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Abstract

Electroencephalogram (EEG) has been used to show the electrical activities of the

brain, and therefore it has been proved a powerful channel to obtain latent brain

state of subjects. In this work, we try to extract the information on the sleep stage of

birds by the measured EEG wave. We analyze the EEG signal in frequency domain

by various techniques. In particular, we compare hidden Markov model (HMM) and

a Mixed Gaussian model for the estimated spectral density in multiple frequency

bands, by using maximum-a-posterior (MAP) criterion to classify the hidden state.

The effectiveness of the approaches is compared in both simulations and application

to the real data. Some related issues in model assessment are also discussed.
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1 Introduction

Electroencephalogram (EEG) study dates back to Berger (1929), Empson (1989).

Berger studied the electrical activity of the brain and the state of the brain by

externally attaching electrodes on the human skull. This technique later was used

in sleep study to investigate the state of sleep. Rapid eye movement (REM) sleep

in human was first discovered by Aserinsky E. and Kleitman N. in 1953 at the

University of Chicago, Aserinsky and Kleitman (1953). Similar to human sleep, bird

sleep is also an interesting topic. Since early nineteenth century, studies of sleep

patterns has been reported in pigeon. From the first field experiments on sleep at

the mid of 1970s, sleep studies on birds expanded rapidly.

Basically there are two types of sleep for birds: quite sleep and active sleep.

Quiet sleep is also called non-rapid eye movement sleep (NREM). NREM sleep has a

synchronized, high-amplitude EEG wave (175 to 300µV ) with a strong low-frequency

component (2 to 5.5 Hz, Amlander and Ball (1994)). The median length of a NREM

episode lasts 144 seconds.

Active sleep is also called rapid eye movement sleep (REM) and it accounts

5 to 10 per cent of total sleep time. Each episode of REM lasts about 9 seconds

on average. Its EEG wave is characteristically desynchronized with relatively high
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frequency (10 − 23 Hz) and low amplitude (< 50µV ), Amlander and Ball (1994).

The eyes are usually closed in this sleep stage, and arousal thresholds are high. The

average REM time in one night is reported at 0.2 hour, Schmidt et al. (1990).

In general, NREM sleep has low frequency but high amplitude EEG wave, lasts

longer than REM sleep, Amlander and Ball (1994). According to Tobler (2005),

NREM sleep power density values in the low frequency range (0.25 - 6.0 Hz) exceed

those of REM sleep by approximately one order of magnitude, which is also indicated

in Figure 1.

Between these two sleep states, the bird may be awake or move. And some of

these states may share the same EEG frequency feature as REM or NREM. One of

such states is drowsiness, which shares similar features as Quite Wake and NREM

and usually occurs in between these two states. Therefore, drowsiness is not always

recognized as a separate state. One other state is called Cataleptic immobility and

also called sleeplike state 1, in which bird has open eyes and reduces responsiveness.

The amplitude of its EEG wave is high (200-300 µV) and has bimodal frequency (1-6

Hz and 8-12 Hz), Amlander and Ball (1994). The high amplitude and low frequency

EEG with open eyes makes this state similar to NREM, or drowsiness or quite wake

sometimes. And this state occupy 20 per cent of the total sleep time. Similarly,
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Vigilant Sleep is a state hard to separate from NREM. It is an open-eye period that

have desynchronized, relatively low-amplitude EEG signals, and its arousal threshold

is between those of NREM and Quite Wake. Although this state is frequently scored

as NREM, it should be treated cautiously for its arousal threshold and EEG.

The state similar to REM is called gaze wakefulness in which the bird is

immobilized and opens or partly opens its eyes. Eyes move slowly and phasically,

especially at the onset of each episode. Its EEG signal is desynchronized. But the

difference between these two states is that eyes are closed and moving rapidly in

REM, Amlander and Ball (1994).

To make a clear distinction in these intermediate states, the current analysis only

includes the data with either NREM or REM states.

Compared to human or mammal sleep, birds has more sleep states. This may be

related to the shorter episode length of sleep stages, which in turn forces researchers

to look more closely at shorter time intervals. By looking at the trend of REM and

NREM in sleep time, researchers found that birds have similar amount of NREM

sleep time of the mammals per day but only have about 1/4 of the amount of

REM of the mammals. It is reported that perching birds have extremely small
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amount of REM (0.05 to 0.17 h per 24 hours), Amlander and Ball (1994). Schmidt

et al. (1990) found the average REM time was 0.2 hour per 24 hours. Also the

distribution of REM and NREM are slowly changing over night. NREM starts

rapidly at the onset of sleep, and it remains dominant throughout the sleep period.

Whereas REM shows up slowly, but rises rapidly to peak at about three quarters

of the sleep period and then declines quickly around dawn, Amlander and Ball (1994).

Traditionally the sleep stage is manually classified based on the EEG waves

together with eye movements and muscle tension recorded by Electrooculogram

(EOG) and Electromyogram (EMG) respectively. In the current data set, the

researchers used EEG together with the video which recorded the behaviors of

the birds during sleep. However, it takes a long time to manually go through

the whole sleep sequence and classify the states because of the large quantity

of EEG data, the randomness of the EEG signals and the short-period states of

birds. Besides, subjective criteria may vary between different scorers. Therefore an

objective classification of sleep states is strongly needed. The previous study by

Nick and Konishi (2001) used some Matlab functions to classify the slow wave sleep

(NREM), but it focused on slow wave sleep classification. They also pointed out the

urgency of using objective criteria for sleep stages. In this work, the purpose is to de-

velop an objective method to classify the sleep states: NREM and REM in particular.

4



There are enormous literature on modelling EEG signals and classifying the

underlying states. A short list of them is given here. More details can be found

through reference therein. Sergejew and Tsoi (1996) used Markov modelling of an

AR representation of the EEG signal to quantify EEG state transition. They found

limited state transition dynamics in the EEG of Obsessive-Compulsive Disorder

(OCD) patients but not in that of normal subjects. Cohen et al. (1996) segmented

the non-stationary vector EEG signal into stationary records, by using a vector

AR(6) segmentation algorithm. Then they classify each segment into a sleep state,

using a nearest neighbor classifier with Kullback-leibler based distortion measure

(Gersch et al. (1979)). The average correctness over four human patients is about

85%. Gersch (1996) proposed the time varying autoregressive (TV-AR) coefficient

model to model the time series of scalar nonstationary covariance EEG wave. Using

stochastic partial correlation coefficient (PARCOR) model on segments of seizure

episodes in human, Gersch found that the abrupt change in the power spectral

density is better captured by Cauchy noise than Gaussian noise in the AR model (also

see Kitagawa (1987)). Mutapcic et al. (2003) used two feature extraction methods:

classical fast Fourier transform (FFT) analysis and least-mean squares (LMS) based

feature extraction, and then used a 2-layer neural network for classifying sleep stages

of patients’ EEG data. They found similar overall (high 70% to low 80%) and

5



per-stage (mid 70% range) classification accuracy in both methods. The correctness

of classification on the same patient as training is about 80%, and about 70% on the

patients different from training.

Hidden Markov model (HMM) is used by Penny and Roberts (1998) on simulated

Gaussian observation generated on AR or MAR coefficients. By applying directly to

the frequency data, they trained HMM by EM algorithm and classify the states by

Viterbi decoding. They found “HMM can detect changes in DC levels, correlation,

frequency and coherence that are typical of the nonstationarities in an EEG signal”.

Also they pointed out that cluster analysis of derived features in the data can be

used to choose the number of hidden states in HMM.

To estimate parameters of hidden Markov model is a challenging problem. Max-

imum likelihood or maximum a posterior is frequently adopted. The optimization

is often carried by EM algorithm. Andrieu and Doucet (2000) used simulated

annealing with data augmentation. They also proved that under certain constraints,

the Markov chain generated by the simulated annealing (SA) converges. They

applied this method to data simulated by an AR process with a Markov regime.

By comparing the results of SA algorithm with EM algorithm, they found the

results are similarly good: the estimates’ bias and variance with respect to the
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true value are very small. But SA performs better than EM when they are applied

to data generated by Markov modulated Poisson processes. Even though SA can

find global optimizer under certain conditions, its considerably slow speed and

too many tuning parameters in implementation makes it difficult to use. On the

other hand, EM algorithm converges significantly faster than SA. To avoid possible

local minimum, EM algorithm can be executed with different initial parameter values.

The rest of this paper is organized as follows. Section 2 describes preprocessing

of the EEG data. Section 3 proposes the nonhomogeneous hidden Markov model

followed by a simulation study in Section 4. Section 5 presents the results of the

models on real data and discusses related issue. Section 6 concludes.

2 Data collection and feature extraction

The raw data was collected on individual bird (zebra finch), each with one or two

whole nights’ sleep (8-hour period). Single channel EEG waves were recorded at the

forbrain of the bird, either left or right hemisphere of the brain, by attaching two

electrodes between the skull and dura. One electrode is served as the reference.

The raw data is time series of EEG recordings at sampling rate 1KHz. Because

of the large amount of data, feature extraction is needed to capture the useful
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information embedded in the raw data. To this end, we consider the power spectral

density. In fact, it has been argued by many researchers that EEG signal collected

within 1∼ 2 seconds can be represented by autoregressive model (AR) of certain

order, typically 5 ∼ 7, Haselsteiner and Pfurtscheller (2000), Anderson et al. (1995).

Penny and Roberts (1999) apply a Kalman filter (KF) to obtain the AR coefficients

at each time point. On the other hand, most time series processes have their

equivalent representations in frequency domain, including AR(p) processes, see

Brockwell and Davis (1991). Second, the PSD of REM/NREM of our data is clearly

distinguishable. Fig. 1 shows that the average PSD within lower frequency range

(below 30HZ) is lower in REM stage than that of NREM stage. We believe the PSD

within lower frequency range can discriminate REM/NREM states and will rely on

this criteria to label the state space of the hidden Markov chain to be discussed soon.

For each recording, its power spectral density is obtained using the Thompson

multi-taper method, Thompson (1982). Time shift of moving windows in this

method is 0.3s with duration of 3s each. So in total, we have 96000 data points for

one night’s sleep time. Because the power of EEG is concentrated in frequencies

below 40 HZ (“low passed”, see Fig.1), only power spectral density in frequencies up

to 60HZ is to be used. For each frequency, normalize the logarithm of PSD across

time to get Z scores (subtract mean and divided by standard deviations). Let this
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matrix be Mft. Based on this matrix, we derive multi-band scores as follows.

First, choose several non-overlapping frequency bands in the range of 1HZ ∼

60HZ. For example, bands 1HZ ∼ 5HZ, 5.5HZ ∼ 10HZ, 10.5HZ ∼ 20HZ, 20.5HZ ∼

30HZ. In our project, we will only consider 3 ∼ 4 bands. Then we pick the largest Z

score among all these frequencies in cth band at each time point. That is, for the cth

band, at each time point t, let

X̃ct = max{Zft, for all frequnices f in band c}. (1)

Because occasionally the recording has very large noise caused by movement, we

truncate the above score by

sign(Xct) min{A, |Xct|}, (2)

still denoted by Xct. Here we set A = 5. For example, if Xct = 2, then it is not

changed after the truncation. If Xct = −A− 1, it becomes −A after the truncation.

The random vector at time t then consists of X = (X1t, . . . , XKt). K is the total

number of bands. The classification will be based on the observations X t across time.

Fig. 2 plots the probability density of multi-band scores estimated from one epoch

of the time series {X t}. A multi-modal characteristics is clear. Therefore it is natural

to model X t by mixture models. On the other hand, Fig. 3 and Fig. 4 shows strong
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serial correlations and non-stationarity. So a hidden Markov model (HMM), Rabiner

(1989), whose marginal distribution of observations exhibits mixture behavior and

observations are correlated through a latent Markovian process, becomes another

natural approach.

Despite their popularity in EEG analysis, mixture models and HMM are to some

extent oversimplified. In fact, mixture model ignores the dependence over time

indicated by Fig. 3 and Fig. 4. Traditional HMM assumes the transition prob-

ability between latent states as constant (homogeneous), i.e. P (St+1 = s|St =

v, . . . , S1, X t, . . . ,X1) = P (St+1 = s|St = v) = qvs, which is fundamentally flawed.

It is like assuming an exponential distribution of lifetime in reliability studies, which

often is to the contrary of the truth. In sleep stage study, it is not the case the proba-

bility of evolving from REM to NREM stays the same regardless of how long the bird

has been in REM state. The ratio of REM to NREM starts very low, and increases

slowly over night and reaches the peak rapidly at around three quarters of the sleep

period, Amlander and Ball (1994). Taking these into account, we proposed a first

order nonhomogeneous hidden Markov model (NHMM) whose state transition prob-

ability matrix is time dependent and modulated by some covariates Zt, i.e. P (St+1 =

s|St = v, . . . , S1, X t, . . . ,X1, Zt+1, . . . ,Z1) = P (St+1 = s|St = v, X t, Zt+1) = qvs(t).

The covariates Zt could be additional variables which carry information of the current
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state, for instance EEG signal through other channels from different locations, or they

may just be the past observations X t−1, . . . ,X1. Therefore, our NHMM model has

two merits. First, it can easily incorporate information conveyed by other variables

through Zt, for instance, through polytomous logistic link function (See McCullagh

and Nelder (1989)). Second, many physical processes assert that transitions from one

state to another depends on the current observable. For example, one fundamental

theory of LASER asserts that the quantum system can jump from state of energy

level Ei to Ej with P (i → j) ∝ e−(Ej−Ei)/KT . In view of the fact that EEG signal

is related to some real physical processes of birds, it is natural to believe a model

which models the process in first principle makes more sense, and that model is our

NHMM.

3 General models

3.1 Multivariate nonhomogeneous hidden Markov model

We state our self-exciting nonhomogeneous hidden Markov model (NHMM) with

conditional multivariate Gaussian observations as follows:

P (St+1 = s|St = v, · · · , S1, X t, · · · , X1) = P (St+1 = s|St = v,Xt) := qvs(t)

= eλsv+qt
sXt/

H∑
ξ=1

eλξv+qt
ξXt (3)

P (Xt|St = s, · · · , S1, X t−1, · · · , X1) = P (X t|St = s) ∼ N(µs,Σs) (4)
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Figure 1: Log power spectrum density of EEG signal from two birds (WH147 and
FEM1). The PSD is estimated for each epoch of length 3 seconds and averaged over
the same sleep stages.

λ1v = 0, q1 = 0, P (S1 = s) = πs, v, s ∈ {1, . . . , H}, t = 1, . . . , T (5)

The parameters λ1v, q1 are set to zero to guarantee identifiability of the transition

probability parameters. Homogeneous HMM is a special case of NHMM with qs = 0

for all s ∈ {1, . . . , H}. Fig. 5 also illustrates the difference between NHMM and HMM.

The analysis of NHMM consists of two stages, parameter estimation and classification

of the unobserved state sequence {St}, t = 1, · · · , T , and both can be derived in a

similar way as HMM for the key assumption of Markovian properties. We present

major formulas here and leave details to the interested readers. In the sequel Θ stands

for the parameters (π, λ, q, µ, Σ) of the NHMM and we suppress subscripts whenever

12
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Figure 2: Estimated marginal probability density of the multi-band scores of log PSD
of training sample D from bird WH147. X1 through X4 correspond to frequency band
1HZ ∼ 5HZ, 5.5ZH ∼ 10HZ, 10.5HZ ∼ 20HZ, 20.5HZ ∼ 35HZ.
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Figure 4: Autocorrelation function of {X t, t = 1, . . . , 1200}, the multi-band scores of
log PSD of training sample D from bird WH147. Series 1 to 4 are four bands as in
Figure 2.
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possible.

3.2 Train NHMM by EM algorithm

EM algorithm is well suited to obtain the maximum likelihood estimate (MLE) of

the parameters in the case of missing observations or existence of latent variables,

Dempster et al. (1977). Despite its susceptibility to local maxima, EM algorithm

has been applied successfully in many research areas, including estimation of model

parameters of HMM. The pioneer Baum-Welch algorithm, Baum et al. (1970), also

known as Forward-Backward algorithm, originally proposed to train HMM with

discrete observations, is actually a variant of EM algorithm. It is readily to generalize

to the case of HMM with continuous observations. In the sequel, I will give a brief

account of this algorithm considering two cases, training sample consisting of either

one sequence or several independent sequences governed by the same NHMM model

parameters.

Let’s start with training sample of single sequence. We define several auxil-

iary variables, for any s ∈ {1, · · · , H}, Forward variable (FV) αt(s) = P (St =

s,X1, · · · ,Xt|Θ), Backward variable (BV) βt(s) = P (Xt+1, · · · ,XT |St = s, X t, Θ)

for t = 1, · · · , T with the understanding of βT (s) = 1. By Markovian property, the

following recursion equations hold:
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αt(s) =


πsf(X1|S1 = s, Θ), t = 1

H∑
v=1

αt−1(v)qvs(t− 1)f(Xt|St = s, Θ), t = 2, · · · , T

(6)

βt(s) =


1, t = T

H∑
v=1

βt+1(v)qsv(t)f(Xt+1|St+1 = v, Θ), t = 1, · · · , T − 1

(7)

ξt(v, s) := P (St = v, St+1 = s|X1, · · · ,XT, Θ)

=
αt(v)qvs(t)f(Xt+1|St+1 = s, Θ)βt+1(s)

P (X1, · · · ,XT |Θ)

∝ αt(v)qvs(t)f(Xt+1|St+1 = s, Θ)βt+1(s) (8)

γt(s) := P (St = s|X1, · · · ,XT , Θ) =
αt(s)βt(s)

H∑
v=1

αt(v)βt(v)

(9)

The joint log likelihood of X1, · · · , XT and S1, · · · , ST may be written as

log P (X1, · · · , XT , S1, · · · , ST |Θ) = log P (S1) +
T−1∑
t=1

log qSt,St+1(t)

+
T∑

t=1

log f(X t|St, µSt , ΣSt) (10)

Given old parameters Θ, the EM algorithm first computes the condi-

tional expectation (E-step) of the joint log likelihood: EQ(Θ, Θ̂) =

E[log P (X1, · · · , XT , S1, · · · , ST |Θ̂)|X1, · · · , XT , Θ], then it looks for a Θ̂ which

maximizes EQ(Θ, Θ̂) (M-step) and takes the maximizer as the updated parameters
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Θ. In view of Eq. (6), (7), (8), (9), we have

EQ(Θ, Θ̂) =
H∑

s=1

γ1(s) log(π̂s) +
H∑

v,s=1

T−1∑
t=1

ξt(v, s) log q̂vs(t)

+
H∑

s=1

T∑
t=1

γt(s) log f(X t|µ̂s, Σ̂s) (11)

In Eq. (11), the γt(s) and ξt(v, s) are obtained by Eq. (6), (7), (8), (9) with the old

parameters Θ. The M-step is an optimization problem with probability constraints

H∑
s=1

π̂s = 1. The updating formula for π follows trivially by introducing Lagrange

multipliers.

π̂s = γ1(s) (12)

The µ̂, Σ̂ is the maximizer of the third term of EQ(Θ, Θ̂), which is a weighted least-

square regression problem. So the updating formula is readily accessible:

µ̂s =
T∑

t=1

γt(s)X t/
T∑

t=1

γt(s), Σ̂s =
T∑

t=1

γt(s)(X t − µ̂s)(X t − µ̂s)
t/

T∑
t=1

γt(s) (13)

Unfortunately, the transition probability parameters λ, q for P (St+1|St, X t) do

not have closed-form updating formulas, contrary to the regular HMM case. Instead,

they are obtained by maximizing the second term of EQ(Θ, Θ̂):

λ̂, q̂ = arg max
bλ,bq

H∑
v,s=1

T−1∑
t=1

ξt(v, s) log q̂vs(t) (14)

To this end, we adopt the BFGS algorithm, Nocedal and Wright (1999), by providing
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the gradients of our objective function. In fact, referring to Eq. (3), we have

∂log q̂vs(t)/∂λs′v′ = ∂[λsv + qt
sXt − log

H∑
ξ=1

exp(λξv + qt
ξXt)]/∂λs′v′

= [δs′s − q̂vs′(t)]δv′v (15)

∂log q̂vs(t)/5 qs′ = [δs′s − q̂vs′(t)]X t (16)

where δs′s = 1 if s′ = s and zero otherwise. All the remains is to compute the gra-

dient of
H∑

v,s=1

T−1∑
t=1

ξt(v, s) log q̂vs(t). This speeds up the convergence to a great extent

compared with derivative-free algorithms such as simplex method, Press et al. (1992).

If our training sample has M independent sequences that are realizations on the

same HMM model with same parameters, the Eq. (11) takes the form

EQ(Θ, Θ̂) :=
M∑

e=1

E[log P (Xe
1, · · · , Xe

Te
, Se

1, · · · , Se
Te
|Θ̂)|Xe

1, · · · , Xe
Te

, Θ]

=
M∑

e=1

{
H∑

s=1

γe
1(s) log(π̂s) +

H∑
v,s=1

Te−1∑
t=1

ξe
t (v, s) log q̂e

vs(t)

+
H∑

s=1

Te∑
t=1

γe
t (s) log f(Xe

t |µ̂s, Σ̂s)} (17)

where ξe
t (v, s), γe

t (s) are defined by Eq. (8), (9) for the eth sequence in the training

sample. The constraints on π̂, q̂vs can be implemented by Lagrange multiplier. The

M-step updating formula is, in analogy with Eq. (12) and (13),

π̂s =
M∑

e=1

γe
1(s)/

M∑
e=1

H∑
v=1

γe
1(v), λ̂, q̂ = arg max

bλ,bq

M∑
e=1

Te−1∑
t=1

ξe
t (v, s) log q̂e

vs(t) (18)
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µ̂s =
M∑

e=1

Te∑
t=1

γe
t (s)X

e
t/

M∑
e=1

Te∑
t=1

γe
t (s),

Σ̂s =
M∑

e=1

Te∑
t=1

γe
t (s)(X

e
t − µ̂s)(X

e
t − µ̂s)

t/

M∑
e=1

Te∑
t=1

γe
t (s) (19)

EM algorithm updates the parameters iteratively until convergence as judged by

some preset criterion. In this work, the criterion is ‖Θ− Θ̂‖1 < 0.00001 where ‖.‖1 is

the L1-norm.

3.3 Classification of latent state sequence

Given a data set {X̃1, · · · , X̃T ′} which is presumably generated from the same HMM,

the goal here is to use the estimated parameters of HMM, still denoted as Θ, to classify

different time points by assigning state labels to them. If {X̃1, · · · , X̃T ′} is the same

as the training data, then it is an in-sample classification, otherwise it’s out-of-sample

classification. Since the two kinds of classification have the same methodology, we

will focus on in-sample classification. According to the Bayes rule under 0-1 loss, the

classification problem reduces to find s1, . . . , st such that

(s1, . . . , sT ) = arg max
S1,...,ST

P (S1, . . . , ST |X1, . . . ,XT , Θ)

= arg max
S1,...,ST

[P (S1, . . . , ST |π, λ, Q)P (X1, . . . ,XT |S1, . . . , ST , µ, Σ)]

(20)

Since the state space of St is finite, the solution of Eq. (20) can be obtained by

an exhaustive search, which is very inefficient. We turn to the Viterbi algorithm,
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Viterbi (1967), an efficient procedure to search the whole set of all possible sequence

of {S1, · · · , ST}. The protocol of Viterbi algorithm consists of Eq. (21) − (25).

For each specific value s, let M1(s) be the joint probability of the event that the

initial observation is X1 and S1 = s. Then

M1(s) = P (S1 = s)P (X1|S1 = s) = πsP (X1|S1 = s) (21)

For t > 1, let Mt(s) be the maximum joint posterior probability over all possible

values of S1, . . . , St−1 with St = s, i.e.

Mt(s) = max
S1,...,St−1

P (S1, . . . , St−1, St = s, X1, . . . ,X t). (22)

Then

Mt(s) = max
S1,...,St−1

[P (S1, . . . , St−1, St = s|λ, Q)P (X1, . . . ,X t|S1, . . . , St−1, St = s, µ, Σ)]

= max
v

[P (X t, St = s|X t−1, St−1 = v)︸ ︷︷ ︸
bt(v,s)

Mt−1(v)]

= max
v

[bt(v, s)Mt−1(v)]. (23)

For n > 1, let Ψn(s) be the maximizer of the right hand of Eq. (23), i.e.

Ψn(s) = arg max
v

[bn(v, s)Mn−1(v)]. (24)

Then the MAP estimate of the states can be recursively obtained as

sT = arg max
s

MT (s), st−1 = Ψt(st), t = T, · · · , 2 (25)

Notice that our NHMM model bt(v, s) = P (X t, St = s|X t−1, St−1 = v) = qvs(t −

1)f(X t|µs, Σs) but HMM has qvsf(X t|µs, Σs).
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3.4 Gaussian mixture model based clustering

If we don’t consider the serial correlation of {X t}, we may treat X t as in-

dependent sample from a distribution of Gaussian mixture model (GMM)

f(X) =
H∑

s=1

πsfs(X|Θs) with H components and πs is the mixing proportion

of component s. Each component probability distribution fs(X|Θs) describes

the distribution of X t given its latent state St = s. With known πs and

Θ = {Θs|s = 1, . . . , H}, we may classify data into meaningful groupings by simple

rule of arg maxs πsfs(X t|Θs). In this work each group corresponds to a particular

latent state. This classification approach does not consider the serial correlation, in

other words, {X t} are treated as independent sample, which is certainly inadequate

from modelling perspective. However, if classification is our ultimate goal, this

inadequacy might not be a serious issue provided that the component probability

distributions fs(X|Θs) are sufficiently distinguishable in the sense of negligible

probability of overlapping region between any pair of fs(X|Θs) and fv(X|Θv). For

instance, two normal distributions N(0, 0.04) and N(3, 0.25) are well separated

whereas N(0, 0.04) and N(0.5, 0.25) are not.

The parameters πs, Θ are estimated from training data by maximum likeli-

hood estimate via EM algorithm. To see why EM algorithm is a natural vehi-

cle for this problem, we define, for each time point t, a latent indicator vector
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I t = (I1,t, . . . , IH,t) ∈ RH where Ii,t = 1 if St = i and 0 otherwise. Assuming

each I t is iid according to a multinomial distribution of one draw with probability

π1, . . . , πH , the joint log likelihood is

l(π, Θ|X1, . . . ,XT , I1, . . . , IT ) =
T∑

t=1

H∑
s=1

Is,t log[πsfs(X t|Θs)] (26)

Notice Ĩs,t := E(Is,t|X1, . . . ,XT , Θ, π) = πsfs(X t|Θs)/
H∑

v=1

πvfv(X t|Θv). So in anal-

ogy with Eq. (11), the E-step is given by

EQ(Θ, π; Θ̂, π̂) =
T∑

t=1

H∑
s=1

Ĩs,t log[πsfs(X t|Θ̂s)]

=
H∑

s=1

[
T∑

t=1

Ĩs,t︸ ︷︷ ︸
ns

] log(π̂s) +
T∑

t=1

H∑
s=1

Ĩs,t log[fs(X t|Θ̂s)] (27)

Assuming fs(X|Θs) ∼ N(µs, Σs), we have closed-form expressions from M-step ob-

tained by Lagrange multiplier, namely

π̂s = ns/T, µ̂s =
T∑

t=1

Ĩs,tX t/ns, Σ̂s =
T∑

t=1

Ĩs,t(X t − µ̂s)(X t − µ̂s)
t/ns (28)

The updating formulas for Σ̂s in Eq. (13) and (28) assume a full covariance matrix

structure. For a different parametrization (diagonal, spherical, etc), the updating

formula differs, see Celeux and Govaert (1995) for more details. Observe that Ĩs,t =

P (St = s|X1, . . . XT ) is the estimated posterior probability distribution of St , so the

classification of hidden state at time t is simply arg maxs Ĩs,t.
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4 Simulation Study

We present a simulation study to investigate the effectiveness of various classification

approaches. The hidden Markov chain is generated according to P (S1) ∼ π with the

probability transition matrix Q. The observations P (X t|St = s) ∼ N(µs, Σs), s ∈

{1, 2}. The parameters are in Eq. (31) and (32). These parameters are in fact

estimated from a training sample. We will refer to the simulation result in our later

discussions.

The length of each simulated data sequence is 1200. The simulations are repeated

for 1000 times. For each simulated sequence, we fit GMM and HMM respectively by

EM algorithm to obtain parameter estimates. The classification is performed with

estimated parameters. We also did the classification by Viterbi algorithm with true

parameters to estimate the best possible classification accuracy.

In Table 1, the mean and standard deviations are computed from 1000 replicates.

From Table 1, we make the following observations. First, the classification accuracy

by Viterbi algorithm with the estimated HMM model parameters is as good as that

with true parameters. The nearly perfect accuracy (over 99%) demonstrates the effec-

tiveness of Viterbi algorithm in classifying the latent states. Moreover, the estimated

maximum log likelihood of HMM by EM algorithm is statistically equal to the true log

likelihood, which proves EM algorithm reliable for maximizing likelihood. Second, the

GMM is clearly inadequate as its maximum log likelihood is far less than the true log
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likelihood. Fig. 8 plots the estimated probability density of these true log likelihood

from 1000 replicates. The density is estimated by kernel method with constant band-

width. The mean value, −3759.75, of the maximum GMM log likelihood reported in

Table 1 near the location of the vertical line labeled “GMM” in this plot, which is

very extreme compared with the density curve of true log likelihood. Furthermore,

the autocorrelation function of X t reveals strong serial correlations (Fig. 6), whereas

GMM treat X t as independent samples.

Third, even though GMM is inadequate, its classification accuracy competes very

well with that of the correct model, HMM. This can be explained by Fig. 7. Clearly

the distributions of observations X t from two groups S = 1 and S = 2 are well

separated. So the serial correlation of X t brings little advantage to classification. For

each simulated sequence we compute its log likelihood with true parameters.

Table 1: Comparison of classification performance of Gaussian mixture model (GMM)
and HMM when the data is generated from a HMM with conditional Gaussian ob-
servations.

GMM(%) V.TruePar(%) V.EMPar(%) GMM.L True.L HMM.L
Mean 94.40 99.17 99.16 −3759.75 −3373.58 −3358.48

SD 0.83 0.31 0.31 113.44 87.28 87.25

Note: The columns are, from left to right, classification accuracy by GMM, Viterbi algorithm with
true HMM model parameters, Viterbi algorithm with estimated HMM parameters by EM algorithm,
estimated maximum log likelihood function of GMM, log likelihood of HMM with true parameters
and estimated log likelihood of HMM.
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Figure 6: Autocorrelation function of {X t}t=1,...,1200 simulated from the HMM model.
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Figure 7: 3-D scatterplot of {X t}t=1,...,1200 simulated from the HMM model with
parameters in Eq. (31) and (32). Only the first three components of X are plotted.
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Figure 8: Empirical probability density of the true log likelihood of sequence
{X t, t = 1, . . . , 1200} generated from HMM-F with parameters in Eq. (31), (32),
1000 replicates.

Note: The vertical lines locate the log likelihood of sample D estimated by GMM, HMM-D and
HMM-F reported in Table 3, and the log likelihood of NHMM-F is -3357.91 which is very close to
HMM-F, -3327.85.

29



5 Application to real data

The original EEG signal is represented by the time series {X t} of its multi-band

scores of PSD at a rate of 1 score per 0.6 second. We choose five disjoint training

samples (A, B, C, D, E) from this time series. Each of the sample is a continuous

block of {X t} with no elements equal to the threshold A. This reduces the effect

of movement artifact. The time series lengths are 1000, 900, 400, 1200 and 1000,

corresponding to a time period of 10, 9, 4, 12 and 10 minutes, respectively.

5.1 Model fitting and classification

For each training sample, we fit the model GMM of two components and HMM

with two latent states (REM/NREM). Then an in-sample classification is performed.

For GMM, the best model is selected according to the Bayesian information

criteria (BIC), see Fraley and Raftery (2002) for details. For HMM and NHMM,

we consider two different parameterizations of the covariance matrices, HMM-D

with diagonal covariance matrix Σs = Cov(X t|St = s) and HMM-F with a full

covariance matrix Σs. Both HMM and GMM algorithms converge quite fast (less

than a minute) for all training samples. Estimation of parameters of NHMM-F by

EM algorithm is slightly slower (typically converges within 3 minutes) due to Eq. (14).

We report the results of model fitting with sample D. For the other training

30



data we include related results in various tables. Eq.(29)-(30),(31)-(32), (33)-(34)

summarize the estimated parameters of GMM, HMM-F and NHMM-F, respectively.

The subscripts 1 and 2 correspond to REM and NREM. The estimated parameters

of HMM-D and NHMM-D are not reported due to space restriction. The estimated

π̂ = P (S1) for HMM has zero probability for state 2. This phenomenon of degenerated

initial probability is typical when we fit a HMM to a single sequence. If the training

sample has more than one sequence, then the estimated initial probability usually

behaves normally. The agreement between the estimated µ, Σ by GMM and HMM-F

is obvious. The maximum log likelihood of sample D obtained by GMM and HMM-F

is −3761.32, −3327.85, respectively. The fact that HMM-F captures the serial

correlations of {X t} leads to a big increase of the log likelihood. Therefore, HMM-F

is preferred by BIC, −2 log likelihood+n log(T ), where n is the number of parameters.

Table 2 reports the classification accuracy on sample D and an out-of-sample test.

For sample D, the overall in-sample accuracy of GMM is 81.1% with state specific

accuracy as 58.3% (REM) and 94.6% (NREM). HMM-F achieves an accuracy of

85.25% (overall), 72.4% (REM) and 92.8% (NREM). The accuracy of NHMM-F

is 86.08% (overall), 71.52% (REM) and 94.69% (NREM). The out-of-sample clas-

sification is performed on sample data E with estimated parameters from sample

D. For GMM, the state of Y t is classified by maximum posterior probability
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arg maxs P (St = s|Y t, µ̂s, Σ̂s) = arg maxs π̂sf(Y t|µ̂s, Σ̂s). For HMM-F and NHMM-

F, the classification is performed according to the Viterbi algorithm, see Eq. (25).

GMM correctly classified 73.7% of the latent states in sample E with state specific

accuracy of 65.7% (REM) and 84.3% (NREM). HMM-F has an overall accuracy of

81.0% with 80.3% of REM states and 81.9% of NREM states being correctly labeled.

NHMM-F obtains accuracy of 78.60% (overall), 72.54% (REM) and 86.57% (NREM).

(π̂1, π̂2) = (0.26, 0.74), [µ̂1, µ̂2] =



−0.34 0.76

−0.46 0.81

0.64 0.97

1.54 0.93


(29)

Σ̂1 =



0.33 0.21 0.23 0.13

0.21 0.34 0.23 0.09

0.23 0.23 0.46 0.14

0.13 0.09 0.14 0.48


, Σ̂2 =



0.42 0.23 0.16 0.01

0.23 0.34 0.17 0.02

0.16 0.17 0.26 0.03

0.01 0.02 0.03 0.13


(30)

(π̂1, π̂2) = (1, 0), Q̂ =

 0.94 0.06

0.03 0.97

 , [µ̂1, µ̂2] =



−0.30 0.85

−0.40 0.90

0.56 1.04

1.45 0.92


(31)
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Σ̂1 =



0.31 0.17 0.16 0.10

0.17 0.32 0.16 0.06

0.16 0.16 0.39 0.15

0.10 0.06 0.15 0.43


, Σ̂2 =



0.36 0.16 0.11 0.03

0.16 0.27 0.12 0.04

0.11 0.12 0.22 0.04

0.03 0.04 0.04 0.13


(32)

(π̂1, π̂2) = (1, 0), λ̂ =

 0 0

−2.20 2.20

 , Q̂ =

 0 0 0 0

0.94 0.79 0.22 0.76

 (33)

[µ̂1, µ̂2] =



−0.34 0.83

−0.43 0.88

0.57 1.02

1.48 0.92


, Σ̂1 =



0.08 0.03 0.03 0.01

0.03 0.09 0.03 0.01

0.03 0.03 0.16 0.02

0.01 0.01 0.02 0.19


,

Σ̂2 =



0.13 0.03 0.01 0.00

0.03 0.08 0.02 0.00

0.01 0.02 0.06 0.00

0.00 0.00 0.00 0.02


(34)

Table 3 summarizes the classification performance on different training data by

GMM, HMM-F, HMM-D, NHMM-D and NHMM-F, where HMM-D is the HMM
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with a diagonal covariance matrix of Cov(X t|St) while HMM-F has full covariance

matrices. As far as classification is concerned, HMM-F has slight edge over HMM-D

and GMM except on sample B where GMM outperforms the others. The overall

accuracy is around 80%.

Table 2: Classification result on training sample D and out-of-sample test on sample
E.

Training Data D Test Data E
Model cREM cNREM cREM cNREM

REM (%) 323 (72.42) 123 456 (80.28) 112
HMM-F NREM (%) 54 700 (92.84) 78 354 (81.94)

REM (%) 260 (58.30) 186 373 (65.67) 195
GMM NREM (%) 41 713 (94.56) 68 364 (84.26)

REM (%) 319 (71.52) 127 412 (72.54) 156
NHMM-F NREM (%) 40 714 (94.69) 58 374 (86.57)

Note: cREM and cNREM are the classified REM and NREM respectively. (%) stands for the
percentage of correctly classification.

5.2 Discussion

We make several comments on the result above.

• HMM-F model consistently outperforms HMM-D across all training samples.

In fact, one would expect this since HMM-D can be considered as a reduced

model of HMM-F.

• The classification performances of NHMM-F and HMM-F are similar on single

training samples, Table 3. Whereas on multiple training samples, NHMM-F
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outperforms HMM-F on all of the five samples, Table 4. For the data from

another bird (FEM1), NHMM-F has better performance than HMM-F in 3 of

the total 4 samples, Table 5.

• GMM performs comparably with HMM-F and HMM-D. It seems that taking

into account of the dependence of {X t} over time does not lead to any big

improvement in classification. This can be seen by the following observations.

Let X−t be the time series without X t, observe

P (St=s|X1,...,XT )

P (St=v|X1,...,XT )
= P (St=s,X t,X−t)

P (St=v,X t,X−t)

= P (St=s,X−t)P (X t|St=s,X−t)

P (St=v,X−t)P (X t|St=v,X−t)

= P (St=s|X−t)

P (St=v|X−t)

P (X t|St=s)

P (X t|St=v)
(35)

In GMM, X−t does not provide information on St therefore the odds ratio is

completely determined by the very last fraction of Eq. (35). In other words, X t

from different time points are treated independently. HMM approach, however,

accounts for the information of St carried by X−t, which is arguably at advan-

tage. Nevertheless, the improvement of HMM, if any, could be marginal if the

discriminating power based on the P (X t|St) is already high, such as the fitted

µ̂, Σ̂ in Eq. (31) and (32).

• On the other hand, the classification accuracy reported in Table 3 is significantly

less than that in Table 1 (85% vs. 99%). This suggests the HMM-F may be
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inadequate. Moreover, Fig. 4 exhibits a long memory pattern as seen of slowly

decaying ACF while the ACF in Fig. 6 has typical short memory behavior.

So we conclude that HMM-F has not captured the time dependence of X t

adequately, this also explains why HMM-F has only small edge over GMM.

• As an assessment of goodness-of-fit, we perform a parametric bootstrap as fol-

lows. Having obtained the MLE from a training sample by EM algorithm, we

generate 1000 sequences from the fitted model of same length as training sam-

ple, then compute the true log likelihood for each sequence. We compare the

maximum log likelihood obtained from the training sample with the bootstrap

samples of 1000 true log likelihood, which is reported by Fig. 8. Obviously, the

maximum log likelihood of HMM-F on sample D falls in the high probability

region, which suggests an adequate fit. However, this conflicts with the previous

point in this discussion. One explanation is this parametric bootstrap is less

powerful.

• Often it is of interest to assume the same model parameters across different

training samples. In this regard, we fit models to the combined training sample

of A-E, see Eq. (18)-(19) for training HMM on multiple samples. Fitting GMM

on multiple samples is similar as on one sample. The result is reported in

Table 4. The overall accuracy of HMM-F (80.03%) is almost identical to that
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in Table 3. However, the accuracy of GMM (82.53%) improves dramatically

and outperforms the others (NHMM-F, 82.33%).

• Adding more features into the model improves the performance as shown in

Table 5, in which the upper half is achieved using the features of multi-band

scores defined in Eq. (1), the lower half is obtained by including additional

features of X̃ct = min{Zft, for all frequnices f in band c} subject to the same

threshold. Besides the overall improvement of the accuracy, there is dramatic

improvement on the last data sequence (IV), from about 60% to above 80%.

6 Future work and conclusion

In view of previous discussion, a plausible future research direction is to con-

sider alternative model to capture the strong time dependence of the multi-band

scores. This could be achieved by introducing certain autoregressive models

for P (X t|St, St−1, X t−1). Second, comparison of model fitting and classification

among different birds is also of interest to investigate any commonality. The last

but not the least, different feature selections may affect classification power to a

great extent, in this regard it is of absolute importance to consider alternative

features besides the current one, for instance, we may add features other than

X̃ct = min{Zft, for all frequnices f in band c} to selected features.
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In this paper, we proposed a new representation, nonhomogeneous hidden Markov

model, of EEG wave, multi-band scores of log power spectral densities, which is fur-

ther modelled by readily accessible approaches, namely HMM and GMM, respectively.

The classification accuracy (75% ∼ 85%) is comparable to other more sophisticated

and expensive approaches such as neural network.
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Table 3: Classification performed on different training data

Training sample A B C D E
Accuracy (%) 79.70 78.67 78.00 86.08 76.10

N-F cNREM 559 559 141 714 373
cREM 238 149 171 319 388

Log likelihood -2431.46 -2200.39 -1007.37 -3357.91 -2620.83

Accuracy (%) 78.70 78.78 81.00 80.92 74.10
N-D cNREM 558 564 137 581 332

cREM 229 145 187 390 409
Log Likelihood -2520.78 -2301.99 -1024.58 -3485.21 -2662.91

Accuracy (%) 80.10 77.67 80.50 85.25 75.50
H-F cNREM 563 547 140 700 372

cREM 238 152 182 323 383
Log likelihood −2417.26 −2184.94 −1007.08 −3327.85 −2632.25

Accuracy (%) 78.20 77.44 80.25 80.83 74.20
H-D cNREM 547 545 138 570 350

cREM 235 152 183 400 392
Log Likelihood −2591.44 −2333.12 −1059.60 −3543.66 −2766.43

Accuracy (%) 79.80 83.56 76.75 81.08 73.30
GMM cNREM 581 624 135 713 357

cREM 217 128 172 260 376
Log likelihood −2852.65 −2594.87 −1158.39 −3761.32 −2977.51

Total NREM 752 745 159 754 432
REM 248 155 241 446 568

Note: N-F and N-D are NHMM-F and NHMM-D respectively; H-F and H-D are HMM-F and
HMM-D respectively. cNREM is the number of correctly classified NREM states, similarly for
cREM. Accuracy is the percentage of correctly labelled states.
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Table 4: Classification performed on combined multiple training samples A-E assum-
ing common model parameters.

Training sample A B C D E
Accuracy (%) 83.70 87.44 77.50 84.17 76.10

N-F cNREM 625 659 86 646 275
cREM 212 128 224 364 486

Log likelihood −2496.10 −2343.28 −1146.82 −3367.41 −2791.90

Accuracy (%) 79.10 84.00 74.75 80.33 73.40
N-D cNREM 588 626 80 605 257

cREM 203 130 219 359 477
Log Likelihood -2643.84 -2484.88 -1247.95 -3576.10 -2908.24

Accuracy (%) 82.30 85.00 72.50 81.83 74.30
H-F cNREM 596 634 65 595 232

cREM 227 131 225 387 511
Log likelihood −2481.79 −2337.27 −1161.26 −3374.64 −2814.99

Accuracy (%) 82.00 83.89 75.50 80.83 73.00
H-D cNREM 592 621 73 580 231

cREM 228 134 229 390 499
Log likelihood −2647.40 −2488.87 −1252.64 −3589.18 −3000.13

Accuracy (%) 84.50 88.11 80.75 83.50 75.10
GMM cNREM 661 673 104 670 311

cREM 184 120 219 332 440
Log likelihood −2925.47 −2759.34 −1326.39 −3839.91 −3195.63

Total NREM 752 745 159 754 432
REM 248 155 241 446 568

Note: N-F and N-D are NHMM-F and NHMM-D respectively; H-F and H-D are HMM-F and
HMM-D respectively.
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Table 5: Classification performed on single training data collected from another bird
(FEM1).

Training sample I II III IV
Accuracy (%) 89.50 83.86 84.00 62.50

NHMM-F cNREM 569 264 294 162
cREM 147 323 168 88

Log likelihood −1840.91 −1692.42 −1126.06 −903.30

Accuracy (%) 88.13 81.71 83.82 63.50
HMM-F cNREM 554 250 289 162

cREM 151 322 172 92
Log likelihood −1836.12 −1688.00 −1126.63 −904.57

Accuracy (%) 84.34 80.14 79.45 62.50
GMM cNREM 575 259 304 151

cREM 100 302 133 99
Log likelihood −2082.56 −1947.03 −1353.27 −1028.17

Total states NREM 604 337 322 274
REM 196 363 228 126

Accuracy (%) 87.12 81.86 79.45 86.50
NHMM-F CNREM 553 234 312 261

cREM 144 339 125 85
Log likelihood −4131.59 −3669.40 −2704.07 −2008.49

Accuracy (%) 86.38 81.00 82.73 85.25
HMM-F cNREM 541 251 298 255

cREM 150 316 157 86
Log likelihood −4123.48 −3655.91 −2629.40 −2001.24

Accuracy (%) 86.50 63.57 79.64 81.75
GMM cNREM 582 98 302 261

cREM 110 347 136 66
Log likelihood −4417.17 −4014.64 −2893.50 −2191.63

Note: The upper half is achieved using the features of multi-band scores defined in Eq. (1). The lower
half is obtained by including additional features of X̃ct = min{Zft, for all frequnices f in band c}
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