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Abstract—The emergence of social TV has transformed TV ex-
periences, providing a unified media experience across different
devices. In response to this trend, we have implemented a multi-
screen social TV system, offering video teleportation as an attrac-
tive feature. The enabling technology is instantiating a cloud clone
to support all media outlets of each user. As the user shifts his at-
tention from one device to the other, the cloud clone might migrate
to a better location to reduce its operational cost. This paper in-
vestigates this cloud clone migration problem, aiming to minimize
the monetary cost on operating video teleportation. Specifically,
we formulate it into a Markov Decision Problem, to balance the
trade-off between the migration cost and the content transmission
cost. Under this framework, four algorithms are proposed to solve
this optimization problem. We first characterize an upper and a
lower bound for the optimal cost, by considering a random fixed
placement and an offline algorithm. We then present a semi-online
and a more practical Q-learning approach to make online deci-
sions. Their performances are evaluated based on both simulated
and real user traces. The results show that the Q-learning method
achieves up to 25% cost compared to random fixed placement in
typical scenarios. The savings are affected by the delivery path
length, the migration size, and the user behavior pattern. More-
over, our investigations reveal the optimal cloud clone location is
either at the nearest or the furthest node to the user along the con-
tent delivery path for a single user scenario.

Index Terms—Cloud clone, cost minimization, markov decision
process, Q-learning, social TV.

I. INTRODUCTION

L ATELY, TV experience have been dramatically trans-
formed, with the emergence of multi-screen social TV [1],

[2]. First, a traditional “laid-back” video watching experience is
combined with “lean-forward” social interactions among peer
viewers, resulting in an user-centric viewing environment [1].
Second, multi-screen social TV offers ubiquitous and unified
services that are available at anytime, anywhere, on any device
at an affordable cost, with personalized experiences [2]. Finally,
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with the latest multi-screen or second-screen technology, users
can transfer the ongoing sessions from one device to another,
without any service interruption. Nonetheless, given its highly
regarded value, large-scale deployment of social TV has been
limited, if not totally absent.
In response to this trend, we have designed and implemented

a multi-screen social TV system [3], [4] over a Cloud-Centric
Media Network (CCMN) [5]. It offers video teleportation as its
salient feature. In particular, one can easily migrate video ses-
sion back and forward among different devices, with intuitive
human-computer interactions. As a result, a seamless multi-
screen social experience is achieved.
The enabling technology for video teleportation is to instan-

tiate a virtual machine in the cloud as a cloud clone [4] for each
user.1 Specifically, each cloud clone represents one user, serving
as his proxy in the cloud, to manage all the associated devices
and session information. In addition, the cloud clone also pro-
vides video transcoding [6] and advertisement insertion func-
tion to the original video streaming, achieving a personalized
multi-screen social TV experience for end-users in a scalable
and flexible manner.
One critical design objective is to minimize the monetary cost

on operating video teleportation, potentially making this service
affordable to the general public. A possible deployment scenario
is to rent cloud resources from a vendor-neutral provider. In this
case, we need to intelligently manage the resource rental cost. In
particular, the transmission cost is determined by the transmitted
content size and its delivery path length. The former one depends
on the video source and theway the user consumes contents (e.g.,
TV or smartphone). The latter one depends on the cloud clone lo-
cation along the content delivery path. As the user shifts sessions
from one device to another, the retargeted content size changes,
and the cloud clone might dynamically migrate to a better loca-
tion to save the cost. Therefore, an optimal cloud clonemigration
policy should be in place to balance the trade-off between themi-
gration cost and the transmission cost savings.
In this paper, our contributions are multi-folder, including:
• We formulate the cost-minimization problem as a Markov
Decision Process by adopting a Markov chain to model the
user watching behavior across TV and smartphone. The
objective is to minimize the monetary cost of operating the
video teleportation service, by migrating the cloud clone to
the best place, as the user shifts his device.

• Under this framework, we first consider a random fixed
placement policy and an offline policy as an upper and a
lower bound for the optimal cost. Then we follow up with
a semi-online algorithm, where only the state transition

1We will use virtual machine and cloud clone interchangeably in this paper.
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probability is known in advance. Finally, we propose the
Q-learning method, which learns the user behavior from
the history and makes online decisions at each time slot.
This approach is more practical in real system.

• Extensive experiments based on both simulated data and
real user behaviors traces are conducted to evaluate those
proposed strategies. Our numerical results suggest that, up
to 25% monetary cost compared with the random fixed
placement can be saved by using Q-learningmethod in typ-
ical scenarios. The cost saving can be affected by the length
of content delivery path, the data size of VMmigration, and
the user behavior pattern.

These insights would offer operational guidelines to deliver
cost effective multi-screen social TV services over CCMN, po-
tentially easing its adoption.
The rest of the paper is organized as follows. Section II out-

lines the related works. Section III presents the system architec-
ture and formulates the problem. Section IV proposes four alter-
native methods to derive the optimal policy. Section V evaluates
the performances of different approaches. Finally, Section VI
concludes this paper.

II. RELATED WORKS

This section surveys the existing literatures on multi-screen
technologies, adaptive video streaming, and cost minimization
studies in the context of cloud based media systems.

A. Multi-Screen Technologies

Recently, an increasing number of novel systems are pro-
posed to provide multi-screen experiences with different en-
abling technologies. Deep shot [7] was proposed as a general
framework to transfer ongoing sessions across multiple screens.
Lu et al. [8] presented a virtualized screen solution, which used
a cloud clone scheme to complete screen rendering in the cloud.
In this way, the screen display can be delivered as a series of im-
ages to the thin clients. Wu et al. [9] described their design on
a cloud based mobile social TV system. Its key module was a
virtual machine based surrogate in the cloud, which provided
video transcoding services and segmenting the streaming traffic
for each user. Wang et al. [10] adopted a similar scheme to in-
stantiate a private agent in the cloud for each user, providing
adaptive video streaming and social networking services.
Our work differs from these researches in several aspects.

First, we built CCMN as a novel framework to integrate a
variety of media services, and elastically provide them to users.
Second, our cloud clone offers the richest set of functions,
including video transcoding, session synchronizing, and video
teleportation. As a result, users can seamlessly transfer ongoing
sessions among heterogeneous media outlets instantly. Finally,
none of those works aimed to improve the system by optimizing
the operational cost, while we focus on a cost minimization
problem via cloud clone migration.

B. Adaptive Video Streaming Solutions

Adaptive video streaming, due to the its high practical values
to efficiently distribute video contents to different end-users, has
become an active research topic. Bernaschi et al. [11] presented

a transcoding-based adaptive streaming scheme for heteroge-
nous networks. They implemented a testbed to show their solu-
tion is practical and efficient in real scenarios. Shen et al. [12]
proposed a transcoding-enabled caching scheme for content dis-
tribution networks, where the content adaptation is performed
at the network intermediaries. In [13], the authors discussed the
techniques for media and streaming strategy adaptation, and in-
dicated placing transcoding service in proxy servers as one of
the typical streaming systems.
The main difference between our work and these researches

is that, we aim to find the optimal location to transcode the video
streaming, while none of them considered such problem.

C. Cost Minimization Techniques

Similar cost minimization problems on cloud based systems
have been addressed by several previous researches. Armbrust
et al. [14] listed the data transfer cost as one of the top obsta-
cles and opportunities for cloud computing. It indicated that,
an appropriate virtual machine placement policy is important to
reduce the operational cost. Jaime et al. [15] examined the en-
ergy tradeoff between video transportation and processing for
view video streaming, and obtain the optimal video processing
location with the lowest energy cost. In [16], the authors bal-
anced the tradeoff between content transmission cost and con-
tent storage cost in cloud centric media network, to find the op-
timal content placement strategy with minimal monetary cost. I.
Zhovnirofsky et al. [17] described a performance enhancement
(PE) scheme, where each application is supported by a PE. Each
PE locates at one server, and it can be turned on or off on de-
mand. In this way, this mechanism aims to improve the quality
of service and reduce the cost.
However, none of those works can be directly applied to our

problem. First, the optimization metrics are different. Most of
them targeted at reserving energy consumption, while we aim to
minimize the monetary cost by using cloud resources. Second,
those works did not take multi-screen experiences into account.
Finally, they mostly aimed at an optimal fixed location for each
virtual machine, whereas we need an optimal dynamic cloud
clone migration scheme with online scheduling.

III. SYSTEM OVERVIEW & PROBLEM FORMULATION

This section first introduces the system implementations.
Then we focus on three system models. Finally, we formulate
the minimum-cost cloud clone migration problem as a Markov
Decision Process. For clarity and ease of reference in the
discussion, we summarize the important notations in Table I.

A. System Implementation

In this subsection, we first present the system architecture and
its key application (i.e., video teleportation). Then we discuss
the detailed design of cloud clone.
1) System Architecture: In Fig. 1, we present a systematic

end-to-end view of our cloud multi-screen social TV system.
Specifically, the system is built upon CCMN [5], which pro-
vides on-demandmedia services, including content distribution,
media processing and content adaption. End users with different
devices are connected via residential gateways and access net-
works to the cloud. They can request a live or on-demand TV
program from an IPTV source through the cloud via virtual
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TABLE I
NOTATION TABLE

Fig. 1. Multi-screen cloud social TV architecture.

Fig. 2. System overview on cloud clone.

overlay content delivery network. Under this framework, the
cloud resources can be dynamically operated in different servers
(i.e., cloud nodes) on top of the overlay network, based on a

pay-per-use pricing model. Such cloud based CDN paradigm
has also been offered by a list of cloud service providers2 to
operate media services in a more efficient manner, than the tra-
ditional CDN solution [18].
2) Key Feature: Our system offers a highly-touted multi-

screen experience via video teleportation. With this feature, one
user can simultaneously operate multiple devices (e.g., TV and
smartphone) and freely migrate video session back and forward
from one device to another without interruption. As a result,
the users can always stay connected to TV programs and social
interactions.
3) Cloud Clone: The enabling technology for video telepor-

tation is to deploy a cloud clone as shown in Fig. 2 for each
user. Specifically, every user is represented by a virtual machine
(VM), which serves as his proxy in the cloud to manage all the
associated devices and real-time session information (e.g., on-
going programs, information about the active device, the up-
dated viewing history, and most recent video segments, etc.). It
elastically turns on once its represented user is online, and turns
off once the user gets offline. In addition, the VM also dynam-
ically transcodes the original stream from the video source into
the one with appropriate format, resolution, and bitrate as its
user shifts the devices. Moreover, the VM also offers other func-
tionalities, such as ad insertion to support personalized multi-
screen experience. We call such VM as cloud clone. And we as-
sume each cloud clone can be operated at any cloud server along
any overlay content delivery path.
The location of cloud clone plays an important role on the

cost of operating video teleportation. Specifically, the retargeted
stream size changes as the user moves around or shift sessions
from one device to another. It leads to the changes of the trans-
mission cost, which further depends on the cloud clone location
along the delivery path from the source to the user. Thus, there
is an opportunity to reduce the operational cost by migrating the
cloud clone to its best place.

B. System Models

In this subsection, we present three system models to drive
the problem formulation on minimizing the operational cost on
support the video teleportation feature.
1) Content Processing Model: In this paper, we assume

the cloud clone performs two content processing functions,
including advertisement insertion and video transcoding.
Through these processing procedures, a content of size will
be changed to in the following two cases.
Case 1) : When the user is consuming the content

on a bigger screen (e.g., TV), would be smaller
than the retargeted stream size . In this case, the
cloud clone inserts a few personalized video adver-
tisements, by first picking the related advertisement
video based on recommendation algorithms, then
combining the selected video ad overlay with the
targeted quality to the original content [19]. Finally,
the combined video streaming is delivered to the end
user. Such method has become a key online mon-
etization strategy to make profit [19]. At the same
time, some set-top boxes may not support the latest

2http://aws.amazon.com/cloudfront/ and http://www.metacdn.com/
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Fig. 3. User behavior on session migration by using video teleportation.
(a) Real user case. (b) Device switching model as a Markov chain.

video format (e.g., H.264 high profile) of the content
source. Thus, the cloud clone has to transcode the
original content into a compatible one (e.g., H.264
baseline profile), and pick the video ad overlay in
the same format. As a result, the combined content
size could be bigger than the original one. Note, the
transmission cost for the cloud clone to load adver-
tising videos is ignored, since we assume the cloud
has already pre-loaded all those data at each node.

Case 2) : When the user is consuming the content
on a smaller screen (e.g., smartphone), would be
larger than . Themain reason is that, the video res-
olution and bitrate required by such a device are sig-
nificantly lower than those of the original one. In this
case, the cloud clone transcodes the original content
into an appropriate format with much smaller reso-
lution and lower bitrate, to fit the output. As a result,
regardless of the inserted advertisements with small
resolution and low bitrate, the retargeted stream size
is still much smaller than the original one.

2) User Behavior Model: We model user behavior across
different devices as a Markovian process, which has been
widely adopted to characterize a variety of user behaviors
on web browsing [20], online social activities [21] and IPTV
interactions [22]. Without loss of generality, the user is assumed
to switch between two devices (i.e., TV and phone), thus the
model has two corresponding states. This model can be easily
extended if there are more devices or states (e.g., when user is
simultaneously using TV and phone, it is a new state). Since the
collection of devices at home is limited, the number of states
could be within a reasonable size.
Fig. 3(a) present a snapshot to capture a real use case that an

user shifts his attention between TV and smartphone by using
video teleportation. In particular, from the user’s perspective,
he can transfer the ongoing programs from TV to smartphone
by first scanning the TV screen using smartphone camera, then
flipping the phone to trigger the transfer. He can also transfer
the sessions back from his smartphone to TV, by simply per-
forming a “throw” gesture. From the system operation aspect,
in both cases, the workflow is coordinated by the cloud clone.
More specific details can be found from our previous works
[3], [4].
Fig. 3(b) illustrates aMarkov process with two states tomodel

such user behaviors. Specifically, the state transition matrix is
completely determined by (the probability in which the user
uses TV in both the current and the next time slot) and (the
probability in which the user uses smartphone in both the current

and the next time slot). Accordingly, we have ,
, where and are the user device switching

probability between TV and smartphone.
3) Cost Model: In supporting the cloud clone migration, the

media cloud would incur four cost components, including,
• Transmission Cost occurs when videos are transmitted
from the source to the user. Note, when operating the
media cloud, we only need to consider the cloud network
cost, while the cost incurred by access networks (e.g.,
broadband and wireless network cost) will not be included
in this work.

• Migration Cost corresponds to the bandwidth cost in which
the cloud clone migrates from one node to another within
the media cloud.

• Computing Cost refers to the consumption of computa-
tional resources (e.g., CPU/GPU), when cloud clone pro-
cesses user requests, transcodes the requested contents into
suitable format, and inserts advertisements into the original
video. This cost component is a baseline cost, which is in-
variant of the cloud clone location.

• Storage Cost is charged for keeping advertising videos and
user sessions. This cost is also a baseline cost, which is
constant for different cloud clone locations.

In this paper, we only focus on the transmission andmigration
cost, and ignore other two baseline costs which are independent
of our decision variable (i.e., cloud clone location).
In this research, we consider an operational model in which

the media service provider rents cloud resources from a vendor-
neutral cloud provider (e.g., AWS, Azure). Among the three
price models (i.e., on-demand, reserved and spot instances), we
adopt the on-demand model, because media service is often
real-time. In this case, the spot instance cannot guarantee QoS
and the reserved instance could be wasted.
For a chosen content, we assume a content delivery path from

the source to the end user. The path length is , and there are
overall nodes including the source node, the end user
node and intermediate nodes. Each node along the path
is indexed as according to its hop distance to the source. Note
the cloud clone can neither locate at the user side nor the content
source. We assume the monetary cost incurred by transmission
is proportional to the traversed hop distance, and the content
size. When the cloud clone is at , , the
transmission cost in a time slot is

(1)

where is the per hop price to transmit per GB data, is the
expected original video size, and is the expected size, after
the cloud clone transcodes the content into a smaller one for
small screen, or inserts personalized advertisements to convert
it into a bigger one for big screen experience.
The monetary cost for cloud clone migration, includes both

VMprocessing cost to initialize and complete themigration, and
the transmission cost to send this VM image, which stores online
user sessions (e.g., meta data of ongoing program, active device
information, updated viewing and behavior history, most recent
streaming segments for continuous watching experience, meta
data of personalized ads, etc.) to its new destination. Therefore,
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the monetary charged by migrating cloud clone from one node
to another node is

(2)

where denotes the hop distance from the
cloud clone to media source after migration, is the mi-
grated data volume, and is the additional price to initialize
and complete each migration.

C. Markov Decision Process Formulation

Using the system models, we introduce Markov decision
process (MDP) to formulate the cloud clone migration problem.
Specifically, the MDP formulation is a 4-tuple including the
system state set, the scheduling action set, the state transition
matrix and the cost function.
System States:We define a system state at time slot as

by jointly considering the location of cloud clone and
active user device. denotes the location
of cloud clone at time slot . denotes the ac-
tive device is TV or smartphone at time slot . As a result, this
system state set presents both the changes
initiated by the user, and the corresponding cloud clone migra-
tions made by the system, where denotes the period that the
user is interacting with our system.
Cloud Clone Migration Actions: The scheduler action set

defines the destination of the cloud clone
migration at each time slot. Specifically, we model the action
as the migration decision at time slot , where ,

, denotes the cloud clone migrates from its
current location to a new place . We treat
as the case that no migration is taken at time slot .
State Transition: The transition from state to
is determined by both the user behavior model and the cloud

clone migration decision. Since the user decision is independent
of the cloud clone migration, we have the transition probability

, that action in state at time will lead to
state at time slot as

(3)

where can be obtained from the transition ma-
trix of user behavior model, and is deter-
mined by the action policy .
Cost Function:We define the cost function as the

total monetary cost consumed during the period from time to
. This cost includes both media transmission cost and cloud

clone migration cost. As a result, we have

(4)

where is the indicator function that

(5)

As a result, indicates the decision on whether the
migration should be taken at time .
Optimization Objective: The goal is to find the optimal mi-

gration policy to minimize the total cost. It can be

Fig. 4. Case studies on cloud clone migration. (a) Optimal cloud clone place-
ment when . (b) Optimal cloud clone placement when .
(c) Possible cloud clone scheduling when changes.

formulated as an unconstrained optimization problem over a fi-
nite time horizon

(6)

IV. MIGRATION STRATEGIES FOR CLOUD CLONE

In this section, we start with three simple case studies, to illus-
trate the problem and the fundamental trade-off between trans-
mission cost and migration cost. Following that, we propose
four alternative methods to solve this problem.

A. Case Studies for Cloud Clone Placement

Fig. 4 illustrates three cases for optimal cloud clone place-
ment. In these cases, we consider the content delivery path as a
line topology. Node serves as the media source, and the black
node serves the cloud clone. In particular, we consider the ad-
vertisement insertion and the video transcoding function at the
cloud clone, through which the original content size of is
converted to .
1) Case A: In this case, as shown in Fig. 4(a), the end user is

always consuming the content on one device with a larger screen
(i.e. TV) and the retargeted content size is larger than that of
the original content (i.e., ). It can be shown that the
optimal location for the cloud clone would be the node nearest
to the user along the delivery path, to minimize the transmission
cost.
2) Case B: In this case, as shown in Fig. 4(b), the end user

is always consuming the content on one device with a smaller
screen (i.e., smartphone) and the retargeted size is smaller
than that of the original content (i.e., ). It can be shown
that the optimal location for the cloud clone would be the node
nearest to the content source along the delivery path, to mini-
mize the transmission cost.
3) Case C: In this case, as shown in Fig. 4(c), the user

switches between two devices when consuming the same
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content. In the two phases, the optimal location for the cloud
clone could change in the process to minimize the total cost.
Throughout these three cases, we observe a clear trade-off be-

tween the transmission cost and the migration cost. In particular,
on the one hand, once the user switches the device, the cloud
clone should immediately migrate to its best location (i.e., Case
A and B), to minimize the transmission cost. On the other hand,
if the switching behavior is frequent, such policy will generate
significant migration cost, which may overwhelm the saving on
transmission cost. As a result, we need to strategically schedule
the cloud clone migration to balance this trade-off.
In this paper, we study the cost minimization problem by ex-

amining the fundamental trade-off, according to the aforemen-
tioned Markovian user pattern. Four alternative methods will be
pursued, as explained in next four subsections.

B. Random Fixed Placement & Cost Upper Bound

In this subsection, we propose a random fixed placement
strategy for the cloud clone by assuming it does not migrate
during the whole content consumption period . This is the
simplest strategy to this problem, which involves no dynamics.
In this case, the total cost in every time slot is completely
decided by the content transmission cost as

(7)

where , and is the mean content size
per time slot after processed by the cloud clone during

(8)

where is the number of time slot that the user spends on phone
during the period .
Algorithm 1 describes the details of this method. The purpose

of proposing such an algorithm is to get a cost upper bound, and
set it as a reference to evaluate other algorithms. Because the
system can not know the exact user behavior trace in advance,
the scheduler can not decide which location is the optimal one
at the beginning. Most probably, the system just randomly picks
a location in real implementation. As a result, we aim to obtain
the expected total cost of the random fixed placement strategy.
We first calculate the cost for all locations, then dividing
the summation by . The results can represent a numerical
upper bound for our problem.

Algorithm 1 Random Fixed Placement Algorithm

Input: a complete user behavior trace set during

Output: the expected cost of random fixed placement

1: initialize

2: calculate by Eq. (8)

3: for to do

4:

5: end for

6: return as the expected cost

Fig. 5. An example of the state transition of offline algorithm.

We also derive an expected upper bound of the generated
monetary cost. According to the Markovian user behavior
model, we have the mean state sojourn time that an user spends
on TV is

(9)

Similarly, we also have the mean state sojourn time the user
spends on smartphone is

(10)

Thus, we have as

(11)

As a result, we have the expected total monetary cost of
the random fixed placement algorithm as

(12)

The complexity of this random fixed algorithm to take an action
is . It just randomly picks one place among all the possible
locations, then keeps it unchanged all the time.

C. Offline Algorithm & Cost Lower Bound

In this subsection, we investigate an offline algorithm, based
on dynamic programming approach, to solve the optimal migra-
tion problem. Specifically, we assume that the scheduler already
has the knowledge of all user behaviors in
advance.
Fig. 5 presents an example of the state transition diagram of

this offline algorithm. In this case, all the previous and future
user behaviors are deterministic (e.g., in Fig. 5,

), and all other states are not reachable.
Thus, the transition of system states is completely determined
by the decision variable at each time slot as

(13)
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We denote as the minimal aggregated cost from to .
Using value iteration in the backward induction, we have

where gives an initial value. By using this iterative
equation, we can find the optimal policy, given by

Algorithm 2 presents the details of this method. Specifically,
it adopts the dynamic programming approach to iteratively cal-
culate the minimal aggregated cost and the corresponding deci-
sion at each time slot. Thus, the complexity of the offline algo-
rithm to take an action is .

Algorithm 2 Offline Algorithm

Input: a complete user behavior trace set during

Output: optimal policy at each time slot

1:initialize

2:calculate from by Eq. (13)

3:for to 1 do

4: for to do

5:

6: end for

7: update ,

8: end for

9: return as the optimal policy

Since the scheduler has perfect information from the user
side, it follows that the monetary cost resulted from this of-
fline algorithm provides a lower bound for the original cloud
clone migration problem. We will verify this result with numer-
ical simulations in Section V.

D. Semi-Online Algorithm with Known Transition Model

This subsection proposes an semi-online algorithm with
known transition model. In this case, the scheduler only knows
the user behavior transition matrix instead of the exact traces in
advance, and can observe the user pattern as time evolves.
Fig. 6 presents a system illustration of the state transition di-

agram of this non-learning semi-online algorithm. Specifically,
it becomes a stochastic environment that, by performing action
at time , the new system state can be either or

. This transition probability is defined by the
user behavior model as

Fig. 6. Systematic illustration of the state transition of semi-online algorithm
with known transition probability.

Similar to the offline method, we define as the minimal
expected aggregated cost from to as

By still using a backward Bellman equation, we can derive the
optimal policy as

Algorithm 3 presents the implementation details. Comparing to
the offline algorithm, there are only two differences. First, the
input changes from a complete user behavior trace set to the
transition probability. Second, we replace the deterministic tran-
sition model with the stochastic state transit model . There-
fore, the complexity of the semi-online algorithm to take an ac-
tion is , which is the same as the offline algorithm.

Algorithm 3 Semi-Online Algorithm

Input: transition probability of user states

Output: optimal policy at each time slot

1:initialize

2:for to 1 do

3: for to do

4:

5: end for

6: update ,

7:end for

8:return as the optimal policy

It can be shown that the minimum cost resulted from this
semi-online algorithm falls between the lower bound and upper
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Fig. 7. Systematic model of online algorithm with reinforcement learning.

bound derived in previous two subsection, as verified by perfor-
mance evaluation in Section V.

E. Online Algorithm With Reinforcement Learning

This subsection proposes an online algorithm with reinforce-
ment learning. In this case, the scheduler knows neither the
exact user behavior traces nor the states transition matrix. In-
stead, we set an agent to continuously learn the user behaviors
and tune the transition parameters from observing the outcomes
of its previous actions and past experiences.
Fig. 7 shows the systematic model on how this interacts with

the real world. Specifically, there are two inputs from the real
world, including the real user behaviors and the costs incurred
by applying cloud clone migration. In each discrete time slot,
the learning agent receives the real states from the user side. It
then tunes the trained user model and decides the next action
based on current and past experiences by estimating the cost of
each possible action and selecting the one which generates the
minimal cost.
In real implementation, this approach consists of an experi-

ence replay phase and an online scheduling/learning phase.
1) Experience Replay: The objective of this experience re-

play phase is to obtain the optimal policy for each state by
implicitly training the user behavior model based on history
data. In particular, we set a warm-up stage for each new user.
During this stage, we monitor this user’s behaviors, but apply a
fixed placement algorithm to avoid the expensive cost incurred
by the state exploration. By replaying those experiences, we
adopt the Temporal Difference (TD) Q-learning [23] to calcu-
late the Q-value and update the knowledge of the internal trained
models. Specifically, the Q-value represents the cost of each
state-action pair combination, denoted as . We first ini-
tialize every Q-value with an arbitrary value. Then an action
is simulated to each observed state , and a corresponding cost

can be obtained. Thus, the Q-value can be iteratively
updated by

(14)
where is the learning rate to determine how
much the newly acquired information will override the old in-
formation, is the discount factor to trade off the
importance of sooner and later cost.
We set as the initial value of the period for the warm-up

phase. The warm-up stage will terminate if it converges within
this specified initial duration. Otherwise, we extend this phase

until all Q-value pairs get converged. For the latter case, it has
been shown that, any finite MDP problems, Q-learning will
eventually converge for sure [23].
We also use an -greedy policy to explore every reachable

state as much as possible, to ensure the optimality of the gener-
ated solution. Specifically, at each iteration of Q-learning phase,
instead of always picking the greedily action with the learned
optimal Q-value, we also select a random action with a small
probability as

(15)

where means ‘with probability’, and will reduce from its
initial value by a reduction rate per time slot, until eventually

at the end of the exploration period.
Algorithm 4 presents the details of this experience replay

phase. It implicitly studies the user behaviors by iteratively up-
dating the Q-value. A classic -greedy exploration function is
adopted to select actions at each time slot. The gathered user
behavior trace will be replayed for times, because there
are possible actions at each state. After the reply phase, we
check whether all the Q-values are converged. If so, this phase
ends. Otherwise, we need to collect more sample data. In our
problem, the number of states (i.e., ) and actions (i.e.,

) is limited. Therefore, the convergence rate of Q-value
should be within an acceptable range. If the problem space be-
comes larger with more states and actions, we can combine a
function approximator [24] into our algorithm.

Algorithm 4 Reinforcement Learning with Experience Replay

Input: user behavior history

Q-value convergence threshold

Output: for each state-action pair

1:initialize all arbitrarily (e.g., identically 10)

2:for to do

3: for to do

4: simulate according to Eq. (15)

5: observe the new state , and the cost

6: update by Eq. (14)

7: update

8: end for

9:end for

10:if all then return

11:else continue to collect user behavior data

12:end if

2) Online Scheduling and Learning: This phase uses the
trained generated from the experience replay phase to
make optimal decisions. Algorithm 5 presents the details of



JIN et al.: REDUCING OPERATIONAL COSTS IN CLOUD SOCIAL TV: AN OPPORTUNITY FOR CLOUD CLONING 1747

this algorithm. Specifically, at each time slot, the scheduler will
choose the action with the minimal Q-value from all state-ac-
tion pairs, as the optimal policy based on current system state.
Therefore, the complexity of the Q-learning based algorithm
is . Besides, each updated Q-value will continue to make
contribution to learn the latest user behavior pattern. As a
result, it forms a lifetime learning process.

Algorithm 5 Online Algorithm with Q-Learning

Input: current system state at time slot all learned
from Experience Replay phase

Output: optimal policy at each time slot

1:for to do

2: apply

3: observe the new state , and the cost

4: update by Eq. (14)

5:end for

6:return as the optimal policy

This online algorithm with reinforcement learning is the
most practical one comparing with others. First, in real system,
only the history of user behavior is accessible while either the
exact user traces in future or just the precise behavior model for
each individual user is difficulty or even impossible to obtain
in advance. More importantly, this method adopts a model-free
reinforcement learning technique. It indicates that even the
transition probability may not be necessarily deterministic.
This approach can still work when the transition probability is
a random variable that its probability follows any distribution
model. Second, the complexity of the algorithms keeps at a
very low level for each cloud clone to take the optimal action,
because the number of possible locations along the shortest
content delivery path is usually small (e.g., less than 20). This
makes it capable to serve thousands of users simultaneously.
We will verify its performance in comparison with the ones of
other approaches in Section V.

V. PERFORMANCE EVALUATION

This section verifies the performance of all those algorithms
based on real application scenarios.

A. Experimental Settings

1) Experimental Approaches: In this work, both simulated
user behaviors and real traces are used to drive the evaluations.
For simulated user data, we generate 1000 periods of user be-

haviors according to the Markov model in Section III-B. Each
period contains the user behaviors for . We set each
time slot as seconds, since the video teleportation op-
eration could take around 10 seconds [3]. In this way, there are
720 records in each period, where each record shows the active
device at one time slot. And there are in total 720,000 records
for one simulated trace. All the algorithms run for 1000 rounds
based on each trace. When we run the Q-learning algorithm,

TABLE II
EXPERIMENTAL PARAMETER SETTINGS

only the average cost from the online scheduling period will be
reported. When we run other algorithms, we report the average
cost based on all those 1000 periods.
For real traces, we collected the user behaviors by releasing

this multi-screen social TV system to over 200 students at
Nanyang Technological University for an internal trial. The
users can enjoy the services on a bigger screen via a web-based
application portal, and on their smartphone via a iOS/Android
app provided by us. There are around 20 active users among
all registered users. The total interaction time from each of
them is over 50 hours. We collect behavior traces from all
those active users over the last one month (i.e., 08-Feb-2014
to 07-Mar-2014), and use them as the input of our algorithm.
Similarly, we only report the average costs of serving these
users.
2) Parameter Settings: We adopt the price information from

Amazon [25]. Specifically, the per-hop price to transmit one Gi-
gabyte data is USD/GB, the price to migrate cloud
clone image is USD, if we use the extra small VM
instance to implement cloud clone.
We use Cisco’s Media Experience Engine [26] as a refer-

ence to obtain the bitrate information. Specifically, we define
kbps as the bitrate of live streaming sources with

640x480 resolution delivered by Veoh Network (a popular In-
ternet television provider). We set kbps as the bi-
trate, after the cloud clone inserts video advertisements into the
original video, and transcodes it into AVC (Advanced Video
Coding) SD (Standard Definition) output with 640x480 resolu-
tion for TV viewing. We set kbps as the bitrate when
the source is transcoded into iPhone compliant MPEG-4 output
with resolution for iPhone player. Because a time slot
lasts for 10 seconds, we have MB, MB,
and MB in each time slot.
For Q-learning settings, we set the learning rate at

to give equal weight to new and old knowledge, the discount
factor at to take more future costs into account, and
the Q-value coverage threshold at . We initially set

, and the reduction rate is per time
slot. We set the initial value of the warm-up period as the first
4000 records for the simulated user behavior input, and the first
10 hours (i.e., 3600 time slots) for real traces of each user. By
tracking the convergence performance of Q-learning algorithm
over all evaluation sets, we find the average convergence period
is around 5080 transitions. Table II summarizes these experi-
mental settings in detail.
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Fig. 8. Minimal monetary cost vs. delivery path (simulated user behaviors).
(a) Minimal cost per hou.r (b) Cost saving.

Fig. 9. Minimal monetary cost vs. delivery path (real traces). (a) Minimal cost
per hour. (b) Cost saving.

B. Monetary Cost

This subsection evaluates the monetary cost resulted from
different algorithms with various parameters. Our focus is to
understand the impact of those parameters, ultimately obtaining
operational guidelines for the system implementation.
1) Monetary Cost vs. Delivery Path Length: We then investi-

gate the monetary cost as a function of the content delivery path
length . Fig. 8 shows the monetary cost and the cost savings
compared to the random fixed placement, based on simulated
data, where . And Fig. 9 presents the same met-
rics based on real user traces. In this experiment, we set the VM
migration size as MB.
We have a few observations from these two figures. First, the

two figures present almost the same trend. It implicitly verifies
that our Markov chain based user behavior model can represent
the real user behaviors. This can also observed in Fig. 10 and
Fig. 11. Second, themonetary cost resulted from the semi-online
method and the Q-learning method always fall between the ones
resulted from the random fixed placement policy and the offline
algorithm. It fits well with our analysis in Section IV. This ob-
servation can be also applied to Fig. 10, Fig. 11 and Fig. 12.
Third, the monetary cost resulted from all the four algorithms
increases almost linearly as the delivery path length increases.
This can be traced by the linear cost model as in Eq. (1) and (2).
Finally, compared to the random fixed placement method, our
algorithm provides significant cost saving, which increases as
the length of the content delivery path increases. For example,
the cost saving of Q-learning algorithm is less than 5% when

. And it reaches more than 12% when .
2) Monetary Cost vs. Migration Size: We first investigate the

relationship between the overall monetary cost and the VM mi-
gration size . Fig. 10 shows the monetary cost and cost sav-
ings compared to the random fixed placement, based on simu-
lated data, where . And Fig. 11 illustrates the

Fig. 10. Minimal monetary cost vs. migration size (simulated user behaviors).
(a) Minimal cost per hour. (b) Cost saving.

Fig. 11. Minimal monetary cost vs. migration size (real traces). (a) Minimal
cost per hour. (b) Cost saving.

Fig. 12. Minimal monetary cost vs. simulated user behavior patterns. (a) Min-
imal cost per hour. (b) Cost saving.

same metrics based on real user traces. Here, we set the content
delivery path length .
This experiment reveals a few insights. First, the cost re-

sulted from the random fixed method remains the same when
changes, because there is no migration based on this

policy. This observation can be also applied to Fig. 12 for the
same reason. Second, a threshold effect is observed, where
the monetary cost remains constant when the migration size is
beyond the threshold (e.g., MB in the simulated
based experiment). On one hand, when MB, as

increases, the migration cost grows. On the other hand,
when MB, the monetary cost remains almost
constant, and the cost savings of the semi-online method and
the Q-learning method are getting closed to the one of the
offline approach (i.e., the cost lower bound). This effect can
be understood as follows. When the migration size is beyond
a threshold, the migration cost would be higher than the min-
imum transmission cost when the cloud clone locates in the
best location. As a result, it would be better if the cloud clone
stays at its current location without any migration. And the
optimal migration policy will eventually reduce to the case of
the optimal fixed placement, as the migration size continues to
increase.
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3) Monetary Cost vs. User Behavior: We study the impact of
user behavior pattern on the monetary cost by changing the user
device switching probability. Fig. 12 presents the monetary cost
and the cost savings compared to the random fixed placement
method, as a function of user device switching probability

. In this set of experiment, we set the content delivery
path length as , the migration size as MB. And
we assume the probability of transiting from phone to phone, is
the same with the one of transiting from TV to TV (i.e.,
).
This experiment also reveals a threshold effect, in which the

system behaves differently on the two sides of the threshold
(e.g., in this case). On one hand, when , the
monetary cost and the according cost savings remain almost the
same as the user device switching probability changes. Because
in this case, the user switches his device too often. Thus, the
high migration cost would prevent the cloud clone moving such
often. In this way, similar to the case of large migration size in
Section V-B2, the migration policy reduces to the optimal fixed
placement policy. On the other hand, when , the cost
of all migration methods grow, and their cost savings decrease
accordingly, as the device switching probability increases.
This can be understood as follows. When the device switching
probability is low, the state sojourn time on each device is long
as shown in Eq. (9) and (10). As a result, the cloud clone can
migrate as soon as the user switches his device. Because the
transmission cost saving would easily overwhelm the incurred
migration cost. As increases, the state sojourn time decreases.
In this way, the device switching frequency becomes higher,
and the cloud clone would migrate less frequently than that for
device switching. Thus, the chance in which the cloud clone is
not placed in the optimal location increases, resulting in a higher
transmission cost.
We also notice that, when the transition probability is ex-

tremely low (e.g., in this case), the cost and its
saving of the offline method remains constant. This flat curve
can be understood by examining a saving function by
migrating cloud clone from location to , defined as,

(16)

where is the time period from now to the next migration
(or the end of period if there is no further migration). By
substituting Eq. (1) and (2) into Eq. (16), we obtain

where is the mean retargeted content size during

(17)

and is the time the user spends on phone during . We can
see that, in this case, the cost saving is determined by

, which is in turn determined by . Since can not vary in
a large scale when , the monetary cost and the cost
saving are almost the same, when changes.
Finally, we find the cost saving of Q-learning based algorithm

can reach nearly 25%when , where its performance
gets closed to the ones of offline and semi-online algorithm. In

Fig. 13. Examples of the migration scheduling based on Q-learning method.
(a) User A ( MB, ). (b) User A ( MB, ).
(c) User B ( MB, ). (d) User B ( MB, ).
(e) Simulated ( , MB, ). (f) Simulated

, MB, .

this case, if the service would be offered to 100 users for one
year, the monetary cost saving can be as much as
per year. The reason is that, when the switching probability is
small, the time spent on one device is more likely to dominate
the other. In addition, the sojourn time on each device becomes
longer. Therefore, such pattern is easier to be learnt, and future
user behaviors following this pattern is easier to be predicted.

C. Optimal Migration Polices

In this subsection, we investigate the optimal migration
scheduling generated by Q-learning algorithm through a few
examples as shown in Fig. 13.
First, Fig. 13(a) and Fig. 13(b), investigate the impact of con-

tent delivery path length, based on the real trace over latest 1000
time slots from User A, who switches his device the least fre-
quently among all active users. We find that, when the delivery
path length is short (e.g., Fig. 13(a)), the cloud clone only mi-
grates for once. While in Fig. 13(b), the cloud clone migrates
for three times. The migration is easier to be triggered when the
delivery path is longer, because the cost savings generated by
migration scheduling are much higher in this case. It verifies
our discussions in Section V-B1.
Second, Fig. 13(c) and Fig. 13(d) focus on the impact of VM

migration size, based on real traces over latest 1000 time slots
from User B, who switches his device most frequently among
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Fig. 14. Comparisons between Q-learning algorithm and existing methods.
(a) Cost vs. path length (simulated). (b) Cost vs. switch prob. (simulated).
(c) Cost vs. path length (real trace). (d) Cost vs. migration size (real trace).

all active users. We find that, when migration size is small (e.g.,
Fig. 13(c)), the cloud clone migrates more frequently, because
low migration cost makes the transmission cost savings much
easier to cover the incurred migration cost. As the migration size
increases, the migration frequency decreases. When

MB (i.e., Fig. 13(d)), there is no migration at all. This ver-
ifies our discussions in Section V-B2.
Third, Fig. 13(e) and Fig. 13(f) present the impact of user

device switching probability based on simulated data. We find
if the user switches the active device too frequently (i.e., 13(f)),
there will be much less migrations compared to Fig. 13(e). This
verifies our discussions in Section V-B3.
Moreover, we notice an interesting observation in all exam-

ples, that the optimal cloud clone location is either at the nearest
or the furthest node to user, regardless of delivery path length,
migration size and user behaviors. This can be understood from
the cost saving function as Eq. (17). Specifically, the
scheduler checks whether to trigger a mi-
gration. If a migration is required, the place which leads to the
maximal cost saving, is selected as the destination. It can be
seen that, is a linear function of . Therefore,
if , it is better to migrate the cloud clone to the
furthest node to maximize , thus the cost saving can be
maximized. Otherwise, the cloud clone would stay at its current
location with no migration.

D. Comparisons With Existing Methods

For comparison purpose, we regard the random fixed algo-
rithm as the standard method adopted by existing social TV sys-
tems [27], [10]. In addition, we also implement another greedy
algorithm inspired by [28], where the cloud clone always mi-
grates to its best place, once the user switches the active device.
Fig. 14 compares the performance of our Q-learning based

algorithm with those two existing algorithms. First, we find the
proposed Q-learning method outperforms the existing ones in
all the cases. This verifies the effectiveness of our approach.
Second, the greedy algorithm generates extremely high costs

when the switching probability is high, or the migration size is
large. In this case, the migration cost becomes very high, re-
sulting in tremendous total operational cost. Finally, when the
switching probability is very low, the greedy algorithm performs
very closed to our scheme, which is better than the fixed one.
This implies that when user seldom switches the active device,
the greedy scheduling stands for the optimal solution. Other-
wise, we need to migrate the cloud clone very carefully to re-
duce the cost.

VI. CONCLUSION AND FUTURE WORKS

This paper investigated the problem on minimizing mone-
tary cost via cloud clone migration in multi-screen cloud social
TV system. We formulated it as a Markov Decision Process,
to balance a trade-off between the transmission and migration
cost. Under this framework, we first considered a random fixed
placement and an offline algorithm to obtain an upper and lower
bound for the optimal cost. We then proposed a semi-online al-
gorithm and a more practical Q-learning method. We use both
simulated data and real user traces to evaluate all the four al-
gorithms. The results indicated, up to 25% monetary cost com-
pared with the random fixed placement can be saved in typical
use scenarios, by optimally migrating the cloud clone. The cost
savings can be affected by the delivery path length, the VM mi-
gration size and the user behavior pattern. Moreover, we also
found the optimal cloud clone location is either at the nearest
or the furthest node to the user. Those insights would offer op-
erational guidelines to deliver cost effective multi-screen social
TV services over CCMN, potentially easing its adoption.
Our multi-screen social TV system has been implemented

on top of a private cloud at Nanyang Technological University.
It has been exposed to over 200 students for an internal trial.
The next step is to deploy it to a vendor-neutral cloud provider
(e.g., Amazon EC2) to achieve the large-scale deployment.
Second, we plan to explore the possibility of implementing
other cloud application frameworks (e.g., one cloud clone for
multiple users). Finally, we will try to solve more complicated
problems (e.g., MDP with constraints) in related scenarios.
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