
Revenue-Driven Virtual Network Embedding Based

on Global Resource Information

Long Gong∗†, Yonggang Wen∗, Zuqing Zhu† and Tony Lee‡

∗School of Computer Engineering, Nanyang Technological University, Singapore 639798

Email: {n11036831e, ygwen}@ntu.edu.sg
†School of Information Science and Technology, University of Science and Technology of China, Hefei, China

Email: {zqzhu}@ieee.org
‡Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai, China

Email: {ttlee}@sjtu.edu.cn

Abstract—Virtual network embedding (VNE), working as a
key step for network virtualization, has recently gained intensive
attentions from the research community. In this paper, we
propose a novel VNE algorithm that aims to maximize the
infrastructure provider’s revenue from serving virtual network
(VN) requests, with the help of the global resource information.
The proposed algorithm, named as revenue-driven VNE (RD-

VNE), adopts a node-ranking approach that takes the global
resource information into account in a recursive manner to
assist the greedy node mapping, and leverages the shortest-
path routing for link mapping. Our simulation results suggest
that the proposed VNE algorithm outperforms two existing
VNE algorithms that also take global resource information into
consideration, in terms of request blocking probability, and
brings higher time-average revenue to the infrastructure provider
(InP).

Index Terms—Network Virtualization, Virtual Network Em-
bedding (VNE), PageRank, Node Ranking, Global Resource
Information, RD-VNE

I. INTRODUCTION

Recently, Internet has been growing exponentially with

larger number of nodes and end-users, higher volume of traffic,

and more varieties of applications. However, owing to the

competing tussle among different stakeholders, Internet was

brought into “ossification”, which impeded the developments

of new networking solutions and architectures greatly [1–3].

To this end, people rely on the network virtualization [4–6] to

change how Internet is operated and to make it more elastic.

Network virtualization helps to provision multiple virtual

networks (VNs) over a substrate (or physical) network and

enables seamlessly sharing of the computing and networking

resources in the substrate network [4].

Typically, a VN consists of a set of virtual nodes (e.g.,

virtual routers) and a few virtual links that connect them.

Network virtualization enables a new business model that the

infrastructure providers (InPs) provision VN requests from

the service providers (SPs), and lease infrastructures to them

dynamically for serving the end-users. The best interest of the

InPs is to achieve as much revenue as possible from serving

the VN requests. Hence, they need to decide how to serve a

VN request by allocating appropriate resources in the substrate

network, i.e., virtual network embedding (VNE). Specifically,

for each VN request, the InP needs to find a set of nodes and

links in the substrate network, which have sufficient resources

to carry the virtual nodes and virtual links. The VNE problem

has been proven to be NP-hard [7], and previous researches

have proposed several heuristic algorithms to address it [8–

13]. Most of these algorithms performed node mapping based

on the local resource information (i.e., the nodes’ resources

or the nodes’ resources together with their incident links’

resources). However, this type of approaches could easily

result in unbalanced load distribution and congestions in the

substrate network. Two recent works in [12, 13] took global

resource information into consideration in the node mapping,

while the algorithms only adopted over-simplified metrics to

measure the embedding capacities of the nodes and did not

fully explore the benefit of the global resource information.

In this paper, we propose a novel revenue-driven VNE (RD-

VNE) algorithm to help InPs maximize their revenue with the

assistance of the global resource information. When serving

the VN requests, the proposed RD-VNE algorithm adopts a

node rank, similar to the PageRank in web-search algorithms

[14], to rank nodes according to their global resources. We

then implement greedy node mapping based on the node ranks,

and when node mapping is accomplished, link mapping is

performed with the shortest-path routing algorithm. Simulation

results show that the proposed RD-VNE algorithm outperforms

two existing VNE algorithms that also use the global resource

information, in terms of request blocking probability and time-

average revenue.

The rest of this paper is organized as follows. We formulate

the VNE problem in Section II. The details of the proposed

RD-VNE algorithm are discussed in Section III. Section IV

shows simulation setup and results for the performance eval-

uation. Finally, Section V summarizes the paper.

II. VNE PROBLEM FORMULATION

A. VNE Models

1) Substrate network: We model the substrate network as

an undirected graph, denoted as Gs(V s, Es), where V s is the

set of substrate nodes and Es is the set of substrate links. We

denote the available computing resource (e.g., CPU cycles) of

node vs ∈ V s, and available bandwidth of link es ∈ Es, as

cvs and bes , respectively. PGs is the set of acyclic paths in

Globecom 2013 - Next Generation Networking Symposium

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 2294



(a) The substrate network. (b) A VN request. (c) The substrate network

after VNE.

Fig. 1. An example of VNE process

Gs(V s, Es). An example of a substrate network is illustrated

in Fig. 1(a), where the numbers around the nodes and links

are their available resources.
2) Virtual network: We use notation ̟ to denote a virtual

network (VN) request, whose topology can also be modeled

as an undirected graph, Gr(V r, Er), where V r is the set of

virtual nodes and Er is the set of virtual links. Each virtual

node vr ∈ V r is associated with a computing resource demand

of cvr and each virtual link er ∈ Es has a bandwidth demand

of ber . Fig. 1(b) illustrates a VN request. Each VN request,

̟, is also associated with two time-domain parameters, i.e.,

t̟ for the arrival time and τ̟ for its lifetime.

The notations are summarized in Table I.

TABLE I
NOTATIONS

Notations Description

Gs Substrate network
V s Set of substrate nodes
Es Set of substrate links
cvs Available computing resource
bes Available bandwidth
PGs Set of acyclic paths

̟ VN request
Gr Virtual network
V r Set of virtual nodes
Er Set of virtual links
cvr Computing resource demand
ber Bandwidth demand
t̟ Arrival time of ̟
τ̟ Lifetime of ̟

B. VNE Process

The VNE process, as illustrated in Fig. 1, consists of two

key steps, i.e., node mapping and link mapping.
1) Node Mapping: The InP finds, for each node from the

VN request, a unique substrate node that has enough available

computing resource to meet its computing resource demand,

through a mapping, i.e., FN : V r 7→ V s, such that,

FN (vr) = vsr , vr ∈ V r, vsr ∈ V s, (1)

under the following two constraints:

• FN (vr,1) = FN (vr,2) for any vr,1, vr,2 ∈ V r if and only

if vr,1 = vr,2;

• cvr ≤ cvs
r
.

For example, as shown in Fig. 1(c), the node mapping for

the VN request is {1→ D, 2→ C, 3→ A, 4→ G, 5→ E}1.

1Note that virtual nodes from different VN requests can be mapped onto the
same substrate node as long as the available computing resource is sufficient.

2) Link Mapping: For two adjacent nodes in the VN

request, the InP finds one or more paths between the two

mapped substrate nodes, and the total bandwidth of the path(s)

should be larger than the corresponding virtual link demand.

Specifically, the mapping is FL : Er 7→ PGs , such that,

FL(e
r) ⊂ PGs

, er ∈ Er, (2)

under the following capacity constraints, i.e.,

ber ≤ BFL(er), (3)

where, BFL(er) is the total available bandwidth of path set

FL(e
r)2.

For example, as shown in Fig. 1(c), the link mapping for the

VN request is {(1, 2)→ (D,C), (2, 3)→ (C,B,A), (3, 4)→
(A,G), (4, 5)→ (G,F,E), (5, 1)→ (E,D)}.

C. VNE Revenue Model

In this paper, we adopt a “pay-per-user” revenue model,

based on the “on-demand” cloud service price scheme by

Amazon Web Services (AWS) [16]. Specifically, for a VN

request, ̟, the revenue generated for the InP is given by

R(̟) =

{

R0(̟) · τ̟, if ̟ is accepted

0, otherwise
(4)

where R0(̟) is the revenue per time-unit from ̟. R0(̟) is

defined as the summation of contributions from the computing

resource demand and the bandwidth demand of ̟, i.e.,

R0(̟) = α ·
∑

vr∈V r

cvr + β ·
∑

er∈Er

ber , (5)

where α and β are the unit price charged for computing

resources and bandwidth resources, respectively. In practice,

the InP aims to maximize its revenue, under the resource

limitation of its substrate network, by adopting different VNE

policies.

III. RD-VNE ALGORITHM

In this section, we propose a novel VNE algorithm. The

algorithm implements a PageRank-like node-ranking approach

based on the global resource information, and then performs

node mapping according to the ranks of the nodes. After

node mapping, the shortest-path based link mapping follows.

We refer this algorithm as revenue-driven VNE (RD-VNE)

algorithm, for it aims to maximize the InP’s revenue by

accepting as many as possible VN requests under the resource

limitation of its substrate network.

A. Node Ranking

For the node ranking, we adopt a novel ranking approach,

similar to the PageRank algorithm [14], to estimate the em-

bedding capability of each substrate node for carrying the VN

request. The rank of each node considers the global resource

information in a recursive manner. Specifically, for a network

2Note that, BFL(er) can be calculated by Ford-Fulkerson algorithm [15].

Globecom 2013 - Next Generation Networking Symposium

2295



topology G(V,E) (G can be either a substrate network or a

VN topology), the node rank is calculated as follows,

Υu = (1− d) · c′u + d
∑

v∈N(u)

b(u,v) ·Υv
∑

w∈N(v) b(w,v)
(6)

where Υu is the node rank of node u ∈ V , d is a damping

factor within (0, 1), N(v) indicates the set of nodes that

connect to node v ∈ V directly, namely, N(v) = {u :
(u, v) ∈ E}, and b(u,v) represents the available bandwidth

(or bandwidth demand) on the link (u, v) ∈ E. Moreover, c′u
is the normalized available computing resource (or computing

resource demand) on node u ∈ V , defined as:

c′u =
cu

∑

v∈V cv
, ∀u ∈ V.

Specifically, the node rank increases with the node’s available

computing resource and the embedding capacities of its direct-

neighbors, since higher ranked substrate nodes can achieve

larger successful probability in the link-mapping step.

Writing in the matrix form, we can represent the node ranks

of all the nodes in a vector as follows,

Υ = (1− d)c+ dMΥ, (7)

where Υ = (Υ1,Υ2, ...,Υ|V |)
T , c = (c′1, c

′
2, ..., c

′
|V |)

T , and

M is a transition matrix of dimension |V |×|V |. Each element

in M, following from Eqn. (6), is defined as,

m(u,v) =

{

b(u,v)∑
x∈N(v) b(x,v)

(u, v) ∈ E

0 otherwise
(8)

We first prove the uniqueness of the node-rank vector.

Proposition 3.1: Matrix I− dM is reversible. It concludes

that a unique vector Υ can be obtained from Eqn. (7).

Proof: With Eqn. (8), we have

|V |
∑

u=1

m(u,v) =
∑

u∈N(v)

b(u,v)
∑

x∈N(v) b(x,v)
= 1.

According to the Gershgorin Circle Theorem [17], we can

conclude that ‖M‖ ≤ 1.

Suppose that the matrix I− dM is singular, then the linear

system of equations (I−dM)x = 0 has non-zero solutions. Let

x0 be a non-zero solution of this linear system of equations,

then dM ·x0 = x0. Thus, ‖x0‖ = ‖dM ·x0‖ ≤ d‖M‖ · ‖x0‖.
As a result ‖M‖ ≥ 1

d
> 1. Obviously, it is contradicted with

||M|| ≤ 1. Therefore, we can conclude that matrix I− dM is

reversible.

Obviously, the unique solution of Eqn. (7) is given by

Υ = (1− d)(I − dM)−1
c. (9)

The complexity of calculating the node-rank vector with Eqn.

(9) directly is O(|V |3). When the size of the network topology

gets large, the calculation could be time consuming. We

develop a simple iterative calculation strategy as follows,

Υk+1 = (1− d)c+ dMΥk, (10)

where Υk is the node-rank vector after k iterations. Algorithm

1 shows the details of the node ranking. The complexity of

the algorithm is O(|V |2log(1
δ
)) [18]. It is easy to prove that

this algorithm could always converge to the solution of Eqn.

(7), as the procedures are equivalent to the Jacobi algorithm

[17] for solving the linear system of equations .

Algorithm 1: Node Ranking based on Global Resource

Information

input : Network topology G(V,E), a small enough

positive real number δ

output: Node-rank vector Υ

1 calculate matrix M and vector c respectively;

2 Υ0 = c;

3 k = 0;

4 ∆ =∞;

5 while ∆ ≥ δ do

6 Υk+1 = (1− d)c+ dM ·Υk;

7 ∆ = ‖Υk+1 −Υk‖;
8 k = k + 1;

9 end

10 Υ = Υk;

B. Node Mapping

In the proposed RD-VNE algorithm, the node mapping

works as follows in a greedy way. It first backups the status

of the substrate network, and then sorts the nodes of both the

substrate network and the VN request in the descending order

according to the node-rank vectors calculating by Algorithm

1. As the value of the node rank indicates the embedding

capacity of the corresponding node, from the perspective of

load balancing, we embeds the virtual nodes onto the substrate

nodes by processing the two sorted node lists with a strategy

similar to the merge-sort algorithm [19]. Thus, the virtual

node with the highest node rank among the remaining ones

will always embed onto the substrate node that also has

the highest node rank among the remaining substrate ones,

whose available computing resource meets the demand. If

the computing resource demand cannot be satisfied by any

of the remaining substrate nodes, the VN request is marked as

blocked, and if all virtual nodes are embedded successfully,

the computing resources of the corresponding substrate nodes

would be updated. The details of the greedy node mapping

algorithm are shown in Algorithm 2. The complexity of this

algorithm is O(|V s||V r|).

C. Shortest-Path based Link Mapping

For link mapping, we apply the shortest-path routing algo-

rithm, which aims to minimize the total substrate bandwidth

allocated to each virtual link. Specifically, we embed the

virtual links of the VN request one by one, and for each

virtual link, we adopt the Dijkstra’s algorithm to find the

shortest path between the two corresponding nodes in the

substrate network. What’s more, to improve the efficiency of

Globecom 2013 - Next Generation Networking Symposium

2296



Algorithm 2: Greedy Node Mapping

input : VN request ̟, Gr(V r, Er), substrate

network Gs(V s, Es), the node-rank vector

Υ
s for substrate network, and the node-rank

vector Υr for ̟

output: Node mapping FN , and backup substrate

network status Gs
0

1 backup Gs into Gs
0;

2 FN ← 0;

3 Count = 0;

4 get Υs
sort by sorting Υ

s in descending order;

5 get Υr
sort by sorting Υ

r in descending order;

6 for each virtual node vr in the order of Υr
sort do

7 for each remaining substrate node vs in the order

of Υs
sort do

8 if cvs ≥ cvr then

9 FN (vr) = vs;

10 Count = Count+ 1;

11 break;

12 end

13 end

14 if FN (vr) = 0 then

15 break;

16 end

17 end

18 if Count = |V r| then

19 update computing resources of V s in Gs;

20 continue with link mapping;

21 else

22 mark ̟ as blocked;

23 wait for the next VN request;

24 end

the algorithm, we propose a pruning optimizer, which pre-

cuts all the substrate links in the substrate network that do not

have enough bandwidth for the corresponding virtual link. If

the link mapping fails, i.e., not all virtual links are embedded

successfully, we restore the status of the substrate network

and mark the VN request as blocked. Algorithm 3 describes

the details of the shortest-path based link mapping algorithm.

The complexity of this algorithm is O(|Er ||Es|log|V s|).

D. Time Complexity

The time complexity of the proposed RD-VNE algorithm

can be calculated by adding up the complexities of its three

steps, i.e., node ranking, node mapping and link mapping.

Hence, we determine that its time complexity is O((|V s|2 +
|V r|2) · log(1

δ
) + |V s||V r|+ |Er||Es|log|V s|).

IV. PERFORMANCE EVALUATION

A. Simulation Setup

To evaluate the proposed RD-VNE algorithm, we per-

form extensive simulations with a substrate topology that is

randomly generated by the GT-ITM tool [20]. The initial

Algorithm 3: Shortest-Path based Link Mapping

input : VN request ̟, Gr(V r, Er), substrate

network Gs(V s, Es), node mapping FN , and

backup substrate network status Gs
0

output: Link mapping FL

1 FL ← 0;

2 flag ← FALSE;

3 for each virtual link er = (vr,1, vr,2) in ̟ do

4 Gs
temp ← Gs ;

5 for each substrate link es in Gs
temp do

6 if bes < ber then

7 cut es in Gs
temp;

8 end

9 end

10 try to find a shortest path pser from FN (vr,1) to

FN (vr,2) in Gs
temp;

11 if cannot find a path then

12 mark ̟ as blocked;

13 flag ← TRUE;

14 break;

15 else

16 update bandwidth of Es in Gs;

17 FL(e
r)← pser ;

18 end

19 end

20 if flag then

21 restore Gs to Gs
0;

22 end

23 wait for the next VN request;

available computing resource and bandwidth of the substrate

network are randomly selected by uniform distribution within

the ranges shown in Table II. The topologies of the VN

requests are also randomly-generated by the GT-ITM tool.

For each VN request, the computing resource demand and

the bandwidth demand are uniformly distributed within the

ranges shown in Table II. The number of virtual nodes in each

VN request is selected from 2 to 20 following the discrete

uniform distribution, and each node-pair is connected with

certain probability (i.e., link connectivity rate). The arrival of

the VN requests follows the Poisson traffic model. Assume

that the average arrival rate is λ VN requests per time-unit,

and the average lifetime of the VN requests is 1
µ

time-units,

then we could use λ · 1
µ

(Erlangs) to quantify the traffic load

of the VN requests. Table II shows the simulation parameters.

B. Performance metrics

Similar to previous works [11, 12], we consider two per-

formance metrics, including the blocking probability and the

time-average revenue, whose definitions are as follows,

• Blocking probability:

pb = lim
T→∞

Nb(T )

N (T )
, (11)

Globecom 2013 - Next Generation Networking Symposium

2297



5 10 15 20 25 30 35 40 45 50
18

19

20

21

22

23

24

25

26

27

28

29

30

Time (1000 units)

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty
 (

%
)

 

 

RD−VNE

RW−MM−SP

TA

Fig. 2. Blocking probabilities in a long run (25 Erlangs).

5 10 15 20 25 30 35 40 45 50
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Time (1000 units)

T
im

e
−

A
v
e
ra

g
e
 R

e
v
e
n
u
e
 (×

 1
0

4
)

 

 

RD−VNE

RW−MM−SP

TA

Fig. 3. Time-average revenues in a long run (25 Erlangs).

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

Traffic Load (Erlangs)

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

 

 

RD−VNE

RW−MM−SP

TA

Fig. 4. Blocking probabilities for different traffic loads.

10 12.5 15 17.5 20 22.5 25 27.5 30
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Traffic Load (Erlangs)

T
im

e
−

A
v
e
ra

g
e
 R

e
v
e
n
u
e
 (×

 1
0

4
)

 

 

RD−VNE

RW−MM−SP

TA

Fig. 5. Time-average revenues for different traffic loads.

0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

Link Connectivity Rate 

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty
 (

%
)

 

 

RD−VNE

RW−MM−SP

TA

Fig. 6. Blocking probabilities for different link connectivity rates.

0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Link Connectivity Rate

T
im

e
−

A
v
e
ra

g
e
 R

e
v
e
n
u
e
 (×

 1
0

4
)

 

 

RD−VNE

RW−MM−SP

TA

Fig. 7. Time-average revenues for different link connectivity rates.

where, Nb(T ) and N (T ) are the numbers of blocked

(or rejected) VN requests and total VN requests in time

period T , respectively.

• Time-average revenue:

RGs = lim
T→∞

∑

̟∈ΦT
R(̟)

T
, (12)

where ΦT = {̟ : 0 ≤ t̟ ≤ T } denotes the set of VN

requests arriving before time instance T .

C. Performance Comparisons

In this subsection, we compare the performance of our

proposed RD-VNE algorithm with two existing global resource

information based VNE algorithms, i.e., the RW-MM-SP al-

gorithm [12] and the TA algorithm [13]. For all simulations,

we set: α = β = 1, δ = 0.00001, and d = 0.85. All the

parameters of RW-MM-SP and TA are from [12] and [13],

respectively. Figs. 2-5 are from the simulations using VN

requests whose link connectivity rate is 0.5, while Figs. 6-

7 are from those that have VN requests with different link

connectivity rates.

1) Blocking probability comparisons: Figs. 2, 4 and 6 show

that RD-VNE provides the lowest blocking probabilities. We

believe that the lower blocking probability of the RD-VNE

results from the more efficient node-ranking approach, which

Globecom 2013 - Next Generation Networking Symposium

2298



TABLE II
SIMULATION PARAMETERS

Substrate
network

Number of nodes 100
Number of links 570
Minimum node degree 4
Maximum node degree 20
Initial available computing resource 50-100 units
Initial available bandwidth 50-100 units

VN
requests

Number of nodes 2-20
Link connectivity rate 0.3-0.8
Average lifetime 500 time-units
Computing resource demand 0-50 units
Bandwidth demand 0-50 units

could fully explore the benefit of the global resource informa-

tion. Thus, the RD-VNE algorithm makes better utilization of

the substrate resources and leaves more resources for future

VN requests, which in turn brings down the request blocking

probability.

2) Time-average revenue comparisons: Figs. 3, 5 and 7

show the proposed RD-VNE algorithm provides the highest

time-average revenue among the three VNE algorithms. These

results verify that the RD-VNE not only accepts more VN

requests, but also brings more revenue to the InP. Therefore,

the lower blocking probabilities of the RD-VNE in Figs. 2, 4

and 6 were not achieved by accepting the “small-revenue” VN

requests, while rejecting the “big-revenue” ones.

From Fig. 5, we can also observe that the time-average

revenue of all the three algorithms increase with the traffic

load in a concave manner. This observation can be understood

as follows. When the traffic load increases, more VN requests

will exist in the substrate network to share the resources of the

substrate network. As the resources in the substrate network

is not infinite, the substrate network could get saturated. And

when the substrate network is getting saturated, it tends to use

more resources on average to accept the VN requests, e.g.,

the shortest path between two substrate nodes is congested

and we have to switch to a longer path for the link mapping.

Consequently, the increase of the time-average revenue would

become slower as the traffic load increases further. This

rationale could be verified by the results in Fig. 4, where

the blocking probabilities of the three algorithms finally get

merged, when the traffic load gets higher.

In Fig. 7, we find that the time-average revenue first

increases and then decreases as the link connectivity rate

increases. This interesting phenomenon can be explained as

follows. As the link connectivity rate increases, the average

revenue per VN request also increases, while it also becomes

harder to embed each VN request successfully, and this makes

the blocking probability increase monotonically. Therefore,

at certain point, the penalty due to the blocking probability

increase would conquer the revenue gain brought in by each

successfully served VN request.

V. CONCLUSION

In this paper, we proposed a novel RD-VNE algorithm based

on the global resource information. The proposed algorithm

introduced a node-ranking approach, based on the PageRank

Algorithm, to rank all nodes based on their capacities for

serving VN requests, with the help of the global resource

information. The new ranking approach was then used to assist

the greedy node mapping, and the link mapping is based on

the shortest-path routing. The simulation results showed that

the proposed RD-VNE algorithm outperformed two existing

VNE algorithms that were also based on the global resource

information, in terms of request blocking probability and time-

average revenue.

ACKNOWLEDGMENT

This work was supported in part by the New Century

Excellent Talents (NCET) in University Program under Project

NCET-11-0884.

REFERENCES

[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization,” IEEE Comput., vol. 38, pp. 34–
41, Apr. 2005.

[2] J. Turner and D. Taylor, “Diversifying the Internet,” in Proc. of GLOBE-

COM 2005, pp. 754–760, Dec. 2005.
[3] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in your

spare time,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 61–64,
Jan. 2007.

[4] A. Nakao, “Network virtualization as foundation for enabling new
network architectures and applications,” IEICE Trans. Commun., vol.
E93-B, pp. 454–457, Mar. 2010.

[5] N. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Comput. Netw., vol. 54, no. 5, pp. 862–876, Apr. 2010.

[6] A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer, “Network virtual-
ization: a hypervisor for the internet?” IEEE Commun. Mag., vol. 50,
no. 1, pp. 136–143, 2012.

[7] D. G. Andersen, “Theoretical approaches to node assignment,” Dec.
2002, unpublished Manuscript.

[8] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proc. of INFOCOM 2006,
pp. 1 –12, Apr. 2006.

[9] J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared
substrate,” Washington University in St. Louis, Tech. Rep., 2006.

[10] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIG-

COMM Comput. Commun. Rev., vol. 38, pp. 19–29, Apr. 2008.
[11] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network embed-

ding with coordinated node and link mapping,” in Proc. of INFOCOM

2009, pp. 783 –791, Apr. 2009.
[12] X. Cheng et al., “Virtual network embedding through topology-aware

node ranking,” SIGCOMM Comput. Commun. Rev., vol. 41, pp. 39–47,
Apr. 2011.

[13] S. Zhang, Z. Qian, J. Wu, and S. Lu, “An opportunistic resource sharing
and topology-aware mapping framework for virtual networks,” in Proc.

of INFOCOM 2012, pp. 2408 –2416, Mar. 2012.
[14] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web

search engine,” in Proc. of WWW 1998, pp. 107–117, 1998.
[15] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows: theory,

algorithms, and applications. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1993.

[16] [Online]. Available: http://aws.amazon.com/ec2/#pricing
[17] G. H. Golub and C. F. van Van Loan, Matrix Computations (Johns

Hopkins Studies in Mathematical Sciences)(3rd Edition), 3rd ed. Johns
Hopkins University Press, Oct. 1996.

[18] M. Bianchini, M. Gori, and F. Scarselli, “Inside PageRank,” ACM Trans.

Internet Technol., vol. 5, no. 1, pp. 92–128, 2005.
[19] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction

to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.
[20] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-

network,” in Proc. of INFOCOM 1996, pp. 594–602, Mar. 1996.

Globecom 2013 - Next Generation Networking Symposium

2299


