
CREATE: CoRrelation Enhanced trAffic maTrix
Estimation in Data Center Networks

Zhiming Hu Yan Qiao Jun Luo Peng Sun Yonggang Wen
School of Computer Engineering, Nanyang Technological University, Singapore

Email: {zhu007, yqiao, junluo, sunp0003, ygwen}@ntu.edu.sg

Abstract—Understanding the pattern of end-to-end traffic
flows in Data Center Networks (DCNs) is essential to many
DCN designs and operations (e.g., traffic engineering and load
balancing). However, little research work has been done to obtain
traffic information efficiently and yet accurately. Researchers of-
ten assume the availability of traffic tracing tools (e.g., OpenFlow)
when their proposals require traffic information as input, but
these tools may generate high monitoring overhead and consume
significant switch resources even if they are available in a DCN.
Although estimating the traffic matrix between origin-destination
pairs using only basic switch SNMP counters is a mature practice
in IP networks, traffic flows in DCNs are notoriously more
irregular and volatile, while the large number of redundant
routes in a DCN further complicates the situation. To this end,
we propose to utilize the service placement logs for deducing
the correlations among top-of-rack switches, and to leverage the
uneven traffic distribution in DCNs for reducing the number
of routes potentially used by a flow. These allow us to develop
an efficient CoRrelation Enhanced trAffic maTrix Estimation
(CREATE) method that achieves high accuracy. We compare
CREATE with two existing representative methods through both
experiments and simulations; the results strongly confirm the
promising performance of CREATE.

I. INTRODUCTION

As data centers that house a huge number of inter-connected
servers become increasingly central for commercial corpo-
rations, private enterprises and universities, both industrial
and academic communities have started to explore how to
better design and manage the data center networks (DCNs).
The main topics under this theme include, among others,
network architecture design [1]–[3], traffic engineering [4],
capacity planning [5], and anomaly detection [6]. However,
little is known so far about the characteristics of traffic flows
within DCNs. For instance, how do traffic volumes exchanged
between two servers or top-of-rack (ToR) switches vary with
time? Which server communicates to other servers the most
in a DCN? In fact, these real-time traffic characteristics serve
as critical inputs to all above DCN operations; their absence
may hamper the developments of others.

Existing proposals in need of detailed traffic flow informa-
tion collect the flow traces by deploying additional modules on
either ToR switches [4] or servers [7] in small scale DCNs.
However, both methods require substantial deployments and
high administrative costs, and they are difficult to implement
thanks to the heterogeneous nature of the hardware in DCNs.1

*This work is supported in part by AcRF Tier 1 Grant RGC5/13.
1A DCN may contain a lot of legacy switches or servers [8].

More specifically, the switch-based approach, on one hand,
needs all the ToRs to support OpenFlow [9] and consumes a
substantial amount of switch resources to maintain the flow
entries.2 On the other hand, the server-based approach, which
requires instrumenting all the OS kernels of the servers or
VMs to support data collection, is unavailable in most data
centers [10] and is nearly impossible to be implemented
peacefully and quickly while supporting a lot of cloud services
in large scale DCNs.

It is natural then to ask whether we could borrow from
network tomography, where several well-known techniques
allow traffic matrices of IP networks to be inferred from
link level measurements (e.g., SNMP counters) [11]–[13].
As link level measurements are ubiquitously available in
all DCN components, the overhead introduced by such an
approach can be very light. Unfortunately, both experiments in
medium scale DCNs [10] and our simulations (see Sec. V-C)
demonstrate that all existing tomographic methods perform
poorly in DCNs. This attributes to the irregular behavior of
end-to-end flows in DCNs and the large quantity of redundant
routes between each pair of servers or ToR switches.

There are actually two major barriers to apply tomographic
methods to DCNs. One is the sparsity of traffic matrix
between ToR pairs. This refers to the fact that one ToR
switch may only exchange flows with a few other ToRs,
as demonstrated by [14]. This fact substantially violates the
underlying assumption of tomographic methods including, for
example, the amount of traffic a node (origin) would send to
another node (destination) is proportional to the traffic volume
received by the destination [11]. The other is the highly under-
determined solution space. In other words, a huge number of
flow solutions may potentially lead to the same SNMP byte
counts. For a medium size DCN, the number of end-to-end
routes is up to ten thousands [10] while the number of link
constrains is only around hundreds.

In this paper, we aim at conquering the aforementioned two
barriers and making traffic matrix (TM) estimation feasible
for DCNs, by utilizing the distinctive information or features
inherent to these networks. On one hand, we make use of the
service placement logs (from the resource scheduler in the
controller node of DCNs) to derive the correlations among
ToR switches, as our experiments demonstrate that racks

2To the best of our knowledge, no existing switch with OpenFlow support
is able to maintain so many entries in its flow table due to the huge number
of flows generated per second in each rack.

2

supporting the same service tend to exchange high traffic
volumes. The communication patterns between ToR pairs
inferred by such an approach are far more accurate than those
assumed by conventional traffic models (e.g., the gravity traffic
model [11]). On the other hand, by analyzing the statistics of
link counters, we find that the utilization of both core links
and aggregation links is extremely uneven. In other words,
there are a considerable amount of links undergoing very low
utilization during the particular time interval. This observation
allows us to eliminate the links whose utilization is under
a certain (small) threshold and to substantially reduce the
number of redundant routes. Combining the aforementioned
two methods, we propose CREATE (CoRrelation Enhanced
trAffic maTrix Estimation) as an efficient estimation technique
to accurately infer the traffic flows between ToR switch pairs
without requiring any extra measurement tools. In summary,
we make the following contributions in our paper.

• We pioneer in using the service placement logs to deduce
the correlations of ToR switch pairs, and we also propose
a simple method to evaluate the correlation factor for
each ToR pair. Our traffic model, assuming that ToR
pairs with a high correlation factor may exchange higher
traffic volumes, is far more accurate for DCNs than
conventional models used for IP networks. This is so
because different services rarely communicate with each
other while servers have greater chance to exchange data
if they host the same service [15].

• We innovate in leveraging the uneven link utilization in
DCNs to remove potentially redundant routes. As both
our experiments and those presented in [16] show that
link utilization can be very uneven with a few links carry-
ing a dominating fraction of traffic, we may consider links
with very low utilization as non-existent without affecting
much the accuracy of TM estimation. In fact, eliminating
these lowly utilized links can effectively lessen the re-
dundant routes in DCNs, resulting in a more determined
tomography problem. Moreover, we also demonstrate that
changing a low-utilization threshold has an effect of
trading estimation accuracy for its complexity.

• We propose CREATE as an efficient method to infer the
TM for DCNs with high accuracy. This new algorithm
first calculates a prior assignment of traffic volumes for
each ToR pairs using the correlation factors. Then it
removes lowly utilized links and operates only on a sub-
graph of the DCN topology. It finally adapts a quadratic
programming to determine TM under the constraints of
the tomography model, the correlation-enhanced prior
assignments, and the reduced DCN topology.

• We validate CREATE with both experiments on a rela-
tively small scale testbed and extensive large scale simu-
lations in ns-3. All the results strongly demonstrate that
our new method outperforms two representative traffic
estimation methods on both accuracy and running speed.

The rest of the paper is organized as follows. We first survey
the related work in Sec. II. Then we formally describe our

problem in Sec. III. Sec. IV analyzes the traffic data in real
DCNs and reveals the two observations on ToR correlations;
we also present our CREATE method for TM estimation
in the same section. We evaluate CREATE using both real
testbed and different scales of simulations in Sec. V, before
concluding our paper in Sec. VI.

II. RELATED WORK

As data center networking has recently emerged as a hot
topic for both academia and industry, numerous studies have
been conducted to improve its performance [1]–[6]. However,
little work has been devoted to the traffic measurement,
although the awareness of traffic flow pattern is a critical input
to all above network designs or operations. Most proposals,
when in need of traffic matrices, rely on either switch-based
or server-based method to obtain them.

The switch-based method (e.g., [4]) adopts programmable
ToR switches (e.g., OpenFlow [9] switch) to record flow data.
However, this method may not be feasible for three reasons.
First, it incurs a high switch resource consumption to maintain
the flow entries. For example, if there are 30 servers per rack,
the default lifetime of a flow entry is 60 seconds, and on
average 20 flows are generated per host per second [17], then
the ToR switch should be able to maintain 30 × 60 × 20 =
36, 000 entries, while the commodity switches with OpenFlow
support such as HP ProCurve 5400zl can only support up to
1.7k OpenFlow entries per linecard [7]. Secondly, hundreds of
controllers are needed to handle the huge number of flow setup
requests. In the above example, the number of control packets
can be as many as 20M per second. And a NOX controller
can only process 30,000 packets per second [17]; thus it needs
about 667 controllers to handle the flow setups. Finally, not
all the ToR switches are programmable in DCNs with legacy
equipments, while the data center owners may not be willing
to pay for upgrading the switches.

The server-based method requires a special module to be
inserted into the OS kernel on each server to support flow
data collection [7], [18]. Also, the heterogeneity of data center
servers may also complicate the problem: dedicated modules
may need to be prepared for different servers and their OSs.
Moreover, adding this module does cost server resources to
perform flow monitoring. Finally, similar to the switch-based
approach, the willingness of the data center owner to upgrade
all servers may yet be another obstacle.

Network tomography has long been an important and ef-
ficient approach to obtain traffic information in IP networks.
For example, tomogravity [11] adapts the gravity model to
get the prior TM and SRMF [12] is shown to perform better
than others when the TM is low rank. One study that has
partially motivated our work is [10]: it investigates the nature
of DCN traffic on a single MapReduce data center and poses
the question whether traffic matrices can be inferred from link
counters by tomographic methods. In a way, the answer given
in [10] is negative due to the fundamental differences between
DCNs and IP networks, which invalidate the assumptions
made by conventional tomographic methods [11], [12]; we

3

Top-of-Rack

Switches

Aggregation

Switches

Core Switches

Internet

Fig. 1. An example of conventional data center network architecture,
suggested by Cisco [21].

explain these in Sec. I as two obstacles. We have proposed
methods to get the coarse-grained TM in [19], [20], but we
hereby aim to overcome these obstacles and hence make a
fine-grained TM estimation viable in DCNs.

III. DEFINITIONS AND PROBLEM FORMULATION

We consider a typical DCN as shown in Fig. 1. It consists
of N Top-of-Rack (ToR) switches, aggregation switches, and
core switches connecting to the Internet. There are R services
running in this DCN. Note that our method is not confined
to this commonly used DCN topology; it accommodates other
more advanced topologies also, e.g., VL2 [2], fat-tree [1], as
will be shown in our simulations.

We denote by Xi⇀j the traffic sent from the i-th ToR to the
j-th ToR and by Xi↔j the volume of traffic exchanged be-
tween the two switches. Given the volatility of DCN traffic, we
further introduce Xi⇀j(t) and Xi↔j(t) to represent values of
these two variables at discrete time t.3 Note that although these
variables would form the TM for conventional IP networks,
we actually need more detailed information for the DCN
traffic pattern: the routing path(s) taken by each traffic flow.
Therefore, we split Xi↔j(t) on all possible routes between the
i-th and j-th ToRs. Let X(t) = [X1(t), X2(t), · · · , XP (t)]
represents the volumes of traffic on all possible routes be-
tween ToR pairs, where P is the total number of the routes.
Consequently, the traffic matrix X = [X(1),X(2), · · · ,X(T)],
where T is the total number of time periods, is the one we
need to estimate.

The observations that we utilize to make the estimation are
the SNMP counters on each port of switches. Basically, we
poll the SNMP MIBs for bytes-in and bytes-out of each port
every 5 minutes. The SNMP data obtained from a port can
be interpreted as load of the link with that port as one end;
it equals to the total volume of the flows that traverse the
corresponding link. In particular, we denote by ToRin

i and
ToRout

i the total “in” and “out” bytes at the i-th ToR. We
represent links in the network as L = {L1, L2, · · · , LM},
where M is the number of links in the network. Let B =
{B1, B2, · · · , BM} denote the bandwidth of the links, and
Y(t) = {Y1(t), Y2(t), · · · , YM (t)} denote the traffic loads of

3Involving time as another dimension of the TM was proposed earlier in
[12], [13].

TABLE I
COMMONLY USED NOTATIONS

Notation Description
N The number of ToR switches in the DCN
M The number of links in the DCN
P The number of routes in the DCN
R The number of services running in the DCN
T The number of time periods
A Routing matrix
L L = [Li]i=1,··· ,M , where Li is the i-th link
B B = [Bi]i=1,··· ,M , where Bi is the bandwidth of Li

Y Y = [Yi]i=1,··· ,M , where Yi is the load of Li

Ki The number of server belonging to the i-th rack
Xi⇀j The traffic send from the i-th ToR to the j-th ToR
Xi↔j The traffic exchanged between the i-th and j-th ToRs
X X = [Xr]r=1,··· ,P , where Xr is the traffic on the r-th

routing path
X̄r The prior estimation of the traffic on the r-th routing path
ToRin

i The total “in” bytes of the i-th ToR
ToRout

i The total “out” bytes of the i-th ToR
S S = [Sij]i=1,··· ,R;j=1,··· ,N , where Sij is the number of

servers under the j-th ToR that run the i-th service
Corr ij The correlation coefficient between the i-th and j-th ToR.
θ Link utilization threshold

the links at discrete time t, and Y = [Y(1),Y(2), · · · ,Y(T)]
becomes the load matrix. 4

An extra piece of information that we require is the service
placement logs recorded by controllers of a DCN. We analyze
the service placement logs in the controller nodes in a DCN,
and get the service placement matrix S = [Sij] with rows
corresponding to services and columns representing the ToR
switches. In particular, Sij = k means that there are k servers
under the j-th ToR running the i-th service in the DCN. We
also denote by Kj the number of servers belonging to the j-th
rack. These quantities will be used to compute the correlation
coefficient between different ToRs in Sec. IV.

As there are a lot of available routes between any of two
ToR switches, the correlation between traffic assignment X(t)
and link load assingment Y(t) can be formulated as

Y(t) = AX(t) t = 1, · · · , T, (1)

where A denotes the routing matrix, with rows corresponding
to links and columns indicating routes between ToR switches.
Ak` = 1 if the `-th route traverses the k-th link; Ak` = 0
otherwise. In this paper, we aim to efficiently estimate the
TM X using the load matrix Y derived from the easy-collected
SNMP data. Our commonly used notions are listed in Table I,
where we drop time indices for brevity.

Although (1) is a typical system of linear equations, it is
impractical to solve it directly. On one hand, the traffic pattern
in DCNs is practically sparse and skew [14]. Fig. 2, adopted
from [14], plots the traffic normalized volumes between ToR
switches in a DCN with 75 ToRs. The sparse and skew nature
of TM in DCNs can be immediately seen from the figure: only

4We only consider intra-DCN traffic in this paper. However, our CREATE
method can easily take care of DCN-Internet traffic by considering the Internet
as a “special rack”.

4

From Top of Rack Switch

T
o

 T
o

p
 o

f
R

a
c
k
 S

w
it
c
h

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. The TM across ToR switches reported in [14].

a few ToRs are hot and most of their traffic goes to a few other
ToRs. On the other hand, as the number of unknown variables
is much more than the number of observations, the problem is
highly under-determined. For example in Fig. 1, the network
consists of 8 ToR switches, 4 aggregation switches and 2 core
switches. The number of possible routes in A is more than
100, while the number of link load observations is only 24.
Even worse, the difference between these two numbers grows
exponentially with the number of switches (i.e., the DCN
scale). Consequently, directly applying tomographic methods
to solve (1) would not work, and we need to derive a new
method to handle TM estimation in DCNs.

IV. DESIGN OF CREATE

As directly applying network tomography to DCNs is in-
feasible due to the rich connections between different ToRs,
we propose two procedures to pre-process the input data such
that the tomographic methods can be applied. We shall first
introduce the rationale of the pre-processing procedures, then
we present our CREATE method that combines these two
procedures with a fine-tuned tomographic algorithm.

A. Traffic Characteristics of DCNs

To motivate our design principles of CREATE, we focus
on analyzing the traffic characteristics of real DCNs. As
mentioned earlier, several proposals including [14], [22] have
indicated that the TM of DCN ToRs is very sparse. More
specifically, for each ToR in a DCN, it only exchanges data
flows with a few other ToRs rather than most of them. For
instance, in Fig. 2, we can see that each ToR is exchanging
major flows with no more than 10 out of 74 other ToRs; the
remaining ToR pairs either share very minor flows or not
at all. If we could figure out the cause of this sparsity, we
would be able to adjust the prior estimation of a TM to make
tomographic algorithms work.

According to the literature, as well as our experience with
our own data center, the sparse nature of TM in DCNs may
originate from the correlation between traffic and service. In
other words, racks running the same services have higher
chances to exchange traffic flows, and the volumes of the
flows may be inferred by the number of instances of the

shared services. Bodı́k et al. [15] have analyzed a medium
scale DCN and claimed that only 2% of distinct service pairs
communicates with each other. Moreover, several proposals
such as [23], [24] allocate almost all virtual machines of
the same service under one aggregation switch to prevent
traffic from going through oversubscribed network elements.
Consequently, as each service may only be allocated to a few
racks and the racks hosting the same services have a higher
chance to communicate with each other, it naturally leads to
sparse traffic matrices between DCN ToRs. To better illustrate
this phenomenon in our DCN, we collect the socket level logs
in each server to form the ground truth of the TM. We show
the placement of services in 5 racks using the percentage
of servers occupied by individual services in each rack in
Fig. 3(a), and we depict the traffic volumes exchanged between
these 5 racks in Fig. 3(b). Clearly, the racks that host more
common services tend to exchange greater volumes of traffic
(e.g., racks 3 and 5 whose more than 50% of the traffic flows
are generated by the “Hadoop” service), whereas those do not
share any common services rarely communicate (e.g., racks 1
and 3). So our first observation is the following:

Observation 1: The TM between DCN ToRs is very
sparse, but, fortunately, the pattern can be inferred
by the service placements, thanks to the correlation
between traffic and service.

Although using service placements can infer the skewness
in the TM, the existence of multiple paths between every
ToR pair still persists. Interestingly, literature does suggest that
some of these routing paths can be removed to simplify the
DCN topology by making use of link statistics. According to
Benson et al. [16], the link utilizations in DCNs are rather low
in general. They collect the link counts from 10 DCNs ranging
from private DCNs, university DCNs to Cloud DCNs and
reveal that about 60% of aggregation links and more than 40%
of core links have low utilizations (e.g. in the level of 0.01%).
To give more concrete examples, we retrieve the data sets
publicized along with [16], as well as the statistics obtained
from our DCN, then we draw the CDF of core/aggregation
link utilizations in three DCNs for one representative interval
selected from several hundred 5-minutes intervals in Fig. 3(c).
As shown in the figure, more than 30% of the core links in
a private DCN, 60% of core links in an university DCN and
more than 45% of aggregation links in our testbed DCN only
have the utilizations less than 0.01%.

Due to the low utilization of certain links, eliminating
them will not affect much the estimation accuracy but will
greatly reduce the possible routes between two racks. For
instance, in an conventional DCN shown in Fig. 1, eliminating
a core link will reduce 12.5% of the routes between any two
ToRs, while cutting an aggregation link halves the outgoing
paths from any ToR below it. Therefore, we may significantly
reduce the number of potential routes between any two ToRs
by eliminating the lowly utilized links. Although this may
come at a cost of slightly losing actual flow counts, the
overall estimation accuracy should be improved thanks to the

5

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5
0

20

40

60

80

100

Data Center Racks

P
e

rc
e

n
t

o
f

S
e

rv
e

rs
 p

e
r

S
e

rv
ic

e

Database Multimedia Hadoop Web Others

(a) Percentages of servers per service in our
DCN. Only services in 5 racks are shown.

Rack1

Rack2

Rack3

Rack4

Rack5

Rack1 Rack2 Rack3 Rack4 Rack5

 0

0.2

0.4

0.6

0.8

1

(b) The traffic volume from one rack (row) to another
(column) with the service placement in (a).

0.01 0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

Link Utilization

C
D

F

private_core

university_core

testbed_aggregation

(c) Link utilizations of three DCNs, with “private”
and “university” from [16] and “testbed” being our
own DCN.

Fig. 3. Characterizations of DCN traffics. (a) and (b) indicate service-traffic correlations, while (c) demonstrates low utilization of a large fraction of links.

eliminating of the ambiguity in the actual routing path taken
by the major flows. So another of our observations is:

Observation 2: Eliminating the lowly utilized links
can greatly mitigate the under-determinism of our
tomography problems in DCNs; it thus has the
potential to increase the overall accuracy of the TM
estimation.

B. CREATE Architecture

Based on these two observations, we design CREATE as
a novel TM estimation method for DCNs. In a nutshell, we
periodically compute the service correlations between different
ToRs and eliminate lowly utilized links. This allows us to
perform network tomography under a more accurate prior TM
and a more determined system (with fewer routes). To the best
of our knowledge, CREATE is the first practical algorithm for
accurate traffic inference in DCN. As shown in Fig. 4, it takes
three main steps to estimate the TM for DCN ToRs. First

Correlation

Analysis Reduce Links

Correlation Aware

Tomography

Service Placement

Logs
SNMP Link Counts

Traffic Engineering,

Resource Provision

Data Center Networks (DCN)

Fig. 4. The CREATE architecture.

of all, CREATE calculates the correlation coefficient between
different ToRs based on the service placement logs. Secondly,
it eliminates the lowly utilized links to reduce redundant routes
and narrow the space of potential TM suggested by the load
vector Y(t). Finally, it takes the SNMP counters and the
correlation coefficients as input to estimate the TM between
different ToRs. We shall first give more details about these
steps, and then present a working example.

1) Building Blocks of CREATE: The first step stems from
Observation 1: we design a novel way to evaluate the
correlation coefficient between two ToRs, leveraging on the
easily obtained service placement logs. We use Corr ij to

quantity the correlation between the i-th and j-th ToRs, and
we calculate it as follows:

Corr ij =
R∑
k=1

[(Ski×Skj)/(Ki×Kj)] i, j = 1, · · · , N, (2)

where the concerning quantities are derived from the service
placement logs, as defined in Sec. III.

The second step is then motivated by Observation 2. We
collect the SNMP link counts and compute the link utilization
for each link. If the link utilization of a link is below a certain
threshold θ, we consider the flow volumes of the routes that
pass the link as zero, which effectively removes this link from
the DCN topology. As a result, the number of variables in the
equation system (1) can be substantially reduced, resulting
in a more determined tomography problem. On one hand,
this thresholding sets non-zero link counts to zero, possibly
resulting in estimation errors. On the other hand, it removes
redundant routes and mitigates the under-determinism of the
tomography problem, potentially improving the estimation
accuracy. In our experiments, we shall try different values of
the threshold to see the trade-off between these two sides.

In the last step, we take the correlation coefficients and the
reduced DCN topology as input to estimate the TM through
a prior based tomography method. More specifically, we first
compute Xi↔j as the volume of traffic between ToRi and
ToRj based on the correlations by the following procedure.

Xi⇀j = ToRout
i × Corr ij∑N

k=1 Corr ik
i, j = 1, · · · , N,

Xi↔j = Xi⇀j +Xj⇀i i, j = 1, · · · , N.

Due to symmetry, Xi⇀j can also be computed through ToRin
j .

In order to compute the prior TM, we estimate the traffic
volumes on each route by dividing the total number of bytes
between two ToRs equally on every route connecting them.
The reason for this equal share is the widely used ECMP [25]
in DCNs; it by default selects routing paths between two
switches with equal probability on each. The computed prior
TM will give us a good start in solving a quadratic program-
ming problem to determine the final estimation. We describe
the detailed algorithm in Sec. IV-C.

6

As our TM estimation takes the time dimension into ac-
count (to cope with the volatile DCN traffics), one may
wonder whether the correlation coefficients [Corr ij] have to
be computed for each discrete time t. In fact, as it often
takes a substantial amount of time for servers to accommo-
date new services, the service placements will not change
frequently [15]. Therefore, once [Corr ij] are computed, they
can be used for a certain period of time. Recomputing these
coefficients are needed only when a new service is deployed
or an existing service is quit. Even under those circumstances,
we only need to re-compute the coefficients between the ToRs
that are affected by service changes.

2) A Working Example: Fig. 5(a) presents an example to
illustrate how CREATE works. The three colors represent three
services deployed in the data center as follows:
• service1: server2(rack1), server12(rack6),
• service2: server4(rack2), server6(rack3), server13,14(rack7),
• service3: server8(rack4), server10(rack5).

The correlation coefficients between the ToR pairs are shown
in Table II. Fig. 5(b) is the result of reducing lowly utilized

TABLE II
CORRELATION COEFFICIENTS OF THE WORKING EXAMPLE

ToR Pairs 1:2-5 1:6 1:7,8 2:3 2:4-6 2:7 2:8 3:7 4:5
Corr. Coef. 0 0.25 0 0.25 0 0.5 0 0.5 0.25

links through thresholding, hence we can estimate the traffic
volumes on the remaining paths from one ToR to another.
More specifically, ToR2 is related to ToR3 and ToR7 under a
coefficient 0.25 and 0.5, respectively. So if ToR2 totally sends
out 10000 bytes during the 5 minutes interval, the traffic sent
to ToR3 and ToR7 should be 10000∗0.25/(0.25+0.5) = 3334
and 10000 ∗ 0.5/(0.25 + 0.5) = 6667, respectively. After
eliminating the lowly utilized links, there is only one route
from ToR2 to ToR7. So the prior estimation of the traffic
volume on that route is indeed 6667, the estimated traffic
sent from ToR2 to ToR7. A similar situation applies to ToR2

and ToR3. The estimated prior TM is then fed to the final
estimation, as discuss later in Sect. IV-C.

C. The Algorithm Details

We use pseudocode to present our CREATE method in
Algorithm 1. The algorithm takes the routing matrix A,
bandwidth vector B, load vector Y, service placement matrix
S, the ToR SNMP counts, and the link utilization threshold θ
as the main inputs, and it returns the traffic vector X. As the
algorithm runs for every time t, we drop the time indices.

After computing the correlation coefficients in line 1, we
remove the lowly utilized links and the related routes. In
particular, we check every link if its utilization is below θ
(lines 3) and we update Pij (the set of routes between the
i-th and j-th ToRs) by removing the routes that contain low
utilized links (line 6); we also update A, X and Y by removing
the corresponding rows and components. Then we compute
the prior traffic vector X̄ using ToRout

i , ToRout
j and the

correlation coefficients. Lines 9–11 compute the volume of

Internet

S1 S2 S3 S4 S5 S6 S7 S9S8 S11 S12S10 S13 S14 S15 S16

ToR1 ToR2 ToR3 ToR4 ToR5 ToR6 ToR7 ToR8

(a) Before reducing the lowly utilized links.

Internet

S1 S2 S3 S4 S5 S6 S7 S9S8 S11 S12S10 S13 S14 S15 S16

ToR1 ToR2 ToR3 ToR4 ToR5 ToR6 ToR7 ToR8

(b) After reducing the lowly utilized links

Fig. 5. Four different line styles represent four flows and three different
colors represent three services.

Algorithm 1: CREATE Algorithm

Input: A, B, Y, S, {ToRout
i |i = 1, · · · , N}, θ

Output: X
1 [Corr ij]← Correlation(S)
2 for k = 1 to M do
3 if Yk/Bk ≤ θ then
4 forall the r ∈ Pij do
5 if r contains Lk then
6 Pij ← Pij − {r}; Adjust A, X and Y

7 for i = 1 to N do
8 for j = i+ 1 to N do
9 Xi⇀j ← ToRout

i ∗ Corr ij/(
∑

1≤k≤N Corr ik)

10 Xj⇀i ← ToRout
j ∗ Corr ij/(

∑
1≤k≤N Corrkj)

11 Xi↔j ← Xi⇀j +Xj⇀i

12 forall the r ∈ Pij do X̄r ← Xi↔j/|Pij | ;

13 X← QuadProgram(A, X̄,Y)
14 return X

traffic exchanged between the i-th and j-th ToRs, and line 12
assigns the traffic to each routes between the two ToRs equally.
Finally, the algorithm applies a quadratic programming to
refine X̄ to obtain X subject to the constraints posed by Y
and A (line 13).

Here we provide more details on the computation involved
in QuadProgram. Basically, we want to obtain X that is
closest to X̄ but satisfies the tomographic conditions. This

7

problem can be formulated as follows:

Minimize ‖X− X̄‖+ ‖AX−Y‖
s.t. ‖AX−Y‖ ≥ 0

where ‖ · ‖ is L2-norm of a vector. To tackle this problem, we
first compute the deviation Ỹ = Y − AX̄, then we solve the
following constrained least square problem to obtain the X̃ as
the adjustments to X̄ for offsetting the deviation Ỹ.

Minimize ‖AX̃− Ỹ‖ (3)
s.t. µX̃ ≥ −X̄

We use a tunable parameter µ, 0 ≤ µ ≤ 1 to make the tradeoff
between the similarity to the prior solution and the precise fit
to the link loads. The constraint is meant to guarantee a non-
negative final estimation X̂. Finally, X̂ is obtained by making
a tradeoff between the prior and the tomographic constraint as
X̂ = X̄ + µX̃. According to our experience, we take µ = 0.8
to give a slightly more bias towards the prior.

Obviously, The dominant running time of the CREATE
algorithm is spent on QuadProgram(A, X̄,Y), whose main
component (3) is equivalent to a non-negative least squares
(NNLS) problem. The complexity of solving this NNLS is
O(M2 + P 2), but can be reduced to O(P logM) though
parallel computing in a multi-core system [26].

V. EVALUATION

We evaluate our CREATE both in a testbed and by simula-
tions in this section.

A. Experiment Settings
We implement CREATE together with two representative

TM inference algorithms:
· Tomogravity [11] is known as a classical TM estimation

algorithm that performs well in IP networks. In contrast to
CREATE, it assumes traffic flows in the networks follow
the gravity traffic model, that traffic exchanged by two
ends is proportional to the total traffic on the two ends.
· Sparsity Regularized Matrix Factorization (SRMF for

short) [12] is a state-of-art traffic estimation algorithm.
It leverages the spatio-temporal structure of traffic flows,
and utilizes the compressive sensing method to infer TM
by rank minimization.

These algorithms serve as benchmarks to evaluate the perfor-
mance of CREATE under different network settings.

We quantify the performance of the three algorithms using
four metrics: Relative Error (RE), Root Mean Squared Error
(RMSE),Root Mean Squared Relative Error (RMSRE) and
the computing time. RE is defined for individual elements as:

REi = |Xi − X̂i|/Xi, (4)

where Xi denotes the true TM element and X̂i is the corre-
sponding estimated value. RMSE and RMSRE are metrics to
evaluate the overall estimation errors:

RMSE =

√√√√ 1

Nx

Nx∑
i=1

(
Xi − X̂i

)2
, (5)

RMSRE(τ) =

√√√√ 1

Nτ

Nx∑
i=1,Xi>τ

(
Xi − X̂i

Xi

)2

. (6)

Similar to [11], we use a τ to pick up the relative large traffic
flows since small ones may not be important for engineering
DCNs. Nx is the number of elements in the ground truth X
and Nτ is the number of elements Xi > τ .

B. Testbed Evaluation

1) Testbed Setup: We use a testbed with 10 switches and
about 300 servers as shown in Fig. 6 for our experiments.
And the architecture for this testbed DCN is a conventional
tree similar to Fig. 1. The testbed hosts a variety of services
and part of which has been shown in Fig. 3(a). We gather the
service placement logs and SNMP link counts for all switches.
We also record the flows exchanged between servers by setting
linux iptable rules in each server (not a scalable approach) to
form the ground truth of TM between ToRs. The data are all
collected every 5 minutes.

(a) The outside view of our DCN. (b) The inside view of our DCN.

Fig. 6. Hardware testbed with 10 racks and more than 300 servers.

2) Testbed Results: Fig. 7(a) plots the CDF of REs of
the three algorithms. Clearly, CREATE performs significantly
better than another two: it can accurately estimate the volumes
of more than 78% traffic flows. As the TM of our DCN may
not be of low rank, SRMF performs similarly to tomogravity.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

CREATE

SRMF

Tomogravity

(a) The CDF of RE.

0 600 1200 1800 2400 3000 3600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ (Mb)

R
M

S
R

E

CREATE

SRMF

Tomogravity

(b) The RMSRE under different τ

Fig. 7. The CDF of RE and RMSRE of the three algorithms on testbed.

We then study these algorithms with respect to the
RMSREs in Fig. 7(b). It is natural to see the RMSREs of all
three algorithms are non-increasing in τ , because estimation
algorithms are all subject to noise for the light traffic flows, but
they normally performs better for heavy traffic flows. However,
CREATE still achieves the lowest RMSRE for all values of
τ among the three. As our experiments with real DCN traffic
are confined by the scale of our testbed, we will conduct more
experiments with larger DCNs through simulations in ns-3.

8

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

CREATE

SRMF

Tomogravity

(a) The CDF of RE

0 500 1000 1500 2000 2500
0.2

0.4

0.6

0.8

1

1.2

τ (Mb)

R
M

S
R

E

CREATE

SRMF

Tomogravity

(b) The RMSRE under different τ

0 0.06 0.12 0.18 0.24 0.3
0.9

1

1.1

1.2

1.3
x 10

4

θ

R
M

S
E

(c) The RMSE under different θ.

Fig. 8. The CDF of RE (a), the RMSRE (b), and the RMSE (c) of the three algorithms for estimating TM under conventional tree architecture.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

CREATE

SRMF

Tomogravity

(a) The CDF of RE

0 200 400 600 800
0.5

1

1.5

2

τ (Mb)

R
M

S
R

E

CREATE

SRMF

Tomogravity

(b) The RMSRE under different τ

0 0.03 0.06 0.09 0.12 0.15
2

2.1

2.2

2.3

2.4

2.5

2.6
x 10

4

θ

R
M

S
E

(c) The RMSE under different θ.

Fig. 9. The CDF of RE (a), the RMSRE (b), and the RMSE (c) of the three algorithms for estimating TM under fat-tree architecture.

C. Simulation Evaluations

1) Simulation Setup: We adopt both the conventional data
center architecture [21] and fat-tree architecture [1] as our
experimental topologies. For the conventional tree, there are
32 ToR switches with 20 servers in per rack, 16 aggregation
switches, and 3 core switches. And for fat-tree, we use
k = 8 levels with the same number of ToR switches as the
conventional tree, but with 32 aggregation switches, 16 core
switches and 4 servers per rack. The link capacities are all set
to be 1Gbps. We could not conduct simulations on BCube [3]
because it does not arrange servers into racks. It would be an
interesting problem to study how to extend our proposal for
estimating the TM for servers in BCube.

We install both on-off and bulk-send applications in ns-3.
We randomly deploy services in a DCN. The packet size is set
to be 1400 bytes, and the flow sizes are randomly generated
but following the characteristics of real DCNs [6], [10], [16].
For instance, 10% of the flows contributes to about 90% of
the total traffic in DCN [2], [4]. We use TCP flows in our
simulations [27], and apply the widely used ECMP [25] as
the routing protocol.

We record the total number of bytes and packets that enter
and leave every port of each switch in the network every 5
minutes. We also record the total bytes and packets of flows
on each route in the corresponding time periods as the ground
truth. For every setting we run simulations for 10 times.

To evaluate the computing time, we measure the time period
starting from when we input the topologies and link counts
to the algorithm until the time when all TM elements are
returned. All three algorithms are implemented by Matlab

(R2012b) on 6-core Intel Xeon CPU @3.20GHz, with 16GB
of memory and the Windows 7 64-bit OS.

2) Simulation Results: Fig. 8(a) compares the CDF of REs
of the three algorithms under conventional tree architecture
and we set θ = 0.001. The advantage of CREATE over the
other two algorithms stems from the fact that CREATE can
clearly find out the ToR pairs that do not communicate with
each other. Tomogravity has the worst performance because
it gives each ToR pair a communication traffic whenever
one of them has “out” traffic and the other has “in” traffic,
thus introducing non-existing positive TM entries. SRMF
obtains the TM by rank minimization, so it performs better
than tomogravity when our random traffic does lead to low
rank TM. The worse performance of SRMF (compared with
CREATE) may be its over-fitting of the sparsity in eigenvalues,
according to [10].

We study the RMSREs of the three algorithms under
different τ in Fig. 8(b). Again, CREATE exhibits the lowest
RMSRE and a (expectable) reducing trend with the increasing
of the τ , while the other two remain almost constant in τ . In
Fig. 8(c), we then study how the RMSE changes with the
threshold θ of link utilizations, which is an important parame-
ter to fine-tune the performance of CREATE. As we can see in
this figure, when we gradually increase the threshold, RMSE
does slightly decrease until the sweet point θ = 0.12. While
the improvement on accuracy may be minor, the computing
time can be substantially reduced as we will show later.

Fig. 9 evaluates the same quantities as Fig. 8 but under
fat-tree architecture, which has even more redundant routes.
We set θ = 0.001. Since TM in fat-tree DCNs is far more

9

TABLE III
THE COMPUTING TIME (SECONDS) OF THE THREE ALGORITHMS UNDER

DIFFERENT SCALES OF DCNS

Switches Links Routes
Computing Time

CREATE Tomo- SRMF
θ =0.001 θ =0.01 gravity

51 256 7360 0.54 0.51 2.54 1168.22
102 320 46272 8.12 7.81 73.59 -
204 1024 381312 813.23 614.67 1654.46 -

sparse, the errors are evaluated only against the non-zero
elements in TM. In general, CREATE retains its superiority
over others in both RE and RMSRE. The effect of θ becomes
more interesting in Fig. 9(c) (compared with Fig. 8(c)); it
clearly shows a “valley” in the curve and a sweet point around
θ = 0.03. This is indeed the trade-off effect of θ mentioned
in Sec. IV-B1: it trades the estimation accuracy of light flows
for that of heavy flows.

Tab. III lists the computing time of the three algorithms
under conventional tree architecture. Obviously, CREATE per-
forms much faster than both tomogravity and SRMF. While
both CREATE and tomogravity have their computing time
grow quadratically with the scale of the DCNs, SRMF often
cannot deliver a result within a reasonable time scale. In fact,
if we slightly increase θ, we may further reduce the computing
time, as shown in Tab. III. In summary, our algorithm both has
a higher accuracy and faster running speed compared to the
two state-of-art algorithms.

VI. CONCLUSION

To meet the increasing demands for detailed traffic charac-
teristics in DCNs, we make the first step towards estimating
the traffic matrix (TM) between all ToR switches in a DCN,
relying on only the easily accessible SNMP counters and the
service placement logs. We pioneer in applying tomographic
methods to DCNs by overcoming the barriers of solving the
ill-posed linear system in DCN for TM estimation. We first
obtain two major observations on the rich statistics of DCNs
traffic. The first observation reveals that the TMs between
ToRs of DCNs are extremely sparse, and the traffic patterns
can be roughly inferred from service placement logs. The other
observation argues that eliminating a part of links with low
utilization can greatly increase both overall accuracy and the
efficiency of TM estimation. Based on these two observations,
we develop a new TM estimation method CREATE which is
applicable to most prevailing DCN architectures without any
additional infrastructure support. We validate CREATE with
both hardware testbed and simulations, and the results show
that CREATE outperforms the two well-known TM estimation
methods on both accuracy and efficiency.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proc. of ACM SIGCOMM, 2008,
pp. 63–74.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proc. of ACM SIGCOMM, 2009, pp. 51–62.

[3] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers,” in Proc. of ACM SIGCOMM,
2009, pp. 63–74.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in Proc.
of USENIX NSDI, 2010.

[5] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM
Placement and Routing for Data Center Traffic Engineering,” in Proc.
of IEEE INFOCOM, 2012, pp. 2876–2880.

[6] P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures
in Data Centers: Measurement, Analysis, and Implications,” in Proc. of
ACM SIGCOMM, 2011, pp. 350–361.

[7] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead Dat-
acenter Traffic Management Using End-host-based Elephant Detection,”
in Proc. of IEEE INFOCOM, 2011, pp. 1629–1637.

[8] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis,” in Proc. of ACM SoCC, 2012, pp. 7:1–7:13.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
2008.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
Nature of Data Center Traffic: Measurements & Analysis,” in Proc. of
ACM IMC, 2009, pp. 202–208.

[11] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast Accurate
Computation of Large-scale IP Traffic Matrices from Link Loads,” in
Proc. of ACM SIGMETRICS, 2003, pp. 206–217.

[12] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
Compressive Sensing and Internet Traffic Matrices,” in Proc. of ACM
SIGCOMM, 2009, pp. 267–278.

[13] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci,
M. Crovella, and C. Diot, “Traffic Matrices: Balancing Measurements,
Inference and Modeling,” in Proc. of ACM SIGMETRICS, 2005, pp.
362–373.

[14] K. Srikanth, P. Jitendra, and B. Paramvir, “Flyways To De-Congest Data
Center Networks,” in Proc. of ACM HotNets, 2009.

[15] P. Bodı́k, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica, “Surviving Failures in Bandwidth-Constrained Datacenters,”
in Proc. of ACM SIGCOMM, 2012, pp. 431–442.

[16] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” in Proc. of ACM IMC, 2010, pp. 267–280.

[17] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX
to the Datacenter,” in Proc. of HotNets, 2009.

[18] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained
Traffic Engineering for Data Centers,” in Proc. of ACM CoNEXT, 2011,
pp. 8:1–8:12.

[19] Y. Qiao, Z. Hu, and J. Luo, “Efficient Traffic Matrix Estimation for Data
Center Networks,” in Proc. of IFIP Networing, 2013, pp. 1–9.

[20] Z. Hu, Y. Qiao, and J. Luo, “Coarse-Grained Traffic Matrix Estimation
for Data Center Networks,” Computer Communications, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.comcom.2014.02.016

[21] C. D. C. Infrastructure, “2.5 Design Guide,” 2007. [Online]. Available:
http://goo.gl/kBpzgh

[22] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall, “Aug-
menting Data Center Networks with Multi-Gigabit Wireless Links,” in
Proc. of ACM SIGCOMM, 2011, pp. 38–49.

[23] H. Ballani, P. Costa, T. Karagiannis, and A. I. Rowstron, “Towards
Predictable Datacenter Networks.” in Proc. of ACM SIGCOMM, 2011,
pp. 242–253.

[24] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang, “Secondnet: A Data Center Network Virtualization
Architecture with Bandwidth Guarantees,” in Proc. of ACM Co-NEXT.
ACM, 2010, pp. 15:1–15:12.

[25] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” United
States, 2000.

[26] Y. Luo and R. Duraiswami, “Efficient Paraller Non-Negative Least
Square on Multi-core Architectures,” SIAM Journal on Scientific Com-
puting, vol. 33, no. 5, pp. 2848–2863, 2011.

[27] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center Tcp (DCTCP),” in
Proc. of ACM SIGCOMM, 2010, pp. 63–74.

http://dx.doi.org/10.1016/j.comcom.2014.02.016
http://goo.gl/kBpzgh

	Introduction
	Related Work
	Definitions and Problem Formulation
	Design of CREATE
	Traffic Characteristics of DCNs
	CREATE Architecture
	Building Blocks of CREATE
	A Working Example

	The Algorithm Details

	Evaluation
	Experiment Settings
	Testbed Evaluation
	Testbed Setup
	Testbed Results

	Simulation Evaluations
	Simulation Setup
	Simulation Results

	Conclusion
	References

