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Abstract

In this paper, we derive strategies for the energy-optimal execution deci-
sion on a cloud-assisted mobile application platform. Specifically, in the
platform, mobile applications can either be executed in the mobile device
(i.e., mobile execution) or offloaded to the cloud clone for execution (i.e.,
cloud execution), with an objective to conserve energy for the mobile de-
vice. The design trade-off is between the computation energy for the mobile
execution and the transmission energy for the cloud execution. The optimal
execution policy can be identified by solving two energy-aware scheduling
problems. The first one is to minimize the computation energy to complete
all CPU cycles required by the application, by optimally configuring the
clock frequency in the mobile device. The second one is to minimize the
transmission energy of transferring all the data within a time deadline, by
optimally scheduling the data rate over a stochastic wireless channel. We
formulate both problems as constrained optimization problems, and obtain
closed-form solutions for the optimal scheduling policy and the minimum en-
ergy consumed in both cases. Further theoretical analysis for both execution
modes indicates that the optimal policy depends on not only the application
profile (i.e., the data volume and the delay deadline), but also the wireless
transmission model (i.e., the monomial order for the energy consumption
model). For the mobile execution, the optimal energy scales cubically with
the data transmission size, while for the cloud execution the monomial order
of the transmission model has significant influence on the energy consump-
tion. These analytical results enable us to determine the optimal condition
under which the mobile execution or the cloud execution is more energy-
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efficient for the mobile device. Moreover, numerical results suggest that a
significant amount of energy can be saved by optimally offloading the mobile
application to the cloud clone for execution.

Keywords:
Energy-Optimal Execution, Mobile Application, Cloud Computing,
Lagrangian Multiplier Method

1. Introduction

The tension between resource-hungry applications and resource-poor mo-
bile devices is considered as one of the driving forces for the evolution of
mobile platforms. Due to the limited physical size, mobile devices are inher-
ently resource-constrained [1], equipped with a limited supply of resources
in computation, energy, bandwidth and storage. In particular, the energy
supply from the limited battery capacity [2] has been one of the most chal-
lenging design issues for mobile devices. Indeed, the limited battery life has
been found by market research as the biggest complaint for smart phones
[3]. Therefore, design decisions for mobile applications have to take consid-
eration of the resource limitations in the mobile devices.

Emerging cloud-computing technology[4], owing to the nature of elastic
resource pooling, offers an opportunity to extend the capabilities of mobile
devices for energy-hungry applications. Various cloud-assisted mobile plat-
forms have been proposed, such as Cloudlet [5] and Cloud Clone [6]. In
these proposed platforms, each mobile device is associated with a system-
level clone in the cloud infrastructure. The mobile clone, which runs on
a virtual machine (VM), can execute mobile applications on behalf of the
mobile device - this is commonly referred as application offloading. This
architecture requires both a mechanism to implement task offloading and a
policy to decide when to offload applications. On one hand, existing research
[5, 6, 8, 9] has proposed various architectures and mechanisms of offloading
applications to the cloud. On the other hand, the research on optimal energy
policies for application offloading to cloud execution is rather inadequate (cf.
Section 6 on related work).

We illustrate a generic architecture of the cloud-assisted mobile appli-
cation platform in Figure 1. Each mobile device is replicated by a system-
level clone that runs on a virtual machine (VM). The VM is located in a
nearby cloud infrastructure and can migrate in response to the user’s lo-
cation. Moreover, the mobile clone regularly synchronizes its state with
the physical device. With the scheme of application offloading, the mobile
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Figure 1: A cloud-assisted mobile application platform: the mobile device is cloned by
a system-level virtual machine, which extends the capabilities of the mobile devices via
different functionalities, including application offloading, task delegation, data staging and
mobile P2P.

clone not only provides computing and storage in its local VM environment,
but also harnesses computing and storage resources from a remote cloud,
denoted as task delegation in Figure 1.

On this platform, a mobile application can be executed either on the
mobile device (i.e., mobile execution) or on the cloud clone (i.e., cloud exe-
cution). The design objective is to develop an optimal application-execution
policy, minimizing the energy consumed by the mobile device. When the
application is executed in the mobile device, the computation energy can
be minimized by optimally scheduling the clock frequency of the mobile de-
vice via the Dynamic Voltage Scaling (DVS) technology [10]. When the
application is executed in the cloud clone, the transmission energy can be
minimized by optimally scheduling the transmission data rate in a stochastic
wireless channel. For both scheduling problems, we formulate them as con-
vex optimization problems, with a constraint that the application should be
completed within a time deadline. We solve both optimization problems an-
alytically and obtain closed-form solutions for the optimal scheduler and the
minimum energy consumed by the mobile device. Our analytical solutions
are applied to decide the optimal condition for energy-efficient application
execution.

The rest of this paper is organized as follows. In Section 2, we present a
model for energy consumption in the mobile execution and the cloud execu-
tion. In Section 3 and 4, we solve the optimization problems for the optimal
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Figure 2: Mobile application executed in two alternative modes: the mobile execution and
the cloud execution.

CPU clock-frequency scheduling in the mobile execution and the optimal
transmission data-rate scheduling in the cloud execution. Closed-forms so-
lutions are derived for both optimization problems. In Section 5, analytical
results from previous two sections are applied to develop optimal execution
strategies for mobile applications. In Section 6, the review of related work is
presented. Section 7 summarizes this paper and provides future directions.

2. System Model and Problem Formulation

In this section, we present a mathematical model for application exe-
cution on the cloud-assisted mobile application platform. First, we define
a mobile application profile. Following that, we introduce an energy con-
sumption model for application execution, including a computation energy
model for the mobile execution and a transmission energy model for the
cloud execution.

2.1. Mobile Application Model

A mobile application is characterized by two parameters, including:

• Input data size L: the number of data bits as the input to the appli-
cation;

• Application completion deadline T : the delay deadline before which
the application should be completed.

We denote the application profile as A(L, T ).
In this research, we are interested in the problem of energy-optimal appli-

cation execution. The mobile execution and cloud execution impose different
energy consumption on the mobile device, which will be detailed in the next
two subsections.
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2.2. Mobile Execution Energy Model

When the application is executed on the mobile device, the energy con-
sumption is determined by CPU workload. The workload is measured by the
number of CPU cycles required by the application, denoted as W , which de-
pends on the input data size and the algorithm in the application. Typically,
W is modeled as a random variable, which we elaborate on and describe in
Section 3.

For the mobile execution, its computation energy can be minimized by
optimally configuring the clock frequency of the chip, via the dynamic volt-
age scaling (DVS) technology [10]. In CMOS circuits [11], the energy per
operation Eop is proportional to V 2, where V is the supply voltage to the
chip. Moreover, it has been observed that, when operating at low voltage
limits, the clock frequency of the chip, f , is approximately linear propor-
tional to the voltage supply, V [11]. As a result, the energy per operation
can be expressed as,

Eop = κf2, (1)

where κ is the effective switched capacitance depending on the chip archi-
tecture. Note that a CPU can reduce its energy consumption substantially
by running more slowly. However, the application has to meet a delay dead-
line of T , which suggests that the clock frequency cannot remain low. As
such, one would like to configure the clock frequency to minimize the to-
tal energy consumption, while meeting the application delay deadline. The
optimization problem can be formulated as,

E∗
m = min

ψ∈Ψ
{Em(L, T, ψ)}, (2)

where ψ = {f1, f2, ...fW } is any clock-frequency vector that meets the delay
deadline, Ψ is the set of all feasible clock-frequency vectors, and Em(L, T, ψ)
is the total energy consumed by the mobile device. This optimization prob-
lem will be solved in Section 3.

2.3. Cloud Execution Energy Model

When the application is executed by the cloud clone, the energy con-
sumed by the mobile device depends on the amount of data to be trans-
mitted from the mobile device to the cloud clone and the wireless channel
model. For any mobile application A(L, T ), L bits of data needs to be trans-
mitted to the cloud clone. Note that we assume the binary executable file for
the application has been replicated on the cloud clone initially. As such, it
does not incur additional energy cost. We assume a stochastic fading model
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for the wireless channel between the mobile device and the cloud clone. As
illustrated in Figure 2, it is characterized by a channel gain of g and a noise
power of N . Specific models (i.e., an i.i.d model and a Gilbert-Elliott model)
for the channel gain will be presented in Section 4.1.

In this research, we adopt an empirical transmission energy model as in
[12, 13, 14, 15]. Specifically, for a wireless fading channel with a gain of g,
the energy consumed to transfer s bits of data over the channel within a
time slot is governed by a convex monomial function, i.e.,

Et(s, g, n) = λ
sn

g
, (3)

where n denotes the monomial order, and λ denotes the energy coefficient. It
has been shown that some practical modulation scheme exhibits an energy-
bit relation that can be well approximated by a monomial. It is normally
assumed that 2 ≤ n ≤ 5, depending on the modulation scheme.

In the cloud execution, it is possible to minimize the total transmission
energy by optimally varying the data rate (the number of transmitted bits in
a given time slot), in response to a stochastic channel. Since the energy cost
per time slot is a convex function of bits transmitted, it is ideal to transmit
as few bits as possible [25]. However, reducing the number of bits transmit-
ted per time slot increases the total delay for the application. Therefore,
there exists an optimal transmission data-rate schedule to minimize the total
transmission energy, while satisfying the delay requirement. Under the op-
timal transmission scheduling, the minimum amount of transmission energy
for the cloud execution is given by

E∗
c = min

φ∈Φ
E{Ec(L, T, φ)}, (4)

where φ = {s1, s2, ...sT } denotes a data transmission schedule (si for the
number of bits transmitted in time slot i) that meets the delay deadline
(T time slots), Φ is the set of all feasible data schedules, and Ec(L, T, φ)
denotes the transmission energy. It should be noted that the expectation of
energy consumption is taken for different channel states. This optimization
problem will be solved in Section 4.

2.4. Optimal Application Execution Policy

The decision for energy-optimal application execution, is to choose where
to execute the application, with an objective to minimize the total energy
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consumed on the mobile device. Specifically, the optimal policy is deter-
mined by the following decision rule,

{

Mobile Execution if E∗
m ≤ E∗

c

Cloud Execution if E∗
m > E∗

c .
(5)

As shown in Eq. (1) and Eq. (3), E∗
m is proportional to κ and E∗

c is
proportional to λ. Hence, the absolute values of κ and λ are not critical,
but the ratio between these two constant energy coefficients, κ/λ, could
affect the determination of the optimal execution policy.

Moreover, as specified in Eq. (2) and Eq. (4), the optimal clock-
frequency vector ψ and data transmission scheduling vector φ have critical
effects on the energy consumption of mobile execution and cloud execution,
respectively. In order to decide an optimal application execution strategy, we
will first solve these two optimization problems to find the optimal schedul-
ing vectors.

3. Optimal Computation Energy under Mobile Execution

In this section, we investigate the problem of minimizing the computation
energy for executing an application in the mobile device, by optimally setting
the clock frequency of the chip.

3.1. Probabilistic Task Execution in Mobile Device

Let W indicate the number of CPU cycles needed for an application.
For a given input data size, L, it can be expressed as [2]

W = LX, (6)

whereX has been shown to be a random variable with an empirical distribution[16].
The estimation of this distribution, which depends on the nature of the ap-
plication, has been treated in [17, 18], and is thus beyond the scope of this
paper. In this paper, we assume that the probability distribution function
(PDF) of X is P (x), and its cumulative distribution function (CDF) is de-
fined as

FX(x) = Pr[X ≤ x], (7)

and its complementary cumulative distribution function (CCDF), denoted
as F cX(w), is defined as

F cX(x) = 1− FX(x). (8)
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Therefore, the CDF of the workload W is given by FW (w) = FX(w/L), and
its CCDF is given by F cW (w) = F cX(w/L).

As shown in [16, 17, 18], the number of CPU cycles per bit can be
modeled by a Gamma distribution. The PDF of the Gamma distribution is
given by

pX(x) =
1

βΓ(α)
(
x

β
)α−1e

− x
β , for x > 0, (9)

which depends on two parameters(the shape α and the scale β).
In this paper, we adopt a probabilistic performance requirement. We

assume that the jobs should satisfy the soft real-time requirements. Specif-
ically, each application will meet its deadline with a probably of ρ by al-
locating Wρ CPU cycles. The parameter ρ is called the application com-
pletion probability (ACP). When the application execution fails to meet its
deadline, it will continue to execute at the maximum clock frequency to
completion. The additional computation energy is negligible when the task
completion probability is very close to 1. As a result, we focus on Eρ under
the assumption that the task completion probability is close to 1.

The probability that each job requires no more than the allocated Wρ

cycles is at least ρ, i.e.,

FW (Wρ) = Pr[W ≤Wρ] ≥ ρ. (10)

Using Eq. (7), we can obtain the number of CPU cycles, for a given ρ, as

Wρ = F−1
W (ρ) = LF−1

X (ρ), (11)

which is the ρth quantile for the distribution of W .

3.2. Energy-Efficient Clock-Frequency Configuration

In this subsection, we aim to minimize the expected energy consumption
of the application execution, by optimally setting the clock frequency of the
mobile device. Specifically, for each application, the problem is to find a
clock frequency scheduling for each of its allocated cycles, such that the
total computation energy for these allocated cycles is minimized while their
total execution time is less than the application deadline.

We assume that f(w) is a clock-frequency schedule vector, where w is the
number of CPU cycles it has completed previously. Therefore, the energy
consumption is given by

Em = κ

Wρ
∑

w=1

F cW (w)[f(w)]2, (12)
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where F cX(w) is the probability that the application has not completed after
w CPU cycles. The optimization problem in Eq. (2) can be rewritten as,

min
f(w)

κ

Wρ
∑

w=1

F cW (w)[f(w)]2, (13)

s.t.

Wρ
∑

w=1

1

f(w)
≤ T, (14)

f(w) > 0 (15)

where Eq. (14) corresponds to the delay constraint.
The optimization problem, denoted in Eq. (13) can be solved analyti-

cally. The results are summarized in Theorem 3.1.

Theorem 3.1. For the optimal CPU scheduling problem in Eq. (13), the
optimal clock scheduling vector is given by

f∗(w) =
θ

T [F cW (w)]1/3
, 1 ≤ w ≤Wρ, (16)

where θ =
∑Wρ

i=1 [F
c
W (i)]1/3. The optimal computation energy is

E∗
m =

κ

T 2
{

Wρ
∑

w=1

[F cW (w)]1/3}3. (17)

Proof 3.1. See Appendix A.

Proposition 3.1. For a task load with an exponentially-tailed CCDF (i.e.,
F c(w) ∼ µe−νw as w → ∞ for some constant µ > 0 and ν > 0), the
minimum energy consumption converges monotonically to a finite value, as
the target completion probability increases to 1.

Proof 3.2. See Appendix B.

In Figure 3, we plot the minimum computation energy, E∗
m, as a function

of the target completion probability, ρ. Notice that the Gamma distribution
is exponentially tailed. As a result, it can been that, as the application
completion probability of ρ increases, the minimum computation energy
increases monotonically and converges to a finite value.
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Figure 3: The minimum computation energy, E∗

m, is plotted as a function of the target
completion probability. In this graph, the task load is modeled as the Gamma distribution,
with α = 4, β = 200, L = 800bits, T = 50ms.
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L3

Figure 4: The minimum computation energy, E∗

m, is plotted as a function of the input
data size L. In this graph, the task load is modeled as the Gamma distribution, with
α = 4, β = 200, T = 50ms.

Proposition 3.2. For the optimal CPU scheduling in Eq. (17), the opti-
mal computation energy is proportional to negative quadratic of the delay
deadline.

E∗
m ∼ T−2. (18)

Proposition 3.3. For the optimal CPU scheduling problem in Eq. (17),
the optimal computation energy is proportional to cube of the data size.

E∗
m ∼ L3 (19)

Proof 3.3. See Appendix C.

In Figure 4, we plot the minimum computation energy as a function of
the input data size, and compare it with a scaling law of L3. It shows that
E∗
m scales at L3.

4. Optimal Transmission Energy under Cloud Execution

In this section, we consider the problem of scheduling data transmission
via rate adaptation to wireless (fading) channel variations, under a deadline
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Figure 5: The Gilbert-Elliott (GE) channel model.

constraint. As such, we first briefly describe the channel model. Next, we
derive the minimum expected energy expenditure for transmission under
different channel models.

4.1. Wireless Channel Models

As shown in Fig. 2, we consider the scheduling of L bits of data with
a deadline in T discrete time slots. The channel state at time slot t is
denoted as gt. We assume that only causal knowledge of the channel state
is available. In this work, we consider two types of channel state models:

1) i.i.d. Channel Model: The channel states {gt} are independently
and identically distributed (i.i.d). The i.i.d channel state model is self-
explanatory. For instance, in [12, 13] channel states are modeled as trun-
cated exponential random variables.

2) Gilbert-Elliott Channel Model: The channel states {gt} are deter-
mined by a discrete state space Markov model. For Markovian channel
states, we consider the Gilbert-Elliott (GE) channel model [14, 15] in which
there are two states: “good” and “bad” channel conditions, denoted as G
and B, respectively. The two states correspond to a two-level quantization
of the channel gain. If the measured channel gain is above some value,
the channel is labeled as good. Otherwise, the channel is labeled as bad.
Let the (average) channel gains of the good and bad states be gG and gB ,
respectively.

In this model, as illustrated in Figure 5, the state transition matrix is
completely determined by the values pGG (for the probability that the next
state is the good state, given that the current state is also the good state)
and pBB (for the probability that the next state is the bad state, given that
the current state is also the bad state). Accordingly, we have

pGB = 1− pGG, (20)

pBG = 1− pBB , (21)
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where pGB denotes the probability in which channel will transit from the
good state to the bad state in the next time slot and pBG denotes the
probability in which channel will transit from the bad state to the good state
in the next time slot. The state sojourn time is geometrically distributed. As
such, the mean state sojourn time (duration of being in a state), measured
in number of time slots in this state, is given by

TG =
1

1− pGG
, (22)

TB =
1

1− pBB
. (23)

4.2. Optimal Data Transmission Scheduling

We consider a discrete time model as in [12, 13]. We denote t as discrete
time index in descending order (from t = T to t = 1). In time slot t, if the
number of bits transmitted is st, the transmission energy cost is Et(st, gt) =

λ
snt
gt
. Therefore, the optimization problem in Eq. (4) for the optimal data-

transmission schedule can be rewritten as,

min
st

: E

[

T
∑

t=1

Et(st, gt)

]

(24)

s.t.:

T
∑

t=1

st = L,

st ≥ 0,∀t.

This optimization problem will be solved under the aforementioned channel
models, including

1) i.i.d. Channel States: With an optimal scheduling, the minimum
expected energy of the i.i.d. channel model is given by [12]:

Et(L) = λLnζt (25)

where ζt can be solved recursively by:

ζt =







E[( 1

(gt)
1

n−1 +( 1
ζt−1

)
1

n−1

)n−1], t ≥ 2;

E[ 1gt ], t = 1,
(26)

where the expectation is conduct over the distribution of the channel state
gt.
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Proposition 4.1. As stated in reference [12], when the application comple-
tion deadline of T increases, the minimum transmission energy decreases
monotonically and scales with a factor of T−(n−1), where n is the monomial
order in Eq. (3):

Et(L) ∼ T−(n−1) (27)

2) GE Channel Model: The derivation for the optimal scheduler and the
minimum transmission energy for the GE channel model is provided in the
Appendix D. The minimum expected energy depends on the channel state
at t = T + 1. If, at t = T + 1, the channel is in the good state, the optimal
number of data bits transmitted in each time slot is given by

s∗t (lt, gt) =











lt

(

(gt)
1

n−1

(gt)
1

n−1 +( 1
ζt−1,G

)
1

n−1

)

, t ≥ 2;

l1, t = 1,

(28)

where lt denotes the number of unfinished bits at time slot t, and

ζt;G =











































pGG





(

1

(gG)
1

n−1 +( 1
ζt−1;G

)
1

n−1

)n−1




+pGB





(

1

(gB)
1

n−1 +( 1
ζt−1;G

)
1

n−1

)n−1


 , t ≥ 2;

pGG

[

1
gG

]

+ pGB

[

1
gB

]

, t = 1.

(29)

With this optimal scheduling, the minimum expected energy is given by:

Et(L;G) = λLnζt;G. (30)

If, at t = T + 1, the channel is in the bad state, the optimal number of
data bits transmitted in each time slot is given by

s∗t (lt, gt) =











lt

(

(gt)
1

n−1

(gt)
1

n−1 +( 1
ζt−1,B

)
1

n−1

)

, t ≥ 2;

l1, t = 1,

(31)
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where

ζt;B =











































pBB





(

1

(gB)
1

n−1 +( 1

ζt−1;B
)

1
n−1

)n−1




+pBG





(

1

(gG)
1

n−1 +( 1
ζt−1;B

)
1

n−1

)n−1


 , t ≥ 2;

pBB

[

1
gB

]

+ pBG

[

1
gG

]

, t = 1.

(32)

With this optimal scheduling, the minimum expected energy is given by:

Et(L;B) = λLnζt;B. (33)

Given that, at steady state, the probability that a channel is in good or
bad state is TG

TG+TB
and TB

TG+TB
, respectively, the minimum expected trans-

mission energy E∗
c is:

E∗
c (L, T ) =

TG
TG + TB

Et(L;G) (34)

+
TB

TG + TB
Et(L;B).

Proposition 4.2. As the data size of L increases, the minimum transmis-
sion energy increases monotonically and scales with a factor of Ln, where n
is the monomial order in Eq. (3)

E∗
c ∼ Ln (35)

Proposition 4.3. As the application completion deadline of T increases,
the minimum transmission energy decreases monotonically and scales with
a factor of T−(n−1), where n is the monomial order in Eq. (3)

E∗
c ∼ T−(n−1) (36)

Proof 4.1. See Appendix E.

Proposition 4.4. In Eq. (29) and (32), neither ζt;G nor ζt;B scales to
infinity.

Proof 4.2. See Eq. (E.13) and (E.14) in Appendix E.
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Figure 6: Expected transmission energy is plotted as a function of deadline T for the i.i.d
channel model (L = 800bits).
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Figure 7: Expected transmission energy is plotted as a function of deadline T for the
GE channel model. In this graph, L = 800bits, pGG = 0.995 , pBB = 0.96, gG = 1 and
gB = 0.1.
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Figure 8: The expected transmission energy is plotted as a function of deadline T for the
i.i.d channel model and the GE channel model. In this graph, L = 800bits.

In Figure 6 and 7, we plot the expected transmission energy under both
i.i.d model and GE model as a function of the deadline T with different n,
and compare them with a scaling factor of T−(n−1). For the i.i.d model,
we use the truncated exponential random variable g with threshold 0.001.
That is, f(g) = e−(g−0.001) for g ≥ 0.001; f(g) = 0 otherwise. For the GE
model, we set the parameters as pGG = 0.995 , pBB = 0.96, gG = 1 and
gB = 0.1. Note that, the scaling factor matches the numerical results well
for both the cases of the i.i.d model and the GE model, which is consistent
with Proposition 4.1 and Proposition 4.3. Moreover, as the application
delay deadline T becomes smaller, the notation T−(n−1) will be larger, which
results in more energy consumption. It also suggests that as it gets closer to
the execution deadline, the chip clock frequency will be accelerated to meet
the deadline.

In Figure 8, we plot the expected minimum transmission energy as a
function of the deadline T . It can be observed that the energy consumed in
the i.i.d. model is slightly smaller than that in the GE model, for the same
monomial order n. In Section 5, the GE model is chosen to compare with
the mobile execution so as to achieve the optimal consumed energy.
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Figure 9: The minimum energy, E∗, is plotted as a function of the application delay
deadline T , for the mobile execution and the cloud execution. The task load is modeled
as the Gamma distribution, with α = 4, β = 200, and L = 800bits. The channel is a GE
model with pGG = 0.995 , pBB = 0.96, gG = 1 and gB = 0.1.

5. Optimal Application Execution Policy

In this section, we develop the optimal application execution policy,
based on the analytical results obtained in Section 3 and Section 4. In par-
ticular, for a given application profile of A(L, T ), we compare the minimum
computation energy for the mobile execution and the minimum transmission
energy for the cloud execution. The optimal application execution policy is
to choose whichever consumes less energy on the mobile device, in order to
extend the battery life.

As proved previously in Section 3 and Section 4, there are some inter-
esting relationships between the energy consumption and the application
profile (i.e., data size and deadline delay): E∗

m ∼ L3 and E∗
m ∼ T−2 for

the mobile execution, and E∗
c ∼ Ln and E∗

c ∼ T−(n−1) for the cloud exe-
cution, respectively. Thus, when n < 3, the cloud execution consumes less
energy for large data, while when n > 3, it is also encouraged to offload the
application to the cloud for relatively long delay deadline.

As an example, we use the same application parameters of the mobile
execution and the cloud execution as those described in Section 3 and 4, to
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Figure 10: The minimum energy, E∗, is plotted as a function of the data size L. The
task load is modeled as the Gamma distribution, with α = 4, β = 200, and T = 50ms.
The channel is assumed as the GE model with pGG = 0.995 , pBB = 0.96, gG = 1 and
gB = 0.1.
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compare the energy consumptions. In Figure 9, we plot the minimum en-
ergy consumed by the mobile device for the mobile execution and the cloud
execution, as a function of the application completion deadline of T . The
optimal execution strategy depends on the monomial order of n. On one
hand, when n is smaller than 3, the cloud execution is more energy-efficient
when the delay deadline is below a threshold. This is because, when n < 3,
the scaling factor for the cloud execution is slower than T−2, the scaling
factor for the mobile execution. On the other hand, when n is larger than
3, the cloud execution is more energy-efficient when the delay deadline is
beyond a threshold. This is because, in this case, the scaling factor for the
cloud execution is faster than T−2, the scaling factor for the mobile execu-
tion. Moreover, by optimally deciding where to execute the application, a
significant amount of energy can be saved on the mobile devices. For ex-
ample, for an application profile of A(800bits, 400ms), the mobile execution
consumes 13 times energy more than the cloud execution for n = 5.

In Figure 10, we plot the minimum energy consumed by the mobile device
for the mobile execution and the cloud execution, as a function of the input
data size of L. The optimal execution strategy depends on the monomial
order of n in Eq. (3). On one hand, when n is smaller than 3, the cloud
execution is more energy-efficient when the data size is beyond a threshold.
This is because, when n < 3, the scaling factor for the cloud execution is
slower than L3, the scaling factor for the mobile execution. On the other
hand, when n is larger than 3, the cloud execution is more energy-efficient
when the input data size is below a threshold. This is because, when n > 3,
the scaling factor for the cloud execution is faster than L3, the scaling factor
for the mobile execution.

Moreover, for the specific application profileA(L, T ) = A(1000bits, 250ms)
with different n, we plot in Figure 11 regions where the mobile execution
or the cloud execution is more energy efficient. Specifically, for n = 2,
the boundary between the two optimal operational regions is a line (i.e.,
L/T = const), where L/T can be considered as an effective data transmis-
sion rate. In this case, when the effective transmission rate is larger than a
threshold, the cloud execution is optimal; otherwise, the mobile execution
is optimal. All cases of n = 3 should be executed in the mobile device.
This can be derived from Figures 9 and 10, in which for n = 3, the curve
of the cloud execution is always above the curve of the mobile execution,
indicating that energy consumption of mobile execution is smaller. In the
case of n = 4, the boundary between the two optimal operating regions is
a line (i.e., L/T = const). However, in this case, compared to the case of
n = 2, when the effective transmission rate is larger than a threshold, the
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Figure 11: Optimal Energy Decision for a typical application profile A(L, T ) =
A(1000bits, 250ms).
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mobile execution is optimal; otherwise, the cloud execution is optimal..
The same approach can be adopt for different application parameters

(i.e., the scale parameter and the shape parameter in the Gamma distri-
bution of the number of CPU cycles, and monomial order of transmission
model) to obtain the optimal policy for application execution. The thresh-
olds can be identified similarly and the optimal operational regions for the
mobile execution and the loud execution can be found respectively.

In summary, the optimal application execution policy depends on the ap-
plication profile (i.e., the input data size of L and the application completion
deadline of T ), the wireless transmission model(i.e., the monomial order n
in its energy consumption formula) and the ratio of energy coefficients (i.e.,
effective switched capacitance κ on the chip system of the device and energy
coefficient λ in the wireless channel model). Moreover, energy consumed by
the mobile device can be saved significantly by optimally deciding where to
execute the application.

6. Related Work

Energy efficiency is a critical aspect for mobile platform, and it has been
the topic of a number of studies. [18] presents the design and implementation
of GRACE-OS for energy-efficient CPU scheduling on a stand-alone mobile
device. Based on the probability distribution of the cycle demand, it finds
out a schedule for each process and DVS algorithms are implemented in the
CPU scheduler. [19] considers the energy-aware scheduling for embedded
systems with multiprocessors as a probability-based load balancing problem.
In this work, tasks are partitioned and assigned to processors based on their
utilization in order for better energy reduction.

Computation offloading is a major concern for saving energy of the bat-
tery powered devices. Previous work in [22, 23, 24, 7, 20, 21] have inves-
tigated using remote process execution to extend battery life for mobile
applications. Rudenko et al., in [22, 23] describe experiments using portable
machines with WaveLAN radio devices, using experimental methods. They
show that significant power can be saved through remote processing for sev-
eral realistic tasks (up to 50% of battery life). Othman [24] uses simulation
to show that battery life can be extended through process migration. The
authors offer some decision-making algorithms such as History and Adaptive
Load Sharing (ALS), which learns and adapts its decision based on previ-
ous CPU time measurements for a particular process. The paper does not
discuss how the algorithm adapts to changes in noisy communication chan-
nels, which can have a significant impact on power consumption. Changjiu
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Xian et al., in [20] find the optimal timeout for local execution and pro-
pose an adaptive approach for computation offloading to save energy on
battery-powered systems. Computation instance is initially executed on the
portable device with a timeout and it is off loaded to the server if the com-
putation is not completed after the timeout. Peng Rong et al., in [21] adopt
a two-state continuous-time Markov process to model the slow fading effect
in the wireless channel, and provides off-line and on-line optimal policy to
minimize the power consumption of the mobile device by remote processing
under time constraints.

Moreover, some literatures have studied the energy issues for mobile ap-
plications in the cloud infrastructure. [3] presents a simple energy model to
decide whether to offload applications to cloud. The trade-off is to determine
the energy consumed by the computation in the mobile and communication
for offloading, as well as the potential energy due to other additional oper-
ations, e.g., encryption for security. [2] demonstrates that workload, data
communication patterns and technologies used (i.e., WLAN and 3G) are the
main factors that highly affect the energy consumption of mobile applica-
tions in cloud computing. But its analysis is roughly based on statistical
measurements and investigations. Also, [2, 3] mostly consider a fixed compu-
tation scheduling in the mobile device and a fixed bandwidth model for the
wireless channel. Realistic models are needed to understand of the trade-
off between computation and communication in the cloud-assisted mobile
platform.

Compared to these previous efforts, this paper has several major contri-
butions. First, the difference from the traditional computation offloading to
a remote server or a fixed number of machines is that, in this architecture
the cloud clone can offer services to the mobile users, e.g., the data back-
up in the mobile devices. Second, the cloud clones can form a stable P2P
network for more content sharing between machines in the cloud. Third, we
consider a realistic wireless channel mode for the cloud execution, coupled
with a realistic computing model in the mobile execution. In addition, we
carefully examine the mobile execution and cloud execution in terms of en-
ergy conservation within an execution deadline, and finally we propose the
energy-optimal execution policy. Our analysis of energy-optimal execution
policy is based on the assumptions that the time of cloud execution is sig-
nificantly short such that the execution time is negligible and the consumed
energy of mobile device being idle before receiving the results is neglected.
However, we have not considered any security issue on the cloud-assisted
platform, thus the extra energy caused by additional operations concerning
security, e.g., encryption and trust checking, is not taken into account.
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7. Summary and Future Research

In this paper we investigated the problem of how to conserve energy
for the resource-constrained mobile device, by optimally executing mobile
applications in either the mobile device or the cloud clone. We proposed
an optimization framework for energy-optimal application execution in the
cloud-assisted mobile application platform. For the mobile execution, we
minimize the computation energy by dynamically configuring the clock fre-
quency of the chip, according to the workload distribution. For the cloud
execution, we minimize the transmission energy by optimally scheduling
data transmission across a stochastic wireless channel (i.e., the i.i.d model
and the Gilbert-Elliott model). Closed-form solutions were obtained for
both scheduling problems and are applied to decide the optimal application-
execution condition under which either the mobile execution or the cloud
execution is more energy-efficient for the mobile device. We also figure out
the relationships between optimal energy and data size as well as delay dead-
line mathematically. Numerical results indicate that the optimal execution
policy depends on the application profile, the wireless transmission model
and the ratio of energy coefficients.

This paper only pays attention to energy issue related to mobile devices.
For future work, the energy consumption in the cloud side will be taken into
consideration, and we plan to minimize the energy consumption on both
sides. Also, security mechanisms will be established on the mobile platform.
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Appendix A. Proof of Theorem 3.1

In this section, we will use the Lagrangian multiplier method to solve
the optimization problem in Eq. (13).

L(f(w), λ) =

Wρ
∑

w=1

F cW (w)[f(w)]2 + λ(

Wρ
∑

w=1

1

f(w)
− T )

=

Wρ
∑

w=1

{F cW (w)[f(w)]2 +
λ

f(w)
} − λT

The optimal clock schedule policy must satisfy the following conditions,

∂L(f(w), λ)

∂f(w)
= 2F cW (w)f(w) −

λ

[f(w)]2
= 0 (A.1)

∂L(f(w), λ)

∂λ
=

Wρ
∑

w=1

1

f(w)
− T = 0. (A.2)

Solving Eq. (A.1), we obtain that, for 1 ≤ w ≤Wρ,

f∗(w) = {
λ

2F cW (w)
}1/3. (A.3)

Plugging Eq. (A.3) into Eq. (A.2), we obtain

Wρ
∑

w=1

[F cW (w)]1/3 = T (
λ

2
)1/3. (A.4)

Therefore, the optimal clock schedule policy is given by

f∗(w) =
θ

T [F cW (w)]1/3
, (A.5)

where θ =
∑Wρ

i=1 [F
c(i)]1/3. Substituting Eq. (A.5) into Eq. (12), we obtain

the optimal computation energy as

E∗
m =

κ

T 2
{

Wρ
∑

w=1

[F cW (w)]1/3}3. (A.6)
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Appendix B. Proof of Proposition 3.1

The minimum computation energy is given by

E∗
m =

κ

T 2
{

Wρ
∑

w=1

[F cW (w)]1/3}3. (B.1)

It is equivalent to show that, as Wρ → ∞,

θ =

Wρ
∑

w=1

[F cW (w)]1/3 (B.2)

converges to a fixed value.
For exponentially-tailed distribution, we have F cW (w) ∼ µe−νw as w →

∞ for some constant µ > 0 and ν > 0. Formally, for ∀ǫ > 0, there exits
a W , such that |F cW (w) − µe−νw| < ǫ. Using this fact, we can rewrite the
energy factor θ as

θ =
W
∑

w=1

[F cW (w)]1/3 +

Wρ
∑

w=W+1

µ
1
3 e−

ν
3
w. (B.3)

The first term is a constant, and the second term converges to a constant
as Wρ increases to ∞.

Appendix C. Proof of Proposition 3.3

In this section, we show the relationship of optimal energy and data size.

E∗
m =

κ

T 2
{

Wρ
∑

w=1

[F cW (w)]1/3}3. (C.1)

We just need to compute

Wρ
∑

w=1

[F cW (w)]1/3}, (C.2)

where

F cW (w) = F cX(
w

L
). (C.3)

Assume Wρ = LTρ, then
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Wρ
∑

w=1

[F cW (w)]1/3 =

Tρ−1
∑

t=0

(
L
∑

i=1

[F cW (Lt+ i)]1/3)

=

Tρ−1
∑

t=0

(

L
∑

i=1

[F cX(t+
i

L
)]1/3),

According to the mean value theorem, there exists η ( 1L < η < 1), such
that

Tρ−1
∑

t=0

(

L
∑

i=1

[F cX (t+
i

L
)]1/3) =

Tρ−1
∑

t=0

(L[F cX(t+ η)]1/3)

= L

Tρ−1
∑

t=0

([F cX(t+ η)]1/3).

Hence,

Wρ
∑

w=1

[F cW (w)]1/3 = L

Tρ−1
∑

t=0

([F cX (t+ η)]1/3).

For the Gamma distribution, the complementary cumulative distribution
function(CCDF) is

α−1
∑

i=0

(βx)i

i!
e−βx. (C.4)

For this exponentially-tailed distribution, we have F cX(t+η) ∼ µe−ν(t+η)

as t → ∞ for some constant µ > 0 and ν > 0. Formally, for ∀ǫ > 0, there
exits a TN , such that for t > TN , we have |F

c
X(t+η)−µe

−ν(t+η)| < ǫ. Using
this fact, we get

Tρ−1
∑

t=0

([F cX (t+ η)]1/3) =

TN
∑

t=0

([F cX (t+ η)]1/3) (C.5)

+

Tρ−1
∑

t=TN+1

µ
1
3 e−

ν
3
(t+η).
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The first term is a constant, and in the following we examine the second
term

Tρ−1
∑

t=TN+1

µ
1
3 e−

ν
3
(t+η) =

µ
1
3 e−

ν
3
[TN+1+η][1− (e−

ν
3 )Tρ−TN−1]

1− e−
ν
3

(C.6)

As Tρ → ∞, the second term converges to a constant. Thus,
∑Tρ−1

t=0 ([F cX (t+
η)]1/3) converges to a constant and would not scale to ∞.

Hence,
Wρ
∑

w=1

[F cW (w)]1/3 ∼ L (C.7)

Combining the Eq.(C.1) and Eq.(C.7), we have

E∗
m ∼ L3. (C.8)

Appendix D. Optimal Transmission Energy for the GE model

In this section, we provide the proof for the results of optimal scheduling
under the GE channel mode.

Using the dynamic programming (DP) approach, the optimization prob-
lem in Eq. (24) can be rewritten as

Jt(lt, gt) =







min
0≤st≤lt

(

snt
gt

+ E(J(lt − st, g))
)

, t ≥ 2

ln1
g1
, t = 1.

(D.1)

Here, lt denotes the number of remaining (un-transmitted) bits at t, with
lt−1 = lt − st.

We use the induction approach. We first consider the case that at t =
T + 1, the channel is in the good state. At t = 1, all the remaining l1 bits
have to be transmitted to meet the deadline constraint. Given the channel
state at t = 2 is in the good state, the expected minimum energy is given
by

J̄1(l1) = E

[

ln1
g1

]

(D.2)

= ln1

(

pGG

[

1

gG

]

+ pGB

[

1

gB

])

.
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Now suppose Eq. (29) is true for t − 1, the DP problem stated in Eq.
(D.1) becomes

Jt(lt, gt) = min
0≤st≤lt

(

snt
gt

+ (lt − st)
nζt−1;G

)

. (D.3)

The optimal st, denoted as s∗t , can be solved as:

s∗t =
ltg

1
n−1

t

g
1

n−1

t +
(

1
ζt−1;G

)
1

n−1

. (D.4)

Substituting (D.4) to (D.3), we have:

Jt(lt, gt) = lnt









1

(gt)
1

n−1 + ( 1
ζt−1,G

)
1

n−1





n−1

 (D.5)

By taking expectation of Jt(lt, gt) with respect to gt, we have:

ζt,G = E









1

(gt)
1

n−1 + ( 1
ζt−1;G

)
1

n−1





n−1

 (D.6)

= pGG









1

(gG)
1

n−1 + ( 1
ζt−1;G

)
1

n−1





n−1



+ pGB









1

(gB)
1

n−1 + ( 1
ζt−1;G

)
1

n−1





n−1

 .

Therefore, the result in Eq. (29) follows by induction. The proof for the
results in Eq. (32) follows the exact same rationale, thus is omitted here for
brevity.
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Appendix E. Proof of Proposition 4.3

In this section, we present the relationship of optimal transmission energy
and delay deadline. Since,

ζt;G =











































pGG





(

1

(gG)
1

n−1 +( 1
ζt−1;G

)
1

n−1

)n−1




+pGB





(

1

(gB)
1

n−1 +( 1
ζt−1;G

)
1

n−1

)n−1


 , t ≥ 2;

pGG

[

1
gG

]

+ pGB

[

1
gB

]

, t = 1.

(E.1)

and

gG > gB , (E.2)

we have

ζt;G < ζt;gB (E.3)

and

ζt;G > ζt;gG , (E.4)

in which

ζt;gB =











































pGG









1

(gB)
1

n−1 +( 1
ζt−1;gB

)
1

n−1





n−1



+pGB









1

(gB)
1

n−1+( 1

ζt−1;gB

)
1

n−1





n−1

 , t ≥ 2;

pGG

[

1
gB

]

+ pGB

[

1
gB

]

, t = 1.

(E.5)

and
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ζt;gG =











































pGG









1

(gG)
1

n−1 +( 1
ζt−1;gG

)
1

n−1





n−1



+pGB









1

(gG)
1

n−1 +( 1
ζt−1;gG

)
1

n−1





n−1

 , t ≥ 2;

pGG

[

1
gG

]

+ pGB

[

1
gG

]

, t = 1.

(E.6)

Also,
PGB + PGG = 1 (E.7)

such that

ζt;gB =



























1

(gB)
1

n−1 +( 1
ζt−1;gB

)
1

n−1





n−1

 , t ≥ 2;

1
gB
, t = 1.

(E.8)

When t is equal to or greater than 2,

[

1

ζt;gB

]
1

n−1

=

[

1

ζt−1;gB

]
1

n−1

+ (gB)
1

n−1 (E.9)

Hence,

[

1

ζt;gB

] 1
n−1

=

[

1

ζ1;gB

] 1
n−1

+ (t− 1)(gB)
1

n−1 (E.10)

= (gB)
−(n−1)t,

ζt;gB =

[

1

gB

]

t−(n−1). (E.11)

Similarly,

ζt;gG =

[

1

gG

]

t−(n−1). (E.12)

In that case,
ζt;G ∼ t−(n−1) (E.13)
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Similarly,
ζt;B ∼ t−(n−1) (E.14)

Since,
Et(L;G) = Lnζt;G (E.15)

and
Et(L;B) = Lnζt;B (E.16)

E∗
c (L, T ) =

TG
TG + TB

Et(L;G) (E.17)

+
TB

TG + TB
Et(L;B).

Therefore,
E∗
c (L, T ) ∼ T−(n−1) (E.18)
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