
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Content Routing and Lookup Schemes using Global
Bloom Filter for Content-Delivery-as-a-Service

Yichao Jin, Yonggang Wen, Member, IEEE, and Weiwen Zhang, Student Member, IEEE

Abstract—The dramatic growth of user-generated contents
(UGCs) transforms the digital media value chain, and stresses
current content distribution network (CDN). In order to deliver
UGCs in an efficient and economical fashion, we have proposed
content-delivery-as-a-service (CoDaaS) by leveraging cloud com-
puting technology. However, due to the exponential increase of
Internet traffic (especially the UGCs), traditional hashing-based
content routing and lookup scheme in CDNs suffers from high
delay and consequent inefficient delivery. This paper introduces a
global compressed counting BF (CCBF) into CoDaaS to address
this issue. By equipping it with the global CCBF, our system is
able to check early on for the existence of any specific content
among all the peering surrogates, before any local checking on
each cache node. Based on this global CCBF, we propose two
content routing and lookup mechanisms (i.e., parallel and cut-
through schemes) to reduce the delay for better user experience.
The comparative performance of those approaches is verified
via both mathematical modeling and experimental simulation.
The results show that for light traffic load, the average response
time can be saved by up to 65.2% compared with traditional
methods. In addition, the impacts and overheads of different
synchronization schemes are also quantified to provide valuable
insight for further optimizations.

Index Terms—Compressed counting BF, content delivery as a
service, content lookup, content routing.

I. Introduction

THE USER generated contents (UGCs) are dominating the
Internet traffic nowadays. As one of the fastest growing

forms of contents, the percentage of the user generated content
consumption over total Internet usage will exceed the 70 %
threshold by the end of 2013 [1]. It is predicted that our current
IP multimedia subsystem (IMS) will rapidly transform into
IMS 2.0 [2], where the UGCs will play the most important
role among all kinds of content resources.

The rapid growth as well as the long-tail nature and unique
characteristics (e.g., conversational media, social interaction,
etc.) of UGCs posits significant challenges for its efficient
delivery over existing content distribution networks (CDNs).
The leading CDNs service providers, at present, usually tailor
their network architecture and operational structure mostly

Manuscript received July 30, 2012; revised December 05, 2012; accepted
March 3, 2013.

The authors are with the School of Computer Engineering, Nanyang
Technological University, 639798, Singapore (e-mail: yjin3@ntu.edu.sg;
ygwen@ntu.edu.sg; wzhang9@ntu.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2013.2253041

toward popular contents. Consequently, a profitable delivery
for heavily long-tailed contents over current CDNs is difficult.
Novel schemes are urgently demanded.

To tackle this challenge, we have previously proposed
a content delivery scheme (i.e., content-delivery-as-a-service
(CoDaaS) [3], [4]). This solution leverages the emerging cloud
computing technologies to elastically allocate resources (e.g.,
storage and bandwidth resources, etc.) to meet the dynamic ap-
plications’ demands. As a result, unnecessary system wasting
can be reduced to save the UGCs delivery cost.

In addition to the cost reduction, our proposed CoDaaS also
aims to provide the best possible user experience to the content
consumers. Specifically, one of the quality-of-service (QoS)
objectives is to minimize the user perceived request response
time [5]. When contents are distributed over CDNs, the user
request will be first routed to a specific server, and the server
will conduct a lookup process to check the requested content
locally. Those two processes have great impacts on the request
response time. As a result, orchestrating those two processes
is the key problem in achieving an improved user experience
in CoDaaS.

In this paper, we introduce a global bloom filter (BF) into
CoDaaS to reduce the request response time. Specifically, the
global BF is maintained by all the VMs in CoDaaS (i.e.,
surrogate servers in CDNs), to indicate the existence of the
cached contents. It provides the capability to make an early
decision on whether the requested content is cached in the
CoDaaS before the request is routed to the designated server.

Compared to traditional approaches in CDNs [6]–[8] where
the two processes are normally executed in sequential order,
our approach executes content routing and lookup processes
in parallel. As a result, we improve the QoS by reducing the
high lookup latency and the long response time due to the
sequential execution order, to provide a better user experience.

The contributions of this paper are three-fold.
1) We propose two content routing and lookup schemes

(i.e., parallel and cut-through), by using the global BF
to reduce the response time.

2) We introduce a mathematical model based on open
Jackson network to justify the potential gain of our
proposed content routing and lookup schemes. We also
mathematically analyze their limitations and overheads.

3) We quantify the performance gain and the overhead of
our proposes schemes via a system-level simulation. Our
numerical results suggest that, for light-loaded traffic
(e.g., Twitter-like applications), the average request re-

1932-8184/$31.00 c© 2013 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

sponse time for our proposed content routing and lookup
schemes can be reduced by up to 65.2%, compared to
the sequential one. Our simulation results also suggest
mechanisms to optimize the proposed schemes to reduce
the impact of false positive inherent to BF, and false
negative and the traffic overhead, resulting from the
synchronization for BF.

This paper provides fundamental insight to understanding
the benefits of using global BF for content routing and lookup,
and offers operational guidelines to optimize the design of
CoDaaS for best possible user experience.

The remainder of this paper is organized as follows. In
Section II, we review several related works. In Section III, we
illustrate the system architecture of CoDaaS, and the content
routing and lookup process. In Section IV, we propose two
novel content routing and lookup schemes based on a global
BF in comparison with the traditional one. In Section V,
we introduce a mathematical model to analyze the mean
response time of all three content routing and lookup schemes.
In Section VI, we investigate the potential overhead of our
proposed schemes. In Section VII, we outline the simulation
environment and settings; then the numerical and analytical
results follow. In Section VIII, we conclude the paper and
point out future work.

II. Related Work

A number of studies focused on the content routing strategy
in CDNs environment. At present, the most widely used
content routing method in large scale CDNs is hashing-based
method proposed by Karger et al. [6]. In this approach, the
contents are routed to desirable surrogate by mapping the
hash value of their URL to the IP address of each surrogate.
In [9], the authors applied complex queries to select the
corresponding surrogate which holds the desired content in
distributed hash tables (DHTs) structure. All the requests for
the same group of contents will be redirected to one designated
CDN server under this mechanism. A semi-hashing-based
scheme [7] was proposed to strike a balance between local
hit ratio and cluster hit ratio in CDNs. It optimally splits the
disk space of surrogates into two parts; one is for the popular
content caching, and the other is for the collaboration with
other CDN servers using hash-based solution. J. Chang et al.
proposed an efficient content service discovery mechanism to
handle with the dual-stack DHTs based cloud model [10].

Bloom filter (BF) [11] was also used intensively for network
applications, under the information explosion recently [12]. In
particular, the BF is a space-efficient structure to represent
massive data. Cache digest [13] was an example which used
BF to indicate the existence of local cached replications. It
had been used in Squid web proxy cache [14] to reduce
bandwidth consumption and improve response time. Fan et
al. [15] introduced counting bloom filter (CBF) to improve
the Internet cache protocol (ICP). BF was also used to route
content within Internet routers [16]. Besides, the proposal of
compressed BF [17] yielded a dramatic reduction in the data
size that is needed to be transmitted over networks.

Fig. 1. Systematic overview of CoDaaS.

Our work differs from this pervious research in several
aspects. First, we use a global BF to jointly optimize the two
processes of content routing and lookup for content delivery
over CoDaaS. Second, our design objective is to reduce the
request response time, which can be translated into a better
QoS. Third, we introduce open Jackson network [18] to
generate analytical solutions for our proposed scheme. Finally,
the performance gain is verified by both theoretical models and
a system-level simulation over CDNsim [19].

III. System Overview

In this section, we first present a schematic overview on
the CoDaaS architecture and the content routing and lookup
process.

A. CoDaaS Architecture

Fig. 1 shows the architecture of the CoDaaS. There are
mainly three components in this system, including a media
cloud, content providers and content consumers. The media
cloud consists of a list of interconnected virtual machines
(VMs), which are instantiated in geographically distributed
data centers. The set of VMs form a CDN overlay dynamically
to cache and render contents in a profitable way. Each content
provider offers a platform for users to distribute contents and
browse the published contents they are interested in, with
a specified service level agreement (SLA). The published
contents by consumers are stored in the origin servers owned
by content providers. The content consumers can experience
a better QoS with the controlled content distribution. The
resources consumed by the CDN overlay can be scaled up
and down to meet application demand, thus reducing the total
cost of ownership. More details about CoDaaS can be found
in [3] and [4].

B. Content Routing and Lookup in CoDaaS

In Fig. 2, we illustrate the joint process of the content
routing and lookup for CoDaaS. The content consumers are
from different regions to get access to CoDaaS. When they
request a content, the request, after entering the CoDaaS
system, will be routed from its ingress point to the designated
server. Once the request arrives, the designated server will do
a content lookup in its local storage to determine whether the
content has been cached. In case of a cache hit, the content
will be served directly from this designated server to the users.
In case of a cache miss, the content will be retrieved from the
origin server and then served to the users. In this paper, we aim

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: BF FOR CODAAS 3

Fig. 2. Content routing and lookup scheme for CoDaaS.

to optimize these two processes to reduce the request response
time, by introducing a global BF.

IV. Content Routing and Lookup Schemes

In this section, the concept of the BF will be first discussed
to provide necessary foundations for the design of improved
content routing and lookup schemes. Then we propose two
alterative schemes, based on the usage of a global BF, to
reduce the request response time.

A. Global Bloom Filter

1) Bloom Filter and Its Variation: In this paper, we use a
CCBF, which is a variation of standard BF, for the improve-
ment of content routing and lookup scheme in CoDaaS.

A standard BF is a bit array of m bits to represent a set of n

elements S, by using k independent hash functions h1, h2...hk.
For each element s in S, it sets each hi(s), i = (1, 2, ..., k) bit
to 1 for insertion. To check the existence of any element x, it
checks whether all the hi(s), i = (1, 2, ..., k) bits are 1. Due to
the hashing collision, a false positive [11] may occur with the
probability as

fbf ≈ (1 − e−kn/m)k. (1)

The CBF is derived from the standard BF. It uses m fixed
size integers instead of single bit for presence. For an insertion
or deletion operation, the corresponding counters increase
or decrease by 1. As a result, CBF provides the deletion
capability. In this paper, we use four bits counters to construct
our CBF, which has been shown to be sufficient for most
network applications [15].

To reduce the transmission size of CBF as a message, com-
pressed counting bloom filter (CCBF) is proposed. This paper
adopts the multilayer compressed counting bloom filter (ML-
CCBF) [17], which uses the run-length code to encode CBF
messages. It has been proved that this encoding process can
save up to 50% transmission traffic. Moreover, we also use the
delta compression scheme to further reduce the transmission
size by only transferring the changes for each layer in our
CCBF.

2) Synchronization Schemes: Synchronization is a pro-
cess of establishing the consistency of the global bloom
filter among all the surrogates by exchanging synchronization
messages. In this paper, we consider two alternative trigger
schemes for the synchronization of our CCBF. One is the

periodic mode, in which each surrogate broadcasts its update
in a regular interval. The other is the event-driven model,
in which the broadcast is triggered by some predetermined
events (e.g., the reception of a fixed number of requests). These
two synchronization modes will have different impact on the
performance gain and the overhead, as verified in Section VII.

B. Traditional Content Routing and Lookup Schemes

Fig. 3(a) illustrates the workflow of the traditional scheme,
in which content routing and lookup processes are executed
sequentially. In a DHT-based scheme, the routing process takes
on average �log2 N� hops to reach the designated server, where
N is the number of the active surrogates in CoDaaS. The
content lookup process starts as soon as the request is routed
to its designated server. For a cache hit, the designated server
immediately replies to the user. Otherwise, it will retrieve
the content from the origin server and then render it to the
consumer.

C. Proposed Content Routing and Lookup Schemes

The key idea in this research is to use a global CCBF
to determine whether the request content has been cached
in CoDaaS, at the ingress point of each request. This early
decision offers a chance for CoDaaS to retrieve the content
in parallel with the request routing. Using this insight, we
propose two content routing and lookup schemes for CoDaaS,
including a parallel scheme and a cut-through scheme.

1) Parallel Schemes: Fig. 3(b) illustrates the workflow of
the parallel scheme. For a cache hit, the workflow is exactly
the same as the sequential process. In the case of a cache
miss, the ingress directly acquires the content from its origin
server. The ingress server, upon receiving the content from the
origin server, renders the content to the consumer and forward
a copy to the designated server for caching purpose. The
parallel scheme executes content routing and content lookup
in parallel, thus reducing the request response time.

2) Cut-through Schemes: Fig. 3(c) illustrates the workflow
of the cut-through scheme. By using this scheme, in case of
a cache hit, there is still no change made by this scheme
compared to the sequential workflow. While in case of a cache
miss, the ingress redirects the request from the user directly to
the origin server. At the same time, the request is also routed
to the designated server, which will retrieve a copy of the
content directly from the origin server for caching purpose. As
a result, the cut-through scheme reduces the request response
time significantly by cutting through the CoDaaS system.
Nevertheless, the drawback of this scheme is that it increases
the traffic load to the origin server.

In the next three sections, we will compare the performance
of these three schemes both analytically and numerically.

V. Mathematical Modeling

In this section, we develop a mathematical model to analyt-
ically present the mean response time of the aforementioned
three schemes for content routing and lookup in CoDaaS. For
clarity and ease of reference, we summarize the important
notations used in this paper in Table I.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

Fig. 3. Workflow diagrams for three alternative content routing and lookup schemes in CoDaaS. (a) Sequential scheme. (b) Parallel scheme. (c) Cut-through
scheme.

A. Queueing Network Modeling

We use open Jackson queueing network [18] based model
to characterize the service components in CoDaaS. A Jackson
network is constructed by a network of queues, where the
arrivals at each queue are modeled as a Poisson process,
and the service times follow the exponential distribution. In
an open Jackson network, there are external job arrivals as
well as departures from the system. We model each ser-
vice component in CoDaaS as a queue. The request from a
user to consume contents equals the job arrival at the first
queue. Once the user receive the first bit of the requested
content, it maps to completing the job in the last queue.
The aggregated queueing time at all the queues corresponds
to the waiting time for available resources. The service
time of a job at each queue refers to the actual process
time of a request. As a result, the content routing and
lookup behavior can be viewed as an open Jackson queueing
network.

As indicated in Fig. 4, there are four service queues involved
in the content routing and lookup process, including content
routing queue, content lookup queue, content retrieve queue,
and content response queue. Each queue may introduce the
delay (i.e., the sojourn time) to the overall request response
time. They serve as the foundations to calculate the expectation
of request response time under a chosen scheme. Fig. 5
illustrates the processing models for the three content routing
and lookup schemes. Based on the different workflows through
different service components, we yield the analytical results on
the mean response time for each scheme.

B. System Stability

Before the analysis on the content routing and lookup
schemes, we have to ensure the system stability such that all
the service queues are finite.

We first consider the stability condition for each surrogate.
Suppose the request arrival process at ingress Ii for a particular

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: BF FOR CODAAS 5

TABLE I

Notation Table

Symbol Definition
N The number of surrogate inside CoDaaS
λc

i The mean arrival rate at ingress Ii for content c

μij The mean service rate at ingress Ii for the contents
whose designated server is Dj

Cij The bandwidth capacity of the path from Ii to Dj

μt The mean service rate of content routing
μo The mean service rate at origin server
Co The bandwidth capacity at origin server
μl The mean service rate of content lookup
μr The mean service rate of returning content
α The true cache hit ratio
fp The false positive ratio
fn The false negative ratio

Fig. 4. Service components for content routing and lookup.

content c follows a Poisson process with the mean arrival rate
λc

i . The ingress server Ii serves these requests with the mean
service rate at μij , at which they will be further forwarded to
their designated surrogate Dj . We also assume the bandwidth
capacity of the routing path from surrogate i to j is Cij, (i �= j).
As a result, the system stability condition is given by

∑

∀c

λc
i <

∑

∀j

{min(μij, Cij)}. (2)

We also need to consider the stability condition for origin
server owned by content provider. In CoDaaS, the surrogate
may either be the ingress, relay or the designated server to
serve the requests. When surrogate i works as an ingress or a
relay, it checks the routing table to determine the next hop for
current requested content c. When it works as the designated
server, it checks its own storage with the service rate μi to
determine whether there is a cache hit or miss, denoted as
pc (0 for cache miss and 1 for cache hit). We refer to μo

as the serving rate at origin server, and Co as the bandwidth
capacity at origin server. As a result, the stability condition
for the origin server is given by

∑

∀i

∑

∀c

λc
i (1 − pc) < min(μo, Co). (3)

C. Response Time for Sequential Scheme

We first investigate the mean response time of sequential
scheme as an example to further derive the results for our
proposed schemes. Specifically, based on the analysis on the

workflow, we first obtain the arrival rate for each queue. Then
we can have the mean sojourn time for each queue. Finally,
we get the mean response time of the sequential scheme.

1) Workflow of Sequential Scheme: Fig. 5(a) shows the
workflow of sequential scheme. Each incoming request has to
sequentially follow the content routing queue and the content
lookup queue no matter there is a cache hit or a cache miss.
Moreover, in case of a cache miss, it will take extra time
to enter the content retrieve queue to obtain the requested
content from origin server. For both conditions, there is a
content response queue that the designated surrogates return
the requested content to users after all the previous requests
are served. As a result, we have

λ1 = λ2 = λ, λ3 = βλ2, λ4 = λ3 + αλ2 = λ2 (4)

where λ =
∑

∀i

∑
∀c λc

i . For simplicity, we assume the incom-
ing requests are uniformly distributed among all the available
surrogates. As a result, there is λ = N

∑
∀c λc

i .
2) Content Routing Queue: The first queue is the content

routing queue, which directs the requests from the ingress to
their designated server. We have assumed the external arrival
of the requests follows a Poisson process, with an average
arrival rate of λc

i . Together with this assumption, the service
time at surrogate i is assumed to follow exponential distri-
bution with an average service rate of μij for those requests
whose designated surrogate is server j, since the aggregation
of multiple Poisson flows still follows the Poisson process.
Therefore, at the content routing queue in each ingress, we
have the average traffic load ρ1 as

ρ1 =

∑
∀c λc

i∑
∀j μij

. (5)

We further have the average number of jobs at each surro-
gate in this queue, N ′

1, as

E[N ′
1] =

ρ1

1 − ρ1
=

∑
∀c λc

i∑
∀j μij − ∑

∀c λc
i

. (6)

Considering every request on average has to traverse
�log2N� nodes to reach its designed server, and all the
surrogates are identical, we have the expected sojourn time
for the content routing queue as

E[N1] = �log2N�E[N ′
1]. (7)

3) Content Lookup Queue: Once the requests have been
routed to their designated servers, the content lookup process
occurs to determine whether the requested content is cached
in the system. Similarly, we assume the service time is
exponentially distributed with the average service rate of μi at
surrogate i. Supposing the hash functions are well designed,
we can derive that the contents cached in CoDaaS must be
evenly distributed among all the N surrogates. As a result, we
have the expected utilization of content lookup queue, ρ2, as

ρ2 =

∑
∀i

∑
∀c λc

i

Nμl

(8)

where μl is the mean service rate of content lookup.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

The average number of jobs N2 in this queue is

E[N2] =
ρ2

1 − ρ2
=

∑
∀i

∑
∀c λc

i

N(μl −
∑

∀i

∑
∀c λc

i)
. (9)

4) Content Retrieve Queue: After the completion of con-
tent lookup, the content retrieve process is required at the
origin server for the cache miss cases. Let α be the cache
hit rate and thus β = 1 − α be the cache miss rate. Assuming
the service time is exponentially distributed with the average
rate of μo at origin server, we have the average traffic load,
ρ3, as

ρ3 =
β

∑
∀i

∑
∀c λc

i

μo

. (10)

The expected number of jobs N3 in this queue is as

E[N3] =
ρ3

1 − ρ3
=

β
∑

∀i

∑
∀c λc

i

μo − β
∑

∀i

∑
∀c λc

i

. (11)

5) Content Response Queue: In case of cache hit, the
designated surrogates i directly returns the requested content
to the users. The service time also follows exponential dis-
tribution with the average service rate of μ′

i. As a result, we
have the average traffic load at content response queue as

ρ4 =

∑
∀c λc

i

μr

(12)

where μr is the mean service rate of returning content.
The average number of jobs N4 is as

E[N4] =

∑
∀c λc

i

μr − ∑
∀c λc

i

. (13)

6) Mean Response Time: By using the Jackson network
model, we obtain the expected response time Rt of each
request spent in the system in sequential scheme, which can
be expressed as

E[Rt] = N/λ =
4∑

k=1

Nk/λ (14)

= �log2 N�(Nμt − λ)−1 + (Nμl − Nλ)−1

+β(μo − βλ)−1 + (Nμr − λ)−1

where μt =
∑

∀j μij , indicating the mean service rate of content
routing at each surrogate.

D. Response Time for Parallel Scheme

The parallel scheme parallelizes the retrieve operation with
the content routing and lookup process as shown in Fig. 5(b).
As a result, for a cache miss, the sojourn time introduced by
the content routing queue could be saved.

However, the overhead of this operation includes both false
positive fp, false negative fn and the extra sync messages.
Specifically, the cache hit ratio becomes α′ = α + fp − fn and
the cache miss rate is β′ = 1 − α − fp + fn. In case of false
positive, a content retrieve process is still needed to make the
response. The detailed analysis on the overhead introduced by
BF will be discussed in Section VI.

Based on the analysis on the parallel scheme we have

λ2 = λ1 = α′λ, λ3 = (β′ + fp)λ, λ4 = λ. (15)

Fig. 5. Processing models for three alternative content routing and lookup
schemes in CoDaaS. (a) Sequential scheme. (b) Parallel scheme. (c) Cut-
through scheme.

We thus have the mean number of jobs at each queue as

E[N1] = �log2N� α′ ∑
∀c λc

i∑
∀j μij − α′ ∑∀c λc

i

(16)

E[N2] =
α′ ∑

∀i

∑
∀c λc

i

N(μl − α′ ∑∀i

∑
∀c λc

i)
(17)

E[N3] =
(β′ + fp)

∑
∀i

∑
∀c λc

i

μo − (β′ + fp)
∑

∀i

∑
∀c λc

i

(18)

E[N4] =

∑
∀c λc

i

μr − ∑
∀c λc

i

. (19)

As a result, by using parallel scheme, the mean response
time Rp spent in the system can be expressed as

E[Rp] = α′�log2 N�(Nμt − α′λ)−1 (20)

+α′(Nμl − Nα′λ)−1 + (Nμr − λ)−1

+(β′ + fp)(μo − (β′ + fp)λ)−1.

E. Response Time for Cut-through Scheme

The cut-through scheme further cuts the content response
time from designated surrogate by redirecting requests to
origin server for cache misses as indicated in Fig. 5(c). We
have the expected arrival rate at each queue as

λ1 = λ2 = α′λ, λ3 = (β′ + fp)λ, λ4 = (α′ − fp)λ. (21)

In a similar way, we then have the mean number of jobs at
content response queue as

E[N4] =
(α′ − fp)

∑
∀c λc

i

μr − (α′ − fp)
∑

∀c λc
i

. (22)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: BF FOR CODAAS 7

and the average number of jobs at other queues remains the
same as parallel scheme.

As a result, by using cut-through scheme, the mean response
time Rc spent in the system can be expressed as

E[Rc] = α′�log2 N�(Nμt − α′λ)−1 (23)

+α′(Nμl − Nα′λ)−1

+(β′ + fp)(μo − (β′ + fp)λ)−1

+(α′ − fp)(Nμr − (α′ − fp)λ)−1.

VI. Overhead Analysis

Apart from the performance analysis, a comprehensive work
also requires the solid analysis on the potential overheads and
limitations. In this section, we investigate the overhead in
terms of the false positive/negative, synchronization traffics,
and the duplicated message introduced by cut-through scheme.

A. False Positive and False Negative

Two factors may lead to false positive, including the nature
of CBF and the inconsistency problem when the cached
content has been replaced. Since in CoDaaS, the cached
content must be the most popular ones, and the requests follow
Zipf law [20], the false positive caused by inconsistency is
negligible. As a result, the false positive fp is roughly equal
with fbf as

fp ≈ (1 − e−kn/m)k. (24)

The false negative is mainly introduced by the consistency
issues when surrogates synchronize the global BF. Specifically,
during each synchronization, if any particular content, which
has not been cached already, is requested by more than twice,
and the requests are not toward the same surrogate, then false
negative occurs.

We first assume the arrival requests follow Zipf law as

FM(k) = �k−γ (25)

where FM(k) is the request frequency of content of rank k, M

is the total number of contents, γ is the shape parameter of
Zipf distribution, and � is a constant given by

� = (
M∑

s=1

s−γ)−1. (26)

In this paper we consider two synchronization methods,
including periodic and event-driven styles. For the periodic
synchronization, let t be the synchronization interval, and λ

be the average arrival rate. Then λt is the total request number
during this interval. Suppose after each synchronization, the
system has already cached the most C popular contents. Thus
we first have the expected number Cm that are not toward the
top C contents during each synchronization interval t as

E[Cm] = λt(1 − �

C∑

k=1

k−γ). (27)

During each synchronization interval, we assume all pre-
viously requested contents will remain in the cache without

replacement for simplicity. In this case, for the (i+1)’st request
among Cm, the probability Pc that the requested content has
been already cached is given by

Pc(i) =
M−C∑

k=1

FM(k)(1 − (1 − FM(k))i). (28)

It has been proved [20] that this probability Pc(i), for 1<<

i<<M−C and 0<γ <1, can be approximated by

Pc(i) ≈ �′(1 − γ)−1(i�′)(γ−1−1) (29)

where �′ = (
∑M−C

s=1 s−γ)−1. Note, when i > M − C, this
estimation may not be accurate.

As a result, we have the expected false negative rate as

E[fn] =
N − 1

Nλt

Cm∑

i=1

Pc(i) (30)

≈ N − 1

Nλt

Cm∑

i=1

�′(1 − γ)−1(i�′)(γ−1−1).

For the event-driven synchronization, let n be the number
of requests which triggers each synchronization. As a result,
to obtain the mean false negative rate under this scheme, we
could simply substitute λt by n in (27) and (30).

B. Synchronization Messages

Apart from the congestion that may occur at the origin
server, the synchronization messages may also introduce traffic
jams inside the CoDaaS system. For each surrogate i, its out-
coming traffic consists of synchronization messages, content
transferring and request forwarding. The overall traffic must
not exceed its bandwidth capacity to avoid the congestion.

For the parallel scheme, the content transfer occurs for both
cache misses and hits. For cache misses, this traffic will be
doubled. Let λs be the synchronization rate, Sf be the size
of the CCBF, and Sr be the size of content request. Let η be
the corresponding congestion factor [21], and Sc be the size of
requested content. The following inequality should be satisfied
to avoid congestion

λsE[Sf] + ((2 − α − fp + fn)E[Sc] + E[Sr])
∑

∀c

λc
i < η

∑

∀j

Cij. (31)

For cut-through scheme, the content transfer from surrogate
to customers only happens for cache hits. Thus, the congestion
free condition for cut-through scheme is given by

λsE[Sf] + ((α + fp − fn)E[Sc] + E[Sr])
∑

∀c

λc
i < η

∑

∀j

Cij. (32)

C. Duplicated Message Introduced by Cut-through Scheme

It can be easy to find that the cut-through scheme doubles
the traffic at origin server in case of cache miss. Therefore,
it may cause congestion much more easily than other two
schemes. The congestion will further lead to severe service

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Fig. 6. Snapshot of CDNsim.

delay. To avoid the congestion at the origin server, the follow-
ing inequality must be satisfied:

2(1 − α − fp + fn)E[Sc]
∑

∀i

∑

∀c

λc
i < ηCo. (33)

Therefore, we obtain the threshold of cache hit rate α

and the size of requested content Sc from this inequality for
congestion avoidance as

α > 1 − fp + fn − ηCo

2E[Sc]
∑

∀i

∑
∀c λc

i

, (34)

E[Sc] <
ηCo

2(1 − α − fp + fn)
∑

∀i

∑
∀c λc

i

. (35)

VII. Simulation and Results

This section first presents the details on simulation method-
ologies. Then false positive/negative is investigated to pro-
vide suitable settings for the following experiment on mean
response time, where both analytical and numerical results
of different schemes are obtained. Finally, the impact of
synchronization frequency on mean response time is discussed.

A. Simulation Methodology and Setup

1) Simulation Tool: We use CDNsim [19] to build our
simulation environment. Specifically, CDNsim is a discrete
event simulation tool based on OMNeT++ library particularly
designed for CDNs. We modify some basic modules to fit our
implementations and add the three proposed content routing
and lookup policies into this tool. Fig. 6 demonstrates a
snapshot of our simulation tool.

2) Simulation Setting: We simulate N = 50 homogenous
VMs as geographically distributed surrogates to construct
the media cloud inside the CoDaaS. All the surrogates are
coordinated by a distributed hash table (DHT) based ring using
Chord protocol [22]. The modulo function is used to hash
the identification of both contents and surrogates. The cache
capacity of each surrogate is set at 2% of the total size of the
contents stored in origin server. The least recently used (LRU)
strategy is employed as the cache replacement policy. We
use GT-ITM [23] to generate a real Internet topology model,
transit-stub model with 1008 routers dispersed at different

Fig. 7. Distribution of (a) content size and (b) popularity.

areas. There is only one origin server, which hosts 50 000
unique content objects, which are mainly comments and low-
resolution photos, with the total size of approximately 5GB
retrieved from a social website. Fig. 7(a) presents the cumu-
lated distribution density (CDF) of those contents. The service
capacity is 600 reqs/s for each surrogate, and 1200 reqs/s

for the origin server. We assume the size of each request
occupies 60 Bytes (i.e., Sr = 60 Bytes). Besides, we define
the link capacity as Co = 100 MB/s for origin server, and∑

∀j Cij =100 MB/s for surrogate i.
3) Request Traffic Pattern Setting: We generate requests

from 100 client groups with the mean interval time at 0.01
second (i.e.,

∑
∀i

∑
∀c λc

i =100 reqs/s). The distribution of the
interval time of all the request follows exponential distribution,
and the distribution of the requested content follows Zipf
law to make the access pattern much closer to realistic ones.
Fig. 7(b) plots the frequency of requested contents in terms
of their popularity ranks, where the parameter γ ≈ 0.79. As a
result, with this setting, the stability of our CDN system can
be ensured by satisfying both (2) and (3).

4) Bloom Filter Setting: The hash functions of the BF
are built by dividing a 128-bit MD5 signature [24] for each
URL into four 32-bit words, and the modulus of each word
by the number of counters are the hash values. Each surrogate
on average takes charge of caching 1000 distinct objects, so
it needs a counter BF with maximum volume at 20KB (i.e.
40 000 counters) to keep the false positive rate below 1% for
Zipf distributed enquires. Therefore, the global BF requires
1MB spaces in total. In our simulation, we further compress

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: BF FOR CODAAS 9

Fig. 8. False positive/negative rate versus sync frequency. (a) Periodic
scheme. (b) Event-driven scheme.

this global counting BF by using ML-CCBF [17] method
to reduce the transmission size. Besides, the synchronization
messages are also compressed by delta compression algorithm
to save the network bandwidth.

B. False Positive and False Negative

Fig. 8 shows the relationship between synchronization fre-
quency and false positives/negatives under two synchroniza-
tion mechanisms (i.e., periodic and event-driven synchroniza-
tion) both analytically and numerically. The analytic results
are derived from (24) and (30), while the numeric results are
generated from our simulations. It can be seen that the analytic
results roughly present the same style as the numeric ones. In
addition, the results also indicate that the two synchronization
schemes follow almost the same trend. This can be attributed
to the fact that for a given incoming pattern, the expected
inter-arrival time is fixed, as we discussed in Section VI.

As the interval increases, the false negative percentage
increases accordingly, while the false positive rate maintains
at a certain level since it is independent with the number of
incoming requests. The relationship between the frequency
of synchronization and the false positive/negative is roughly
linear in a log-log graph. When the synchronization frequency
is extremely high (i.e., one synchronization after every single
request is served), there is no false negative at all, but this
setting could generate intensive synchronization traffic. When
the frequency is higher than once per 200 seconds for periodic

Fig. 9. User response time versus cache hit rate under two scenarios.
(a) Popularity of content is inversely proportional to its size (light traffic).
(b) Popularity of content is proportional to its size (heavy traffic).

scheme or once per 400 requests for event-driven scheme, the
false negative can be controlled below 2 %. In this case the
traffic load could also be kept at a relatively low level. In
the next experiment, we will use this setting to investigate the
mean response time of each scheme.

C. Improvement on Mean User Response Time

We simulate two scenarios to test our system. One is that the
popularity of an object is inversely proportional to its size, that
is, the smallest content is most popular. The other is that the
largest content has the highest popularity. Hence, the average
size of requested content Sc for these two scenarios is around
32KB and 170KB respectively, to simulate different level of
traffic load on data plane. A set of cache hit rates ranging
from 0% to 100% are applied by initializing the global BF
and the cached content in each surrogate. As a result, this
simulation aims to test the mean response time of different
content routing and lookup scheme in function of the cache
hit rate. The simulation lasts for 1000 seconds.

Fig. 9 shows the performance in terms of the mean response
time of the three content routing and lookup schemes under
light traffic loads, both numerically and analytically. The
numeric results are generated from the simulations, and the
analytic results are derived from (14), (20), and (23).

Fig. 9(a) presents the results of the light traffic scenario. The
analytic parameters are set as λ = 100 req/s, μt = 300 req/s,
μl = 500 req/s, μo = 1200 req/s, and μr = 60 req/s according

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

to our simulation settings. The average response time of cut-
through scheme is the lowest, while the traditional scheme
costs the highest delay, among all the three mechanisms. When
there is no cache hit, the gap between our proposed schemes
and the traditional one is the largest for all the cases. The
parallel scheme and the cut-through scheme are able to reduce
the mean response time by 23.6% and 65.2% compared with
that required by the sequential one according to the results.
As the cache hit ratio goes up, the performances of the three
schemes get closer, because the workflows are the same for
cache hit cases. Finally, when all the requests are cache hit, the
results from the three policies arrive at roughly the same point.

An interesting observation in Fig. 9(a) is that the mean
response time of both traditional sequential scheme and par-
allel scheme decreases gradually, while the time required by
cut-through scheme increase, as the cache hit ratio raises. It
indicates that as long as there is no traffic congestion (i.e., (35)
is satisfied), it is advantageous to redirect the missed requests
to origin server to minimize the response time.

Fig. 9(b) shows the performances of the high traffic load
scenario. The parameters are set as μt = 100 req/s, μl =
500 req/s, μo =260 req/s, and μr =8 req/s, due to the larger
size of requested contents compared with the first scenario.
In this case, the parallel scheme still needs less response time
than that of the sequential scheme for all the cases, while
the cut-through scheme suffers from the congestion when the
true cache hit rate is lower than 30%. However, cut-through
scheme performs most efficiently again when the cache hit
rate passes the congestion threshold as derived from (34).
It may motivate us to adopt an adaptive algorithm, which
adopts the cut-through scheme when there is no congestion,
and dynamically changes into the parallel scheme when the
cache miss rate exceeds the threshold.

D. Impact of Synchronization Traffic

Fig. 10 shows the impact of synchronization traffic on
the mean response time for our proposed parallel and cut-
through schemes. We experiment with a set of synchronization
intervals based on both periodic and event-driven schemes to
generate different levels of traffic. This simulation is under the
condition that the cache hit rate is 40%.

Fig. 10(a) shows how the frequency of periodic scheme
affects the response time. The response time is constrained
by the congestion inside the CoDaaS when the frequency is
high (i.e., higher than once per second). In contrast, when
the frequency is extremely low (i.e., lower than once per 1000
seconds), the incurred false negative causes more faking cache
misses. This further introduces congestion at origin server, and
thus increases the response time.

Fig. 10(b) shows how the frequency of event-driven scheme
affects the response time. Specifically, the response time is
much longer when the frequency is higher than once per
five requests for both schemes. The reason can be attributed
to the traffic jam inside CoDaaS as discussed in (31) and
(32). As the synchronization interval continues to increase,
the synchronization traffic becomes lighter, but on the other
hand, the false negative increases. Such combined effects keep
the response time at roughly a certain level.

Fig. 10. Sync frequency versus user response time. (a) Periodic scheme. (b)
Event-driven scheme.

VIII. Conclusion and Future Works

In this paper, we proposed the parallel and the cut-through
content routing and lookup schemes by using a global CCBF.
Mathematical models based on Jaskson network model were
presented to analyze both the user perceived response time,
and the overheads of importing this global BF, including false
positive, false negative, synchronization cost, and possible
congestions. Simulations were used to prove the performance
of those metrics. The numerical results matched well with our
analytic models, indicating our proposed schemes can achieve
a saving up to 65.2% on mean response time.

Our future work will aim to develop a congestion-aware
adaptive algorithm to further improve the efficiency of our
proposed content routing and lookup scheme for different
traffic loads. We also plan to consider conditions when the
virtualization technologies in CoDaaS are utilized, so that the
service rate and storage capacity can be dynamically adjusted.

References

[1] P. Verna. (2009). “A spotlight on UGC participants,” Tech. Rep. [Online].
Available: http://www.emarketer.com/Article.aspx?R=1006914

[2] K. Chang, C. Chen, J. Chen, and H. Chao, “Challenges to next
generation services in IP multimedia subsystem,” J. Inform. Process.
Syst., vol. 6, no. 2, pp. 129–146, 2010.

[3] Y. Wen, G. Shi, and G. Wang, “Designing an inter-cloud messaging
protocol for content distribution as a service (CoDaaS) over future
Internet,” in Proc. ACM CFI, Jun. 2011, pp. 91–93.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: BF FOR CODAAS 11

[4] Y. Jin, Y. Wen, G. Shi, G. Wang, and A. Vasilakos, “CoDaaS: An
experimental cloud-centric content delivery platform for user-generated
contents,” in Proc. IEEE ICNC, Jan. 2012, pp. 934–938.

[5] J. Chen, S.-H. Chan, and V. Li, “Multipath routing for video delivery
over bandwidth-limited networks,” IEEE J. Selected Areas Commun.,
vol. 22, no. 10, pp. 1920–1932, Dec. 2004.

[6] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K.
Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching with
consistent hashing,” Comput. Netw., vol. 31, nos. 11–16, pp. 1203–1213,
May 1999.

[7] J. Ni and D. Tsang, “Large scale cooperative caching and application-
level multicast in multimedia content delivery networks,” IEEE Com-
mun. Mag., vol. 43, no. 5, pp. 98–105, May 2005.

[8] M. Pathan, C. Vecchiola, and R. Buyya, “Load and proximity aware
request-redirection for dynamic load distribution in peering CDNs,”
in On The Move to Meaningful Internet Systems: OTM 2008. Berlin,
Germany: Springer-Verlag, 2008, pp. 62–81.

[9] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica,
“Complex queries in dht-based peer-to-peer networks,” in Proc. IPTPS,
2002, pp. 242–259.

[10] J. Chang, H. Chao, J. Chen, and C. Lai, “An efficient service discovery
system for dual-stack cloud file service,” IEEE Syst. J., vol. 6, no. 4,
pp. 584–592, 2012.

[11] B. H. Bloom, “Space/time tradeoffs in hash coding with al-
lowable errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426,
1970.

[12] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, May 2004.

[13] A. Rousskov and D. Wessels, “Cache digests,” Comput. Netw. ISDN
Syst., vol. 30, pp. 2155–2168, Nov. 1998.

[14] Squid. (2012). Optimising Web Delivery [Online]. Available: http://www.
squid-cache.org/,Tech.Rep.

[15] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[16] M. Lee, K. Cho, K. Park, T. Kwon, and Y. Choi, “Scan: Scalable
content routing for content-aware networking,” in Proc. IEEE Int. Conf.
Commun., Jun. 2011, pp. 1–5.

[17] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “Multilayer com-
pressed counting bloom filters,” in Proc. IEEE INFOCOM, 2008, pp.
311–315.

[18] J. R. Jackson, “Jobshop-like queueing systems,” Manage. Sci., vol. 10,
no. 1, pp. 131–142, 1963.

[19] K. Stamos, G. Pallis, A. Vakali, D. Katsaros, A. Sidiropoulos, and Y.
Manolopoulos, “CDNsim: A simulation tool for content distribution
networks,” ACM Trans. Model.Comput.Simulat., vol. 20, pp. 1–40, Apr.
2010.

[20] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM, 1999, pp. 126–134.

[21] R. Banner and A. Orda, “Multipath routing algorithms for congestion
minimization,” IEEE/ACM Trans. Netw., vol. 15, no. 2, pp. 413–424,
Apr. 2007.

[22] I. Stoica, R. Morris, D. Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup protocol for
Internet applications,” IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17–
32, 2003.

[23] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an Internet
work,” in Proc. IEEE INFOCOM, Mar. 1996, pp. 594–602.

[24] R. L. Rivest, “The MD5 message digest algorithm,” Request for Com-
ments (RFC) 1321, Apr. 1992.

Yichao Jin received the B.S. and the M.S. degrees
from the Nanjing University of Posts and Telecom-
munications, Nanjing, China, in 2008 and 2011, re-
spectively. He is currently pursuing the Ph.D. degree
at the School of Computing Engineering, Nanyang
Technological University, Singapore.

His current research interests include cloud com-
puting and content delivery networks.

Yonggang Wen (M’08) received the Ph.D. degree
in electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT),
Boston, MA, USA, in 2008.

Currently, he is an Assistant Professor at the
School of Computer Engineering, Nanyang Techno-
logical University, Singapore. Prior to his present
position, he has held research and development posi-
tions in networking companies in the USA, including
Cisco and Lucent. His current research interests
include cloud computing, content networking, and

green networks.

Weiwen Zhang (S’12) received the Bachelor’s de-
gree in software engineering and Master’s degree in
computer science from the South China University
of Technology, Guangzhou, China, in 2008 and
2011, respectively. Currently, he is pursuing the
Ph.D. degree at the School of Computer Engineer-
ing, Nanyang Technological University, Singapore.

His current research interests include cloud com-
puting and mobile computing.

