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ABSTRACT

In recent years, technical challenges are emerging on how to effi-

ciently distribute the rapid growing user-generated contents (UGCs)

with long-tailed nature. To address this issue, we have previously

proposed cloud centric media network (CCMN) for cost-efficient

UGCs delivery. In this paper, we further study the content place-

ment problem in CCMN. Our objective is to minimize the mone-

tary cost incurred by using cloud resources to orchestrate an elastic

and global content delivery network (CDN) service. In particular,

this objective is achieved via a two-step method. First, for a single

content, we map it into a k-center problem, and find a logarithmic

relationship between the mean hop distance from users to contents,

and the reciprocal of replica number. Second, for multiple contents,

we formulate a convex optimization with storage and bandwidth ca-

pacity constraints, which can be solved by our proposed algorithm.

Finally, we verify the algorithm based on real-world traces collected

from a popular video website in China. Our numerical results sug-

gest that, the optimal number of replica for each content follows a

power law in respect to its popularity, under feasible storage and

bandwidth constraints, in a set of deployed backbone networks.

1. INTRODUCTION

In recent years, the ever-growing popularity of user-generated con-

tents (UGCs) significantly challenges the existing content delivery

network (CDN). It is predicted the UGCs consumers will reach 70%

of the total Internet users in 2013 [1]. Those UGCs are currently

replicated and distributed all over the world via CDNs. However,

at present, the leading CDN providers tailor their systems and op-

erations mainly for popular contents. Thus, they are inadequate to

serve the ever-growing UGCs with long-tailed nature, [2, 3] making

the economical UGCs delivery difficult.

To address this problem, we have proposed cloud centric media

network (CCMN) as a novel network architecture [2, 3]. It lever-

ages cloud computing to build an elastic CDN overlay on top of its

underlying physical networks, so that the UGCs can be delivered

efficiently. One major design objective of CCMN is to minimize

the monetary cost when delivering UGCs. The content placement

problem is one crucial design choice, to determine the monetary

cost. Specifically, it involves a fundamental trade-off between stor-

age and transport cost. On one hand, multiple UGCs replicas should

be placed in different data centers, to reduce the distance from users

to contents, and the associated transport cost. On the other hand, if

too many copies are placed and their locations are not properly cho-

sen, significant storage cost may be incurred with limited gains on

transport cost reduction. Therefore, cost-effective content placement

policies that balance the trade-off to minimize the overall monetary

investment, need to be carefully studied.

There are some existing researches working on the content

placement problem. T. Wauters et al analyzed the underlying ring

based CDN topologies, to design the placement strategy [4]. The

optimal content caching schemes in web proxies were studied by

[5]. Based on topology analysis and optimal content placement

policies, the energy efficiency of content centric networks and tra-

ditional CDN were compared by [6, 7]. However, none of them can

be directly applied to solve the problem in CCMN for two reasons.

First, content placement on more realistic network topologies (such

as mesh topologies), should be considered for CCMN. Second, we

aim to analytically characterize the optimal content placement pol-

icy, instead of using approximated solution.

In this paper, we formulate the cost effective content placement

problem as a constrained optimization problem, under storage and

bandwidth capacity constraints. The objective is to minimize the to-

tal monetary cost. We solve this problem in two steps. First, for a

single content delivered over deployed networks, it is mapped into a

k-center problem [8] to explicitly derive the optimal placement pol-

icy for a given number of replicas. Our analytical results suggest

that, the mean hop distance H between the users and their closest

copy in a N -nodes deployed network, is a logarithmic function of

the reciprocal of replica number n, (i.e., H ∼ log(N/n)). This

leads to a better understanding on the trade-off between storage and

transport cost from the topological aspect. Second, for multiple con-

tents, the problem is formulated as a convex optimization problem.

We develop an algorithm to obtain the optimal replica number for

each content. The numerical verifications on real traces suggest, un-

der feasible storage and bandwidth constraints, the optimal replica

number follows a power-law distribution to its popularity in a set of

deployed networks. This offers guidelines to the real business oper-

ations in CDN environment.

The rest of the paper is organized as follows. In Section 2, we

present the problem formulation. In Section 3, we characterize the

k-center problem for single content in a set of deployed networks.

In Section 4, we solve the convex optimization problem for multiple

contents. In Section 5, we verify the solutions using real traces. In

Section 6, we conclude this paper.

2. PROBLEM MODELING & FORMULATION

This section first presents the architecture of the cloud centric media

network. Then we present our system assumptions for the problem



Table 1. Notation Table
Symbol Definition

nk The number of replica for content k
Bk The size of content k
Rk The downloaded time of content k over t period

G The topology of underlying networks

cst Per bit cost for storing content

ctr Per hop cost for transmitting per bit data

M The total number of unique contents to be delivered

N The total number of datacenters

H The mean hop distance between users and replicas

Stot The total storage capacity constraint

Ttot The total bandwidth capacity constraint

formulation. Finally, a constrained optimization problem is given.

For clarity and ease of reference in the discussion, we summarize

the important notations in table 1.

2.1. CCMN architecture

Figure 1 illustrates the architecture of the cloud centric media net-

work (CCMN), which builds an elastic CDN overlay on top of its

underlying physical networks, to provide efficient UGCs delivery.

CCMN carves out storage, bandwidth and computation resources

from data centers to provide content caching and media streaming

services. One of the design objectives of CCMN is to minimize the

monetary cost, while providing those services with desired QoS.

The monetary cost in CCMN is highly dependant on the con-

tent placement policy, which decides the number of replicas for each

content and their locations in CCMN. Specifically, replicating con-

tent to different places can reduce the distance between users and

contents, which leads to less bandwidth resources usage. However,

if too many replicas are placed and their locations are not proper, it

results in significant storage resource usage, and limited reduction on

bandwidth resource usage. Therefore, an optimal placement policy

should be in place, to minimize the total monetary cost.

2.2. System assumptions

1) Topology Model: The underlying physical infrastructure that

supports CCMN can be viewed as a connected graph G by model-

ing N data centers as the nodes and the network connectivities as

the edges. Each node provides storage and computation resources,

and each link provides bandwidth resources. All those resources

are limited in CCMN. This work will use four well-known deployed

backbone topologies as shown in section 3.3 as examples to obtain

some practical insights.

2) Content Model: We assume a catalog of M unique contents to

be delivered in a time window t. For a content k, where k = 1, ...,M
is sorted by download times in descending order, both its size Bk

and its popularity rk are random variables. In particular, the content

size follows the bounded Pareto distribution [9] with the cumulative

distribution function as,

F (x) =
1−Bα

Lx
−α

1− (BL

BU
)α

, BL ≤ x ≤ BU , (1)

where BL and BU are the smallest and largest content size, and α is

the shape parameter.

Fig. 1. Architecture of cloud centric media network

The popularity rk in terms of download times Rk in a time win-

dow t, follows Zipf distribution [5], which is given by,

rk =
Rk

Rtot

=
k−β

∑M

s=1 s
−β

, (2)

where Rtot =
∑M

k=1 Rk, and β is the shape parameter.

The two distributions will be verified by real traces in section 5.

3) User Request Model: Each node in CCMN is also a service

entry point attached with an access network. We assume the user

request is always served by the nearest node which holds a replica of

the requested content. We assume an uniform traffic pattern, that is,

the traffic load from each entry point is the same in a given time slot.

This assumption is reasonable, since in most CDN systems including

CCMN, load balancers roughly guarantee equal traffic load across

different access points.

2.3. Problem formulation

Our design objective is to minimize the monetary cost associated

with the usage of storage, bandwidth and computation resources,

which in turn depends on the content placement strategy. Specif-

ically, the storage cost depends on both the content size and the

replica number. The transport cost depends on the hop distance from

users to replicas, which in turn is a function of the replica number.

The computation cost is incurred by processing each user request,

which is independent of the replica number. As a result, we only

focus on the storage and transport cost, as follows.

Storage cost over a period t for content k is,

Ck
st(nk) = cstBknkt, (3)

where Bk is the size, cst is the per bit cost, nk is the replica number.

Transport cost for content k with Bk size and Rk download

times over a period t is,

Ck
tr(nk, G)=RkBkctrH(nk, G), (4)

where ctr is per hop cost for transmitting per bit data, H(nk, G) is

the mean hop distance between an user and the content k.

We formulate the content placement problem as a constrained

optimization problem, with an objective to minimize the combined

storage and transport cost as,

min f(n) = cstB
T
nt+ ctrB

T
HR (5)

s.t. gi(n) = 1− ni ≤ 0, for i = 1, ...,M, (6)

gi+M(n) = ni −N ≤ 0, for i = 1, ...,M, (7)

g2M+1(n) = B
T
n− Stot ≤ 0, (8)

g2M+2(n) = B
T
HR− Ttot ≤ 0, (9)



where M is the number of unique contents, N is the number of

data centers, H=diag(H(n1, G), ..., H(nM , G)), n=(n1, ..., nM ),
B=(B1, ..., BM )T , and R=(R1, ..., RM )T .

The constraints of (6) and (7) indicate the replicas can be placed

at all the nodes at most, and a single node at least. The constraints

of (8) and (9) capture the total storage and bandwidth capacity lim-

itations respectively. Note we relax the integer constraint of nk to

achieve a lower bound solution.

We adopt a two-step method to solve this problem. First, we find

optimal H for single content. Second, we use the result to solve the

optimization problem for multiple contents.

3. SINGLE CONTENT PROBLEM

In this section, we cast the single content placement as a variant of

k-center problem [8] as follows. Given a topology G = (V,E),
where V is the set of data centers, and E is the set of links between

them, we want to compute a subset of n vertices R⊆V to minimize

the mean hop distance H between any two nodes, then derive the

minimal H(n,G) for n ∈ [1, N ].
Due to the NP-completeness of this problem [8], the complexity

of directly solving it, is prohibitive. Thus, we first solve it in gen-

eralized Moore graphs1 , then use the result to derive a lower and an

upper bound of H in random regular graphs. Finally, we extend to

the deployed networks, that share the same basic properties (i.e., the

diameter) with random regular graph.

3.1. Generalized Moore graph

We first consider the optimal graph partition method, which is the

key to characterize k-center problem [8], as described below. For

a given replica number n and a d-degree, N -order, generalized

Moore graph G(d,N), we can partition the G(d,N) into n sub-trees

S1, ...,Sn, where
∑n

i=1 |Si| = N . A replica is placed at the root

of each sub-tree and serves the requests from all other nodes in this

tree. The objective is to obtain an analytical form on mean hop dis-

tance H . Specifically, let the aggregated hop distance Di from all

the nodes to the root within one sub-tree Si be the total hop dis-

tances from a replica to all its served users. By summing up Di over

i=1, ..., n and dividing it by N , we have H . Since in a generalized

Moore Graph, each level of the spanning tree of each node is full

(except probably the last level), we can calculate the height of each

sub-tree to get H .

It has been shown [4], the uniform partition method can generate

the minimized H in such problem. That is, if we partition G(d,N)
inton separated sub-trees with the size of either bN/nc or bN/nc+1,

the overall height can be minimized. Note, such partition may not

necessary be unique, since the leaf nodes of each tree may have the

equal shortest distance to more than one replica. As a result, after

the partitioning, there are r sub-trees, each serving r0+1 nodes (i.e.,

|S1|= ...= |Sr |=r0 + 1, where r is the reminder of dividing N by

n, and r0 = bN
n
c). It also indicates, there are n − r replicas, each

serving the requests from a group of r0 nodes.

Following this rationale, we first compute the aggregated hop

distance for each of the n sub-trees as,

Dd(h, o) = d

h−2
∑

k=0

(k + 1)(d− 1)k + ho, (10)

1Generalized Moore graph is a d-degree regular graph, where each node
has a d-ary spanning tree that is full at each level, except probably the last.

where the first term is the aggregated hop distance from all the nodes

excluding the last level. d nodes are in the first level, each has d−1
children. Thus, there are d(d− 1)k nodes at k + 1 hops away from

the root, for k = 0, ..., h − 2, where h = dlogd−1
dr0−2r0+2

d
e

is the height of a full tree. The second term is the aggregated

hop distance to the root from the last level nodes, where o =

r0 − 1 − d (d−1)h−1
−1

d−2
is the node count in the last level. Note

here, we compute each sub-tree has r0 nodes.

Second, we compute the aggregated hop distance ϕ from the

additional one node from each of the r trees as,

ϕ(h, o) = h+ δ(d(d− 1)h−1 − o), (11)

where δ(x) is the indicator function that δ(x) = 1 when x = 0, and

δ(x) = 0 otherwise.

Finally, we add a reminder γ to indicate the case that the nodes

at the second furthest level are not filled up in some sub-trees. It can

be seen 0≤γ≤n−1. As a result, we have the mean hop distance as,

H(n,GM (d,N)) =
1

N
(nDd(h, o) + rϕ(h, o) + γ). (12)

This result will be used to derive both an upper and a lower

bound for this problem in random regular graph.

3.2. Random regular graph

In random regular graphs, each node still has the same degree d, but

not necessarily the same connectivity pattern. To extend the analysis

in such graph, we first get a lower and an upper bound for H , then

derive an approximation to capture the fundamental scaling of H as

a function of N , d, and n.

A lower bound exists, when all the levels of each sub-tree are

full except the last. This case is exactly the same as the gener-

alized Moore graph. To further simplify the functional form of

H(n,G(d,N)), we make the simplification that N is dividable by

n, (i.e., r0=N/n and r=0). We also assume d is sufficiently large,

such that d ≈ d+1. Thus, we have the lower bound as,

H(n,G(d,N)) ≈ logd
N

n
+ c1, (13)

where c1 is a constant which is independent of n and N .

To derive an upper bound, we use the upper bound for random

regular graph obtained from [10], to get the upper bound height hu

of each sub-tree after partitioning as,

hu ≤ logd (2 + ε)r0 log r0 < 2 logd c2r0, (14)

where c2 is a constant as
√
2 + ε, and ε is a small number.

The Moore graph (a generalized Moore Graph where each node

has a full d-ary routing spanning tree at all the levels) with its height

at hu = 2 logd c2r0, holds an upper bound for the aggregated hop

distance D of each sub-tree (note in this case, the sub-tree’s order

may be larger than r0). By using the same assumptions when deriv-

ing the lower bound, we have an upper bound as,

H(n,G(d,N)) ≈ (dc2)
2 logd

c2N

n
+ c3, (15)

where c3 is a constant which is independent with n and N .

By capturing the scale in both Eq. (13) and (15), we have,

H(nk,G(d,N)) ≈ A logd
CN

nk

, (16)

where A and C are topology-specific coefficients.

We will use this result to approximate the solution for the content

placement problem in deployed networks.



(a) U.S IP Backbone Network (b) NSF Network

(c) U.S 64 (d) EON

Fig. 2. Four deployed network topologies

3.3. Deployed networks

We consider four real deployed networks [11] as shown in figure 2,

which share the same basic property (i.e., the diameter) with random

regular graphs. We make this argument by comparing the diame-

ter of those deployed networks with the analytical bounds [10] of

specific random regular graphs, which have the same average node

degree and node number with the deployed networks. Table 2 shows

the comparisons on the diameters of those deployed networks.

Table 2. The diameters of deployed networks

U.S IP NSF U.S 64 EON

Lower Bound 4 4 10 3

Diameter 6 4 16 4

Upper Bound 7 8 16 6

Using exhaustive numerical algorithms, we get the optimal

placement of n replicas and the associated H(n). Next we fit these

results with Eq. (16). We compare the performance of our analytical

results with the ones that use the power-law function [6, 7]. The ac-

curacy of curve-fitting is evaluated by Mean Squared Error (MSE),

which is denoted as

σ̃2 =
1

N

N
∑

i=0

(x̃i − xi)
2, (17)

where x̃i is the estimation, and xi is the numerical result.

Figure 3 illustrates this comparison. In all the cases, our ob-

tained logarithmic function is able to represent the real condition

more precisely with much lower MSE. As a result, we use this func-

tion to estimate H , and drive the design of our algorithm to solve the

content placement problem.

4. CONVEX OPTIMIZATION PROBLEM

By substituting Eq. (16) into the origin problem (i.e., Eq. (5)-(9)),

we get a convex optimization problem. Specifically, the constraint

(9) is convex, since each item, H(nk) = A logd(CN/nk), for k =
1, ...,M in matrix H, is convex. Constraints (6)-(8) are all linear.

And the objective function is also convex, which is the sum of a

linear and a convex function.
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Fig. 3. Estimated functions for deployed networks

This section first uses a feasible direction algorithm to solve it

in general condition. Then we present the optimal solution without

capacity constraints to get some insights.

4.1. General Solution

We adopt the Topkis-Veinott’s feasible direction method [12] as

shown in Algorithm 1. It starts with a feasible point n1, then finds

the reduced gradient direction dk and the steps λk along this direc-

tion in each iteration. It is proved the new point nk+1 = nk +λkdk

must be no worse than the previous one. This process repeats until

the optimal solution is found.

Algorithm 1 The Feasible Direction Algorithm

Require:

The objective function f(n)
The constrains gi(n), i = 1, 2, ..., 2n+ 2
One feasible solution n1 such that all gi(n1) ≤ 0

Ensure:

The optimal solution n
∗

Begin

(1) Initialize k=1;

(2) Let (zk,dk) be an optimal solution to the problem

min zk
s.t. ∇f(nk)

t
d− zk ≤ 0

∇gi(nk)
t
d− zk ≤ −gi(nk), for i = 1, ..., 2M + 2

−1 ≤ dj ≤ 1, for j = 1, ..., 2M + 2
if zk = 0 then go to Step (4)

else go to Step (3)

(3) Let λk be an optimal solution to the problem

min f(nk + λdk)
s.t. 0 ≤ λ ≤ λmax

λmax = sup{λ : gi(nk + λdk, for i = 1, ...2M + 2)}
Let nk+1 = nk + λkdk

k = k + 1
go to Step (2)

(4) Finish, return nk as n∗

End
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Fig. 4. The real-world trace from video sharing website

Our algorithm assures the convergence into the optimal point.

It has been proved, the feasible direction method can guarantee the

convergence to a Fritz John point [12]. Moreover, in this convex pro-

gramming, the objective function and all the inequality constraints

are continuously differentiable convex functions, and the Lagrangian

multiplier on the gradient of the objective function cannot be zero.

As a result, the global optimality of the solution is guaranteed.

4.2. Optimization without capacity constraints

The algorithm provides a way to solve the optimization problem un-

der different constraints, but it is hard to obtain an analytical result.

As a result, we consider the problem without capacity constraints, to

obtain some fundamental insights.

By removing the constraint (8) and (9), it becomes an optimiza-

tion process over a box (i.e., 1 ≤ ni ≤ N , i = 1, ...,M ). There-

fore, we can turn it into an unconstrained problem, by ensuring

∇f(nk) ≤ 0 when nk = N , and ∇f(nk) ≥ 0 when nk = 1. By

using the KKT conditions and letting ∇f(nk)=0, we have the op-

timal replica number for each content as,

n?
k =











1, nk ≤ 1
ctrARk

cst ln d
, nk ∈ (1, N)

N, nk ≥ N

. (18)

In addition, by substituting the optimal replica number into the

origin problem, we can get the optimal storage space as

S?
tot = B

T
n
?, (19)

where n
?=(n?

1, n
?
2, ..., n

?
M ).

We also obtain the optimal network bandwidth as,

T ?
tot = B

T
H

?
R, (20)

where H
? = diag(A logd

CN
n?
1

, ..., A logd
CN
n?

M

). The two optimal

values indicate the capacity boundary that further increment on the

resources can not bring with overall monetary cost reduction.

5. PERFORMANCE EVALUATION

This section uses real traces to evaluate the obtained solution.

5.1. Experimental settings

The real-world trace was captured from a leading video website in

China. It contains the request history of 50 contents for a week.

Figure 4 shows the distributions of content size and popularity. The

Pareto distribution with its parameter α=1.8, and the Zipf distribu-

tion with its parameter β=0.86, BU =150 MB and BL =1.5 MB
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Fig. 5. Monetary cost for the 10th popular content

matches well with the real data trace. It verifies our assumptions on

these two models as discussed in section 2.

We adopt the CDN pricing model from GoGird, a popular cloud

service provider. The storage price is cst = $0.60/GB per month,

and bandwidth price is ctr=$0.25/GB.

We apply those deployed networks in section 3 to delivery the

traces, and produce optimal solutions by our methods.

5.2. Fundamental trade-off for content placement

Figure 5 uses the 10th popular content as an example to show the

fundamental trade-off between storage and transport cost. In all four

deployed networks, the storage cost is proportional to the replica

number, and the transport cost follows a logarithmic function of the

reciprocal of replica number. As the replica number grows, the stor-

age cost increases while the transport cost decreases, and the total

cost function is convex. Consequently, how to balance the trade-off

and find the optimal replica number for each content under storage

and bandwidth resource constraints, drives this work.

5.3. Optimal overall cost for multiple contents

Figure 6 illustrates the optimized overall monetary cost under differ-

ent network topologies with various combinations of storage and net-

work bandwidth constraints. The results in all the scenarios present

almost the same characteristics.

For a given Ttot, there are two phases as the growth of Stot.

In the first phase, the total monetary cost decreases as the storage

capacity increases, because the storage constraint limits the optimal

content placement solution. (e.g., Ttot = 300 MB/s and Stot ≥ 2.2
GB in U.S IP backbone network). In the second phase, as the stor-

age capacity increases, the overall cost maintains at a certain level.

This means the storage volume is no longer the dominating factor.

Depending on the bandwidth constraint, this phase has two different

implications. When the bandwidth is sufficient that Ttot≥T ∗

tot (e.g.,

Ttot≥267 MB/s in U.S IP backbone network), the absolute optimal

point n? (i.e., the solution for unconstrained optimization problem as

discussed in section 4.2) can be achieved, because both constraints

are inactive. However, when Ttot <T ∗

tot (e.g., Ttot < 267 MB/s in
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Fig. 6. Overall monetary cost under different networks

U.S IP backbone network), the bandwidth resource becomes active.

The same trend can be found for a given Stot.

In addition, we find, as the bandwidth capacity decreases, the

minimal required storage volume grows accordingly, to have a fea-

sible solution. For instance, in U.S IP backbone network, Stot must

≥ 1.5 GB when Ttot = 350 MB/s, whereas Stot must ≥ 1.75 GB

when Ttot=300 MB/s. This again verifies the trade-off between the

storage and bandwidth resources.

5.4. Optimal replica number distribution

Figure 7 plots the optimal replica number for multiple contents. All

the curves are roughly linear in a log-log graph, which suggest the

optimal replica number is a power-law function to its popularity.

We also notice, when the bandwidth constraint is active, the op-

timal replica number is always the highest, while the storage con-

straint is active, it is the lowest. This still can be attributed to the

trade-off between the two resources. When bandwidth resource is

limited, we have to place more replicas to reduce the transport cost.

When storage space is limited, less replicas are allowed to be placed.

The optimal criteria of balancing this trade-off among different con-

tents, and deciding which replicas should be adjusted, is ensured by

the reduced gradient direction in our algorithm.

6. CONCLUSION

This paper investigated the content placement problem in CCMN,

with the objective of minimizing the combined storage and transport

cost. We formulated an optimization problem, under resource con-

straints, to balance the fundamental trade-off between storage and

transport cost. This problem was solved in two steps. First, for a

single content, we mapped it into a k-center problem, and obtained a

logarithmic relationship between the mean hop distance from users

to contents, and the reciprocal of replica number. Second, for mul-

tiple contents, we solved it by the feasible direction algorithm. Fi-

nally, we verified the obtained monetary cost effective strategy based

on real traces. The results suggest that, the optimal replica number

is a power-law function of content popularity in those deployed net-

works, under feasible storage and bandwidth constraints.
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