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Abstract—We consider the problem of optimally redirecting
user requests in a cloud-centric media network (CCMN) to
multiple destination Virtual Machines (VMs), which elastically
scale their service capacities in order to minimize a cost function
that includes service response times, computing costs, androuting
costs. We also allow the request arrival process to switch between
normal and flash crowd modes to model user requests to a
CCMN. We quantify the trade-offs in flash crowd detection
delay and false alarm frequency, request allocation rates,and
service capacities at the VMs. We show that under each request
arrival mode (normal or flash crowd), the optimal redirection
policy can be found in terms of a price for each VM, which
is a function of the VM’s service cost, with requests redirected
to VMs in order of nondecreasing prices, and no redirection
to VMs with prices above a threshold price. Applying our
proposed strategy to a YouTube request trace data set shows
that our strategy outperforms various benchmark strategies.
We also present simulation results when various arrival traffic
characteristics are varied, which again suggest that our proposed
strategy performs well under these conditions.

Index Terms—User request redirection, service capacity scal-
ing, cost-aware provisioning, resource allocation, cloud-centric
content network, quickest detection

I. I NTRODUCTION

There is an urgent need to design networks and protocols
that specifically address the many technical challenges intro-
duced by the upsurge in Internet multimedia traffic [1], [2].
Cisco has predicted that Internet traffic will grow with an
annual rate of 32% in next few years, i.e., nearly double every
2.5 years [3], with the growth driven mostly by increased
demand for video content and mobile data. By the year
2015, video traffic, including TV, Internet, VoD and P2P, will
constitute approximately 90% of global Internet traffic [4].
However, according to Broadband Properties Magazine, the
annual growth rate of Internet infrastructure is merely19% [5].
This mis-matched growth between supply and demand may
trigger a quality-of-service (QoS) deterioration of network
services, with end users starting to experience longer latencies
than before.

One feature of multimedia traffic is the higher frequen-
cy of flash crowds compared to normal Internet traffic [6].
A flash crowd occurs when there is an unexpectedly high
amount of user traffic during a short period of time [7].
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For example, [2] records2501 flash crowds appearing in the
CoralCDN over a 4-year span, i.e., almost two flash crowds
happen daily on average. The use of content delivery networks
(CDNs), pioneered by Akamai [8], allows contents to be
pushed towards the edge servers [9], which are closer to the
end consumers. However, due to their inherent architectural
limitations, existing CDN solutions are inadequate to deal
with the exponential growth of multimedia traffic. First, with
an increasing amount of dynamic and media contents in
the CDNs, web applications are becoming more intensive
in computation capability. As a result, the traditional server
selection mechanisms (e.g. forwarding requests to the closest
server) designed for static contents may no longer be optimal
[10]. Second, static resource allocation mechanisms suffer
from poor resource dimensioning as multimedia traffic is
highly variable, as reflected by the high peak to valley ratio
[11] of user traffic. A static allocation based on peak hour
traffic may have utilization rates as low as 5% to 10% [10],
[12], while an allocation based on average traffic may resultin
high latency during flash crowds. Therefore, one of our main
focus in this work is to develop robust allocation methods for
multimedia CDNs that mitigate the under-utilization and high
latency problems of existing allocation methods.

The emergence of cloud computing offers a natural way
to extend the capabilities of CDNs to support the growth
of multimedia contents. In cloud computing, an organization
or individual rents remote server resources dynamically, and
users can add or remove server capacity at any time to meet
their requirements [13]. In a cloud-centric media network
(CCMN) architecture [14]–[16], virtual machines (VMs) are
carved out of an underlying hybrid cloud, forming a con-
tent distribution overlay. The amount of system resources
can be dynamically scaled up and down, matching real-time
application demands. The introduction of cloud computing in
CCMN poses additional technical challenges in its operations.
One particular example of importance is the user-redirection
mechanism, which should take into consideration the new
resource allocation paradigm under cloud computing.

In this paper, we address the problem of dynamically
scaling the request allocation rates and service capacities of
the VMs, where the request allocation rate of a VM is the
number of transaction requests allocated by a dispatcher to
the VM per unit time, and the service capacity of a VM is
the number of transactions per unit time completed by the
VM, typically measured in transactions per second (TPS) [17].
In order to mitigate the under-utilization and high latency
problems alluded to earlier, we adopt the quickest detection
framework of [18] to detect the onset of flash crowds, and
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Fig. 1. Request redirection model.

derive optimal allocation and service capacity policies that take
into account detection delays as well as false alarms. Our main
contributions are the following:

• We develop a systematic framework for dynamic request
allocation and service capacity scaling in a CCMN based
on quickest detection of changes in the arrival traffic
mode, which switches between normal and flash crowd
modes depending on the traffic arrival rate. We consider
an elastic cost model in which the service capacity of a
VM can be elastically scaled to model a cloud computing
environment.

• We derive an optimal traffic mode change detection
strategy, the optimal request allocation policy, and the
optimal service capacity scaling policy under each traffic
mode by introducing the concept of aVM price for each
VM. The price of a VM depends only on the service cost
function of the VM itself, and determines the desirability
of the VM to be allocated requests. We also show that
there exists athreshold price, which depends on the traffic
arrival rate and the VM service costs. We interpret this
threshold price as the maximum price the dispatcher is
willing to pay for any VM. We show that the optimal VM
selection policy consists of choosing only those VMs with
a VM price less than the threshold price.

• We provide simulations that suggest that our proposed dy-
namic allocation and service capacity scaling mechanism
outperforms other existing allocation methods when the
arrival request traffic has both normal and flash crowd
modes. We test all strategies on a real world YouTube
request data set, and we also use extensive simulations
to verify their performances when various arrival traffic
characteristics are varied.

In the following, we first briefly review prior works that are
related to this paper, and summarize some of the notations that
are commonly used in the paper.

A. Related Works

In this paper, we develop cost-aware optimal request allo-
cation and service capacity scaling mechanisms in a CCMN
under switching arrival traffic modes. In a user request al-
location system (cf. Figure 1), a dispatcher aims to redirect

incoming service requests to multiple VMs, while each VM
receiving requests scales its service capacity in order to jointly
minimize a cost function. Here, we assume that the arrival
request process consists of a stream of transactions, each of
which is to be allocated to a single VM. This reflects practical
architectures likeMapReduce, in which multiple VMs are
allocated transactions by theMap function at the dispatcher.

The topic of user request allocation or load balancing has
been well studied in the literature (see [19], [20] for surveys
on this topic). We summarize some of the most relevant works
below.

The earliest works on request allocation focus on servers
with known static service capacities. Several mechanisms in-
cluding random balancing and weighted round robin methods
[21]–[23] were proposed. Subsequently, server loads [24],
[25] and response times [26] are taken into consideration
when choosing the servers for redirection, leading to lower
service response times. Due to the increasing complexity
and heterogeneity of CDNs in terms of available computing,
bandwidth and memory resources, several works have pro-
posed request allocation methods based on octree partitioning
[27], directed graph models [28], and multilevel graph models
[29]. In addition, [30] propose load balancing by redirecting
the requests to locations with the cheapest energy or by
maximizing energy reduction and minimizing the effect on
client-perceived Service Level Agreements (SLAs).

All the above works address the issue of request redirection
in a traditional CDN, where the servers have fixed service
capacities. In contrast, in a CCMN, the VMs can elastically
scale their service capacities to match the packet arrival rates,
with the user paying a higher cost for a higher service capacity.
In [31], the request allocation problem is considered for a data
center, in which a master server splits its request arrivalsto
all available computing servers, each with a different rate. The
authors consider a linear computing cost for each computing
server, and their goal is to optimize the service capacity ofall
servers to minimize the system response time. In our paper, we
consider a different request redirection model that is somewhat
simpler but more suited to a CDN. Specifically, we assume that
there is a dispatcher that splits arrival requests to multiple VMs
optimally. Our goal is to minimize a weighted cost function
consisting of the system response time, VM computing costs
and routing costs. Furthermore, we aim to optimize not only
the service capacities but also the allocation rates to eachVM.
In contrast to [31], which fix the allocation rates in advance,
we obtain the somewhat surprising conclusion that not all
available VMs should be utilized.

The reference [32] studies the interaction of service capacity
scaling with load balancing, which is defined in the strict
sense that a performance metric (like mean response time)
at all servers with allocated requests have the same value.
Equilibrium load balancing and service capacity scaling are
derived. Our work in this paper differs from [32] in the
following ways. Firstly, we derive optimal allocation rates
and service capacities to minimize a cost function similar
to [32] but without the strict load balancing constraint. This
models a CCMN better since a CCMN is designed for e-
lastic rate allocation without the need to maintain the same
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equilibrium performance at each VM. Secondly, we do not
restrict to monomial power cost functions at the VMs. Instead,
we consider a general class of cost functions that is non-
decreasing and convex in the service capacity (cf. Section II
for examples). This allows us to include various costs like
computation, power, storage, and routing costs. Lastly, we
allow the arrival traffic to switch between different modes to
better model usage patterns in a CCMN, whereas [32] assumes
that the arrival traffic statistics are fixed.

Minimizing content retrieval latency using caching and edge
servers has been studied in [33], while [34] investigates the
joint problem of replica placement and building distribution
paths in cloud CDNs. Although finding optimal distribution
paths and replica placements are topics of importance and
related to the problem of user request redirection, these are
not within the scope of this paper. Instead we assume that
the redirection destinations have been fixed, and costs like
the routing cost and computing cost function at each of
these destinations are known. The joint problem of content
placement and request redirection has been considered in [35]
under various constraints. However, the proposed algorithm
is an integer linear program that has high complexity and is
sensitive to variations in request traffic, i.e., a new optimization
is required at each time step. It is still an open problem to
find good approximations to the joint optimization problem
that yield reasonable sub-optimal solutions.

B. Notations

Throughout this paper, for each functionf : R 7→ R,
we use∂−f(x) and ∂+f(x) to denote the left and right
derivatives off(x) with respect to (w.r.t.)x, respectively.
For a convex functionf , the subdifferential atx is the set
[∂−f(x), ∂+f(x)]. We also use the notationx+ = max(0, x).
For the readers’ convenience, we summarize some commonly
used notations (which are formally defined in the sequel where
they first appear) in Table I.

The rest of this paper is organized as follows. In Section II,
we present our system model and problem formulation. We
describe the alternating optimization approach to decompose
our optimization problem into several sub-problems in section
III. In Section IV, we consider the request redirection and
service scaling sub-problem and present analytical solutions
to it. In Section V, we present simulation results to verify the
performance of our proposed strategy. Finally, we conclude
the paper in Section VI.

II. PROBLEM FORMULATION

In this section, we describe our model and system setup,
define some notations, and state our assumptions. We consider
the problem of redirecting an arrival request process at a
dispatcher or load balancer in a CCMN (cf. Figure 1), which
tends to experience sporadic bursts of user traffic [7]. Since
Poisson processes have been widely used to model request
arrivals under both normal and flash crowd traffic conditions
[36], [37], we assume that the arrival process is a Poisson
process that switches between a normal mode (denoted asN )

with arrival rateαN and a flash crowd mode (denoted asF )
with arrival rateαF > αN at unknown times [12], [36].

The dispatcher splits the arrival requests into independent
sub-processes, which are redirected to amaximumof n >
0 destination VMsS1, . . . , Sn. Suppose that the dispatcher
has determined that the arrival process is in modeJ , where
J ∈ {N,F}. Let λJ,i be theallocation rateor the rate of the
redirected Poisson arrival process at VMSi in traffic mode
J . A VM is said to beactive in mode J if the allocation
rateλJ,i > 0 (i.e., the dispatcher may choose to use less than
n VMs). Let µJ,i be the service capacityprovided bySi,
i.e., the number of arrival transactions that can be serviced
by the VM per unit time. Similar to assumptions commonly
adopted in the CDN and multimedia cloud literature [31], [38],
we assume that the service time is an exponential distribution
with rateµJ,i. Each VM in Figure 1 is therefore modeled as
anM/M/1 queue. To ensure stability, we require thatλJ,i <
µJ,i for all i and J . Let λJ = (λJ,1, . . . , λJ,n) and µJ =
(µJ,1, . . . , µJ,n) be vectors of the allocation rates and service
capacities respectively under traffic modeJ . A pair (λJ ,µJ)
is called apolicy.

A redirection to VM Si incurs aservice costϕi(µJ,i) =
si(µJ,i) + ci for each request, whereci is the unit routing
cost, andsi(·) is the computing cost. For simplicity, we
assume that the total routing costλJ,ici scales linearly with
the allocation rateλJ,i. The computing costsi(·) at each VM
is non-decreasing in the service capacity. This models a cloud
infrastructure where one or more VMs are initiated for each
application, and a larger cost is incurred if more computing
resources are requested by each VM. The computing cost
includes the cost of the power used bySi, and the memory
or storage costs required. The power cost is typically assumed
to be monomial in the service capacity [32], but we do not
restrict to such cost functions in this paper. Instead, we make
the following assumptions regarding the computing cost.

Assumption 1:For each VMSi, i = 1, . . . , n, the computing
costsi(·) has the following properties:

(1) si(µ) ≥ 0 for all µ ≥ 0,
(2) si(µ) is a convex and non-decreasing function ofµ.

Assumption 1 models many computing costs of interest in
cloud architectures. To the best of our knowledge, all existing
commercial cloud platforms like Amazon EC2, Rackspace,
Google App Engine and Microsoft Windows Azure, charge
flat hourly prices for a fixed amount of resources or each type
of instance. An example is the Amazon EC2 Standard On-
demand Instance pricing model [39]. Under this plan, four
different types of VM instances are available (see Table II).
These are called the Small, Medium, Large, and Extra Large
instances, with1, 2, 4, and8 EC2 Compute Units respectively.
Each EC2 Compute Unit has a fixed service capacity ofµ̄
transactions per hour, and the price of each unit ispEC2 =
0.06/µ̄ USD1 per transaction. The cost of an instanceSi can
then be modeled by

si(µ) =

{

eipEC2, if µ ≤ eiµ̄,
∞, if µ > eiµ̄,

(1)

1USD is abbreviation for United States dollar.
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TABLE I
SUMMARY OF COMMON NOTATIONS.

Symbol Definition
αJ traffic arrival rate to the dispatcher in modeJ , J ∈ {N,F}

λJ,i request allocation rate to VMSi in traffic modeJ
µJ,i service capacity of VMSi in traffic modeJ
π average fraction of time that the arrival traffic is in normalmodeN
n maximum number of VMs available to the dispatcher

si(·) computing cost of VMSi, as a function of its service capacity
ci unit routing cost to VMSi

ϕi(·) = si(·) + ci, service cost of VMSi

β weight for the total expected service cost incurred
T set of stopping times based on the number of request arrivalsin each time interval
TN stopping time for detecting the switch of arrival traffic from modeN to modeF
TF stopping time for detecting the switch of arrival traffic from modeF to modeN
δ(T ) worst case detection delay of stopping timeT

θ(T ) mean time between false alarms of stopping timeT

cF
average additional cost incurred per request arrival due todetection delays byTN or false alarms by
TF

v(λF ,µF ) average additional cost per unit time due to false alarms byTN or detection delays byTF

lJ mean time duration for each continuous time period that the arrival traffic is in modeJ
tf maximum amount of time within which false alarms are resolved
pi VM price of VM Si, see (16)

TABLE II
AMAZON EC2 INSTANCES AND PRICES

Name No. of EC2 Compute Units Price
Small 1 0.06 USD/hour

Medium 2 0.12 USD/hour
Large 4 0.24 USD/hour

Extra Large 8 0.48 USD/hour

whereei = 1, 2, 4, or 8 depending on the type of instance that
Si belongs to. This cost can be regarded as the “computing
cost” if a dispatcher is redirecting application requests to
Amazon EC2 Standard On-demand instances, and it clearly
satisfies Assumption 1.

The Amazon EC2 pricing model and other similar commer-
cial cloud computing pricing models are designed with retail
and enterprise consumers in mind, where lower level costs like
power consumption and memory storage costs are transparent
to a user, and included in a single pricepEC2. For the cloud
service providers, to optimize a data center, the computing
cost can be more appropriately modeled assi(µ) = kiµ

ai ,
whereki > 0 and ai > 1 are positive constants. This cost
corresponds to the power used by the VM when its service
capacity isµ [40], and is adopted by [32]. In addition to the
cost of power consumption, we can also include the cost of
processor and storage memory by lettingsi(µ) = kiµ

ai +riµ,
whereri > 0, and we have assumed that memory or storage
cost scales linearly with service capacity [35]. (Such general
cost functions are not considered in [32].) Furthermore, in
practical systems, the maximum service capacity of any VM
is often limited; a fact that is not captured in smooth cost
functions. Our model allows us to define cost functions similar

to (1), where an infinite cost is incurred when the service
capacity exceeds the maximum VM capacity.

Assumption 1 implies that there is a trade off between the
average mean response time [41] of the VMs given by

n
∑

i=1

λJ,i

αJ

1

µJ,i − λJ,i

,

and the total expected service cost incurred, given by
n
∑

i=1

λJ,i

αJ

ϕi(µJ,i).

Let β > 0 be a fixed weight and forJ ∈ {N,F}, λJ =
(λJ,1, . . . , λJ,n), µJ = (µJ,1, . . . , µJ,n), andαJ > 0, let

f(λJ ,µJ , αJ) =

n
∑

i=1

λJ,i

αJ

1

µJ,i − λJ,i

+ β

n
∑

i=1

λJ,i

αJ

ϕi(µJ,i).

(2)

We are interested to find policies that minimize a weighted
average off(λN ,µN , αN ) andf(λF ,µF , αF ), while taking
into consideration the switching traffic modes. To do this,
we divide time into equal unit intervals, and suppose that
Z1, . . . , Zν−1 are the number of arrivals in each interval
when the arrival process is in modeN , and Zν , Zν+1, . . .
are the number of arrivals in each interval when the arrival
process has switched to modeF . The random variablesZi,
for i = 1, . . . , ν−1 are independent and identically distributed
(i.i.d.) Poisson random variables with rateαN , while Zi, for
i ≥ ν are i.i.d. Poisson random variables with rateαF . The
indexν is called a change point, and can take values in[1,∞],
with ν = ∞ corresponding to the case where the arrival
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process stays in modeN throughout. Asν is unknown, it is
inferred from the observationsZ1, Z2, . . .. Let T be the set of
stopping times associated withZ1, Z2, . . . [18]. Each element
of T is a detection policy that can be used by the dispatcher
to determine if the arrival process has switched from modeN
to modeF . Any detection policyT ∈ T has a trade-off in the
worst case detection delay [18], [42]

δ(T ) = sup
t≥1

ess supEt[(T − t+ 1)+ | Z1, . . . , Zt−1],

whereEt is the expectation operator whenν = t, with its
mean time between false alarms defined as

θ(T ) = E∞[T ].

One can similarly define the worst case detection delay and
mean time between false alarms for the case where the arrival
traffic switches from modeF to modeN .

Our goal is to find allocation ratesλJ and service capacities
µJ , for J ∈ {N,F}, that are optimal in the sense that they
minimize a cost function that takes into account the trade-offs
in performance at each VM, the service cost incurred at each
VM, and the costs incurred due to detection delays and false
alarms. Suppose that the arrival traffic switches from modeN
to modeF . When there is a delay in detecting the change in
the arrival traffic mode, there will be a transient increase in
the buffer length at each VM as the underlying arrival rate has
increased toαF . This incurs additional memory or storage cost
and an increase in the service response time. We assume that
the average additional cost per unit time is given bycF (αF −
αN ), wherecF is a positive constant that can be interpreted
as the average additional cost incurred per request arrival. On
the other hand, if a false alarm occurs, the system adopts the
policy (λF ,µF ) even though the policy(λN ,µN ) is optimal.
This results in higher computing costs at the VMs. We assume
that false alarms are resolved within a fixed bounded time
periodtf , with the average additional cost per unit time given
by a penalty functionv(λF ,µF ) incurred at the active VMs.
A similar consideration can be made when the arrival traffic
switches from modeF to modeN . For simplicity, we assume
that there is an ergodic stochastic process governing the traffic
modes. For example, the sequence of traffic modes may be
modeled as a continuous time Markov process, with transitions
between modesN andF . We do not require full knowledge
of this underlying process, except that the average fraction of
time that the arrival process is in normal modeN is given
by π ∈ (0, 1), which can be estimated from historical data.
In Section V, we present simulation results to show how the
performance of our proposed algorithm is impacted by the
value ofπ.

Let TN andTF be stopping times for detecting the switch
of arrival traffic from modeN to modeF , and vice versa,
respectively. Consider a long interval consisting ofl request
arrivals, and letKJ be the set of requests at which the arrival
process is in modeJ , for J ∈ {N,F}. Let DN andDF be
the set of change points at which the arrival traffic switches
from modeN to modeF , and vice versa, respectively. For
each J ∈ {N,F} and i ∈ DJ , let di be the length of
the detection delay incurred by the stopping timeTJ . We

approximate the detection delaysdi to be independent and
identically distributed for eachJ . Finally, letFJ be the set of
arrivals at whichTJ incurs false alarms. Assuming that VMs’
response times reach equilibrium and are independent of the
length of the traffic mode, the average equilibrium cost can be
approximated as

|KN |

l
f(λN ,µN , αN ) +

|KF |

l
f(λF ,µF , αF )

+
1

l

∑

i∈DN

dicF (αF − αN ) +
1

l

∑

i∈DF

div(λF ,µF )

+
|FN |

l
tfv(λF ,µF ) +

|FF |

l
tfcF (αF − αN ). (3)

For J ∈ {N,F}, let lJ be the mean time duration for each
continuous time period that the arrival traffic is in mode
J . Letting l → ∞, we see that (3) can be approximately
upper bounded by (4) below. Our optimization problem is then
formulated as

minimize πf(λN ,µN , αN ) + (1 − π)f(λF ,µF , αF )

+ cF (αF − αN )
(1− π)

αF

(

δ(TN )

lF
+

tf
θ(TF )

)

(4)

+ v(λF ,µF )
π

αN

(

δ(TF )

lN
+

tf
θ(TN )

)

,

such that
n
∑

i=1

λJ,i = αJ , for J ∈ {N,F},

0 ≤ λJ,i < µJ,i, for 1 ≤ i ≤ n, J ∈ {N,F},

TN , TF ∈ T .

In this paper, we suppose that the penalty functionv(λF ,µF )
is separable across VMs and satisfies the following assump-
tions.

Assumption 2:Letλ = (λ1, . . . , λn) andµ = (µ1, . . . , µn).

(i) The penalty functionv(λ,µ) has the form

v(λ,µ) =

n
∑

i=1

λivi(µi)− ξ,

whereξ is a positive constant, and for eachi = 1, . . . , n,
vi(·) is a non-negative, convex, and non-decreasing func-
tion.

(ii) We havemin v(λ,µ) ≥ 0, where the minimization is
over all λ and µ such that0 ≤ λi < µi for all i =
1, . . . , n, and

∑n

i=1
λi = αF .

Assumption 2 covers many, but not all, practical cases
of interest. For example, in designing a CCMN system, we
can interpret the constantξ in Assumption 2 as the average
cost (storage, service response time, computing cost etc.)
incurred per unit time when adopting the policy(λ∗

N ,µ∗
N ) =

argmin f(λN ,µN , αN ) during normal traffic mode, while
the functionvi(µ) is the average cost incurred when VMSi

provides a service capacity ofµ. Assumption 2(ii) ensures
that the penalty function is always positive over all feasible
allocation rates and service capacities, which is the case for a
practical system. We note that Assumption 2 does not cover
the most general case where the penalty function is of the
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form v(λF ,µF ,λN ,µN), which however introduces technical
difficulties into the solution of (4) and its interpretation. In
Section V, we provide simulation results that suggest that
Assumption 2 does not significantly impact the performance
of the policies derived from (4), compared to the “perfect”
strategy that knows the exact points in time when the traffic
switches its mode.

A. Approximation for Detection Delay and False Alarm Fre-
quency

In this section, we briefly review the theory of quickest
detection in a non-Bayesian setting, and derive approximations
to the change detection delay and mean time between false
alarms, from which an approximation to the optimization
problem (4) is then obtained.

The problem of quickest detection is to optimally detect a
change in the underlying distribution from which a sequence
of observationsZ1, Z2, . . . is drawn from, subject to certain
false alarm constraints. The observations are drawn i.i.d.from
distributionsQ0 andQ1 before and after an unknown change
point ν respectively. Since at each timet, we only have access
to the previously observed random variablesZk, for k ≤ t, the
change detection policy is a stopping timeT ∈ T .

A commonly used stopping time is Page’s CUSUM test
[18], [43] given by

Tσ = inf{k ≥ 0 : max
1≤j≤k

k
∑

l=j

L(Zl) ≥ log σ}, (5)

whereL(z) = log dQ1

dQ0

(z) is the log-likelihood ratio ofQ0

w.r.t. Q1. It is well known that Page’s test is an optimal
change detection policy in the sense that for anyσ, the test
Tσ minimizes the detection delayδ(T ) among all stopping
timesT satisfyingθ(T ) ≥ θ(Tσ). The following result follows
directly from the optimality of Page’s CUSUM test, and
Wald’s approximations [18], and its proof is omitted.

Proposition 1:SupposeA andB are positive constants, and
L(z) has no atoms underQ0. There exists a thresholdσ > 0
such that an optimal solution to the following optimization
problem

minimize Aδ(T ) +
B

θ(T )
(6)

such that T ∈ T ,

has the form (5). Furthermore, ifσ ≥ 1, then the optimal
detection delay and the mean time between false alarms can
be approximated as

δ(Tσ) ∼=
1

M1

(
1

σ
− 1 + log σ), (7)

θ(Tσ) ∼=
1

M0

(σ − log σ − 1), (8)

and the optimal thresholdσ can be approximated as the
solution to

A(σ − log σ − 1)2 = BM0M1σ, (9)

where for i = 0, 1, Mi = |EQi
[L(Z)]|, and EQi

is the
expectation operator under the probability distributionQi.

We now return to the optimization problem in (4). For
any fixed rates{λJ ,µJ | j ∈ {N,F}}, finding the optimal
stopping timeTN is equivalent to solving the optimization
problem (6), withA = (1−π)cF (αF −αN )/(αF lF ) andB =
πtfv(λF ,µF )/αN , while to find the optimalTF , we setA =
πv(λF ,µF )/(αN lN ) andB = (1 − π)cF tf (αF − αN )/αF .
To simplify the mathematics, we use the approximations in
Proposition 1 to arrive at the following approximation for the
objective function in (4),

Q(λN ,µN ,λF ,µF , σN , σF )

= πf(λN ,µN , αN ) + (1 − π)f(λF ,µF , αF )

+ cF (αF − αN )
(1 − π)

αF

(

1

lFMF

(

1

σN

− 1 + log σN

)

+
tfMF

σF − log σF − 1

)

+ v(λF ,µF )
π

αN

(

1

lNMN

(

1

σF

− 1 + log σF

)

+
tfMN

σN − log σN − 1

)

, (10)

where forJ ∈ {N,F}, σJ is the threshold corresponding to
TJ andMJ = |αJ log(αN/αF ) + (αF − αN )|.

With this approximation, in the rest of this paper, we
focus on obtaining the solution to the following optimization
problem:

minimize Q(λN ,µN ,λF ,µF , σN , σF ), (11)

such that
n
∑

i=1

λJ,i = αJ , for J ∈ {N,F},

0 ≤ λJ,i < µJ,i, for 1 ≤ i ≤ n, J ∈ {N,F},

σJ ≥ 1, for J ∈ {N,F}.

We note that to solve (11), the parametersπ, αN , αF , lN ,
and lF need to be first estimated from historical data (using
for example, the Maximum Likelihood Estimator (MLE) ap-
proach [44]), while the remaining parameterscF and tf , and
penalty functionv(λF ,µF ) need to be chosen appropriately
depending on the application. We show an example in Section
V.

III. A LTERNATING OPTIMIZATION

In this section, we apply the alternating optimization method
to simplify the optimization problem (11). We partition the
variables in (11) into three subsets:(λN ,µN), (λF ,µF )
and the thresholds(σN , σF ). We start with a random initial
guess (λN (0),µN(0),λF (0),µF (0), σN (0), σF (0)) for the
optimization variables respectively. At each iterationt, we
perform the following series of optimizations,

(λN (t),µN (t)) = arg min
λN ,µN

Q(λN ,µN ,λF (t− 1),µF (t− 1),

σN (t− 1), σF (t− 1))
(12)

(λF (t),µF (t)) = arg min
λF ,µF

Q(λN (t),µN (t),λF ,µF ,

σN (t− 1), σF (t− 1))
(13)
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(σN (t), σF (t)) = arg min
σN ,σF

Q(λN (t),µN (t),λF (t),µF (t),

σN , σF ) (14)

where the minimizations in (12) and (13) are over allλJ and
µJ such that

n
∑

i=1

λJ,i = αJ ,

and

0 ≤ λJ,i < µJ,i, for 1 ≤ i ≤ n,

for J = N and J = F respectively, and the minimization
in (14) is over allσ ≥ 1. The minimization in (14) can be
computed by solving (9) with the appropriate values ofA and
B substituted in. In the next section, we derive the solutions
to the minimization problems (12) and (13).

SinceQ(λN ,µN ,λF ,µF , σN , σF ) ≥ 0 and the objective
function value is non-increasing at each iteration of the alter-
nating optimization procedure, the iterates converge to a local
minimum ofQ(·) ast → ∞. To increase the chance of finding
the global minimum, the procedure can be applied to several
random initial guesses.

IV. OPTIMAL REQUESTALLOCATION AND SERVICE

CAPACITY

In this section, we derive optimal allocation rates and
service capacities for the problems (12) and (13), which
correspond to policies the dispatcher adopts after it has
determined that the arrival process is in modeN and F
respectively. To simplify notations, we drop the iterationindex
t in the alternating optimization procedure in this section.The
problems (12) and (13) are both equivalent to the following
optimization problem,

minimize
n
∑

i=1

λi

α

1

µi − λi

+ β

n
∑

i=1

λi

α
wi(µi), (15)

such that
n
∑

i=1

λi = α,

0 ≤ λi < µi, for 1 ≤ i ≤ n,

where we letα = αJ , λi = λJ,i andµi = µJ,i, with J =
N andF for (12) and (13) respectively. In addition, we let
wi(µ) = ϕi(µ) and

wi(µ) = ϕi(µ) +
παF vi(µ)

(1 − π)βαN

(1/σF − 1 + log σF

lNMN

+
tfMN

σN − log σN − 1

)

,

for (12) and (13) respectively. We derive the general form of
the optimal solution for (15), which is applicable for both (12)
and (13).

A. VM Prices

The form of the optimal solution to (15) is closely related
to the price of each VM, which fori = 1, . . . , n, we define as

pi = min
µ>0

{

1

µ
+ βwi(µ)

}

. (16)

Suppose that the dispatcher has to pay one dollar per
unit service time, andβ dollars per unit cost (routing and
computation), then the price of VMSi is the expected total
price that the dispatcher pays to VMSi. Interpreted in this
way, it is natural that the dispatcher should choose VMs with
the lowest prices such that the system is stable. Therefore,it
follows that there is a threshold price, below which all VMs
with a price cheaper than this threshold will be sent redirection
requests. These are the active VMs. Furthermore, the VMs will
provide service capacities that depend on this threshold price.
We show that this intuitive argument holds in Theorems 1.

For eachi = 1, . . . , n, andp > 0, let

gi(p) = sup

{

µ : wi(µ) + µ∂−wi(µ) ≤
p

β

}

. (17)

Sincewi is convex, we have∂−wi(x) is non-decreasing, and
gi(·) is a non-decreasing function. If the computing costsi(µ)
is continuously differentiable over allµ ∈ [0,∞), gi(p) can
be found as the implicit solution to

wi(µ) + µw′
i(µ) =

p

β
,

wherew′
i(µ) is the first derivative w.r.t.µ. We make use of

gi(·) in Theorem 1 below to characterize the optimal number
of active VMs, service capacities and allocation rates. We first
prove a result regardinggi(pi).

Lemma 1:For i = 1, . . . , n, let µ̃i > 0 be such thatpi =
1/µ̃i + βwi(µ̃i). Then,µ̃i = gi(pi).

Proof: Since µ̃i is the minimizer of the right hand side
(R.H.S.) in (16), there exists a subgradientd such that

1

µ̃i

= βµ̃id. (18)

Let µ = gi(pi). From (17), we have

β(wi(µ) + µ∂−wi(µ)) ≤
1

µ̃i

+ βwi(µ̃i),

which together with (18) yields

wi(µ)− wi(µ̃i) ≤ µ̃id− µ∂−wi(µ). (19)

Suppose thatµ > µ̃i. Sincewi(·) is non-decreasing, we have
from (19) thatµ̃id ≥ µ∂−wi(µ). This is a contradiction since
∂−wi(µ) ≥ d as wi(·) is convex. Therefore, we must have
µ ≤ µ̃i. Similarly, from (17) and the convexity ofwi(·), we
have

β(wi(µ) + µ∂+wi(µ)) ≥
1

µ̃i

+ βwi(µ̃i),

and the same argument as above implies thatµ ≥ µ̃i. The
lemma is now proved.

Theorem 1:Suppose that Assumptions 1 and 2 hold, and
that p1 ≤ . . . ≤ pn < pn+1 = ∞. Then, the optimal service
capacities for the optimization problem (15) are

µ∗
i =

{

gi(p), for 1 ≤ i ≤ m∗

0, for m∗ < i ≤ n,
(20)
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and the optimal allocation rates are

λ∗
i =











µ∗
i −

√

µ∗
i

p− βwi(µ∗
i )
, for 1 ≤ i ≤ m∗

0, for m∗ < i ≤ n,

(21)

where

m∗ = arg max
1≤k≤n

{

pk

∣

∣

∣

k
∑

i=1

(

gi(pk)−

√

gi(pk)

pk − βwi(gi(pk))

)

< α
}

, (22)

andp ∈ (pm∗ , pm∗+1] is such that
∑n

i=1
λ∗
i = α.

Proof: The Lagrangian for the convex optimization prob-
lem (15) is

L =

n
∑

i=1

λi

α

1

µi − λi

+ β

n
∑

i=1

λi

α
wi(µi)− p

n
∑

i=1

(
λi

α
− 1)

−

n
∑

i=1

biλi −

n
∑

i=1

hi(µi − λi),

wherep, bi, hi are Lagrange multipliers, withbi ≥ 0, hi ≥ 0
for i = 1, · · · , n. For eachi = 1, . . . , n, we obtain from
∂L/∂λi = 0,

µ∗
i

(µ∗
i − λ∗

i )
2
= p+ α(bi − hi)− βwi(µ

∗
i ), (23)

and the Karush Kuhn Tucker (KKT) conditions yield

λ∗
i =

(

µ∗
i −

√

µ∗
i

p+ αbi − βwi(µ∗
i )

)+

, (24)

where we have sethi = 0.
Sincewi(µi) is a convex function, the KKT conditions for

subdifferentiable functions [45] give














λ∗
i

(

1

(µ∗
i − λ∗

i )
2
− β∂+wi(µ

∗
i )

)

≤ 0

λ∗
i

(

1

(µ∗
i − λ∗

i )
2
− β∂−wi(µ

∗
i )

)

≥ 0.

(25)

If λ∗
i > 0, we havebi = 0, and from (24), we obtain

1

(µ∗
i − λ∗

i )
2
=

p− βwi(µ
∗
i )

µ∗
i

. (26)

Substituting (26) into (25) , we obtain

β(wi(µ
∗
i ) + µ∗

i ∂
−wi(µ

∗
i )) ≤ p ≤ β(wi(µ

∗
i ) + µ∗

i ∂
+wi(µ

∗
i )),
(27)

which implies thatµ∗
i = gi(p). Observe from (15) that if

λ∗
i = 0 for somei, then the optimalµ∗

i can be chosen to be any
non-negative value without changing the objective function
value. This implies that there are an infinite number of optimal
solutions.2 We can still takeµ∗

i = gi(p), let hi = 0 and choose
bi appropriately to satisfy the KKT conditions.

We now show that VMSi is active only if p > pi, and
is inactive only if eithergi(p) = 0 or p ≤ pi. The necessary

2The only physically reasonable solution however corresponds to choosing
µ∗

i
= 0 whenλ∗

= 0.

condition forSi to be active comes from (24), which implies
that if λ∗

i > 0, we havebi = 0 and

p >
1

µ∗
i

+ βwi(µ
∗
i ) ≥ pi.

Now suppose thatλ∗
i = 0. From (24) and (27), we have

p+ bi ≤
1

gi(p)
+ βwi(gi(p)) (28)

≤ p− gi(p)

(

β∂−wi(gi(p))−
1

gi(p)2

)

. (29)

where the last equality follows from (17). Sincebi ≥ 0, we
have eithergi(p) = 0 or β∂−wi(gi(p)) − 1/gi(p)

2 ≤ 0. The
second condition is equivalent togi(p) ≤ µ̃i, where µ̃i is
the unique minimizer of the R.H.S. in (16). From Lemma 1,
we havegi(p) ≤ gi(pi), and sincegi(·) is a non-decreasing
function, we obtainp ≤ pi. This implies that in the optimal
policy, the VMs are chosen in non-decreasing order ofpi. The
number of active VMs needs to meet the constraint

∑n
i=1

λ∗
i =

α, hence (22) holds, and the theorem is proved.
From Theorem 1, the allocation rates follow a water-filling

solution, with the Lagrange multiplierp serving as a threshold
price, and only VMs with prices below this threshold are sent
redirection requests. In step (12) and (13) of the alternating
optimization procedure, the optimal policy can be found by
using the following procedure:

1) The dispatcher sorts{pi : i = 1, . . . , n} in non-
decreasing order.

2) The dispatcher chooses a set of VMs using (22), the op-
timal allocation rates{λ∗

i }
n
i=1 using (21), and computes

the price thresholdp.
3) The dispatcher sends the price thresholdp to the chosen

active VMs.
4) Each active VMSi provides service capacitygi(p).

The complexity of the first step isO(n log n). To find the
price thresholdp and the set of active VMs in the second
step, a binary search on the sorted array obtained in the first
step produces an interval(pm∗ , pm∗+1] containingp, and the
optimal number of VMsm∗. This has complexityO(n log n).
Assuming that the prices{pi}ni=1 increases at most exponen-
tially fast, a binary search in the interval(pm∗ , pm∗+1] takes
O(n) iterations. Therefore, the computation complexity at the
dispatcher isO(n log n) for each iteration of the alternating
optimization procedure.

B. Bounded Service Capacity

In this section, we consider the special case where each VM
Si, for i = 1, . . . , n, has bounded service capacitȳµi, and
ϕi(µ) = vi(µ) = c̄i. An example of such a system is given
by the Amazon EC2 Standard On-demand Instance plan, as
described in Section II. We have the following corollary for
solving (12), which follows from Theorem 1. A similar result
holds for the problem (13).

Corollary 1: Suppose that Assumptions 1 and 2 hold, and
the maximum service capacity at VMSi is µ̄i with constant
service costϕ(µ) = c̄i, for i = 1, . . . , n. Suppose further that
pi = 1/µ̄i + βc̄i, for i = 1, . . . , n, are such thatp1 ≤ . . . ≤
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pn < pn+1 = ∞. Then, the optimal number of active VMs
for the optimization problem (12) is

m∗ = arg max
1≤k≤n

1

{

pk

∣

∣

∣

∣

∣

k
∑

i=1

(

µ̄i −

√

µ̄i

pk − βc̄i

)

< α

}

.

(30)

Furthermore, the optimal service capacity for1 ≤ i ≤ m∗ is
µ∗
i = µ̄i, and the optimal allocation rates are

λ∗
i =







µ̄i −

√

µ̄i

p− βc̄i
, for 1 ≤ i ≤ m∗

0 , for m∗ < i ≤ n,

(31)

wherep ∈ (pm∗ , pm∗+1] is such that
∑n

i=1
λ∗
i = α.

V. SIMULATION RESULTS

In this section, we present simulation results to verify the
performance of our proposed request allocation and serviceca-
pacity scaling policy. We test the performance of our algorithm
and various benchmark strategies on real YouTube request
data collected by [46], and then on simulated request data
in order to verify the impact of traffic arrival characteristics
on the algorthms’ performance. For ease of reference, we
call the solution that we derive for the problem (11) via
the alternating optimization method described in Section III
the Dynamic Request Redirection and Elastic Service Scaling
(DRES) strategy. We use the sum of service delay and service
cost weighted byβ as our performance criteria (cf. (2)).

We compare the performance of the DRES strategy with
that of the following benchmark strategies:

• N strategy.This strategy assumes that the arrival traffic
is always in the normal traffic modeN and the policy it
adopts is obtained by minimizingf(λ,µ, αN ). Let the
optimal allocation rates beλN and the service capaci-
ties beµN . For J ∈ {N,F}, the dispatcher redirects
αJλ

N
i /αN amount of traffic to VMSi, which uses a

service capacity ofµN
i regardless of the arrival rate at that

VM. When the arrival traffic is in modeF , the service
capacityµN

i may be smaller than the actual traffic arrival
rate atSi, leading to a rapidly increasing service response
time.

• F strategy.This strategy assumes that the arrival traffic is
always in flash crowd modeF by adopting the allocation
rates and service capacities obtained when minimizing
f(λ,µ, αF ). Suppose that the optimal allocation rates are
λF and the service capacities areµF . In this strategy, we
can guarantee thatµF

i > λF
i > αJλ

F
i /αF for all J ∈

{N,F}. However, when the arrival traffic is in modeN ,
the policy used is not optimal, leading to higher service
costs.

• Perfect strategy.We assume that we can perfectly de-
tect the change points when the arrival traffic switches
between modeN and modeF . We adopt theN or
F policies when the arrival traffic is in modeN or F
respectively. This strategy is unrealizable, and serves as
a lower bound in our performance comparisons.

In our simulations, we adopt a cubic computing cost model,
with si(µ) = kcµ

3, wherekc > 0 for everyi = 1, . . . , n. This

TABLE III
SIMULATION PARAMETERS

Parameter Value Parameter Estimated
c̄F 100 π 0.497
γ 5 αN 14.33
kc 10 αF 44.89
c0 2 lN 269.69 min.
tf 5 min. lF 295.83 min.

cost function has been widely used to model the relationship
between energy consumption and service capacities [32], [40].
We let the unit routing cost to VMSi be ci = ic0, where
c0 > 0 is a constant.

To compute the DRES strategy, we let the false alarm
penalty function in Assumption 2 bevi(·) = γsi(·), for
each i = 1, . . . , n, and whereγ > 0 is a constant. We
chooseξ = αNf(λN ,µN , αN ), where(λN ,µN ) is the policy
adopted by theN strategy. We chooseγ to be sufficiently large
to ensure that Assumption 2 holds. We also let the average
additional cost per request during a flash crowd detection
delay becF = c̄F (f(λ

F ,µF , αF )− f(λN ,µN , αN )), where
(λF ,µF ) is the policy in theF strategy. The parameters used
are given in Table III, while the remaining parametersπ, αN ,
αF , lN and lF are estimated from the YouTube trace data.

A. YouTube Trace Data

YouTube request trace data was collected by [46] from a
campus network over a period of13 days. A profile of the
number of requests per min is shown in Figure 3 for a typical
day in the dataset. It is clear from Figure 3 that there are
two periods (as indicated by the dotted lines) in which the
average traffic arrival rate is significantly higher than that in
other periods like the interval [0,400]. In order to define a
flash crowd, we first take a running average of the number
of requests over 30-minute windows to smooth out the data.
Then, we define a flash crowd to be a period of at least 30
minutes, in which the running average traffic arrival rate isnot
less than35 requests per minute [36].

The first 5 days of the YouTube dataset are used for
parameter estimation. We find that on most of the days, flash
crowds occur twice a day, and each flash crowd has a mean
period oflF = 295.83 minutes, while the normal traffic mode
has a mean period oflN = 269.69 minutes. We plot the
histogram of the inter-arrival times for both normal traffic
mode and flash crowd mode for the first 5 days of Youtube
trace data in Figure 2. We see that the distribution of the
inter-arrival times of the requests approximates the exponential
distribution reasonably well, with a better fit for the flash
crowd mode than the normal traffic mode. Therefore, it is
reasonable to use Poisson arrival processes to model the arrival
traffic in both traffic modes. It can then be shown that the MLE
for the traffic arrival rate in each traffic mode is given by the
average number of requests per minute over the traffic mode
period [44]. We estimate thatαN = 14.33 per minute and
αF = 44.89 per minute. Finally, the fraction of time occupied
by the normal traffic mode is given byπ = 0.497.

We first show the objective function value (10) in each
iteration of the alternating optimization procedure used to
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Fig. 2. Histogram of inter-arrival times under different traffic modes. The red
curve shows a fitted exponential distribution.
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Fig. 3. Rate of Youtube requests over a typical one day period, starting at
3:40am and ending at 3:40am next day. The dotted lines indicate two periods
in which the average traffic arrival rate is significantly higher than other times.

compute the optimal policies for the DRES strategy. It can
be seen from Figure 4 that the procedure converges in less
than 10 iterations.

We next evaluate the performance of the different strategies
using arrival request data from the remaining 8 days not used
in the parameter estimation. It can be seen from Figure 5
that DRES outperforms theN andF strategies over a wide
range ofβ values. Our simulations suggest that since current
request allocation and service capacity strategies implemented
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Fig. 4. Convergence of the alternating optimization procedure for computing
the DRES strategy.
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Fig. 5. Performance simulated with YouTube data.

in CDNs are similar to one of theN or F strategies, they are
poorly equipped to handle multiple traffic modes, with either
an upsurge in service delay during flash crowd traffic mode or
an under-utilization of resources in normal traffic mode.

B. Simulated Arrival Requests

In this subsection, we simulate various arrival traffic charac-
teristics, which cannot be tested using the YouTube data set, in
order to verify the performance of our proposed algorithm. In
each simulation run, we consider an interval of1440 minutes,
and randomly generate two change points that are1440(1−π)
apart. The arrival traffic in between the two change points
correspond to flash crowd traffic, and is generated using a
Poisson process with rateαF . The arrival traffic in the rest
of the interval is in normal mode, and is generated using a
Poisson process with rateαN .

We let β = 25, and use the same parametersπ = 0.497
andαN = 14.33 estimated from the YouTube data set in our
simulations, whileαF is varied to simulate different arrival
rate ratiosαF /αN . In Figure 6, we show the performance
when we estimate the value ofπ to be π̂ = 0.2, 0.497 or 0.8
in the DRES strategy. It can be seen that the DRES strategy
out-performs theN andF strategies for all arrival rate ratios,
even when̂π 6= π.
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Next, we fix the arrival ratesαN and αF to be those
estimated from the YouTube data set and letβ = 5, but
vary the proportionπ of normal mode traffic. It can be seen
from Figure 7 that DRES again outperforms theN and F
strategies. In Figure 8, we compare the normalized allocation
rates for the different strategies. We see that DRES spreads
the arrival requests more evenly amongst the VMs during flash
crowd traffic arrivals. Although the VMs with a higher index
have higher routing costs, DRES still redirects more trafficto
these VMs than theF strategy because it tries to mitigate the
additional penalty incurred when a false alarm occurs, which
is ignored by theF strategy. On the other hand, if DRES
determines that the arrival is inN mode, it adopts the same
rates as theN strategy. In this case, it redirects requests to
far fewer VMs than theF strategy, which uses the same rates
regardless of the traffic arrival statistics. This allows the DRES
strategy to be more energy efficient by turning off non-active
VMs duringN mode traffic arrivals.

VI. CONCLUSION

The emergence of cloud computing technologies allow the
design of elastic cost-aware user redirection mechanisms that
scale flexibly with the arrival traffic. In this paper, we derive
optimal redirection policies under a cloud-centric framework,
by jointly detecting the arrival traffic mode and adapting the
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Fig. 8. Allocation proportions for different strategies inthe flash crowd mode.

allocation and service capacities accordingly. We show that the
optimal redirection policy involves choosing those VMs with
the lowest prices, up to a threshold price. We also show how to
compute the optimal allocation and service capacities of the
active VMs. The simulation result shows that the proposed
mechanism performs better than other benchmark strategies.

In this paper, we have investigated redirection strategies
for a single dispatcher. In a data center, multiple dispatchers
have to cooperate with one another in redirecting their request
arrivals. In future research, we will study the problem of coop-
eration amongst multiple dispatchers and develop distributed
redirection and service scaling strategies under different traffic
conditions.
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