
Skeleton Construction in Mobile Social Networks:
Algorithms and Applications
Zongqing Lu†, Xiao Sun†, Yonggang Wen‡ and Guohong Cao†
†The Pennsylvania State University, ‡Nanyang Technological University

†{zongqing,xxs118,gcao}@cse.psu.edu, ‡ygwen@ntu.edu.sg

Abstract—Mobile social networks have emerged as a new fron-
tier in the mobile computing research society, and the commonly
used social structure (i.e., community) has been exploited to
facilitate the design of network protocols and applications, such
as data forwarding and worm containment. However, community
based approaches may not be accurate when applied for predict-
ing node contacts and may separate two frequently contacted
nodes into different communities. In this paper, to address these
problems, we propose skeleton, a tree structure specially designed
for organizing network nodes, as the underlying structure in
mobile social networks. We address the challenges on how to
uncover skeleton from network, how to adapt skeleton with
dynamic network and how to leverage skeleton for network
protocol designs. Skeleton is constructed based on best friendship
and skeleton construction is simple and efficient (e.g., less compu-
tational complexity than community detection). Algorithms are
also designed to adapt skeleton construction to dynamic network.
Moreover, a data forwarding algorithm and a worm containment
strategy are designed based on skeleton. Trace-driven simulation
results show that the skeleton based data forwarding algorithm
and worm containment strategy outperform existing schemes
based on community.

I. INTRODUCTION

With the proliferation of smart devices and the merg-
ing of online social networks that link humans, computers
and the Internet, mobile social networks have emerged as
a new frontier in the mobile computing research society
[1][2][3][4][5]. A current trend for online social networking,
such as Facebook and Twitter, is to develop mobile apps to
provide users instant access through their mobile devices. In
addition, more and more mobile social networks have been
created like Foursquare, Instagram, and Path. Smart devices
equipped with Bluetooth or Wi-Fi Direct bring numerous ad-
hoc communication opportunities based on user mobility and
social contacts. Social relations are deeply rooted in such
mobile social networks.

It is a challenge to identify the network structure (i.e., how
nodes are organized) in mobile social networks. Since the net-
work structure represents a long-term property of the network,
it can facilitate the design of network protocols. For example,
better data forwarding can be achieved by locating nodes
through the network structure and then accurately predicting
future node contacts; worm containment can be achieved by
disconnecting some nodes based on the network structure.

This work was supported in part by Network Science CTA under grant
W911NF-09-2-0053.

However, due to the huge amount of node contacts, mobile
social networks are extremely complex and it is a challenge
to identify the underlying structure.

Community has been widely used as the underlying struc-
ture of social networks, where nodes inside the community
have more internal connections than external connections
[6][7][8][9]. Although community-based data forwarding and
worm containment [10][11][12][13] outperform other social
based schemes [14][15][16][17][18][19], community based
approaches suffer from two major problems: the result may not
be accurate when applied for predicting future node contacts;
two frequently contacted nodes may be separated into different
communities.

To address these problems, in this paper, we propose
skeleton, a tree structure specially designed for organizing
network nodes, as the underlying structure in mobile social
networks. Skeleton is simple and easy to be uncovered, and we
propose a lightweight algorithm to construct skeleton based on
best friendship. With skeleton, nodes can be easily connected
or separated, which better facilitates protocol design. The
contribution of the paper is two-fold and summarized as
follows:
• We propose skeleton as the network structure in mobile

social networks. We design a lightweight algorithm for
skeleton construction, which has less computational com-
plexity than that of community detection. We also design
algorithms to adapt skeleton construction to dynamic
networks.

• We exploit skeleton for designing a data forwarding
algorithm and a worm containment strategy in mobile
social networks. Trace-driven simulation results show that
skeleton based schemes outperform community based
schemes.

The rest of this paper is organized as follows. Section
II gives an overview of this work. Section III presents the
skeleton construction. Section IV shows the skeleton evolution
with dynamic network. The skeleton based applications are
presented in Section V, followed by performance evaluations
in Section VI. Section VII reviews related work and Section
VIII concludes the paper.

II. OVERVIEW

A. Motivation

In mobile social networks, node contacts can be categorized
into two types: frequent contacts and intermittent contacts.978-1-4799-4657-0/14/$31.00 c©2014 IEEE

2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

978-1-4799-4657-0/14/$31.00 ©2014 IEEE 477

For community detection, every contact is taken into consid-
eration for uncovering communities. This is specially true for
community detection in binary networks [10], where frequent
contacts and intermittent contacts are treated equally as edges
in the network. For community detection in weighted networks
[12], although frequent contacts and intermittent contacts are
differentiated by edge weights, intermittent contacts are still
important criteria for nodes to form communities. However,
since intermittent contact between two nodes happens occa-
sionally, we cannot rely on it to predict node contacts in the
future. Nevertheless, such prediction is essential for designing
network protocols in mobile social networks.

In community detection, since the criterion for a node to
be included in a community is the connections between the
node and the existing community rather than the connections
between nodes, community structure might separate two fre-
quently connected nodes into different communities and hence
undermines its usefulness for protocol designs. Let us give an
example. In a network, there are two neighboring nodes, u and
v, where node v contacts with u more frequently than with
other nodes; however, u and v are separated into community
A and B, respectively. According to data forwarding schemes
based on community, to forward a message to v from com-
munity A, the message is firstly forwarded into community
B, then the message is continuously relayed within B be-
fore received by node v. However, obviously, the forwarding
through node u from A will be more efficient to reach node v.
Similarly, for worm containment, the separation of frequently
connected nodes will make worms spread quickly between
communities if they are infected.

To address these problems, we propose skeleton, a tree struc-
ture specially designed for organizing network nodes based on
best friendship (i.e., one contacts with one’s best friend more
frequently than with others). The skeleton tree is structured
by hierarchically grouping nodes or groups connected by
best friendships. Since skeleton is constructed based on the
most frequent and reliable connections, it is more accurate
and easier to predict future node contacts based on skeleton
than community. Without loss of generality, we develop data
forwarding algorithm and worm containment strategy based on
skeleton to demonstrate how skeleton better facilitates protocol
designs.

TABLE I: MIT Reality trace summary

Trace MIT Reality
No. of nodes 97

No. of contacts 114046
Duration (days) 246

Pairwise contact frequency (per day) 0.10

TABLE II: Facebook trace summary

Trace Facebook
No. of nodes 18559

No. of contacts 296002
Duration (days) 365

Pairwise contact frequency (per day) 0.002

C1
0

C2
0 C2

1

C3
0a

b

c

d

e

f

h
g

C1
1 C1

2

C1
3

Fig. 1: Illustration of skeleton, where arrow lines represent
best friendships between nodes or between groups, and the
arrow points from a node or group to its best friend.

B. Traces

In this paper, we study skeleton construction and evaluate
the proposed protocols based on two traces in mobile social
networks: the MIT Reality trace [20] and the Facebook trace
[21].

The MIT Reality trace contains contacts among users carry-
ing Bluetooth devices. Bluetooth devices periodically discover
the peers in the neighborhood and record their contacts when
two devices move close to each other. The detail of the trace
is summarized in Table I.

The Facebook trace contains the friendship information and
the wall posts among Facebook users in the New Orleans
regional network for more than four years. In this paper, we
choose a partial trace which spans one year from 1/1/2007
to 1/1/2008. The Facebook trace is summarized in Table II,
where contact between two nodes is the wall post.

III. SKELETON CONSTRUCTION

In this section, we address the following problem: How to
construct the skeleton tree based on best friendships?

A. Preliminary

Let G = (V,E) represent a weighted and undirected
network, where V denotes the set of nodes and E denotes
the set of edges. For two neighboring nodes u, v ∈ V , wuv
denotes the weight of the edge. The edge weight indicates
the contact frequency between two nodes and the time unit of
frequency is consistent for all the edges. We denote C as a
group (a set of nodes), we also denote C as a set of groups,
e.g., C = {C0, C1, C2...}.

The skeleton tree is denoted by S, S = {C0, C1, C2, ..., Cl}.
Ci denotes the set of groups at level i of S and Cij denote
a group in Ci. The bottom level of the skeleton tree (i.e., C0)
consists of individual nodes and we also denote each node as a
group in the skeleton tree (e.g., C0

m) for convenience. For any
group at the level above the bottom level, e.g. Cij and i > 0, it
has a subgroup set {Ci−1m , Ci−1n , Ci−1o , ...}. Moveover, there
is only one group in Cl and the group is called the root of
S. We also denote SCi

j
as a subtree of S, where the root of

SCi
j

is Cij and Ck
Ci

j
denotes the set of groups at level k of

subtree SCi
j
. For any given set of groups at the same level of

the skeleton tree C = {Cim, Cin, Cio, ...}, we denote θC as the
lowest common group (ancestor) in S, where CiθC of subtree
SθC includes all the groups in C.

2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

478

a

b

c

d

e f

g

h

i

1
8

1

11 9

1

4

5

6

1

4

5
1

3

5 1

(a) weighted network

a

b

c

d

e f

g

h

i

8

11 9

4

5

6

4

55C1
0

C1
1

(b) extracted best friendships

Fig. 2: Best friendships extraction

Let us give an example using Fig. 1, where S =
{C0, C1, C2, C3}. We have C0 = {{a}, {b}, {c}, {d}, {e}, {f},
{g}, {h}}, where we also denote {a} as C0

0 , {b} as C0
1 ,

{c} as C0
2 , etc. We also have C1 = {C1

0 , C
1
1 , C

1
2 , C

1
3},

C2 = {C2
0 , C

2
1}, and C3 = {C3

0}, where C3
0 is the root of

S. For C = {{a}, {c}}, the lowest common group of C is C2
0 .

Note that the notation of the skeleton tree is convenient for
algorithm designs in the rest of the paper.

B. Best Friendship Stability

In mobile social networks, nodes opportunistically contact
with each other, however two nodes connected by best friend-
ship contact each other frequently and regularly. For a node
u, u ∈ V , the best friend of u is the node that u contacts
with more frequently than with other neighboring nodes, it is
denoted by βu. For node u and v, where v = βu, u→ v also
denotes that the best friend of u is v. For example, in Fig.
2a, we have a→ c, b→ d, d→ b, etc. As best friendship in
social network is uni-directional, in the network model, best
friendship is also uni-directional that is if u→ v, there is not
necessarily v → u.

We use the MIT Reality trace and the Facebook trace to
show the stability of best friendships. We set 20 and 50
observation points for the MIT Reality trace and the Facebook
trace. That is, the traces are divided by 20 and 50 based on the
time span of traces. At each observation point, we calculate
the stability ratio of best friendships as

τt =

∑
u∈V λ(β

t
u, β

t−1
u)

|V |
,

where λ-function yields one when the best friend of node u at
observation point t (βtu) is the same with that at t− 1 (βt−1u);
otherwise, it is zero.

As shown in Fig. 3, after initial few observation points, the
stability ratio is more than 80% and 90% in the MIT Reality
trace and the Facebook trace, respectively, for both 20 and 50
observation points. Therefore, best friendships between nodes
are much stable and hence we can rely on them to build the
skeleton tree.

C. The Skeleton Construction Algorithm

To construct the skeleton tree, best friendships between
nodes are extracted and then the nodes connected by best
friendships form a group. For example, in Fig. 2a where
a → c, c → d, b → d and d → b, a, b, c and d will form a
group. Note that each node has one and only one best friend.

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1

0.65

0.75

0.85

0.95

τ t

time span (%)

20 observation points
50 observation points

(a) MIT Reality trace

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1

τ t

time span (%)

20 observation points
50 observation points

(b) Facebook trace

Fig. 3: Stability ratio of best friendships in the MIT Reality
trace and the Facebook trace.

For a group, it at least includes two nodes which are the best
friend of each other.

Fig. 2b shows the extraction of best friendships between
nodes for a given weighted network in Fig. 2a. After the
extraction, the network is partitioned into C1

0 = {a, b, c, d}
and C1

1 = {e, f, g, h, i}, and within each group nodes are
connected by best friendships, i.e., arrow lines in Fig. 2b,
where the arrow points from a node to its best friend.

Best friendships connect individual nodes in the skeleton
tree, and similarly, we also identify best friendship between
groups to connect groups in the skeleton tree. Considering
connections between groups as the sum of the edge weights
between individual nodes in two groups, for a group Ci, the
best friend of Ci is the group that Ci has more connections
with than with other groups, and this group is denoted by βCi .
Ci → Cj also denotes the best friend of Ci is Cj .

Based on best friendships between nodes and between
groups, the skeleton tree is constructed as follows. Starting
with individual nodes at the bottom level of the skeleton
tree, nodes connected by best friendships form a group. This
partitions the network into one or more groups, which form
the next level up of the skeleton tree. Then, best friendships
between groups are identified and similarly groups connected
by best friendships are grouped together. The process is
iterated until there is only one group. The pseudo code of
the skeleton construction algorithm is detailed in Algorithm
1.

Unlike best friendship between nodes, e.g., u → v, best
friendship between groups is built on the sum of the edge
weights between two groups. To bridge two groups connected
by best friendship, we define a pair of joint nodes. For Ci →
Cj , considering connections between a node and a group as
the sum of the edge weights between the node and nodes in
the group, the joint node that connects Cj from Ci is the node
in Ci, which has more connections with Cj than other nodes
in Ci. Similarly, we have the joint node that connects Ci from
Cj . For example, in Fig. 2b, where the connections between
two groups are the dashed lines, the joint nodes are node c
and e.

Skeleton is eventually built as a tree. Let us use Fig. 1 as an
example of skeleton. a and b form C1

0 , c and d form C1
1 , e and

f form C1
2 , g and h form C1

3 . Further, C1
0 and C1

1 form C2
0 ,

2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

479

Algorithm 1: Skeleton construction

Input : G = (V,E)
Output: S

1 C = {{u} : u ∈ V };
2 while |C| 6= 1 do
3 C =Skeleton(C);
4 S = S ∪ {C};
5 end

6 Skeleton(C)
7 begin
8 C′ = ∅;
9 while C 6= ∅ do

10 C′′ = {Ci}, Ci ∈ C;
11 Cj = βCi

;
12 while Cj /∈ C′′ do
13 C′′ = C′′ ∪ {Cj};
14 Cj = βCj

;
15 end
16 forall the Ci ∈ C\C′′ do
17 if βCi

∈ C′′ then
18 C′′ = C′′ ∪ {Ci};
19 end
20 end
21 C = C\C′′;
22 C′ = C′ ∪ {C′′};
23 end
24 return C′;
25 end

C1
2 and C1

3 are grouped as C2
1 , C3

0 consists of C2
0 and C2

1 . a
and c are the joint nodes between C1

0 and C1
1 , e and g are the

joint nodes between C1
2 and C1

3 , b and f are the joint nodes
between C2

0 and C2
1 (Fig. 1 shows best friendships between

nodes and between groups, and other edges between nodes are
omitted). Thus, by skeleton construction we can organize all
the nodes into different groups and each level of the skeleton
tree has different number of groups.

D. Computation Complexity

Skeleton construction starts with |V | individual nodes and
ends with one group. As a newly formed group at least
contains two members at each grouping step, there are at most
log2 |V | grouping processes. Since, at each grouping step, the
groups connected by best friendships form together, the time
complexity of ith grouping process is (12)

i−1|V | × d × 2i−1,
where (12)

i−1|V | denotes the number of groups and d× 2i−1

denote the time to compute the best friend for each group
(2i−1 denotes the number of nodes in each group, and d
denotes the average number of neighbors for each node and is
a constant). Thus, the time complexity of skeleton construction
is O(|V | log |V |), which is less than O(|V |3) [8] and O(|V |2)
[10] for community detection.

IV. SKELETON EVOLUTION

In this section, we address the following issue: How to
adapt skeleton construction to dynamic network? Although
best friendship of each node is much stable in mobile social
networks, as shown in Fig. 3, it still varies over time. As
skeleton is constructed based on best friendships, skeleton
should be able to evolve over network when best friendships
change and when nodes are added into or removed from the
network.

Algorithm 2: Update best friendship
Input : St−1

Output: St

// u→ v ⇒ u→ w, where v ∈ Ci
m, w ∈ Ci

n
1 C = {Ci

n, C
i
m};

2 Cj = θC ;
3 Ci

n = Ci
n ∪ {u};

4 forall the k ∈ Ci
m do

5 if βk ∈ Ci
n then

6 Ci
n = Ci

n ∪ {k};
7 Ci

m = Ci
m\{k};

8 end
9 end

10 for k = i to j − 1 do
11 Ck+1

Cj =Skeleton(Ck
Cj);

12 if |Ck+1
Cj | = 1 then

13 break;
14 end
15 end

A. Update Best Friendship
When the best friendship changes between either nodes

or groups, the skeleton tree needs to adapt accordingly. For
example, suppose node or subgroup a, b and c are in group
Cim, d and e are in group Cin. At time t− 1 we have c→ b.
At time t, c→ a. Since a, b and c are all in group Cim, there
is no change needed for the skeleton tree. However, if at time
t, c→ e, then we will have Cim = {a, b} and Cin = {c, d, e}.
Since Ci+1 is constructed based on Ci, we have to update upper
levels of the skeleton tree. Let C = {Cim, Cin} and suppose the
lowest common group of C is Cj . As Cj contains all the nodes
or subgroups included in Cim and Cin, the change of Cim and
Cin does not affect Cj , and thus it does not impact Cj and
the levels above. Therefore, when the best friendship changes
at Cim and Cin, we need to update subtree SCj from level
i to j − 1. Algorithm 2 shows the details of updating best
friendship.

B. Node Insertion
First, let us consider the case that a person joins a group

in a social network. When the person becomes a member of
a social group, he must have contacted with another member
in the group. Thus, for the insertion of node u /∈ V that has
the contact with node v ∈ V , the skeleton is updated with
C1
m = C1

m ∪ {u}, where v ∈ C1
m, and the change of C1

m will
not affect the rest of the skeleton tree.

Then we consider another more complex situation, i.e, node
u has multiple edges with nodes in the network. In real world,
this situation happens when a person returns back after a long
trip, and his social relations still remain. For this case, node
u will be attached to group C1

n = C1
n ∪ {u}, where v = βu

and v ∈ C1
n. However, this change may affect the skeleton tree

since node u may have connections with other nodes and hence
change the best friendship of other nodes. Thus, we have to
update the skeleton tree for the insertion of node u. Algorithm
3 describes the procedure of handling node insertion.

C. Node Removal
When a node u is removed from the network, all edges

connected with u will be removed. Also, the nodes, who have

2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

480

Algorithm 3: Node insertion
Input : St−1

Output: St

// u is inserted
1 v = βu;
2 C1 = C1 ∪ {u}, where v ∈ C1;
3 if |Nu| 6= 1 then // Nu is neighbor set of u

4 forall the k ∈ Nu do
5 C = C ∪ {C}, where k ∈ C;
6 end
7 Ci = θC ;
8 for k = 1 to i− 1 do
9 Ck+1

Ci =Skeleton(Ck
Ci);

10 if |Ck+1
Ci | = 1 then

11 break;
12 end
13 end
14 end

the same best friend u, need to update their best friendship.
To update the skeleton tree after node removal, we need to
track which groups are directly affected. For example, after
node u, u ∈ C1

m, is removed, which is the best friend of node
v, v will be connected to its new best friend w and included
in C1

n, w ∈ C1
n, and hence C1

m and C1
n are directly affected.

Therefore, for node removal, a subtree of the skeleton tree
needs to be updated, where the root of the subtree is the lowest
common group of these directly affected groups. Algorithm 4
gives the details.

V. SKELETON BASED APPLICATIONS

In this section, we exploit skeleton for two applications: data
forwarding and worm containment in mobile social networks.

A. Skeleton based Data Forwarding
Different from data forwarding strategies based on commu-

nity [10][11], we leverage skeleton to facilitate data forwarding
in mobile social networks. The basic idea of skeleton based
routing for data forwarding is to route messages along best
friendships and through joint nodes.

In the skeleton tree, the shortest routing path (for simplicity
we also call it routing path) can be established for nodes or
groups connected by best friendships. For example, as shown
in Fig. 2b, the routing path from node f and h is denoted as
(f, h), |(f, h)| denotes the routing distance, where |(f, h)| =
1
5 + 1

4 (the distance between two nodes connected by best
friendship is the reciprocal of the edge weight), and similarly
|(C1

0 , C
1
1)| = 1

9 . Moreover, for the routing path, e.g., (f, h) as
shown in 2b, i is called the next hop node, and similarly we
also have next hop group for the routing path between groups.
To route messages between groups, joint nodes are used. For
example, as shown in Fig. 2b, to forward a message from node
f to d, the message is firstly forwarded to the joint node e that
connects C1

0 from C1
1 , then from e to nodes in C1

0 , e.g., from
e to c, finally from c to d. We can see there are two cases
in skeleton based routing: the routing between nodes within
group (e.g., from f to e), where nodes are connected by best
friendships, referred to as intra-group routing, and the routing
between nodes in different groups (e.g., from e to c), referred
to as inter-group routing.

Algorithm 4: Node removal
Input : St−1

Output: St

// u is removed
1 C1

m = C1
m\{u}, where u ∈ C1

m;
2 forall the v ∈ Nu do // Nu is neighbor set of u

3 if u = βv then
4 C1

m = C1
m\{v};

5 update βv ;
6 C1 = C1 ∪ {v}, where βv ∈ C1;
7 C = C ∪ {C1};
8 else
9 C = C ∪ {C1}, where v ∈ C1;

10 end
11 end
12 C = C ∪ {C1

m};
13 Ci = θC ;
14 for k = 1 to i− 1 do
15 Ck+1

Ci =Skeleton(Ck
Ci);

16 if |Ck+1
Ci | = 1 then

17 break;
18 end
19 end

With the establishment of routing paths for nodes or groups
connected by best friendships, the overall strategy of skeleton
based routing is as follows. Suppose a node (sender) carries a
message destined to another node (receiver). When the sender
encounters a node (relay), it will forward the message to the
relay:
• if the relay has shorter routing distance to the receiver or

to the joint node that connects the next hop group than
the sender, when the routing path can be established for
the sender, relay and receiver or joint node;

• if the relay’s group has shorter routing distance to the
receiver’s group or to the joint node’s group that connects
the next hop group than the sender’s group, when the
routing path can be established for the sender’s, relay’s
and receiver’s or joint node’s group.

Let us give an example of of skeleton based routing. In
Fig. 1, node d has a message for node h. First, we identify
the lowest common group of d and h, which is C3

0 . From
the top of subtree SC3

0
down, b is the joint node from C2

0

to C2
1 , and c is the joint node from C1

1 to C1
0 . Thus, node

d will forward the message if it encounters c since c is the
joint node that connects C1

0 , or b and a since they are either
the joint node that connects C2

1 or in the same group with the
joint node, or e, f , g and h since they are either the receiver
or in the same group with the receiver. For another example,
as shown in Fig. 2, node i sends a message to node d. Node
i will relay the message if it encounters g and f since they
have shorter routing distance to the joint node e that connects
C1

0 than i. After node e receives the message, it will relay
the message when it encounters any node in C1

0 . Finally, the
message is relayed to d with C1

0 . The pseudo code of skeleton
based routing is detailed in Algorithm 5.

In skeleton based routing, best friendships between nodes
are used to build the routing path locally within group, where
messages are forwarded by intra-group routing; joint nodes are
used to bridge the gap between groups, where messages are

2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

481

Algorithm 5: Skeleton based routing
Input : u, v, w ∈ V
// u is sender, v is receiver and w is relay.

1 Ci = θC , where C = {{u}, {v}};
2 j = i;
3 while j ≥ 1 do
4 Cu = Cj−1

m , where u ∈ Cj−1
m and Cj−1

m ∈ Cj−1

Ci ;
5 Cv = Cj−1

n , where v ∈ Cj−1
n and Cj−1

n ∈ Cj−1

Ci ;
6 Cw = Cj−1

o , where w ∈ Cj−1
o and Cj−1

o ∈ Cj−1

Ci ;
7 if Cu = Cv = Cw then
8 if j = 1 then
9 if |(w, v)| < |(u, v)| then

10 w.AddMessage();
11 end
12 break;
13 else
14 j = j − 1;
15 continue;
16 end
17 else if Cv = Cw 6= Cu then
18 w.AddMessage();
19 break;
20 else if Cu = Cv 6= Cw then
21 break;
22 else if Cu = Cw 6= Cv then
23 v = NCuCnext , where Cnext is next hop group of (Cu,Cv) and

NCuCnext
denotes the joint node that connects Cnext from Cu;

24 j = j − 1;
25 continue;
26 else if Cu 6= Cw 6= Cv then
27 if |(Cw, Cv)| < |(Cu, Cv)| then
28 w.AddMessage();
29 end
30 break;
31 end
32 end

forwarded by inter-group routing.

Theorem 1. With skeleton constructed as a complete binary
tree, the expected hop count of intra-group routing path E(H)
and the expected number of inter-group routing E(D) between
any pair of nodes are 3n−1

2n−1 and
∑n−1

k=1 2k3n−1−k

2n−1 , respectively,
where n = log2 |V | (see Appendix A for the proof).

From Theorem 1, we have E(H) = 3n−1

2n−1 and E(D) =∑n−1
k=1 2k3n−1−k

2n−1 . That is, for example, E(H) ≈ 19 and
E(D) ≈ 37 for a network with 1024 nodes. However, these
are the worst case of skeleton based routing. Since message
forwarding in skeleton based routing does not stick to the route
path, it should be much less than E(H) and E(D).

B. Skeleton based Worm Containment

Mobile social networks become popular recently with the
rapid development of smartphone such as iPhone, Android
phone and Window phone, where people can keep in touch
with friends and family, share news, photos and videos with
mobile devices. However, due to the openness of API of iOS,
Android and Windows phone OS, it is also easier for hackers
to write malicious software that can control the smartphone
and propagate viruses and worms to other mobile devices
quickly by mobile social network apps.

Social-based worm containment for cellular networks and
online social networks has been proposed in [18], [10] and

[22]. The intuition behind these schemes is to contain worms
within the infected community before they can spread out
widely. Like these schemes, skeleton based patching for worm
containment also aims to isolate the infected group, however,
based on skeleton.

As discussed in Section III, in skeleton construction, after
the first grouping process, network nodes are separated into
different groups which are referred to as fine-grained groups.
Inside group, nodes are connected by best friendships and
hence node contacts are much frequent. If a node in a fine-
grained group is infected, it is difficult to keep other nodes
inside the group from being infected. Therefore, the basic idea
of skeleton based patching is to patch the nodes which can
isolate the fine-grained groups as much as possible.

Based on the fine-grained groups, we define the external
connectivity of each node u as the sum of the edge weights
between u and nodes outside u’s fine-grained group. Since
distributing patches to all nodes at the same time may not
always be feasible, e.g., due to the bandwidth limitation in
cellular networks, a proper patching order is needed for all
the nodes. In skeleton based patching, the patching sequence
is determined by the external connectivity, i.e., the higher its
external connectivity is, the sooner the node will be patched.

The intuition of skeleton based patching is to disconnect
communications and connections among fine-grained groups.
For example, there are four laboratories in computer science
department, networking labs a and b are neighboring in one
building, computer vision labs c and d are also neighboring
and in another building, where each lab is an individual group.
Moreover, labs a and b are further composed of networking
lab; labs c and d are further composed of computer vision
lab. In skeleton based patching, instead of networking lab and
computer vision lab, we focus on the connections among lab
a, b, c and d so as to contain worms within small groups.
By patching nodes with high external connectivity built on
fine-grained groups, skeleton based patching can better isolate
infected groups than community based schemes.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of skeleton
based data forwarding and worm containment algorithms.

A. Data Forwarding

The evaluations are conducted based on the MIT Reality
trace. In the simulation, each node sends 500 messages to other
randomly selected nodes, and messages will be discarded if
they are not successfully delivered within the Time-To-Live
(TTL), which varies from 1 hour to 50 hours. We compare
skeleton based routing (Skeleton) to other three forwarding
strategies: Epidemic [23], BubbleRap [11] and AFOCS [10],
where half trace is used as warmup to perform the skeleton
construction in Skeleton or the community detection for Bub-
bleRap and AFOCS, and another half is used to evaluate data
forwarding algorithms. For skeleton based routing, skeleton
keeps evolving with the network after warmup.

2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

482

0 10 20 30 40 50
0

10

20

30

40

d
el
iv
er
y
ra
ti
o
(%

)

TTL (hour)

Epidemic
BubbleRap
AFOCS
Skeleton

(a) delivery ratio

0 10 20 30 40 50
0

5

10

15

20

25

m
es
sa
ge

re
p
li
ca

TTL (hour)

Epidemic
BubbleRap
AFOCS
Skeleton

(b) message replica

0 5 10 15 20 25
0

10

20

30

40

d
el
iv
er
y
ra
ti
o
(%

)

message replica

Epidemic
BubbleRap
AFOCS
Skeleton

(c) frontier

0 10 20 30 40 50
2

4

6

8

10

d
el
iv
er
y
ra
ti
o
(%

)

TTL (hour)

Epidemic
BubbleRap
AFOCS
Skeleton

(d) delivery ratio without replication

Fig. 4: Performance of data forwarding algorithms Epidemic, BubbleRap, AFOCS and Skeleton on the MIT Reality trace.

We evaluate all the algorithms based on two message
forwarding modes: forwarding with message duplication and
forwarding without message duplication. For forwarding with
message duplication, the algorithms are compared in term of
data delivery ratio, the number of message replica, and frontier
between delivery ratio and message replica, where Epidemic
is the upper bound for delivery ratio and the lower bound for
message replica since in Epidemic messages are duplicated
and forwarded to any encountered node. For the forwarding
without message duplication, data delivery ratio is compared.
As message duplication that incurs the storage cost can be
seen as the data forwarding cost, delivery ratio achieved in
this mode indicates the efficiency of the forwarding algorithm.

Fig. 4 shows the results of the data forwarding on the MIT
Reality trace. As analyzed above, Epidemic has the highest
delivery ratio and message replicas as expected in Fig. 4a
and 4b, meanwhile AFOCS has the lowest delivery ratio and
message replicas. The delivery ratio of Skeleton is, up to 25%,
better than that of BubbleRap. Moreover, Skeleton has much
less message replicas than Epidemic and up to 30% less than
BubbleRap as shown in Fig. 4b. Fig. 4c gives the frontier
of each algorithm in terms of delivery ratio and message
replicas. We can see Skeleton and BubbleRap sit in the same
region, however, Skeleton is much better than BubbleRap,
e.g., the delivery ratio of Skeleton is almost 30% with five
message replicas, but the delivery ratio of BubbleRap is below
20%. Although Epidemic can achieve better delivery ratio than
Skeleton, the message replica of Epidemic is almost 5 times
of Skeleton. Fig. 4d shows the delivery ratio of data forward-
ing algorithms without message duplication, where AFOCS
still has the worse delivery ratio, Epidemic and BubbleRap
are equivalent, and Skeleton is the best. Moreover, Skeleton
increasingly outperforms other algorithms with the increase
of TTL.

To summarize, there exists a tradeoff between data delivery
ratio and message replica. Epidemic represents the upper
bound of the performance and cost of data forwarding, and
AFOCS represents the lower bound of the performance and
cost of data forwarding as shown in Fig. 4. Skeleton and
BubbleRap span between them as illustrated in Fig. 4c. Skele-
ton achieves a good balance between performance and cost,
i.e., it has the second best delivery ratio and the second best

message replica, and it is also the most efficient algorithm.
Since skeleton based routing relies on the most frequent
connections in network (best friendships) for data forwarding,
it outperforms other community-based forwarding algorithms
BubbleRap and AFOCS.

B. Worm Containment

Worm containment algorithms are evaluated on the Face-
book trace. Without loss of generality, we use similar worm
propagation model in [10] that mimics the behaviors of the
famous worm Koobface that once spread out on Facebook.
We assume that the worms are able to explore the friendship
information for propagation (such as sending out messages
including malicious links). The probability of node activating
worm received from friends is proportional to the contact
frequency between them. The time taken for the worm to
propagate from one user to his friend is inversely proportional
to the contact frequency between them. Finally, the worm starts
to propagate right after it successfully infects the user.

Initially, we randomly choose 0.05% of nodes as the seed
set of worm sources to initiate the infection process. When the
infection rate (the fraction of infected nodes over all nodes)
reaches the predefined alarm threshold α, the patching process
will be initiated. The experiments are conducted with α = 5%,
10%, and 15%.

We compare skeleton based patching (Skeleton) with
AFOCS, iWander [22] and the cluster based scheme [18]
(Clustering). Among all these schemes, AFOCS selects a
particular part of nodes to be patched (the number of patched
nodes is 985 for the Facebook trace), meanwhile all other
algorithms determine the patching sequence of all nodes. In
order to compare the performance among different schemes,
we first choose the set of patched nodes Vp, |Vp| = 985, for
each scheme, then choose |V|p = 2000 for all the schemes
except AFOCS. For iWander, Clustering and Skeleton, nodes
are selected according to their patching sequence.

Similar to the evaluations for data forwarding, half trace
is used for warmup to perform the skeleton construction for
Skeleton, the community detection for AFOCS, the clustered
partitioning for Clustering, or the random walk for iWander.
Another half trace is used for evaluation. Also, the skeleton
keeps evolving with the network after warmup. The worm

2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

483

20 40 60 80 100

15

20

25

30

in
fe
ct
io
n
ra
te

(%
)

percentage of pathed nodes (%)

Skeleton
iWander
AFOCS

Clustering

(a) α = 5%, |Vp| = 985

20 40 60 80 100

10

15

20

25

in
fe
ct
io
n
ra
te

(%
)

percentage of pathed nodes (%)

Skeleton
iWander

Clustering

(b) α = 5%, |Vp| = 2000

20 40 60 80 100
20

22

24

26

28

30

32

34

in
fe
ct
io
n
ra
te

(%
)

percentage of pathed nodes (%)

Skeleton
iWander
AFOCS

Clustering

(c) α = 10%, |Vp| = 985

20 40 60 80 100

15

20

25

30

in
fe
ct
io
n
ra
te

(%
)

percentage of pathed nodes (%)

Skeleton
iWander

Clustering

(d) α = 10%, |Vp| = 2000

20 40 60 80 100

28

30

32

34

36

38

in
fe
ct
io
n
ra
te

(%
)

percentage of pathed nodes (%)

Skeleton
iWander
AFOCS

Clustering

(e) α = 15%, |Vp| = 985

20 40 60 80 100

22

24

26

28

30

32

34

36

in
fe
ct
io
n
ra
te

(%
)

percentage of pathed nodes (%)

Skeleton
iWander

Clustering

(f) α = 15%, |VP | = 2000

Fig. 5: Performance of worm containment algorithms – Skele-
ton, iWander, AFOCS and Clustering in terms of infection
rate on the Facebook trace.

propagation is continually simulated for 30 days after the
alarm threshold is reached.

Fig. 5 shows the infection rates achieved by different patch
schemes with alarm threshold α = 5%, 10%, and 15%,
respectively, for both 985 and 2000 patching nodes. As shown
in Fig. 5, the infection rates of all the schemes decrease as the
percentage of patch nodes increases and the infection rates
increase with the increase of alarm threshold. For α = 5%,
10%, and 15%, Skeleton outperforms other schemes and it
increasingly outperforms other algorithms with the increase of
patched nodes, where AFOCS is the worst, and iWander and
Clustering are comparable. In addition, the difference between
Skeleton and other algorithms narrows down from α = 5% to
α = 15%, because with higher alarm threshold, more nodes
are infected before the patching process and the infected nodes
can distribute all over the communities, groups, clusters, which
degrade the performance of all strategies.

To summarize, skeleton based patching outperforms all
other strategies, which demonstrates that patching nodes with
higher external connectivity can effectively contain the worm

propagation, and isolating the fine-grained groups in skeleton
works better than communities or clusters.

VII. RELATED WORK

Hui et al. [11] proposed BubbleRap for data forwarding
based on community, where the rankings of local centrality
and global centrality were used to forwarding data within
community and between communities. Chen et al. [24] de-
signed Social Map, where data forwarding was carried out by
social map within community and node degree between social
maps. However, the nodes with high global centrality [11] or
active degree [24] may not effectively connect communities
or social maps. Nguyen et al. [10] investigated the detection
of overlapped communities in dynamic binary networks and
selected overlapping nodes to relay messages between com-
munities and to be patched for worm containment. However,
as the detected communities in binary networks may not
accurately reflect the network structure, this design has some
limitations. Han et al. [22] identified node’s influence as
the betweenness centrality computed by random walk and
used the node influence as a metric for data dissemination
and disease control. However, the betweenness centrality is
a global characteristic, which cannot be used to improve
performance of data dissemination and contain disease locally.
Zhu et al. [18] proposed a cluster based patching scheme
for worm containment in cellular networks, where separators
(i.e., key nodes that separate clusters) were patched. However,
worms may still spread within clusters, and the performance
may be degraded when there are many nodes within clusters.

VIII. CONCLUSIONS

In this paper, we proposed skeleton as the network structure
of mobile social networks and exploited it for protocol designs.
We designed algorithms for skeleton construction and skeleton
evolution. As skeleton is constructed based on best friendship,
which is the most frequent and reliable connection, it can be
used to accurately predict node contacts. Based on skeleton,
we designed skeleton based routing for data forwarding and
skeleton based patching for worm containment. Trace-driven
simulations show that skeleton based routing has better perfor-
mance than existing community based algorithms and skeleton
based patching also outperforms existing schemes.

REFERENCES

[1] W. Peng, F. Li, X. Zou, and J. Wu, “A privacy-preserving social-
aware incentive system for word-of-mouth advertisement dissemination
on smart mobile devices,” in Proc. of IEEE SECON, 2012.

[2] W. Hu, G. Cao, S. V. Krishanamurthy, and P. Mohapatra, “Mobility-
assisted energy-aware user contact detection in mobile social networks,”
in Proc. of IEEE ICDCS, 2013.

[3] T. Ning, Z. Yang, H. Wu, and Z. Han, “Self-interest-drive incentives for
ad dissemination in autonomous mobile social networks,” in Proc. of
IEEE INFOCOM, 2013.

[4] J. Wu, M. Xiao, and L. Huang, “Homing spread: Community home-
based multi-copy routing in mobile social networks,” in Proc. of IEEE
INFOCOM, 2013.

[5] Z. Lu, Y. Wen, and G. Cao, “Information diffusion in mobile social
networks: The speed perspective,” in Proc. of IEEE INFOCOM, 2014.

2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

484

[6] M. Girvan and M. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, p. 7821, 2002.

[7] M. Newman and M. Girvan, “Finding and evaluating community struc-
ture in networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.

[8] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[9] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[10] N. Nguyen, T. Dinh, S. Tokala, and M. Thai, “Overlapping communities
in dynamic networks: their detection and mobile applications,” in Proc.
of ACM MobiCom, 2011.

[11] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forward-
ing in delay-tolerant networks,” Mobile Computing, IEEE Transactions
on, vol. 10, no. 11, pp. 1576–1589, 2011.

[12] Z. Lu, Y. Wen, and G. Cao, “Community detection in weighted networks:
Algorithms and applications,” in Proc. of IEEE PerCom, 2013.

[13] X. Zhang and G. Cao, “Transient community detection and its applica-
tion to data forwarding in delay tolerant networks,” in Proc. of IEEE
ICNP, 2013.

[14] P. Costa, C. Mascolo, M. Musolesi, and G. Picco, “Socially-aware
routing for publish-subscribe in delay-tolerant mobile ad hoc networks,”
Selected Areas in Communications, IEEE Journal on, vol. 26, no. 5, pp.
748–760, 2008.

[15] E. Daly and M. Haahr, “Social network analysis for routing in discon-
nected delay-tolerant manets,” in Proc. of ACM MobiHoc, 2007.

[16] Q. Yuan, I. Cardei, and J. Wu, “Predict and relay: an efficient routing
in disruption-tolerant networks,” in Proc. of ACM MobiHoc, 2009.

[17] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delay tolerant
networks: a social network perspective,” in Proc. of ACM MobiHoc,
2009.

[18] Z. Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci, “A social network
based patching scheme for worm containment in cellular networks,” in
Proc. of IEEE INFOCOM, 2009.

[19] N. Nguyen, Y. Xuan, and M. Thai, “A novel method for worm contain-
ment on dynamic social networks,” in Proc. of IEEE MILCOM, 2010.

[20] N. Eagle and A. Pentland, “Reality mining: sensing complex social
systems,” Personal and Ubiquitous Computing, vol. 10, no. 4, pp. 255–
268, 2006.

[21] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in Proceedings of the 2nd
ACM SIGCOMM Workshop on Social Networks, August 2009.

[22] B. Han and A. Srinivasan, “Your friends have more friends than you do:
identifying influential mobile users through random walks,” in Proc. of
ACM MobiHoc, 2012.

[23] A. Vahdat, D. Becker et al., “Epidemic routing for partially connected
ad hoc networks,” Technical Report CS-200006, Duke University, Tech.
Rep., 2000.

[24] K. Chen and H. Shen, “Smart: Lightweight distributed social map based
routing in delay tolerant networks,” in Proc. of IEEE ICNP, 2012.

APPENDIX

A. Proof of Theorem 1

We prove the theorem by induction.
When n = 1, clearly the hop count of intra-group routing

path is E1(H) = 1 and the number of inter-group routing
E1(D) = 0.

When n = 2, we use group C2
0 in Fig. 1 as an example,

where a and c are the joint nodes for group {a, b} and {c, d},
by using node a as an example, we have the expected hop
count from a to b H(a, b) = 1, H(a, c) = 1

2 , H(a, d) = 1
2 .

Note that as we assume a has the same probability to encounter
c or d for inter-group routing, H(a, c) and H(a, d) are 1

2 . By
being similarly applied to other nodes, we have E2(H) =
6/
(
4
2

)
= 1 for all pairs of nodes. As inter-group routing is

needed for pair of nodes from different groups, for n = 2, we
have E2(D) = 4/

(
4
2

)
= 2

3 .

When n = 3, as shown in Fig. 1, for node
a, we have H(a, e) = H(a, b) + H(b, e), where
H(b, e) = 1

4 (H(e, f) + H(e, g) + H(e, h)). As the
skeleton tree is symmetric, H(b, e) = 3

4 . This is similar for
any other nodes. All the paths of pair nodes in the skeleton
tree n = 3 can be split into four times of all the paths of
pair nodes in the skeleton tree n = 2 and

(
8
2

)
− 2 ×

(
4
2

)
number of paths with 3

4 hop count. So we have E3(H) =(
E2(H)× 4×

(
4
2

)
+
((

8
2

)
− 2×

(
4
2

))
× 3

4

)
/
(
8
2

)
= 9

7 .
Similarly, for inter-group routing, we have
D(a, e) = D(a, b) + D(b, e), where D(b, e) =
D(b,e)+D(b,f)+D(b,g)+D(b,h)

4 = 3
2 . Thus, D3(P) =(

D2(P)× 4×
(
4
2

)
+
((

8
2

)
− 2×

(
4
2

))
× 3

2

)
/
(
8
2

)
= 10

7 .
When n = 4, similarly, for intra-group routing we have

E4(H) = ((E3(H) × 4 ×
(
8
2

)
+
((

16
2

)
− 2×

(
8
2

))
×

9
8)/
(
16
2

)
= 27

15 . For inter-group routing, we have E4(D) =
((E3(D)× 4×

(
8
2

)
+
((

16
2

)
− 2×

(
8
2

))
× 9

4)/
(
16
2

)
= 38

15 .
By induction, we have

En(H) =
4En−1(H)

(
2n−1

2

)
+
((

2n

2

)
− 2
(
2n−1

2

))
3n−2

2n−1(
2n

2

) , (1)

En(D) =
4En−1(D)

(
2n−1

2

)
+
((

2n

2

)
− 2
(
2n−1

2

))
3n−2

2n−2(
2n

2

) . (2)

Assuming En(H) = 3n−1

2n−1 , for n+1 we have the following
according to Eq. 1

En+1(H) =
4× En(H)×

(
2n

2

)(
2n+1

2

)
+

((
2n+1

2

)
− 2
(
2n

2

))
× 3n−1

2n(
2n+1

2

)
=

En(H)× 2× (2n − 1) + 3n−1

2n+1 − 1

=
3n−1

2n−1
× 2× (2n − 1) + 3n−1

2n+1 − 1

=
3n

2n+1 − 1
.

Assuming En(D) =
∑n−1

k=1 2k3n−1−k

2n−1 , for n+1 we have the
following according to Eq. 2

En+1(D) =
4× En(D)×

(
2n

2

)(
2n+1

2

)
+

((
2n+1

2

)
− 2
(
2n

2

))
× 3n−1

2n−1(
2n+1

2

)
=

En(P)× 2× (2n − 1) + 2× 3n−1

2n+1 − 1

=

∑n−1
k=1

2k3n−1−k

2n−1
× 2× (2n − 1) + 2× 3n−1

2n+1 − 1

=

∑n
k=1 2

k3n−k

2n+1 − 1
.

2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

485

