestiting at and randomly generate two Change points thaﬂ&ﬂ@(l _ﬂ)

3:40am and ending at 3:40am next day. The dotted lines itedive periods apart. The arrival traffic in between the two change points
in which the average traffic arrival rate is significantly ég than other times. correspond to flash crowd traffic, and is generated using a

Poisson process with rater. The arrival traffic in the rest

of the interval is in normal mode, and is generated using a
compute the optimal policies for the DRES strategy. It caPoisson process with ratey.
be seen from Figure 4 that the procedure converges in lesgVe let 5 = 25, and use the same parameters= 0.497
than 10 iterations. anday = 14.33 estimated from the YouTube data set in our

We next evaluate the performance of the different strasegi®mulations, whilear is varied to simulate different arrival

using arrival request data from the remaining 8 days not usede ratiosar/ay. In Figure 6, we show the performance
in the parameter estimation. It can be seen from Figurewlhen we estimate the value afto be# = 0.2,0.497 or 0.8
that DRES outperforms th&/ and F' strategies over a wide in the DRES strategy. It can be seen that the DRES strategy
range of3 values. Our simulations suggest that since curreatit-performs theV and F strategies for all arrival rate ratios,
request allocation and service capacity strategies imgheed even whenr £ 7.

Time (min)
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Fig. 6. Performance comparison under different arriva ratios. Fig. 8. Allocation proportions for different strategiestire flash crowd mode.
800 ‘ ‘ ‘ allocation and service capacities accordingly. We showttiea
200k ——N strategy| | optimal redirection policy involves choosing those VMs lwit
L ateqy the lowest prices, up to a threshold price. We also show how to
_ 600 - Perfect compute the optimal allocation and service capacities ef th
ésoo— active VMs. The simulation result shows that the proposed
b mechanism performs better than other benchmark strategies
§4oof In this paper, we have investigated redirection strategies
e a00L for a single dispatcher. In a data center, multiple disparieh
- have to cooperate with one another in redirecting their estju
200} ] arrivals. In future research, we will study the problem obgo
1 eration amongst multiple dispatchers and develop digtu
85 0.6 0.7 08 0.9 redirection and service scaling strategies under difteraific
g conditions.
Fig. 7. Performance comparison whenchanges.
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Next, we fix the arrival ratesyy and ar to be those
estimated from the YouTube data set and fet= 5, but
vary the proportiont of normal mode traffic. It can be seen
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rates for the different strategies. We see that DRES spreads
the arrival requests more evenly amongst the VMs during flash
crowd traffic arrivals. Although the VMs with a higher index

have higher routing costs, DRES still redirects more tratiic [1] HI Yi(;h XH Lig, g- Qiu, N. Xia, C. Lin, H. thzlamg, V. S?ké};ddrﬁ?- Mirf]h
I . “Inside the bird’s nest: measurements of large-scale Ii om the
these VMs than the” strategy because it tries to mitigate the ;00 olympics.” inProceedings of the 9th ACM SIGCOMM conference

additional penalty incurred when a false alarm occurs, Whic  on Internet measurement conferenser. IMC '09. New York, NY,

is ignored by theF strategy. On the other hand, if DRES | SSVC: Aéll}fl, ZgO'?A, %p.F4425455. oing viral flash crondia
. . [ . . Wendell an . J. Freedman, “Going viral: flash cromdsan open
determines that the arrival is iV mode, it adopts the same CDN,” in Proceedings of the ACM SIGCOMM Internet Measurement

rates as theV strategy. In this case, it redirects requests t0  conferenceser. IMC '11. ACM, Nov. 2011, pp. 549-558.

far fewer VMs than the” strategy, which uses the same rated3] Cisco Systems, “Cisco visual networking index: For¢casd method-
ology, 2010-2015,” Cisco Systems, Technical Report, 2011.
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