
Information Diffusion in Mobile Social Networks:
The Speed Perspective

Zongqing Lu†, Yonggang Wen‡ and Guohong Cao†
†The Pennsylvania State University, ‡Nanyang Technological University

†{zongqing, gcao}@cse.psu.edu, ‡ygwen@ntu.edu.sg

Abstract—The emerging of mobile social networks opens op-
portunities for viral marketing. However, before fully utilizing
mobile social networks as a platform for viral marketing, many
challenges have to be addressed. In this paper, we address the
problem of identifying a small number of individuals through
whom the information can be diffused to the network as soon
as possible, referred to as the diffusion minimization problem.
Diffusion minimization under the probabilistic diffusion model
can be formulated as an asymmetric k-center problem which
is NP-hard, and the best known approximation algorithm for
the asymmetric k-center problem has approximation ratio of
log∗ n and time complexity O(n5). Clearly, the performance
and the time complexity of the approximation algorithm are
not satisfiable in large-scale mobile social networks. To deal
with this problem, we propose a community based algorithm
and a distributed set-cover algorithm. The performance of the
proposed algorithms is evaluated by extensive experiments on
both synthetic networks and a real trace. The results show that
the community based algorithm has the best performance in both
synthetic networks and the real trace, and the distributed set-
cover algorithm outperforms the approximation algorithm in the
real trace in terms of diffusion time.

I. INTRODUCTION

Social network plays an important role for spreading in-

formation, idea and influence among its members. Nowadays,

social networks have been evolving to online social networks

such as Facebook, Twitter, and Google+ that link humans,

computers and the Internet, and information spreading in social

networks has been changed from the way of “word-of-mouth”

[1] to “word-of-text”, “word-of-voice”, “word-of-photo” and

“word-of-video”. In addition, with the proliferation of smart

mobile devices, such as smartphone and tablet, people can

easily go online with their mobile devices, meanwhile more

and more native mobile social networks have been created

like Foursquare, Instagram, and Path. Moreover, Bluetooth and

Wi-Fi Direct extend communications between mobile devices

from the restrictions of cellular infrastructure; user mobility

and social connectivity bring numerous ad-hoc communication

opportunities.

The emerging of mobile social networks opens opportunities

for viral marketing [2]. Different from traditional televised

or roadside-billboard advertising campaign, viral marketing

takes advantage of the power of “word-of-mouth” to increase

This work was supported in part by Network Science CTA under grant
W911NF-09-2-0053.

brand awareness or product sale through self-replicating viral

processes, and it has attracted considerable attentions from

mobile and social computing research society [3][4]. However,

before fully utilizing mobile social network as a platform for

viral marketing, many challenges have to be addressed.

As the essence of viral marketing applications is information

diffusion from a small number of individuals to the entire

network by “word-of-mouth”, in this paper, we address the

problem of identifying a small number of individuals through

whom the information can be diffused to the entire network

as soon as possible, referred to as the diffusion minimization
problem. Diffusion minimization is naturally critical to viral

marketing applications. For example, the “word-of-mouth”

advertisement [4] should be disseminated to the network as

soon as possible, and thus it would be of interest to many

companies as well as individuals that want to increase brand

awareness, or disseminate advertisements or innovative ideas

through “word-of-mouth”.

Diffusion minimization under the probabilistic diffusion

model can be formulated as an asymmetric k-center problem

which is NP-hard, and the best known approximation algorithm

for the asymmetric k-center problem has approximation ratio of

log∗ n and time complexity O(n5) [5], where n is the number

of nodes and log∗ n is the iterated logarithm of n. Obviously,

the performance and the time complexity of the approximation

algorithm are not satisfiable in large-scale social networks. To

deal with this problem, we design a community based algorithm

with better performance and less time complexity. Different

from existing approximation algorithms, the community based

algorithm, from the social point of view, leverages the com-

munity structure to solve the diffusion minimization problem.

Due to the lack of global information and the requirement to

handle the dynamic evolving of mobile social networks, we

further propose a distributed set-cover algorithm, where each

node collects up-to-date information by probing messages in a

distributed way. The performance of these algorithms is eval-

uated based on both synthetic networks generated by a well-

known benchmark and a real trace. Simulation results show

that the community based algorithm has the best performance

in both synthetic networks and real trace, and the distributed

set-cover algorithm outperforms the approximation algorithm

in the real trace in terms of diffusion time.

The rest of this paper is organized as follows. Section II

reviews related work. Section III gives the problem statement.978-1-4799-3360-0/14/$31.00 c©2014 IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 1932

The community based algorithm is presented in Section IV,

followed by the distributed set-cover algorithm in Section

V. Section VI evaluates the performance of the proposed

algorithms and Section VII concludes the paper.

II. RELATED WORK

A. Information Diffusion

With the emerging of online social media, information

diffusion has been extensively studied based on emails [6],

Facebook [7], and Twitter [8]. One salient feature of infor-

mation diffusion is the correlation between the number of

friends engaging in spreading information and the probability

of adopting the information [7].

Recently, a lot of research efforts focus on whether and how

individuals influence each other. Domingos and Richardson

[9] are the first to study the influence maximization problem

and give a probabilistic solution. Kempe et al. [10] designed

a greedy algorithm with approximation ratio of (1 − 1
e).

Recently, Wang et al. [11] presented a community based

greedy algorithm and Jiang et al. [12] proposed a simulated

annealing algorithm to address the influence maximization

problem. Different from the influence maximization problem

which studies how individuals influence each other and how

to maximize the influence in social networks, the diffusion

minimization problem investigates how information spreads

and how to minimize the diffusion time.

B. Mobile Social Networks

Through mobile social networks, individuals with similar

interests interact, communicate and connect with others through

their mobile devices such as smartphones, tablets, etc. With

the proliferation of smartphones, mobile social network has

emerged as a new frontier in mobile computing research,

and lots of research has focused on mobile social networks

[13][14][15]. Moreover, many mobile social applications have

been developed such as Micro-blog [16], SociableSense [17],

etc.

Mobile social network is a fertile ground for the rapid

spreading of information including text, photo, voice and video.

Thus, information dissemination is an important problem in

mobile social networks. Han et al. [15] designed a distributed

random walk protocol for immunization of infectious diseases

and information dissemination. Hu et al. [18] proposed an

energy-aware user-contact detection algorithm through Blue-

tooth on smartphones. Peng et al. [4] addressed users’ selfish-

ness and privacy concerns for viral marketing. Ning et al. [3]

proposed an incentive scheme to stimulate cooperation among

selfish nodes for data dissemination. However, none of them

considers the diffusion minimization problem.

III. PRELIMINARIES, PROBLEM STATEMENT AND NAÏVE

ALGORITHM

A. Mobile Social Network

Let G = (V,E) represent a weighted and undirected mobile

social network, where V denotes the set of nodes with cardinal-

ity n and E denotes the set of edges. For two neighboring nodes

u, v ∈ V , wuv denotes the weight of the edge and wuv = wvu.

The edge weight indicates the frequency of contacts between

two nodes. For a node u ∈ V , du is the degree of node u and

Nu is the neighbor set of u, and we have du =
∑

v∈Nu
wuv .

B. Probabilistic Diffusion Model

In the operational model of information diffusion, each node

can be either active or inactive. Active nodes are the adopters

of the information and are ready to diffuse the information to

their inactive neighbors. The state of a node can be switched

from inactive to active, but not the other way around. More

specifically, when an active node u contacts an inactive node

v, v becomes active with some probability λuv = wuv

du
. This is

because the probability of information spreading from node

u to the neighboring node v should be proportional to the

connection fraction of node v over the degree of u. In other

words, the more frequently node u contacts with node v, the

more likely node v gets informed and becomes active. From

the social relation point of view, a person most likely shares the

information with his best friends rather than others. Different

from the linear threshold model [10] and the independent
cascade model [19] that describe how individuals influence

each other in social networks, the probabilistic diffusion model
describes how the information diffuses in social networks.

C. Problem Statement

The information diffusion process can be described as fol-

lows. First an initial set of active nodes is selected. When

the contact happens between an active node and an inactive

node, the inactive node becomes active with a probability. The

process terminates when all the nodes are active.

Let S be the initial set of active nodes. The diffusion time

of initially selected node set is defined as the time interval

between the start and the end of the information diffusion

process denoted by τ(S, V).
Given a weighted network G = (V,E) and an integer k,

we aim to identify a node set S, |S| ≤ k and S ⊆ V , such

that τ(S, V) is minimum. This problem is referred to as the

diffusion minimization problem and nodes in S are referred to

as the diffusion nodes.

Under the probabilistic diffusion model, using the edge

weight wuv as the contact frequency in social network, the

expected information diffusion time from node u (active) to

neighboring node v (inactive) can be formulated as

tuv =
1

λuv
· 1

wuv
=

du
w2

uv

, (1)

where 1
wuv

denotes the average time interval between contacts.

Similarly, we have tvu = dv

w2
uv

from node v to node u (the

expected diffusion time from u to v and that from v to u are

different, except du = dv). For any pair of nodes, for example

node u and v, the shortest expected diffusion time from u to

v is denoted as |(u, v)| and for simplicity we also call |(u, v)|
the expected diffusion time from u to v.

Since the diffusion time between any pair of nodes can

be estimated by the expected diffusion time, the diffusion

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1933

minimization problem under the probabilistic diffusion model

can be mathematically formulated as finding a subset S ⊆ V
with |S| ≤ k to minimize the expected diffusion time τ ′(S, V):

τ ′(S, V) = minmax
v∈V

|(S, v)|, (2)

where

|(S, v)| = min
u∈S

|(u, v)| (3)

and |(S, v)| is the expected diffusion time from set S to node

v.

As ∃u, v ∈ V, tuv �= tvu, the problem is the same as the

asymmetric k-center problem, which is NP-hard. There is an

approximation algorithm known for the asymmetric k-center

problem with approximation ratio log∗ n [5] and asymmetric

k-center is log∗ n-hard to approximate [20]. Moreover, the

time complexity of the approximation algorithm is O(n5).
Therefore, the performance and the time complexity of the

approximation algorithm are not satisfiable in large-scale social

networks. Thus, we design better algorithms.

D. A Naı̈ve Algorithm

The closeness (also known as closeness centrality) of a

node is defined as the reciprocal of the sum of the shortest

distances to all other nodes in the network. When applied to

the probabilistic diffusion model, the closeness of node u can

be denoted as 1/
∑

v∈V |(u, v)|.
Closeness is a measure of how fast it will take to spread

information from a node to all other nodes [21]. With regard

to identifying S from V , a naı̈ve solution for the diffusion

minimization problem can be based on closeness; i.e., itera-

tively select the node with the highest closeness from the set

of unselected nodes (i.e., V \S) until |S| = k. More specifically,

the closeness of node u at each iteration is calculated as

1∑
v∈V \S |(u, v)| , u /∈ S.

However, the naı̈ve algorithm does not work well (as shown

in the evaluation section), and hence we propose better algo-

rithms.

IV. COMMUNITY BASED ALGORITHM

Community represents a set of nodes in a network, where

nodes inside the community have more internal connections

than external connections [22][23][24]. Community structure

is a prominent network property which provides a clear view

of how nodes are organized and how nodes contact with each

other, especially in social networks.

For information diffusion in mobile social network, commu-

nity has the following properties. Within a community, nodes

frequently contact each other and hence information can be

quickly spread. Information diffusion from one community to

another community is much slower compared to that within

community.

The basic idea of the community based algorithm is to

identify at least one diffusion node from each community. Let

C = {C1, C2, C3, ...Cl} denote the community structure, where

|C| = l and Ci ∈ C denotes a community and Ci ⊆ V . For

simplicity, we also denote Ci as C if there is no confusion. As

k nodes need to be identified from C, there are two cases: k < l
and k ≥ l. For k < l, we cannot guarantee one diffusion node

for each community, so some communities should be merged.

For k ≥ l, we need to consider how to identify more than

one diffusion node in a community. Thus, in following we first

show how to merge the detected communities to ensure k ≥ l,
and then study how to identify multiple diffusion nodes in a

community.

A. Community Merge

Before getting into the details of merging communities, we

first introduce two terms: central node and diffusion radius.

Definition 1. The Central Node of a community is defined as
the node from which the expected diffusion time to all other
nodes in the community is minimum. The expected diffusion
time of the central node is defined as the Diffusion Radius of
the community.

Let NC and R(C) denote the central node and the diffusion
radius of community C, respectively, and we have

R(C) = min
u∈C

(
max
v∈C

|(u, v)|
)
.

By merging communities, the number of communities can

be reduced from l to k. After that, the expected diffusion

time of the network is determined by the community with the

maximum diffusion radius since we will identify one diffusion

node in each community. Thus, for community merge, we

should minimize max{R(C) : C ∈ C} after (l − k) merging

steps. Clearly, we have R(Ci ∪ Cj) > max{R(Ci), R(Cj)}.

Thus, the merge of communities will increase the diffusion

radius. Since, at each step, we merge two communities together,

we have
(|C|

2

)
choices to merge communities. In order to

minimize max{R(C) : C ∈ C} after (l − k) merging steps,

we have to search
(
l
2

)(
l−1
2

)
. . .

(
k+1
2

)
times. However, the

running time is O(ll−k) and it is too expensive for large

community structure. Thus, we propose an alternative approach

for community merge.

For two rarely or indirectly connected communities, the

merged community will have an unexpected large diffusion

radius. In contrast, for two closely connected communities, the

diffusion radius of the merged community may be more than

the maximum of the two individual communities. Thus, the

basic idea is to merge closely connected communities and make

the diffusion radius of newly formed community as small as

possible. Cj is a closely connected community to Ci if the sum

of the edge weights between Ci and Cj normalized by |Cj | is

no less than that between Ci and V \Ci. The set of closely

connected communities of Ci (Ci ∈ C) is denoted by CCi
, and

we have

CCi
= {Cj ∈ C\{Ci} :

∑
u∈Ci,v∈Cj

wuv

|Cj | ≥

∑
u∈Ci,v∈V \Ci

wuv

|V \Ci| }

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1934

Algorithm 1: Community Merging

Input : C
Output: C

1 while |C| > k do
2 C′ = C
3 Ci = Cj = ∅
4 while |C′| do
5 C′

i = argmin
C∈C′

R(C)

6 C′
j = argmin

C∈C′
Ci

R(Ci ∪ C)

7 if R(C′
i ∪ C′

j) ≤ max{R(C) : C ∈ C} || Ci = Cj = ∅ then
8 Ci = C′

i and Cj = C′
j

9 break
10 else
11 if R(C′

i ∪ C′
j) < R(Ci ∪ Cj) then

12 Ci = C′
i and Cj = C′

j
13 end
14 C′ = C′\{C′

i}
15 end
16 end
17 C = C\{Ci, Cj} ∪ {Ci ∪ Cj}
18 end

The community merging process works as follows. First,

we choose the community with the lowest diffusion radius

denoted by Ci among C, then merge Ci with Cj , one from

the set of closely connected communities CCi , to obtain the

lowest R(Ci∪Cj). If the diffusion radius of the newly formed

community is less than the maximum value in C, we merge

them together. Otherwise, all other communities are iterated to

find R(Ci ∪ Cj) ≤ max{R(C) : C ∈ C}. If we cannot find

R(Ci ∪ Cj) ≤ max{R(C) : C ∈ C}, Ci and Cj are merged

with the lowest R(Ci ∪ Cj) in C. Then, C is updated and the

process is iterated until l − k merging steps.

The details of the community merging algorithm is shown in

Algorithm 1. With l−k merging steps, there are at most |C|−1
searches for the merging with the lowest diffusion radius at

each iteration, and one community has at most |C| − 1 closely

connected communities. Thus, the worst time complexity of

merging community is O(l2(l − k)).

B. Identifying Diffusion Nodes within Community

After community merge, |C| = k. Thus, the design effort

focuses on k ≥ |C|. In the rest of this section, C is either

the communities after merge or the detected communities with

k ≥ l. Since k ≥ l, we need to identify more than one diffusion

nodes in a community.

As the expected diffusion time for a node u ∈ Ci to be

informed is |(SCi
, u)|, where SCi

denotes the set of diffusion

nodes selected within community Ci, to identify multiple dif-

fusion nodes, we iteratively choose the node, which minimizes

the sum of the expected diffusion time from the set of selected

diffusion nodes to every other node in community Ci, precisely,

argmin
u∈Ci\SCi

∑
v∈Ci\SCi

|(SCi
∪ {u}, v)|.

With the selection of SCi
, the expected diffusion time of

community Ci is denoted as τ ′(SCi
, Ci).

Algorithm 2: Community based Algorithm

Input : C
Output: S

1 C′ = C
2 while ∃Ci, Cj : R(Ci ∪ Cj) < max

C∈C′R(C) do

3 C′ = C′\{Ci, Cj} ∪ {Ci ∪ Cj}
4 end
5 S = {NC : C ∈ C′}
6 while |S| < k do
7 C = argmax

C∈C′
R(C)

8 if C ∈ C then
9 if |SC | = 1 then

10 S = S\{NC}
11 S = S ∪ {argmin

u∈C\SC

∑

v∈C\SC

|(SC ∪ {u}, v)|}
12 end
13 S = S ∪ {argmin

u∈C\SC

∑

v∈C\SC

|(SC ∪ {u}, v)|}
14 else
15 S = S\{NC} ∪ {NCi

, NCj
} ; // Ci and Cj merged as C

16 C′ = C′\{C} ∪ {Ci, Cj}
17 end
18 end

C. Algorithm Design

To select diffusion nodes which can effectively reduce the

expected diffusion time, a straightforward solution is to select

the central node from each community, and then iteratively

choose nodes from the community with max{R(C) : C ∈ C}
until |S| = k. However, this approach is not efficient. Let us

give an example. In C, there is a community Ci with diffusion

radius larger than that of the merged community of Cj and Ck.

For this case, it is better to select more than one diffusion node

from Ci and only choose one diffusion node from the merged

community of Cj and Ck. Therefore, the designed algorithm

should address this problem.

The community based algorithm works as follows. First we

use similar technique as in Section IV-A to merge closely con-

nected communities until ∀Ci, Cj : R(Ci∪Cj) > max{R(C) :
C ∈ C}, and thus we have the updated C. We call it the merging
process. Then, we choose the central nodes for individual

communities as the candidates of diffusion nodes and thus we

still have k−|C| candidates remaining. Next, we identify other

candidate within community Ci with the maximum expected

diffusion time in the current C. If Ci is a merged community, it

is split into two original communities Cj and Ck, and the cen-

tral nodes of Cj and Ck are chosen as two candidates to replace

NCi
. Recall that we have R(Ci) > max{R(Cj), R(Ck)}, so

the replacement will decrease the expected diffusion time of

network. If Ci is an originally detected community, we first

choose a candidate, according to the approach described in

Section IV-B, to replace NCi
, then identify one more candidate

and add it into S. The process is executed iteratively until no

candidate remains and we call it the restoring process.

Fig. 1 gives an example of the community based algorithm,

where l = 7 and k = 8. Figures 1a to 1b show the merging

process. After that, three communities remain: C
′′
1 , C

′′
2 and C4.

Figures 1b to 1c show the restoring process. After choosing

the central node from each community, as R(C
′′
1) = 20,

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1935

C1

R(C1)=6

C2

R(C2)=8

C3

R(C3)=9

C4

R(C4)=35

C5

R(C5)=10

C6

R(C6)=8

C7

R(C7)=7

(a) detected communities

C1

R(C1)=6

C2

R(C2)=8

C3

R(C3)=9

C5

R(C5)=10

C6

R(C6)=8

C7

R(C7)=7

C4

R(C4)=35

C
′
1

R(C
′
1)=12

C
′′
1

R(C
′′
1)=20

C
′
2

R(C ′
2)=11C

′′
2

R(C
′′
2)=24

(b) merged communities

C1

R(C1)=6

C2

R(C2)=8

C6

R(C6)=8

C7

R(C7)=7

C3

R(C3)=9

C4

R(C4)=35

C5

R(C5)=10

C
′
1

R(C
′
1)=12

C
′′
1

R(C
′′
1)=20

C
′
2

R(C
′
2)=11C

′′
2

R(C
′′
2)=24

τ ′(SC4
, C4) = 13, when |SC4

| = 4

τ ′(SC4 , C4) = 19, when |SC4 | = 2

(c) restored communities

Fig. 1: Illustration of the community based algorithm, where l = 7 and k = 8. (a) to (b) show the merging process. (b) to (c)

show the restoring process. Finally, S = {NC
′
1
, NC

′
2
, NC3

, NC5
} ∪ SC4

.

R(C
′′
2) = 24 and R(C4) = 35, we need to identify other

diffusion nodes from C4. After selecting two diffusion nodes

from C4, τ ′(SC4
, C4) = 19. Since R(C

′′
2) > τ ′(SC4

, C4), we

then switch to C
′′
2 . As C

′′
2 is a merged community, we replace

NC
′′
2

with NC5 and NC
′
2
. The restoring process continues

until |S| = k. Finally, we choose NC
′
1
, NC

′
2
, NC3

, NC5

and SC4
(|SC4

| = 4) as diffusion nodes, and the expected

diffusion time of the network is the maximum of individual

communities; that is, τ ′(SC4
, C4) = 13 as shown in Fig. 1c.

If we choose the central node for each community, and then

identify the rest of diffusion nodes from the community with

the maximum diffusion radius, for this example, S will include

NC1
, NC2

, NC3
, NC5

, NC6
, NC7

and SC4
(|SC4

| = 2), and

the expected diffusion time of the network is also determined

by C4, i.e, τ ′(SC4
, C4) = 19 where |SC4

| = 2. Thus, our

algorithm performs better than the straightforward solution;

i.e., the expected diffusion time of our algorithm is 13 which

is better than 19. More generally, our algorithm identifies

more diffusion nodes in the community which determines the

expected diffusion time of the network than the straightforward

solution, and τ ′(SCi
, Ci) decreases with the increase of |SCi

|
according to the approach in Section IV-B; thus, our algorithm

has better performance.
Algorithm 2 details the community based algorithm. For

community merge, the worst case is when all the communities

are merged into one community and the running time is O(l3).
For the selection of S, the worst case is when all the diffusion

nodes are selected by the approach in Section IV-B and the

running time is O(kn2). Thus, the worst time complexity of

the community based algorithm is O(l3+kn2). However, since

l is much less than n, the running time is equivalent to O(kn2),
which is much less than the approximation algorithm (O(n5)).

V. DISTRIBUTED SET-COVER ALGORITHM

The approximation algorithm and the community based

algorithm are centralized and require global information of

the network; i.e., pairwise expected diffusion time is required

for the approximation algorithm and community structure is

required for the community based algorithm. However, such

information might not be available or cost too much in some

scenarios. Furthermore, mobile social networks might dynami-

cally evolve over time and then the contact frequency between

nodes (the edge weight) varies over time, which will affect the

accuracy for calculating the pairwise expected diffusion time

and detecting the communities. Thus, we propose a distributed

set-cover algorithm to address these problems.

For a certain time period γ and a node u, there is a set of

nodes to which u can diffuse information within γ, referred to

as the diffusion set of u. Suppose γ is equal to the minimum

diffusion time of the set of diffusion nodes, precisely,

γ = min
S⊆V
|S|≤k

max
v∈V

|(S, v)|,

the set of diffusion nodes S can be easily identified by selecting

the nodes, where the union of the diffusion sets for the selected

nodes is the set of nodes V . Although it is impossible to have

the minimized diffusion time, this inspires the design of the

distributed set-cover algorithm.

The distributed set-cover algorithm includes two phases:

discovering the diffusion set and identifying the k-node set.
For a given γ, which is a system parameter, the first phase

leverages probing messages to find the diffusion set for each

node in a distributed way; the second phase iteratively selects

the node to maximize the union of the diffusion sets for the

selected nodes.

A. Discovering the Diffusion Set

The diffusion set is identified as follows. For every period

of time Δt, which is a system parameter, each node generates

a probing message that includes node id, last relay node and

time-to-live (TTL), where TTL is set to γ, and stores it in the

local message queue. When a node u contacts with node v, u
will choose one probing message whose id is not v and whose

last relay node is not v from its message queue and forward the

message with probability λuv (λuv = wuv

du
). If node v receives

the probing message from u, it will decrease TTL by tvu. After

that, if TTL≥ 0, v will add the node id contained in the probing

message into Γ(v), where Γ(v) denotes the set of nodes from

which node v has received the probing message. Finally, if

TTL≤ 0, the probing message is discarded, otherwise, the last

relay node of the message is set to v and it is stored into

v’s local message queue so that it can be forwarded to other

nodes. Since TTL of probing messages is initially set to γ
and reduced by the expected diffusion time from receiver to

sender at each message transfer, for each node u, u can diffuse

information to Γ(u) within γ and Γ(u) is called the up-to-date

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1936

Algorithm 3: Identifying the k-node Set

Input : V , k
Output: S

1 V
′
= V

2 while |S| < k && V
′ �= ∅ do

3 u = argmax
v∈V

|V ′ ∩ Γ(v)|
4 V

′
= V

′\Γ(v)\{u}
5 S = S ∪ {u}
6 end

diffusion set of node u. Note that wuv and du are needed for

node u to compute λuv , and wuv and dv are needed for node

v to calculate tvu. However, it is easy for individual nodes to

maintain these information, thus it is omitted here.

B. Identifying the k-node Set

We identify the k-node set based on the collected up-to-

date diffusion set for each node. The k-node set is selected as

follows. First, we mark V
′

as a copy of V , and then choose

node u from V , which can maximize the intersection of Γ(u)
and V

′
, i.e., u = argmax{|Γ(v) ∩ V

′ | : v ∈ V }. After that,

u and nodes in the intersection of Γ(u) and V
′

are excluded

from V
′
. The process is executed iteratively until |S| = k

or V
′
= ∅. The algorithm of identifying the k-node set is

detailed in Algorithm 3 and the worst case of time complexity

is O(kn2).

C. Discussions

When node v (receiver) receives a probing message from

node u (sender), node v will reduce TTL of the probing

message by the expected diffusion time from v to u. Why not
reduce TTL by the diffusion time of the probing message from
u (sender) to v (receiver)? This is because the diffusion time

from sender to receiver is different from that from receiver

to sender. As we aim to collect the up-to-date diffusion set

at the receiver side, reducing TTL by the diffusion time from

sender to receiver is not feasible. Then, one may argue that

if the probing message is forwarded from node u to v with

probability λvu, the diffusion time of the probing message

from u to v will be equivalent to that from v to u. However,

for this case, node u will need dv to calculate λvu, which

will incur additional message overhead. More importantly, v
cannot rely on the diffusion time of the probing message to

determine whether u can be reached within γ. For example,

if the diffusion time of the probing message from u to v is

less than γ, meanwhile the expected diffusion time from v
to u is more than γ, u should not be included in the up-to-

date diffusion set of v since in most cases v cannot diffuse

information to u within γ (i.e., tvu > γ).

After discovering the diffusion set, each node can collect

the up-to-date diffusion set. As the path along which a probing

message travels is probably not the shortest path between two

nodes in terms of expected diffusion time, is the up-to-date
diffusion set the same as the diffusion set for each node?
Although probing messages are likely to stay within or gather

at certain region according to the probability of information

diffusion between neighboring nodes, the diffusion set of a

node is expectedly fully discovered within time γ. However,

that requires generating and forwarding the probing message

more frequently and hence results in high message overhead.

Thus, in our solution, each node generates a message every Δt
and forwards only one message opportunistically upon node

contact with a probability. Although the diffusion set may not

be disclosed completely, the up-to-date diffusion set approaches

to the diffusion set over time.

There are two system parameters for the distributed set-cover

algorithm: the time period (γ) and the frequency of generating

probing message (Δt). γ determines the region that the prob-

ing message can spread and hence affects both performance

and cost. Δt determines the number of probing messages

spreading over the network and also affects performance and

cost. Generally speaking, less generated messages will result in

smaller up-to-date diffusion set and more generated messages

will have more chances to block the relayed probing message

(since at most one probing message is forwarded upon node

contact), leading to smaller up-to-date diffusion set as well.

Thus, there is a tradeoff for selecting the values of γ and

Δt, which will result in tradeoffs between improving the

performance and reducing the message overhead. In the next

section, we will show how γ and Δt affect the performance of

the distributed set-cover algorithm and how to achieve balance

between performance and cost.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed

algorithms based on synthetic networks and the Facebook trace.

A. Comparisons based on Synthetic Networks

In this section, we compare the community based algorithm

(Community), the approximation algorithm (Approximation)

proposed in [5] and the naı̈ve algorithm (Naı̈ve), in terms of

expected diffusion time. For Community, we use the commu-

nity detection algorithm proposed in [23]. Note that Community
does not limit the selection of the detection algorithm and it is

compatible with other detection algorithms.

In order to evaluate the performance for different network

settings, we use the synthetic networks generated by the well-

known benchmark proposed in [25]. It provides power-law dis-

tribution of node degree and edge weight, and various topology

control. There are several parameters to control the generated

network: the number of nodes n; the average neighbors α;

the maximum neighbors αmax; the mixing parameter for the

weights μw; the mixing parameter for the topology μt; the

exponent for the weight distribution β; the minus exponent for

the degree sequence ξ1; the minus exponent for the community

size distribution ξ2. Without loss of generality, the settings of

these parameters are close to [23], which are shown in Table

I.

The expected diffusion time is formulated as the time unit

of the contact frequency. For example, if the edge weight is

formulated as contacts of one month, the time unit of the

expected diffusion time is one month.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1937

2

3

4

5

2

3

4

5

4

6

8

10

0 5 10 15 20 25

2

3

4

5

6

2.5

3

3.5

4

4.5

5

5.5

4

6

8

10

12

0 10 20 30 40 50

2

3

4

5

6

3

4

5

6

4

6

8

10

12

14

16

0 20 40 60 80 100

τ
′ (
S
,V

)
τ
′ (
S
,V

)
τ
′ (
S
,V

)

k k k

n = 500 n = 1000 n = 2000

μ
t
=

0.3,μ
w
=

0.1
μ
t
=

0.1,μ
w
=

0.3
μ
t
=

0.1,μ
w
=

0.1

Community
Approximation
Näıve

Community
Approximation
Näıve

Community
Approximation
Näıve

Fig. 2: Expected diffusion time of Community, Approximation and Naı̈ve with different network settings.

TABLE I: Parameter settings for the benchmark

Parameter Value Parameter Value
n 500, 1000, 2000 ξ1 2
μw 0.1, 0.3 ξ2 1
μt 0.1, 0.3 α 15
β 2 αmax 20

Fig. 2 shows the expected diffusion time of Community,

Approximation and Naı̈ve with varying k for different network

settings. Since in real applications k should be a small value,

we choose k no more than 5% of the network size for each

setting. As shown in Fig. 2, for network μt = 0.1 and μw =
0.1, Community and Approximation are comparable when k is

small. However, with the increase of k, Community increasingly

outperforms Approximation. In addition, both Community and

Approximation are much better than Naı̈ve. For networks with

heterogeneity in edge weight, where μt = 0.1 and μw = 0.3,

Community outperforms the other two algorithms for all k
values and Naı̈ve still has the worst performance. Community
always has better performance, up to 40%, than Approximation
in different network sizes for more heterogeneous network in

topology, where μt = 0.3 and μw = 0.1. In addition, the

expected diffusion time of Naı̈ve does not change too much

when k increases, compared to Approximation and Community,

which means that selecting more diffusion nodes does not

help too much in Naı̈ve, especially in networks with more

heterogeneity in topology.

In summary, Community performs better than Approxima-
tion and Naı̈ve in terms of expected diffusion time, because

Community relies on the community structure and identifies

diffusion nodes from individual communities rather than the

entire network as in Approximation and Naı̈ve.

B. Estimations of γ and Δt

In this section, we estimate γ and Δt for the distributed set-

cover algorithm (Set-cover) based on the Facebook trace [26],

which contains friendship information and wall posts among

Facebook users in the New Orleans regional network for more

than two years. We choose a partial trace, which spans from

Jan 2007 to Jan 2009 and contains 2320 nodes. We formulate

the contact between two nodes as the wall post and the edge

weight as the contact frequency.

As the neighboring information is needed for estimating γ,

Δt, and the diffusion set, we use 3-month trace from Jan 2007

to April 2007 to construct the neighboring information for

each node including the set of neighboring nodes, the node

degree and the edge weight for each neighbor. The diffusion

set discovery algorithm runs on other 3-month trace from April

2007 to July 2007 and the neighboring information is kept

updated during this period. γ and Δt are the system parameters

of Set-cover, which impact the performance and the cost.

As γ determines the range that a probing messages can

spread, it corresponds to k and certain network properties. We

use the average expected diffusion time between neighboring

nodes ta, the average number of neighboring nodes |Na| and k
to estimate γ. Assuming that each selected diffusion node can

spread information to the same number of nodes (that is n
k for

each diffusion node), we set γ to the expected diffusion time

to spread information to n
k nodes. That is

γ = ta�log|Na|
n

k
, (4)

where �log|Navg|
n
k is the minimum hop to reach n

k nodes from

the diffusion node. Figs. 3a and 3b show the message overhead

(the number of message transfers) and the expected diffusion

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1938

25 50 75 100

0

0.5

1

1.5

2

M
es
sa
g
e
ov
er
h
ea
d
(×

10
4
)

R

(a) message overhead vs γ

25 50 75 100

0

2

4

6

8

10

τ
′ (
S
,V

)

R

(b) expected diffusion time vs γ

0.5 day 1 day 2 days 3 days

0

0.5

1

1.5

2

M
es
sa
g
e
ov
er
h
ea
d
(×

10
4
)

Δt

(c) message overhead vs Δt

0.5 day 1 day 2 days 3 days

0

2

4

6

8

10

12

τ
′ (
S
,V

)

Δt

(d) expected diffusion time vs Δt

Fig. 3: Performance of Set-cover with varying γ and Δt in

terms of message overhead and expected diffusion time, where

k = 50, Δt =2 days for (a) and (b), and k = 50, γ = 50 for

(c) and (d).

time of Set-cover for k = 50, Δt = 2 days with varying γ,

where the estimated γ is 50 by Eq. 4. As can be seen, although

the message overhead of γ = 25 is slightly less than γ = 50,

γ = 50 has better diffusion time. Moreover, γ = 50 is a better

choice than γ = 75, since the message overhead of γ = 50
is less than γ = 75, though they have similar diffusion time.

Thus, our estimation of γ achieves a good balance between

performance and cost.

For Δt, we use the average node degree da and the time

unit of contact frequency T to estimate Δt. We set Δt equal

to the average time interval between contacts. That is

Δt = � T
da

. (5)

Figs. 3c and 3d show the message overhead and the expected

diffusion time of Set-cover for k = 50, γ = 50 with varying

Δt, where the estimated Δt is 2 days by Eq. 5. Fig. 3c shows

that the message overhead decreases with the increase of Δt.
Although Δt = 2 days has little more message overhead than

Δt = 3 days, it has much better performance as shown in

Fig. 3d. Thus, the estimation of Δt achieves a good tradeoff

between performance and cost.

C. Comparisons based on the Facebook Trace

We also evaluate the performance of the proposed algorithms

based on the Facebook trace. Community, Approximation and

Naı̈ve are centralized algorithms which require the server

to continuously collect and maintain global information. In

contrast, Set-cover only needs to collect a few neighboring in-

formation for estimating γ and Δt, and the up-to-date diffusion

0 20 40 60 80 100

10

20

30

40

50

τ
′ (
S
,V

)

k

Community
Approximation
Näıve
Set-cover

(a) expected diffusion time

0 20 40 60 80 100

0

10

20

30

40

50

P
er
ce
n
ta
g
e
(%

)

k

Community
Approximation
Näıve
Set-cover

(b) percentage of active nodes

Fig. 4: Performance on the Facebook trace of Community,

Approximation, Naı̈ve and Set-cover.

set. Although Set-cover requires probing messages, each prob-

ing message only transfers between neighboring nodes with a

probability when contact happens. Thus, the message overhead

of Set-cover is much less than the centralized algorithms.

Fig. 4a shows the expected diffusion time, where γ and Δt
are chosen according to Eq. 4 and Eq. 5, and the Facebook

trace from Jan 2007 to July 2007 is used. As shown in Fig. 4a,

Community outperforms all other algorithms, Approximation
is better than Set-cover and Naı̈ve, and Naı̈ve is the worst.

Although without global information, the performance of Set-
cover is comparable with Community and Approximation when

k is small, and it is also much better than Naı̈ve.

Fig. 4b shows the real information diffusion from the se-

lected k-node set, where the information diffusion runs on the

rest of the Facebook trace for all the algorithms. Due to sparse

node contacts in the rest of the trace, the information cannot

be spread all over the network at the end of the trace. Thus,

we compare the percentage of active nodes over all nodes

for each algorithm at the end of the trace, which represents

the performance of information diffusion within certain time

period. As shown in Fig. 4b, Community still performs the

best, Set-cover outperforms both Approximation and Naı̈ve, and

Approximation is the worst. When k = 100, Community can

diffusion the information to more than 50% of nodes, whereas

Approximation can diffuse to less than 30%.

At mentioned above, all algorithms cannot spread informa-

tion to the entire network at the end of the trace. Thus, we

compare the time for diffusing information to 10%, 20%, 30%

and 40% of nodes with varying k from 1 to 100 as shown

in Fig. 5. As Approximation cannot spread the information to

30%, 40% of nodes at the end of the trace, it is not included in

Fig. 5c and Fig. 5d. For the same reason, Naı̈ve is not included

in Fig. 5d. Similarly, some k values are not shown in some

figures (e.g., 40 in Fig. 5d) because at the end of the trace the

specified percentage of nodes cannot be informed with selected

S (|S| = k).

As shown in Fig. 5a and Fig. 5b, Community, Set-cover and

Naı̈ve can diffuse information to 10%, 20% of nodes with much

smaller k and shorter diffusion time for the same k values

than Approximation, and Community and Set-cover outperform

Naı̈ve. For example, as shown in Fig. 5b, Community can

spread the information to 20% of nodes with k less than 20,

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1939

20 40 60 80 100
0

5

10

15

20

25

τ
(S

,V
1
0
%
)
(m

o
n
th
)

k

Community
Approximation
Näıve
Set-cover

(a) 10% nodes

20 40 60 80 100

5

10

15

20

25

τ
(S

,V
2
0
%
)
(m

o
n
th
)

k

Community
Approximation
Näıve
Set-cover

(b) 20% nodes

40 60 80 100
6

8

10

12

14

16

18

20

22

τ
(S

,V
3
0
%
)
(m

o
n
th
)

k

Community
Näıve
Set-cover

(c) 30% nodes

60 70 80 90 100

10

12

14

16

18

τ
(S

,V
4
0
%
)
(m

o
n
th
)

k

Community
Set-cover

(d) 40% nodes

Fig. 5: Diffusion time of Community, Approximation, Naı̈ve and Set-cover to 10%, 20%, 30% and 40% of nodes.

Set-cover can achieve it with k less than 30, Naı̈ve can achieve

it with k less than 40, and Approximation can achieve it with k
around 60. For k = 60, the diffusion time for Community, Set-
cover, Naı̈ve and Approximation is 7, 10, 13 and 17 months,

respectively. As shown in Fig. 5c, Community and Set-cover
can spread information to 30% of nodes with shorter diffusion

time and smaller k than Naı̈ve. Moreover, Community is always

the best as shown in Fig. 5. Although Set-cover is worse

than Approximation in terms of expected diffusion time, it can

spread information to 10%, 20%, 30% and 40% of nodes with

smaller k and shorter diffusion time than Approximation and

Naı̈ve.

In summary, Community has the best performance on the

Facebook trace, and Set-cover outperforms Approximation and

Naı̈ve in terms of diffusion time.

VII. CONCLUSIONS

In this paper, we addressed the problem of identifying a

small number of nodes through which the information can be

diffused to the network as soon as possible. We proposed two

algorithms: community based algorithm and distributed set-

cover algorithm, to solve the diffusion minimization problem

in mobile social networks from different aspects. More specif-

ically, community-based algorithm leverages the community

structure, while distributed set-cover algorithm collects infor-

mation by probing messages in a distributed way. Simulation

results show that the community based algorithm has the best

performance for both synthetic networks and the Facebook

trace. Despite the lack of global information, the distributed

set-cover algorithm outperforms the approximation algorithm

in the Facebook trace in terms of diffusion time.

REFERENCES

[1] H. Ma, H. Yang, M. R. Lyu, and I. King, “Mining social networks using
heat diffusion processes for marketing candidates selection,” in Proc. of
ACM CIKM, 2008.

[2] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proc. of ACM
SIGKDD, 2010.

[3] T. Ning, Z. Yang, H. Wu, and Z. Han, “Self-interest-drive incentives for
ad dissemination in autonomous mobile social networks,” in Proc. of
IEEE INFOCOM, 2013.

[4] W. Peng, F. Li, X. Zou, and J. Wu, “A privacy-preserving social-
aware incentive system for word-of-mouth advertisement dissemination
on smart mobile devices,” in Proc. of IEEE SECON, 2012.

[5] S. Vishwanathan, “An o(log*n) approximation algorithm for the asym-
metric p-center problem,” in Proc. of ACM SODA, 1996.

[6] D. Liben-Nowell and J. Kleinberg, “Tracing information flow on a
global scale using internet chain-letter data,” Proceedings of the National
Academy of Sciences, vol. 105, no. 12, pp. 4633–4638, 2008.

[7] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, “The role of social
networks in information diffusion,” in Proc. of ACM WWW, 2012.

[8] D. M. Romero, B. Meeder, and J. Kleinberg, “Differences in the me-
chanics of information diffusion across topics: idioms, political hashtags,
and complex contagion on twitter,” in Proc. of ACM WWW, 2011.

[9] P. Domingos and M. Richardson, “Mining the network value of cus-
tomers,” in Proc. of ACM SIGKDD, 2001.

[10] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. of ACM SIGKDD, 2003.

[11] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks,”
in Proc. of ACM SIGKDD, 2010.

[12] Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie, “Simulated
annealing based influence maximization in social networks,” in Proc. of
AAAI, 2011.

[13] W. Dong, V. Dave, L. Qiu, and Y. Zhang, “Secure friend discovery in
mobile social networks,” in Proc. of IEEE INFOCOM, 2011.

[14] M. Li, N. Cao, S. Yu, and W. Lou, “Findu: Privacy-preserving personal
profile matching in mobile social networks,” in Proc. of IEEE INFOCOM,
2011.

[15] B. Han and A. Srinivasan, “Your friends have more friends than you do:
identifying influential mobile users through random walks,” in Proc. of
ACM MobiHoc, 2012.

[16] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt, “Micro-
blog: sharing and querying content through mobile phones and social
participation,” in Proc. of ACM MobiSys, 2008.

[17] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow, “Socia-
blesense: exploring the trade-offs of adaptive sampling and computation
offloading for social sensing,” in Proc. of ACM MobiCom, 2011.

[18] W. Hu, G. Cao, S. V. Krishanamurthy, and P. Mohapatra, “Mobility-
assisted energy-aware user contact detection in mobile social networks,”
in Proc. of IEEE ICDCS, 2013.

[19] D. López-Pintado, “Diffusion in complex social networks,” Games and
Economic Behavior, vol. 62, no. 2, pp. 573–590, 2008.

[20] J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz,
R. Krauthgamer, and J. S. Naor, “Asymmetric k-center is log* n-hard
to approximate,” Journal of the ACM, vol. 52, no. 4, pp. 538–551, 2005.

[21] M. E. Newman, “A measure of betweenness centrality based on random
walks,” Social networks, vol. 27, no. 1, pp. 39–54, 2005.

[22] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[23] Z. Lu, Y. Wen, and G. Cao, “Community detection in weighted networks:
Algorithms and applications,” in Proc. of IEEE PerCom, 2013.

[24] X. Zhang and G. Cao, “Transient community detection and its application
to data forwarding in delay tolerant networks,” in Proc. of IEEE ICNP,
2013.

[25] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” Physical Review E, vol. 80, no. 1, p. 016118, 2009.

[26] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in Proceedings of the 2nd
ACM SIGCOMM Workshop on Social Networks, 2009.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1940

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

